51
|
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD. Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 2013; 8:e60644. [PMID: 23555998 PMCID: PMC3608606 DOI: 10.1371/journal.pone.0060644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/01/2013] [Indexed: 01/30/2023] Open
Abstract
The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56 interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it is involved in mRNA export from plant cell nuclei.
Collapse
Affiliation(s)
- Christine Kammel
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Maren Thomaier
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Brian B. Sørensen
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Thomas Schubert
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| | - Klaus D. Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| |
Collapse
|
52
|
Marintchev A. Roles of helicases in translation initiation: a mechanistic view. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:799-809. [PMID: 23337854 DOI: 10.1016/j.bbagrm.2013.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
The goal of this review is to summarize our current knowledge about the helicases involved in translation initiation and their roles in both general and mRNA-specific translation. The main topics covered are the mechanisms of helicase action, with emphasis on the roles of accessory domains and proteins; the functions performed by helicases in translation initiation; and the interplay between direct and indirect effects of helicases that also function in steps preceding translation initiation. Special attention is given to the dynamics of eIF4A binding and dissociation from eIF4F during mRNA unwinding. It is proposed that DHX29, as well as other helicases and translation initiation factors could also cycle on and off the translation initiation complexes, similar to eIF4A. The evidence in favor of this hypothesis and its possible implications for the mechanisms of translation initiation is discussed. This article is part of a Special Issue entitled: The biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Assen Marintchev
- Dept. of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
53
|
Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 2013; 151:871-884. [PMID: 23141543 DOI: 10.1016/j.cell.2012.09.040] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/09/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, whereas the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 colocalizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts colocalization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope.
Collapse
Affiliation(s)
- Fan Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jie Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jia Xu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zhao Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Birgit S Koppetsch
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nadine Schultz
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Carine Meignin
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67 084 Strasbourg Cedex, France
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip D Zamore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Howard Hughes Medical Institute
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - William E Theurkauf
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
54
|
Abstract
The nuage is a hazy electron-dense structure unique to germ cells and is enriched in components of the piRNA pathway. Although the nuage is cytoplasmic, Zhang et al. now show that it is organized by an intranuclear protein, UAP56.
Collapse
Affiliation(s)
- Haifan Lin
- Yale Stem Cell Center and Departments of Cell Biology and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
55
|
Sahni A, Wang N, Alexis J. UAP56 is an important mediator of angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation. Biochem Biophys Res Commun 2012; 431:636-40. [PMID: 23246467 DOI: 10.1016/j.bbrc.2012.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.
Collapse
Affiliation(s)
- Abha Sahni
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
56
|
Abstract
In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
57
|
A specific set of exon junction complex subunits is required for the nuclear retention of unspliced RNAs in Caenorhabditis elegans. Mol Cell Biol 2012; 33:444-56. [PMID: 23149939 DOI: 10.1128/mcb.01298-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The exon junction complex (EJC) is highly conserved in many organisms and is involved in various steps of mRNA metabolism. During the course of investigating the role of EJC in the germ line sex determination of the nematode Caenorhabditis elegans, we found that depletion of one of the three core subunits (Y14, MAG-1, and eukaryotic translation initiation factor 4III [eIF4AIII]) or one auxiliary subunit (UAP56) of EJC resulted in the cytoplasmic leakage of unspliced RNAs from almost all of the C. elegans protein-coding genes examined thus far. This leakage was also observed with the depletion of several splicing factors, including SF3b, IBP160, and PRP19, all of which genetically interacted with Y14. We also found that Y14 physically interacts with both pre-mRNA and spliceosomal U snRNAs, especially U2 snRNA, and that the interaction was abolished when both IBP160 and PRP19 were depleted. Our results strongly suggest that a specific set of EJC subunits is recruited onto introns and interacts with components of the spliceosome, including U2 snRNP, to provide a critical signal for the surveillance and nuclear retention of unspliced RNAs in C. elegans.
Collapse
|
58
|
In vitro and in vivo analysis of the interaction between RNA helicase A and HIV-1 RNA. J Virol 2012; 86:13272-80. [PMID: 23015696 DOI: 10.1128/jvi.01993-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA helicase A (RHA) promotes multiple steps of HIV-1 RNA metabolism during viral replication, including transcription, translation, and the annealing of primer tRNA(3)(Lys) to the viral RNA. RHA is a member of the DExH subclass of RNA helicases that uniquely contains two double-stranded RNA binding domains (dsRBDs) at its N terminus. Here, we performed a genome-wide analysis of the interaction of RHA with HIV-1 RNA both in vitro, using fluorescence polarization, and during viral replication, using an RNA-protein coprecipitation assay. In vitro, RHA binds to all the isolated regions of the HIV-1 RNA genome tested, with K(d) (equilibrium dissociation constant) values ranging from 44 to 178 nM. In contrast, during viral replication, RNA-protein coprecipitation assays detected only a major interaction of RHA with the 5'-untranslated region (5'-UTR) and a minor interaction with the Rev response element (RRE) of HIV-1 RNA. Since RHA does not associate well with all the highly structured regions of HIV-1 RNA tested in vivo, the results suggest that other viral or cellular factors not present in vitro may modulate the direct interaction of RHA with HIV-1 RNA during virus replication. Nevertheless, a role for duplex RNA as a target for RHA binding in vivo is suggested by the fact that the deletion of either one or both dsRBDs eliminates the in vivo interaction of RHA with HIV-1 RNA. Furthermore, these mutant RHAs do not promote the in vivo annealing of tRNA(3)(Lys) to viral RNA, nor are they packaged into virions, demonstrating that the dsRBDs are essential for the role of RHA in HIV-1 replication.
Collapse
|
59
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
60
|
Sahni A, Wang N, Alexis JD. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis. Biochem Biophys Res Commun 2012; 420:511-5. [PMID: 22446327 DOI: 10.1016/j.bbrc.2012.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 12/22/2022]
Abstract
Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPARγ. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
61
|
Sandri-Goldin RM. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol 2012; 6:1261-77. [PMID: 22082288 DOI: 10.2217/fmb.11.119] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human herpes viruses cause an array of illnesses ranging from cancers for Epstein?Barr virus and Kaposi?s sarcoma-associated herpes virus, to painful skin lesions, and more rarely, keratitis and encephalitis for HSV. All herpes viruses encode a multifunctional protein, typified by HSV ICP27, which plays essential roles in viral infection. ICP27 functions in all stages of mRNA biogenesis from transcription, RNA processing and export through to translation. ICP27 has also been implicated in nuclear protein quality control, cell cycle control, activation of stress signaling pathways and prevention of apoptosis. ICP27 interacts with many proteins and it binds RNA. This article focuses on how ICP27 performs its many roles and highlights similarities with its homologs, which could be targets for antiviral intervention.
Collapse
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
62
|
Xiong F, Lin Y, Han Z, Shi G, Tian L, Wu X, Zeng Q, Zhou Y, Deng J, Chen H. Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Mol Biol Rep 2012; 39:1935-42. [PMID: 21637952 DOI: 10.1007/s11033-011-0940-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Polo-like kinase 1 (Plk1) is a conserved serine/threonine protein kinase that plays pivotal roles during the cell cycle and cell proliferation. Although a number of important targets have been identified, the mechanism of Plk1-regulated pathways and the bulk of the Plk1 interactome are largely unknown. Here, we demonstrate that Plk1 interacts with the DExH/D RNA helicase, UAP56. The protein levels of UAP56 and Plk1 are inversely correlated during the cell cycle. We also show that Plk1 phosphorylates UAP56 in vitro and in vivo and that Plk1-dependent phosphorylation of UAP56 triggers ubiquitination and degradation of UAP56 through proteasomes. This result suggests that Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Our results will be helpful in further understanding mRNA metabolism, cell cycle progression, and the link between mRNA metabolism and cellular function.
Collapse
Affiliation(s)
- Fuyin Xiong
- Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Studies in the past several years highlight important features of the messenger RNA (mRNA) export process. For instance, groups of mRNAs acting in the same biochemical processes can be retained or exported in a coordinated manner thereby impacting on specific biochemistries and ultimately on cell physiology. mRNAs can be transported by either bulk export pathways involving NXF1/TAP or more specialized pathways involving chromosome region maintenance 1 (CRM1). Studies on primary tumor specimens indicate that many common and specialized mRNA export factors are dysregulated in cancer including CRM1, eukaryotic translation initiation factor 4E (eIF4E), HuR, nucleoporin 88, REF/Aly, and THO. This positions these pathways as potential therapeutic targets. Recently, specific targeting of the eIF4E-dependent mRNA export pathway in a phase II proof-of-principle trial with ribavirin led to impaired eIF4E-dependent mRNA export correlating with clinical responses including remissions in leukemia patients. Here, we provide an overview of these mRNA export pathways and highlight their relationship to cancer.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
64
|
Lei XX, Xu J, Ma W, Qiao C, Newman MA, Hammond SM, Huang Y. Determinants of mRNA recognition and translation regulation by Lin28. Nucleic Acids Res 2011; 40:3574-84. [PMID: 22210884 PMCID: PMC3333870 DOI: 10.1093/nar/gkr1279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lin28 is critical for stem cell maintenance and is also associated with advanced human malignancies. Our recent genome-wide studies mark Lin28 as a master post-transcriptional regulator of a subset of messenger RNAs important for cell growth and metabolism. However, the molecular basis underpinning the selective mRNA target regulation is unclear. Here, we provide evidence that Lin28 recognizes a unique motif in multiple target mRNAs, characterized by a small but critical ‘A’ bulge flanked by two G:C base pairs embedded in a complex secondary structure. This motif mediates Lin28-dependent stimulation of translation. As Lin28 is also known to inhibit the biogenesis of a cohort of miRNAs including let-7, we propose that Lin28 binding to different RNA types (precursor miRNAs versus mRNAs) may facilitate recruitment of different co-factors, leading to distinct regulatory outcomes. Our findings uncover a putative yet unexpected motif that may constitute a mechanistic base for the multitude of functions regulated by Lin28 in both stem cells and cancer cells.
Collapse
Affiliation(s)
- Xin-Xiang Lei
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Domínguez-Sánchez MS, Barroso S, Gómez-González B, Luna R, Aguilera A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet 2011; 7:e1002386. [PMID: 22144908 PMCID: PMC3228816 DOI: 10.1371/journal.pgen.1002386] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/30/2011] [Indexed: 02/07/2023] Open
Abstract
THO/TREX connects transcription with genome integrity in yeast, but a role of mammalian THO in these processes is uncertain, which suggests a differential implication of mRNP biogenesis factors in genome integrity in yeast and humans. We show that human THO depletion impairs transcription elongation and mRNA export and increases instability associated with DNA breaks, leading to hyper-recombination and γH2AX and 53BP1 foci accumulation. This is accompanied by replication alteration as determined by DNA combing. Genome instability is R-loop–dependent, as deduced from the ability of the AID enzyme to increase DNA damage and of RNaseH to reduce it, or from the enhancement of R-loop–dependent class-switching caused by THOC1-depletion in CH12 murine cells. Therefore, mammalian THO prevents R-loop formation and has a role in genome dynamics and function consistent with an evolutionary conservation of the functional connection between these mRNP biogenesis factors and genome integrity that had not been anticipated. THO/TREX is an eukaryotic conserved complex, first identified in budding yeast, that acts at the interface between transcription and mRNP (ribonucleoprotein) export. In yeast, THO mutants show gene expression defects and a transcription-associated recombination phenotype. Despite the structural conservation of THO/TREX, it is unclear whether the functional relevance is the same in mammals, in which several reports have identified a role of THO/TREX separated from transcription. We have asked whether mammalian THO/TREX function is connected to transcription and whether this function is required to prevent R-loop formation and to maintain genome integrity. Our study reveals that depletion of human THO subunits, in particular THOC1/hHPR1, reduces transcription elongation, affects mRNA export, and increases genome instability associated with the accumulation of DNA breaks. This genome instability is R-loop–dependent and is accompanied by an alteration of global replication patterns and an increase in recombination. We conclude that human THO/TREX prevents the formation of R-loops that can compromise genome integrity. This work, therefore, provides experimental evidence for a role of mRNP biogenesis factors and R loops in genome integrity in humans.
Collapse
Affiliation(s)
- María S. Domínguez-Sánchez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- * E-mail: (AA); (RL)
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- * E-mail: (AA); (RL)
| |
Collapse
|
66
|
Woloshen V, Huang S, Li X. RNA-Binding Proteins in Plant Immunity. J Pathog 2011; 2011:278697. [PMID: 22567326 PMCID: PMC3335643 DOI: 10.4061/2011/278697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 11/24/2022] Open
Abstract
Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs) have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.
Collapse
Affiliation(s)
- Virginia Woloshen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | |
Collapse
|
67
|
Thomas M, Lischka P, Müller R, Stamminger T. The cellular DExD/H-box RNA-helicases UAP56 and URH49 exhibit a CRM1-independent nucleocytoplasmic shuttling activity. PLoS One 2011; 6:e22671. [PMID: 21799930 PMCID: PMC3142171 DOI: 10.1371/journal.pone.0022671] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/03/2011] [Indexed: 01/26/2023] Open
Abstract
Cellular DExD/H-box RNA-helicases perform essential functions during mRNA biogenesis. The closely related human proteins UAP56 and URH49 are members of this protein family and play an essential role for cellular mRNA export by recruiting the adaptor protein REF to spliced and unspliced mRNAs. In order to gain insight into their mode of action, we aimed to characterize these RNA-helicases in more detail. Here, we demonstrate that UAP56 and URH49 exhibit an intrinsic CRM1-independent nucleocytoplasmic shuttling activity. Extensive mapping studies identified distinct regions within UAP56 or URH49 required for (i) intranuclear localization (UAP56 aa81-381) and (ii) interaction with REF (UAP56 aa51-428). Moreover, the region conferring nucleocytoplasmic shuttling activity was mapped to the C-terminus of UAP56, comprising the amino acids 195-428. Interestingly, this region coincides with a domain within Uap56p of S. pombe that has been reported to be required for both Rae1p-interaction and nucleocytoplasmic shuttling. However, in contrast to this finding we report that human UAP56 shuttles independently from Rae1. In summary, our results reveal nucleocytoplasmic shuttling as a conserved feature of yeast and human UAP56, while their export receptor seems to have diverged during evolution.
Collapse
Affiliation(s)
- Marco Thomas
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter Lischka
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
68
|
Abstract
The central dogma of molecular biology - DNA makes RNA makes proteins - is a flow of information that in eukaryotes encounters a physical barrier: the nuclear envelope, which encapsulates, organizes and protects the genome. Nuclear-pore complexes, embedded in the nuclear envelope, regulate the passage of molecules to and from the nucleus, including the poorly understood process of the export of RNAs from the nucleus. Recent imaging approaches focusing on single molecules have provided unexpected insight into this crucial step in the information flow. This review addresses the latest studies of RNA export and presents some models for how this complex process may work.
Collapse
|
69
|
Tuteja R, Mehta J. A genomic glance at the components of the mRNA export machinery in Plasmodium falciparum. Commun Integr Biol 2011; 3:318-26. [PMID: 20798816 DOI: 10.4161/cib.3.4.11886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 01/29/2023] Open
Abstract
Nuclear export of mRNAs is one of the steps critically important for gene expression and different steps of mRNA processing are linked to the export of the mRNA out of the nucleus. This coupling probably provides a quality control mechanism as well as a higher efficiency for the synthesis of mRNAs. The mRNA is synthesized in the nucleus and then exported to the cytoplasm through the nuclear pore complexes (NPCs), which are embedded in the nuclear envelope. The Mex67-Mtr2 complex in yeast and its counterpart Tap-p15 in higher eukaryotes function as an mRNA exporter through the NPC. Some of the DEAD box proteins such as UAP56 and Dbp5 have been implicated in mRNA export also. In this report using the bioinformatics approach we have analyzed the components of the mRNA export machinery in Plasmodium falciparum and also highlighted the salient features of some of the components. Further detailed studies on various components of nuclear mRNA export in Plasmodium falciparum will be essential to understand this important pathway.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
70
|
Serpeloni M, Moraes CB, Muniz JRC, Motta MCM, Ramos ASP, Kessler RL, Inoue AH, Duarte daRocha W, Yamada-Ogatta SF, Fragoso SP, Goldenberg S, Freitas-Junior LH, Ávila AR. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One 2011; 6:e20730. [PMID: 21687672 PMCID: PMC3110772 DOI: 10.1371/journal.pone.0020730] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/11/2011] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX) multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei —except the fibrillar center of nucleolus— and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II), but not RNA polymerase I (RNA pol I) or Spliced Leader (SL) transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and decrease of translation levels, reinforcing that Trypanosoma-Sub2 (Tryp-Sub2) is a component of mRNA transcription/export pathway in trypanosomes.
Collapse
Affiliation(s)
- Mariana Serpeloni
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Carolina Borsoi Moraes
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea (IPK), Gyeonggi-do, South Korea
| | | | - Maria Cristina Machado Motta
- Departamento de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rafael Luis Kessler
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Alexandre Haruo Inoue
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | | | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Stenio Perdigão Fragoso
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Samuel Goldenberg
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
| | - Lucio H. Freitas-Junior
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea (IPK), Gyeonggi-do, South Korea
| | - Andréa Rodrigues Ávila
- Laboratório de Regulação da Expressão gênica, Instituto Carlos Chagas (ICC), Curitiba, Brazil
- * E-mail:
| |
Collapse
|
71
|
Abstract
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.
Collapse
|
72
|
Qurashi A, Li W, Zhou JY, Peng J, Jin P. Nuclear accumulation of stress response mRNAs contributes to the neurodegeneration caused by Fragile X premutation rCGG repeats. PLoS Genet 2011; 7:e1002102. [PMID: 21655086 PMCID: PMC3107199 DOI: 10.1371/journal.pgen.1002102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 04/08/2011] [Indexed: 12/28/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in Fragile X premutation carriers. Previous studies found that Fragile X rCGG repeats are sufficient to cause neurodegeneration and that the rCGG repeat-binding proteins Pur α and hnRNP A2/B1 can modulate rCGG-mediated neuronal toxicity. To explore the role of Pur α in rCGG-mediated neurodegeneration further, we took a proteomic approach and identified more than 100 proteins that interact with Pur α. Of particular interest is Rm62, the Drosophila ortholog of p68 RNA helicase, which could modulate rCGG-mediated neurodegeneration. Here we show that rCGG repeats decreased the expression of Rm62 posttranscriptionally, leading to the nuclear accumulation of Hsp70 transcript, as well as additional mRNAs involved in stress and immune responses. Together these findings suggest that abnormal nuclear accumulation of these mRNAs, likely as a result of impaired nuclear export, could contribute to FXTAS pathogenesis.
Collapse
Affiliation(s)
- Abrar Qurashi
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wendi Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jian-Ying Zhou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Junmin Peng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Proteomics Service Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
73
|
Yamamoto-Hino M, Kanie Y, Awano W, Aoki-Kinoshita KF, Yano H, Nishihara S, Okano H, Ueda R, Kanie O, Goto S. Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet 2010; 6:e1001254. [PMID: 21203496 PMCID: PMC3009669 DOI: 10.1371/journal.pgen.1001254] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA-binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.
Collapse
Affiliation(s)
- Miki Yamamoto-Hino
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
- Department of Physiology, Keio University, Tokyo, Japan
| | - Yoshimi Kanie
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | - Wakae Awano
- Mutant Flies Laboratory, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | | | - Hiroyuki Yano
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo, Japan
| | | | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Shizuoka, Japan
| | - Osamu Kanie
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
| | - Satoshi Goto
- Research Group of Glycobiology and Glycotechnology, Mitsubishi-kagaku Institute of Life Sciences, Tokyo, Japan
- Department of Physiology, Keio University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
74
|
Germain H, Qu N, Cheng YT, Lee E, Huang Y, Dong OX, Gannon P, Huang S, Ding P, Li Y, Sack F, Zhang Y, Li X. MOS11: a new component in the mRNA export pathway. PLoS Genet 2010; 6:e1001250. [PMID: 21203492 PMCID: PMC3009657 DOI: 10.1371/journal.pgen.1001250] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/17/2010] [Indexed: 11/18/2022] Open
Abstract
Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)-mediated nuclear protein import, Nuclear Export Signal (NES)-dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107-160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol.
Collapse
Affiliation(s)
- Hugo Germain
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Stn. Sainte-Foy, Canada
| | - Na Qu
- National Institute of Biological Sciences, Beijing, China
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - EunKyoung Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Yan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Patrick Gannon
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Shuai Huang
- National Institute of Biological Sciences, Beijing, China
| | - Pingtao Ding
- National Institute of Biological Sciences, Beijing, China
| | - Yingzhong Li
- National Institute of Biological Sciences, Beijing, China
| | - Fred Sack
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Yuelin Zhang
- National Institute of Biological Sciences, Beijing, China
- * E-mail: (XL); (YZ)
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
- * E-mail: (XL); (YZ)
| |
Collapse
|
75
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
76
|
Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 2010; 10:4128-41. [PMID: 21080498 DOI: 10.1002/pmic.201000354] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into small nuclear ribonucleoprotein particles by associating with one of the small nuclear RNAs, and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome, which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44113, USA.
| | | |
Collapse
|
77
|
Dufu K, Livingstone MJ, Seebacher J, Gygi SP, Wilson SA, Reed R. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev 2010; 24:2043-53. [PMID: 20844015 PMCID: PMC2939366 DOI: 10.1101/gad.1898610] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 07/30/2010] [Indexed: 01/25/2023]
Abstract
The conserved TREX mRNA export complex is known to contain UAP56, Aly, Tex1, and the THO complex. Here, we carried out proteomic analysis of immunopurified human TREX complex and identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1). Tho1 is known to function in mRNA export, and we provide evidence that CIP29 likewise functions in this process. Like the known TREX components, a portion of CIP29 localizes in nuclear speckle domains, and its efficient recruitment to mRNA is both splicing- and cap-dependent. We show that UAP56 mediates an ATP-dependent interaction between the THO complex and both CIP29 and Aly, indicating that TREX assembly is ATP-dependent. Using recombinant proteins expressed in Escherichia coli, we show that UAP56, Aly, and CIP29 form an ATP-dependent trimeric complex, and UAP56 bridges the interaction between CIP29 and Aly. We conclude that the interaction of two conserved export proteins, CIP29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREX complex.
Collapse
Affiliation(s)
- Kobina Dufu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michaela J. Livingstone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Jan Seebacher
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stuart A. Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
78
|
Hautbergue GM, Hung ML, Walsh MJ, Snijders APL, Chang CT, Jones R, Ponting CP, Dickman MJ, Wilson SA. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr Biol 2010; 19:1918-24. [PMID: 19836239 PMCID: PMC2828547 DOI: 10.1016/j.cub.2009.09.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 11/23/2022]
Abstract
Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5′ capping and 3′ end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4–7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8–10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Sahni A, Wang N, Alexis JD. UAP56 is an important regulator of protein synthesis and growth in cardiomyocytes. Biochem Biophys Res Commun 2010; 393:106-10. [PMID: 20116367 DOI: 10.1016/j.bbrc.2010.01.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 01/22/2010] [Indexed: 02/01/2023]
Abstract
UAP56, an ATP dependent RNA helicase that also has ATPase activity, is a DExD/H box protein that is phylogenetically grouped with the eukaryotic initiation factor eIF4A, the prototypical member of the DExD/H box family of helicases. UAP56, also known as BAT1, is an essential RNA splicing factor required for spliceosome assembly and mRNA export but its role in protein synthesis is not known. Here we demonstrate that UAP56 regulates protein synthesis and growth in cardiomyocytes. We found that wild-type (WT) UAP56 increased serum induced protein synthesis in HeLa cells. UAP56 mutants lacking ATPase and/or helicase activity inhibited protein synthesis compared with WT UAP56, suggesting that the ATPase and RNA helicase activity of UAP56 is important for protein synthesis. UAP56 siRNA inhibited phenylephrine (PE) induced protein synthesis in cardiomyocytes and inhibited PE induced cardiomyocyte hypertrophy. Our data demonstrate that UAP56 is an important regulator of protein synthesis and plays an important role in the regulation of cardiomyocyte growth.
Collapse
Affiliation(s)
- Abha Sahni
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
80
|
Zolotukhin AS, Uranishi H, Lindtner S, Bear J, Pavlakis GN, Felber BK. Nuclear export factor RBM15 facilitates the access of DBP5 to mRNA. Nucleic Acids Res 2010; 37:7151-62. [PMID: 19786495 PMCID: PMC2790900 DOI: 10.1093/nar/gkp782] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conserved mRNA export receptor NXF1 (Mex67 in yeast) assembles with messenger ribonucleoproteins (mRNP) in the nucleus and guides them through the nuclear pore complex into the cytoplasm. The DEAD family RNA helicase Dbp5 is essential for nuclear export of mRNA and is thought to dissociate Mex67 from mRNP upon translocation, thereby generating directional passage. However, the molecular mechanism by which Dbp5 recognizes Mex67-containing mRNP is not clear. Here we report that the human NXF1-binding protein RBM15 binds specifically to human DBP5 and facilitates its direct contact with mRNA in vivo. We found that RBM15 is targeted to the nuclear envelope, where it colocalizes extensively with DBP5 and NXF1. Gene silencing of RBM15 leads to cytoplasmic depletion and nuclear accumulation of general mRNA as well as individual endogenous transcripts, indicating that RBM15 is required for efficient mRNA export. We propose a model in which RBM15 acts locally at the nuclear pore complex, by facilitating the recognition of NXF1–mRNP complexes by DBP5 during translocation, thereby contributing to efficient mRNA export.
Collapse
Affiliation(s)
- Andrei S Zolotukhin
- Human Retrovirus Pathogenesis Section, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
81
|
Mancini A, Niemann-Seyde SC, Pankow R, El Bounkari O, Klebba-Färber S, Koch A, Jaworska E, Spooncer E, Gruber AD, Whetton AD, Tamura T. THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo. BMC Biol 2010; 8:1. [PMID: 20051105 PMCID: PMC2806247 DOI: 10.1186/1741-7007-8-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 01/05/2010] [Indexed: 02/04/2023] Open
Abstract
Background The transcription/export complex is evolutionarily conserved from yeast to man and is required for coupled transcription elongation and nuclear export of mRNAs. FMIP(Fms interacting protein) is a member of the THO (suppressors of the transcriptional defects of hpr1delta by overexpression) complex which is a subcomplex of the transcription/export complex. THO complex (THOC) components are not essential for bulk poly (A)+ RNA export in higher eukaryotes, but for the nuclear export of subset of mRNAs, however, their exact role is still unclear. Results To study the role of THOC5/Fms interacting protein in vivo, we generated THOC5/Fms interacting protein knockout mice. Since these mice are embryonic lethal, we then generated interferon inducible conditional THOC5/Fms interacting protein knockout mice. After three poly injections all of the mice died within 14 days. No pathological alterations, however, were observed in liver, kidney or heart. Thus we considered the hematopoietic system and found that seven days after poly injection, the number of blood cells in peripheral blood decreased drastically. Investigation of bone marrow cells showed that these became apoptotic within seven days after poly injection. Committed myeloid progenitor cells and cells with long term reconstituting potential were lost from bone marrow within four days after poly injection. Furthermore, infusion of normal bone marrow cells rescued mice from death induced by loss of THOC5/Fms interacting protein. Conclusion THOC5/Fms interacting protein is an essential element in the maintenance of hematopoiesis. Furthermore, mechanistically depletion of THOC5/Fms interacting protein causes the down-regulation of its direct interacting partner, THOC1 which may contribute to altered THO complex function and cell death.
Collapse
Affiliation(s)
- Annalisa Mancini
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str, 1, D-30623 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Shen H. UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep 2009; 42:185-8. [PMID: 19403039 DOI: 10.5483/bmbrep.2009.42.4.185] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts contain introns that are usually removed from premessenger RNA (MRNA) in the process of pre-mRNA splicing. After splicing, the mature RNA is exported from the nucleus to the cytoplasm. The splicing and export processes are coupled. UAP56 protein, which is ubiquitously present in organisms from yeasts to humans, is a DExD/H-box family RNA helicase that is an essential splicing factor with various functions in the prespliceosome assembly and mature spliceosome assembly. Collective evidence indicates that UAP56 has an essential role in mRNA nuclear export. This mini-review summarizes recent evidence for the role of UAP56 in pre-mRNA splicing and nuclear export.
Collapse
Affiliation(s)
- Haihong Shen
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea.
| |
Collapse
|
83
|
Colgan KJ, Boyne JR, Whitehouse A. Uncoupling of hTREX demonstrates that UAP56 and hTHO-complex recruitment onto herpesvirus saimiri intronless transcripts is required for replication. J Gen Virol 2009; 90:1455-1460. [DOI: 10.1099/vir.0.010124-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Herpesvirus saimiri (HVS) ORF57 nucleocytoplasmic shuttle protein binds viral RNA and interacts with the cellular nuclear export adaptor protein, Aly, to access the TAP-mediated nuclear export pathway. This enables the efficient nuclear export of HVS intronless mRNAs. Herein, we extend these studies and demonstrate that ORF57 recruits several members of hTREX, namely Aly, UAP56 and hTHO-complex proteins, onto the viral mRNAs to assemble an export-competent ribonucleoprotein particle. Moreover, using a transdominant form of Aly which inhibits UAP56 and hTHO-complex association with viral intronless mRNA, we show that complete hTREX recruitment is required for efficient HVS mRNA nuclear export and replication.
Collapse
Affiliation(s)
- Kevin J. Colgan
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
84
|
The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol 2009; 83:6335-46. [PMID: 19369354 DOI: 10.1128/jvi.00375-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 has been shown to shuttle between the nucleus and cytoplasm and to bind viral RNA during infection. ICP27 was found to interact with the cellular RNA export adaptor protein Aly/REF, which is part of the TREX complex, and to relocalize Aly/REF to viral replication sites. ICP27 is exported to the cytoplasm through the export receptor TAP/NXF1, and ICP27 must be able to interact with TAP/NXF1 for efficient export of HSV-1 early and late transcripts. We examined the dynamics of ICP27 movement and its localization with respect to Aly/REF and TAP/NXF1 in living cells during viral infection. Recombinant viruses with a yellow fluorescent protein (YFP) tag on the N or C terminus of ICP27 were constructed. While the N-terminally tagged ICP27 virus behaved like wild-type HSV-1, the C-terminally tagged virus was defective in viral replication and gene expression, and ICP27 was confined to the nucleus, suggesting that the C-terminal YFP tag interfered with ICP27's C-terminal interactions, including the interaction with TAP/NXF1. To assess the role of Aly/REF and TAP/NXF1 in viral RNA export, these factors were knocked down using small interfering RNA. Knockdown of Aly/REF had little effect on the export of ICP27 or poly(A)(+) RNA during infection. In contrast, a decrease in TAP/NXF1 levels severely impaired export of ICP27 and poly(A)(+) RNA. We conclude that TAP/NXF1 is essential for ICP27-mediated export of RNA during HSV-1 infection, whereas Aly/REF may be dispensable.
Collapse
|
85
|
Abstract
Export of mRNA from the nucleus is a central process in eukaryotic gene expression that has been implicated in several human diseases. Much of our understanding of how an mRNA is transported to the cytoplasm is derived from studies using yeast and fly models. We present here different mechanisms by which aberrant nuclear retention of mRNA can cause human disease. Emerging evidence that implicates the mRNA export factor GLE1 in two lethal motor neuron disorders is discussed and we highlight surprising links to regulatory mechanisms that were first observed many years ago in yeast. These examples illustrate how model organisms have aided in our elucidation of complex human disorders through analysis of basic cellular processes.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
86
|
Johnson SA, Cubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3' end processing factor Pcf11. Mol Cell 2009; 33:215-26. [PMID: 19110458 PMCID: PMC2659397 DOI: 10.1016/j.molcel.2008.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/05/2008] [Accepted: 12/05/2008] [Indexed: 01/21/2023]
Abstract
We investigated recruitment of the yeast mRNA export factor Yra1 to the transcription elongation complex (TEC). Previously, the Sub2 helicase subunit of TREX was proposed to recruit Yra1. We report that Sub2 is dispensable for Yra1 recruitment, but the cleavage/polyadenylation factor, CF1A, is required. Yra1 binds directly to the Zn finger/Clp1 region of Pcf11, the pol II CTD-binding subunit of CF1A, and this interaction is conserved between their human homologs. Tethering of Pcf11 to nascent mRNA is sufficient to enhance Yra1 recruitment. Interaction with Pcf11 can therefore explain Yra1 binding to the TEC independently of Sub2. We propose that after initially binding to Pcf11, Yra1 is transferred to Sub2. Consistent with this idea, Pcf11 binds the same regions of Yra1 that also contact Sub2, indicating a mutually exclusive interaction. These results suggest a mechanism for cotranscriptional assembly of the export competent mRNP and for coordinating export with 3' end processing.
Collapse
Affiliation(s)
- Sara Ann Johnson
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora CO, 80045, USA
| | | | - David L. Bentley
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora CO, 80045, USA
| |
Collapse
|
87
|
Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J 2009; 28:556-67. [PMID: 19165146 DOI: 10.1038/emboj.2009.5] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 01/05/2009] [Indexed: 11/08/2022] Open
Abstract
In metazoans, nuclear export of bulk mRNA is mediated by Tap-p15, a conserved heterodimeric export receptor that cooperates with adaptor RNA-binding proteins. In this article, we show that Thoc5, a subunit of the mammalian TREX complex, binds to a distinct surface on the middle (Ntf2-like) domain of Tap. Notably, adaptor protein Aly and Thoc5 can simultaneously bind to non-overlapping binding sites on Tap-p15. In vivo, Thoc5 was not required for bulk mRNA export. However, nuclear export of HSP70 mRNA depends on both Thoc5 and Aly. Consistent with a function as a specific export adaptor, Thoc5 exhibits in vitro RNA-binding activity and is associated with HSP70 mRNPs in vivo as a component of the stable THO complex. Thus, through the combinatorial use of an adaptor (e.g., Aly) and co-adapter (e.g., Thoc5), Tap-p15 could function as an export receptor for different classes of mRNAs.
Collapse
|
88
|
Abstract
Bovine papillomavirus type 1 (BPV-1) has served as a prototype for studying the molecular biology and pathogenesis of papillomaviruses. The expression of BPV-1 early and late genes is highly regulated at both transcription and post-transcriptional levels and strictly tied to the differentiation of keratinocytes. BPV-1 infects keratinocytes in the basal layer of the skin and replicates in the nucleus of infected cells in a differentiation-dependent manner. Although viral early genes begin to be expressed from the infected, undifferentiated basal cells, viral late genes are not expressed until the infected cells enter the terminal differentiation stage. Both BPV-1 early and late transcripts are intron-containing bicistronic or polycistronic RNAs, bearing more than one open reading frame and are polyadenylated at either an early or late poly (A) site. Nuclear RNA processing of these transcripts by RNA splicing and poly (A) site selection has been extensively analyzed in the past decade and various viral cis-elements and cellular factors involved in regulation of viral RNA processing were discovered, leading to our better understanding of the gene expression and biology of human papillomaviruses.
Collapse
Affiliation(s)
- Rong Jia
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
89
|
Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol 2008; 83:1184-92. [PMID: 19019956 DOI: 10.1128/jvi.02010-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) regulatory protein ICP27 has been reported to bind viral RNA and to interact with the nuclear export adaptor Aly/REF and the major cellular mRNA nuclear export receptor TAP/NXF1. Using in situ hybridization and in vitro export assays, we show here that poly(A)(+) RNA was retained in the nucleus of cells infected with viral ICP27 mutants that either cannot bind RNA or that do not interact with TAP/NXF1. Microarray analysis of nuclear and cytoplasmic RNA fractions demonstrated that efficient export of the majority of viral transcripts requires that ICP27 be able to bind RNA and to interact with TAP/NXF1. We conclude that ICP27 is the major export adaptor for HSV-1 mRNA and that it links bound transcripts to the TAP/NXF1 export receptor.
Collapse
|
90
|
Analysis of influenza B Virus NS1 protein trafficking reveals a novel interaction with nuclear speckle domains. J Virol 2008; 83:701-11. [PMID: 18987144 DOI: 10.1128/jvi.01858-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many proteins that function in the transcription, maturation, and export of metazoan mRNAs are concentrated in nuclear speckle domains, indicating that the compartment is important for gene expression. Here, we show that the NS1 protein of influenza B virus (B/NS1) accumulates in nuclear speckles and causes rounding and morphological changes of the domains, indicating a disturbance in their normal functions. This property was located within the N-terminal 90 amino acids of the B/NS1 protein and was shown to be independent of any other viral gene product. Within this protein domain, we identified a monopartite importin alpha binding nuclear localization signal. Reverse-genetic analysis of this motif indicated that nuclear import and speckle association of the B/NS1 protein are required for the full replication capacity of the virus. In the late phase of virus infection, the B/NS1 protein relocated to the cytoplasm, which occurred in a CRM1-independent manner. The interaction of the B/NS1 protein with nuclear speckles may reflect a recruitment function to promote viral-gene expression. To our knowledge, this is the first functional description of a speckle-associated protein that is encoded by a negative-strand RNA virus.
Collapse
|
91
|
Boyne JR, Colgan KJ, Whitehouse A. Recruitment of the complete hTREX complex is required for Kaposi's sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathog 2008; 4:e1000194. [PMID: 18974867 PMCID: PMC2569588 DOI: 10.1371/journal.ppat.1000194] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/02/2008] [Indexed: 12/20/2022] Open
Abstract
A cellular pre-mRNA undergoes various post-transcriptional processing events, including capping, splicing and polyadenylation prior to nuclear export. Splicing is particularly important for mRNA nuclear export as two distinct multi-protein complexes, known as human TREX (hTREX) and the exon-junction complex (EJC), are recruited to the mRNA in a splicing-dependent manner. In contrast, a number of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic mRNAs lack introns and are exported by the virus-encoded ORF57 protein. Herein we show that ORF57 binds to intronless viral mRNAs and functions to recruit the complete hTREX complex, but not the EJC, in order assemble an export component viral ribonucleoprotein particle (vRNP). The formation of this vRNP is mediated by a direct interaction between ORF57 and the hTREX export adapter protein, Aly. Aly in turn interacts directly with the DEAD-box protein UAP56, which functions as a bridge to recruit the remaining hTREX proteins to the complex. Moreover, we show that a point mutation in ORF57 which disrupts the ORF57-Aly interaction leads to a failure in the ORF57-mediated recruitment of the entire hTREX complex to the intronless viral mRNA and inhibits the mRNAs subsequent nuclear export and virus replication. Furthermore, we have utilised a trans-dominant Aly mutant to prevent the assembly of the complete ORF57-hTREX complex; this results in a vRNP consisting of viral mRNA bound to ORF57, Aly and the nuclear export factor, TAP. Strikingly, although both the export adapter Aly and the export factor TAP were present on the viral mRNP, a dramatic decrease in intronless viral mRNA export and virus replication was observed in the absence of the remaining hTREX components (UAP56 and hTHO-complex). Together, these data provide the first direct evidence that the complete hTREX complex is essential for the export of KSHV intronless mRNAs and infectious virus production.
Collapse
Affiliation(s)
- James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kevin J. Colgan
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
92
|
Shen H, Zheng X, Shen J, Zhang L, Zhao R, Green MR. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. Genes Dev 2008; 22:1796-803. [PMID: 18593880 DOI: 10.1101/gad.1657308] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The essential splicing factor human UAP56 (hUAP56) is a DExD/H-box protein known to promote prespliceosome assembly. Here, using a series of hUAP56 mutants that are defective for ATP-binding, ATP hydrolysis, or dsRNA unwindase/helicase activity, we assess the relative contributions of these biochemical functions to pre-mRNA splicing. We show that prespliceosome assembly requires hUAP56's ATP-binding and ATPase activities, which, unexpectedly, are required for hUAP56 to interact with U2AF(65) and be recruited into splicing complexes. Surprisingly, we find that hUAP56 is also required for mature spliceosome assembly, which requires, in addition to the ATP-binding and ATPase activities, hUAP56's dsRNA unwindase/helicase activity. We demonstrate that hUAP56 directly contacts U4 and U6 snRNAs and can promote unwinding of the U4/U6 duplex, and that both these activities are dependent on U2AF(65). Our results indicate that hUAP56 first interacts with U2AF(65) in an ATP-dependent manner, and subsequently with U4/U6 snRNAs to facilitate stepwise assembly of the spliceosome.
Collapse
Affiliation(s)
- Haihong Shen
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea.
| | | | | | | | | | | |
Collapse
|
93
|
Gnjec A, D'Costa KJ, Laws SM, Hedley R, Balakrishnan K, Taddei K, Martins G, Paton A, Verdile G, Gandy SE, Broe GA, Brooks WS, Bennett H, Piguet O, Price P, Miklossy J, Hallmayer J, McGeer PL, Martins RN. Association of alleles carried at TNFA -850 and BAT1 -22 with Alzheimer's disease. J Neuroinflammation 2008; 5:36. [PMID: 18715507 PMCID: PMC2538517 DOI: 10.1186/1742-2094-5-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/20/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Inflammatory changes are a prominent feature of brains affected by Alzheimer's disease (AD). Activated glial cells release inflammatory cytokines which modulate the neurodegenerative process. These cytokines are encoded by genes representing several interleukins and TNFA, which are associated with AD. The gene coding for HLA-B associated transcript 1 (BAT1) lies adjacent to TNFA in the central major histocompatibility complex (MHC). BAT1, a member of the DEAD-box family of RNA helicases, appears to regulate the production of inflammatory cytokines associated with AD pathology. In the current study TNFA and BAT1 promoter polymorphisms were analysed in AD and control cases and BAT1 mRNA levels were investigated in brain tissue from AD and control cases. METHODS Genotyping was performed for polymorphisms at positions -850 and -308 in the proximal promoter of TNFA and position -22 in the promoter of BAT1. These were investigated singly or in haplotypic association in a cohort of Australian AD patients with AD stratified on the basis of their APOE epsilon4 genotype. Semi-quantitative RT-PCR was also performed for BAT1 from RNA isolated from brain tissue from AD and control cases. RESULTS APOE epsilon4 was associated with an independent increase in risk for AD in individuals with TNFA -850*2, while carriage of BAT1 -22*2 reduced the risk for AD, independent of APOE epsilon4 genotype. Semi-quantitative mRNA analysis in human brain tissue showed elevated levels of BAT1 mRNA in frontal cortex of AD cases. CONCLUSION These findings lend support to the application of TNFA and BAT1 polymorphisms in early diagnosis or risk assessment strategies for AD and suggest a potential role for BAT1 in the regulation of inflammatory reactions in AD pathology.
Collapse
Affiliation(s)
- Anastazija Gnjec
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Katarzyna J D'Costa
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Simon M Laws
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Ross Hedley
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Kelvin Balakrishnan
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Georgia Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Athena Paton
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| | - Samuel E Gandy
- Mount Sinai School of Medicine, New York, New York, 10029, USA
| | - G Anthony Broe
- Prince of Wales Medical Research Institute, UNSW, Barker Street, Randwick, NSW 2031, Australia
| | - William S Brooks
- Centre for Education and Research on Aging, University of Sydney and Concord Repatriation General Hospital, Concord, NSW, 2139, Australia
| | - Hayley Bennett
- Prince of Wales Medical Research Institute, UNSW, Barker Street, Randwick, NSW 2031, Australia
| | - Olivier Piguet
- Prince of Wales Medical Research Institute, UNSW, Barker Street, Randwick, NSW 2031, Australia
| | - Patricia Price
- Centre for Education and Research on Aging, University of Sydney and Concord Repatriation General Hospital, Concord, NSW, 2139, Australia
- School of Surgery and Pathology, University of Western Australia, Nedlands, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth Hospital, Perth, WA, 6000, Australia
| | - Judith Miklossy
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Joachim Hallmayer
- Department of Genetics, and Center for Narcolepsy, Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA
| | - Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Faculty of Computing, Health and Science, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup Drive, Joondalup, 6027, WA, Australia
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Hollywood Private Hospital, Nedlands, 6009, WA, Australia
| |
Collapse
|
94
|
Isolation and characterization of Plasmodium falciparum UAP56 homolog: evidence for the coupling of RNA binding and splicing activity by site-directed mutations. Arch Biochem Biophys 2008; 478:143-53. [PMID: 18722339 DOI: 10.1016/j.abb.2008.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023]
Abstract
UAP56 (U2AF65 associated protein) is a member of the DEAD-box helicase family. Helicases are essential enzymes generally involved in the metabolism of nucleic acids. The gene encoding a member of DEAD-box family was cloned and characterized from the human malaria parasite Plasmodium falciparum. PfU52 is homologous to UAP56 and contains the RNA-dependent ATPase, RNA helicase and RNA binding activities. Using the parasite extract we report that PfU52 is involved in splicing reaction. Site-directed mutagenesis studies indicate that the conserved residues glycine 181, isoleucine 182 and arginine 206 are involved in RNA binding and this activity is required for the enzymatic activities of PfU52. PfU52 is expressed in all the intraerythrocytic developmental stages of the parasite. In the present study we have reported the detailed characterization of PfU52 from P. falciparum and these results advance the knowledge regarding the function of UAP56 in general.
Collapse
|
95
|
Interactions of human cytomegalovirus proteins with the nuclear transport machinery. Curr Top Microbiol Immunol 2008; 325:167-85. [PMID: 18637506 DOI: 10.1007/978-3-540-77349-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate cellular localization is crucial for the effective function of most viral macromolecules and nuclear translocation is central to the function of herpesviral proteins that are involved in processes such as transcription and DNA replication. The passage of large molecules between the cytoplasm and nucleus, however, is restricted, and this restriction affords specific mechanisms that control nucleocytoplasmic exchange. In this review, we focus on two cytomegalovirus-encoded proteins, pUL69 and pUL84, that are able to shuttle between the nucleus and the cytoplasm. Both viral proteins use unconventional interactions with components of the cellular transport machinery: pUL69 binds to the mRNA export factor UAP56, and this interaction is crucial for pUL69-mediated nuclear export of unspliced RNA; pUL84 docks to importin-alpha proteins via an unusually large protein domain that contains functional leucine-rich nuclear export signals, thus serving as a complex bidirectional transport domain. Selective interference with these unconventional interactions, which disturbs the intracellular trafficking of important viral regulatory proteins, may constitute a novel and attractive principle for antiviral therapy.
Collapse
|
96
|
Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res 2008; 36:4708-18. [PMID: 18628297 PMCID: PMC2504307 DOI: 10.1093/nar/gkn454] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 01/22/2023] Open
Abstract
The conserved RNA helicase DDX3 is of major medical importance due to its involvement in numerous cancers, human hepatitis C virus (HCV) and HIV. Although DDX3 has been reported to have a wide variety of cellular functions, its precise role remains obscure. Here, we raised a new antibody to DDX3 and used it to show that DDX3 is evenly distributed throughout the cytoplasm at steady state. Consistent with this observation, HA-tagged DDX3 also localizes to the cytoplasm. RNAi of DDX3 in both human and Drosophila cells shows that DDX3 is required for cell viability. Moreover, using RNAi, we show that DDX3 is required for expression of protein from reporter constructs. In contrast, we did not detect a role for DDX3 in nuclear steps in gene expression. Further insight into the function of DDX3 came from the observation that its major interaction partner is the multi-component translation initiation factor eIF3. We conclude that a primary function for DDX3 is in protein translation, via an interaction with eIF3.
Collapse
Affiliation(s)
- Chung-Sheng Lee
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA and MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Anusha P. Dias
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA and MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Mark Jedrychowski
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA and MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Arvind H. Patel
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA and MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Jeanne L. Hsu
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA and MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - Robin Reed
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA and MRC Virology Unit, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
97
|
Abstract
In eukaryotes, copying the genetic information from a DNA template into RNA is not sufficient itself to confer functional competence to the DNA-encoded message. mRNAs have to be processed by enzymes and packaged with proteins within nuclei to generate mRNP (messenger ribonucleoprotein) particles, before these can be exported to the cytoplasm. Processing and packaging factors are believed to interact with the nascent mRNA co-transcriptionally, which protects the highly reactive RNA molecule from a presumably aggressive nuclear environment while providing early commitment to its functional fate. In this review, we will describe the factors that are believed to provide the appropriate 'dress code' to the mRNA and the mechanisms underlying the proofreading events that guarantee its quality, focusing on yeast as a model system.
Collapse
|
98
|
Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319-31. [PMID: 18427828 DOI: 10.1007/s00412-008-0158-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5'-end capping, splicing, 3'-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.
Collapse
|
99
|
Kota KP, Wagner SR, Huerta E, Underwood JM, Nickerson JA. Binding of ATP to UAP56 is necessary for mRNA export. J Cell Sci 2008; 121:1526-37. [PMID: 18411249 DOI: 10.1242/jcs.021055] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The major-histocompatibility-complex protein UAP56 (BAT1) is a DEAD-box helicase that is deposited on mRNA during splicing. UAP56 is retained on spliced mRNA in an exon junction complex (EJC) or, alternatively, with the TREX complex at the 5' end, where it might facilitate the export of the spliced mRNA to the cytoplasm. Using confocal microscopy, UAP56 was found to be concentrated in RNA-splicing speckled domains of nuclei but was also enriched in adjacent nuclear regions, sites at which most mRNA transcription and splicing occur. At speckled domains, UAP56 was in complexes with the RNA-splicing and -export protein SRm160, and, as measured by FRAP, was in a dynamic binding equilibrium. The application of an in vitro FRAP assay, in which fluorescent nuclear proteins are photobleached in digitonin-extracted cells, revealed that the equilibrium binding of UAP56 in complexes at speckled domains was directly regulated by ATP binding. This was confirmed using a point mutant of UAP56 that did not bind ATP. Point mutation of UAP56 to eliminate ATP binding did not affect RNA splicing, but strongly inhibited the export of mRNA to the cytoplasm.
Collapse
Affiliation(s)
- Krishna P Kota
- Department of Cell Biology S7-214, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
100
|
Iglesias N, Stutz F. Regulation of mRNP dynamics along the export pathway. FEBS Lett 2008; 582:1987-96. [PMID: 18394429 DOI: 10.1016/j.febslet.2008.03.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 02/02/2023]
Abstract
The transcription of mRNA is tightly coupled to the concomitant recruitment of mRNA processing and export factors, resulting in the formation of mature and export competent mRNP complexes. This interconnection in gene expression implies extensive spatio-temporal control of mRNP dynamics to prevent mRNA export factors bound to pre-mRNA from functioning at the incorrect time and exporting nascent or incompletely processed pre-mRNAs. Recent discoveries provide molecular understanding of how a broad range of post-translational modifications together with RNA-dependent ATPases coordinate proteins acting at different steps and regulate mRNP assembly and export.
Collapse
Affiliation(s)
- Nahid Iglesias
- Department of Cell Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|