51
|
Lamson RE, Winters MJ, Pryciak PM. Cdc42 regulation of kinase activity and signaling by the yeast p21-activated kinase Ste20. Mol Cell Biol 2002; 22:2939-51. [PMID: 11940652 PMCID: PMC133773 DOI: 10.1128/mcb.22.9.2939-2951.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.
Collapse
Affiliation(s)
- Rachel E Lamson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
52
|
Dohlman HG, Thorner JW. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 2002; 70:703-54. [PMID: 11395421 DOI: 10.1146/annurev.biochem.70.1.703] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All cells have the capacity to evoke appropriate and measured responses to signal molecules (such as peptide hormones), environmental changes, and other external stimuli. Tremendous progress has been made in identifying the proteins that mediate cellular response to such signals and in elucidating how events at the cell surface are linked to subsequent biochemical changes in the cytoplasm and nucleus. An emerging area of investigation concerns how signaling components are assembled and regulated (both spatially and temporally), so as to control properly the specificity and intensity of a given signaling pathway. A related question under intensive study is how the action of an individual signaling pathway is integrated with (or insulated from) other pathways to constitute larger networks that control overall cell behavior appropriately. This review describes the signal transduction pathway used by budding yeast (Saccharomyces cerevisiae) to respond to its peptide mating pheromones. This pathway is comprised by receptors, a heterotrimeric G protein, and a protein kinase cascade all remarkably similar to counterparts in multicellular organisms. The primary focus of this review, however, is recent advances that have been made, using primarily genetic methods, in identifying molecules responsible for regulation of the action of the components of this signaling pathway. Just as many of the constituent proteins of this pathway and their interrelationships were first identified in yeast, the functions of some of these regulators have clearly been conserved in metazoans, and others will likely serve as additional models for molecules that carry out analogous roles in higher organisms.
Collapse
Affiliation(s)
- H G Dohlman
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | |
Collapse
|
53
|
Matsuno K, Ito M, Hori K, Miyashita F, Suzuki S, Kishi N, Artavanis-Tsakonas S, Okano H. Involvement of a proline-rich motif and RING-H2 finger of Deltex in the regulation of Notch signaling. Development 2002; 129:1049-59. [PMID: 11861487 DOI: 10.1242/dev.129.4.1049] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch pathway is an evolutionarily conserved signaling mechanism that is essential for cell-cell interactions. The Drosophila deltex gene regulates Notch signaling in a positive manner, and its gene product physically interacts with the intracellular domain of Notch through its N-terminal domain. Deltex has two other domains that are presumably involved in protein-protein interactions: a proline-rich motif that binds to SH3-domains, and a RING-H2 finger motif. Using an overexpression assay, we have analyzed the functional involvement of these Deltex domains in Notch signaling. The N-terminal domain of Deltex that binds to the CDC10/Ankyrin repeats of the Notch intracellular domain was indispensable for the function of Deltex. A mutant form of Deltex that lacked the proline-rich motif behaved as a dominant-negative form. This dominant-negative Deltex inhibited Notch signaling upstream of an activated, nuclear form of Notch and downstream of full-length Notch, suggesting the dominant-negative Deltex might prevent the activation of the Notch receptor. We found that Deltex formed a homo-multimer, and mutations in the RING-H2 finger domain abolished this oligomerization. The same mutations in the RING-H2 finger motif of Deltex disrupted the function of Deltex in vivo. However, when the same mutant was fused to a heterologous dimerization domain (Glutathione-S-Transferase), the chimeric protein had normal Deltex activity. Therefore, oligomerization mediated by the RING-H2 finger motif is an integral step in the signaling function of Deltex.
Collapse
Affiliation(s)
- Kenji Matsuno
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
van Drogen F, Stucke VM, Jorritsma G, Peter M. MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol 2001; 3:1051-9. [PMID: 11781566 DOI: 10.1038/ncb1201-1051] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although scaffolding is a major regulator of mitogen-activated protein kinase (MAPK) pathways, scaffolding proteins are poorly understood. During yeast mating, MAPK Fus3p is phosphorylated by MAPKK Ste7p, which is activated by MAPKKK Ste11p. This MAPK module interacts with the scaffold molecule Ste5p. Here we show that Ste11p and Ste7p were predominantly cytoplasmic proteins, while Ste5p and Fus3p were found in the nucleus and the cytoplasm. Ste5p, Ste7p and Fus3p also localized to tips of mating projections in pheromone-treated cells. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that Fus3p rapidly shuttles between the nucleus and the cytoplasm independently of pheromones, Fus3p phosphorylation and Ste5p. Membrane-bound Ste5p can specifically recruit Fus3p and Ste7p to the cell cortex. Ste5p remains stably bound at the plasma membrane, unlike activated Fus3p, which dissociates from Ste5p and translocates to the nucleus.
Collapse
Affiliation(s)
- F van Drogen
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, 1066 Epalinges/VD, Switzerland
| | | | | | | |
Collapse
|
55
|
Abstract
An emerging theme of mitogen-activated protein kinase (MAPK) cascades is that they form molecular assemblies within cells; the spatial organization of which is provided by scaffold proteins. Yeast Ste5p was the first MAPK cascade scaffold to be described. Early work demonstrated that Ste5p selectively tethers the MAPKKK, MAPKK and MAPK of the yeast mating pathway and is essential for efficient activation of the MAPK by the pheromone stimulus. Recent work indicates that Ste5p is not a passive scaffold but plays a direct role in the activation of the MAPKKK by a heterotrimeric G protein and PAK-type kinase. This activation event requires the formation of an active Ste5p oligomer and proper recruitment of Ste5p to a Gβγ dimer at the submembrane of the cell cortex, which suggests that Ste5p forms a stable Ste5p signalosome linked to a G protein. Additional studies underscore the importance of regulated localization of Ste5p to the plasma membrane and have revealed nuclear shuttling as a regulatory device that controls the access of Ste5p to the plasma membrane. A model that links Ste5p oligomerization with stable membrane recruitment is presented. In this model, pathway activation is coordinated with the conversion of a less active closed form of Ste5 containing a protected RING-H2 domain into an active Ste5p dimer that can bind to Gβγ and form a multimeric scaffold lattice upon which the MAPK cascade can assemble.
Collapse
Affiliation(s)
- E A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
56
|
Harris K, Lamson RE, Nelson B, Hughes TR, Marton MJ, Roberts CJ, Boone C, Pryciak PM. Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins. Curr Biol 2001. [DOI: 10.1016/s0960-9822(01)00567-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Kegel A, Sjöstrand JO, Aström SU. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr Biol 2001; 11:1611-7. [PMID: 11676923 DOI: 10.1016/s0960-9822(01)00488-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutant yeast strains lacking the silencing proteins Sir2p, Sir3p, or Sir4p have a defect in a DNA double-strand break (DSB) repair pathway, called nonhomologous end joining (NHEJ). Mutations in sir genes also lead to the simultaneous expression of a and alpha mating type information, thus generating a nonmating haploid cell type with many properties shared with a/alpha diploids. We addressed whether cell type or Sir proteins per se regulate NHEJ by investigating the role of a novel haploid-specific gene in NHEJ. This gene, NEJ1, was required for efficient NHEJ, and transcription of NEJ1 was completely repressed in a/alpha diploid and sir haploid strains. The NEJ1 promoter contained a consensus binding site for the a1/alpha2 repressor, explaining the cell type-specific expression. Expression of Nej1p from a constitutive promoter in a/alpha diploid and sir mutant strains completely rescued the defect in NHEJ, thus showing that Sir proteins per se were dispensable for NHEJ. Nej1p and Lif1(P), the yeast XRCC4 homolog, interacted in two independent assays, and Nej1p localized to the nucleus, suggesting that Nej1p may have a direct role in NHEJ.
Collapse
Affiliation(s)
- A Kegel
- Umeå Center for Molecular Pathogenesis, Umeå University, SE-901 87, Umeå, Sweden
| | | | | |
Collapse
|
58
|
Lin JL, Chen HC, Fang HI, Robinson D, Kung HJ, Shih HM. MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 2001; 20:6559-69. [PMID: 11641781 DOI: 10.1038/sj.onc.1204818] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2001] [Revised: 07/05/2001] [Accepted: 07/09/2001] [Indexed: 11/09/2022]
Abstract
In this study, we report the cloning and characterization of a novel human Ste20-related kinase that we designated MST4. The 416 amino acid full-length MST4 contains an amino-terminal kinase domain, which is highly homologous to MST3 and SOK, and a unique carboxy-terminal domain. Northern blot analysis indicated that MST4 is highly expressed in placenta, thymus, and peripheral blood leukocytes. Wild-type but not kinase-dead MST4 can phosphorylate myelin basic protein in an in vitro kinase assay. MST4 specifically activates ERK but not JNK or p38 MAPK in transient transfected cells or in stable cell lines. Overexpression of dominant negative MEK1 or treatment with PD98059 abolishes MST4-induced ERK activity, whereas dominant-negative Ras or c-Raf-1 mutants failed to do so, indicating MST4 activates MEK1/ERK via a Ras/Raf-1 independent pathway. HeLa and Phoenix cell lines overexpressing wild-type, but not kinase-dead, MST4 exhibit increased growth rate and form aggressive soft-agar colonies. These phenotypes can be inhibited by PD98059. These results provide the first evidence that MST4 is biologically active in the activation of MEK/ERK pathway and in mediating cell growth and transformation.
Collapse
Affiliation(s)
- J L Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, 128, Sec2, Yen-Chiu-Yuan RD, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
59
|
Li W, Chong H, Guan KL. Function of the Rho family GTPases in Ras-stimulated Raf activation. J Biol Chem 2001; 276:34728-37. [PMID: 11457831 DOI: 10.1074/jbc.m103496200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.
Collapse
Affiliation(s)
- W Li
- Department of Biological Chemistry and The Institute of Gerontology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
60
|
Breitkreutz A, Boucher L, Tyers M. MAPK specificity in the yeast pheromone response independent of transcriptional activation. Curr Biol 2001; 11:1266-71. [PMID: 11525741 DOI: 10.1016/s0960-9822(01)00370-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms whereby different external cues stimulate the same mitogen-activated protein kinase (MAPK) cascade, yet trigger an appropriately distinct biological response, epitomize the conundrum of specificity in cell signaling. In yeast, shared upstream components of the mating pheromone and filamentous growth pathways activate two related MAPKs, Fus3 and Kss1, which in turn regulate programs of gene expression via the transcription factor Ste12. As fus3, but not kss1, strains are impaired for mating, Fus3 exhibits specificity for the pheromone response. To account for this specificity, it has been suggested that Fus3 physically occludes Kss1 from pheromone-activated signaling complexes, which are formed on the scaffold protein Ste5. However, we find that genome-wide expression profiles of pheromone-treated wild-type, fus3, and kss1 deletion strains are highly correlated for all induced genes and, further, that two catalytically inactive versions of Fus3 fail to abrogate the pheromone-induced transcriptional response. Consistently, Fus3 and Kss1 kinase activity is induced to an equivalent extent in pheromone-treated cells. In contrast, both in vivo and in an in vitro-reconstituted MAPK system, Fus3, but not Kss1, exhibits strong substrate selectivity toward Far1, a bifunctional protein required for polarization and G(1) arrest. This effect accounts for the failure to repress G(1)-S specific transcription in fus3 strains and, in part, explains the mating defect of such strains. MAPK specificity in the pheromone response evidently occurs primarily at the substrate level, as opposed to specific kinase activation by dedicated signaling complexes.
Collapse
Affiliation(s)
- A Breitkreutz
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto M5S 1A8, Canada
| | | | | |
Collapse
|
61
|
Burchett SA, Scott A, Errede B, Dohlman HG. Identification of novel pheromone-response regulators through systematic overexpression of 120 protein kinases in yeast. J Biol Chem 2001; 276:26472-8. [PMID: 11337509 DOI: 10.1074/jbc.m103436200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein kinases are well known to transmit and regulate signaling pathways. To identify additional regulators of the pheromone signaling apparatus in yeast, we evaluated an array of 120 likely protein kinases encoded by the yeast genome. Each kinase was fused to glutathione S-transferase, overexpressed, and tested for changes in pheromone responsiveness in vivo. As expected, several known components of the pathway (YCK1, STE7, STE11, FUS3, and KSS1) impaired the growth arrest response. Seven other kinases also interfered with pheromone-induced growth arrest; in rank order they are as follows: YKL116c (renamed PRR1) = YDL214c (renamed PRR2) > YJL141c (YAK1, SRA1) > YNR047w = YCR091w (KIN82) = YIL095w (PRK1) > YCL024w (KCC4). Inhibition of pheromone signaling by PRR1, but not PRR2, required the glutathione S-transferase moiety. Both kinases inhibited gene transcription after stimulation with pheromone, a constitutively active kinase mutant STE11-4, or overexpression of the transcription factor STE12. Neither protein altered the ability of the mitogen-activated protein kinase (MAPK) Fus3 to feedback phosphorylate a known substrate, the MAPK kinase Ste7. These results reveal two new components of the pheromone-signaling cascade in yeast, each acting at a point downstream of the MAPK.
Collapse
Affiliation(s)
- S A Burchett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
62
|
Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ. Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 2001; 276:27770-7. [PMID: 11356842 DOI: 10.1074/jbc.m102264200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence indicates that the beta-arrestins act as scaffold molecules that couple G-protein-coupled receptors to mitogen-activated protein (MAP) kinase signaling pathways. Recently, we identified the c-Jun N-terminal kinase 3 (JNK3) as a beta-arrestin2-interacting protein in yeast-two hybrid and co-immunoprecipitation studies. Beta-arrestin2 acts as a scaffold to enhance signaling to JNK3 stimulated by overexpression of the MAP3 kinase ASK1 or by agonist activation of the angiotensin 1A receptor. Whereas beta-arrestin2 is a very strong activator of JNK3 signaling, beta-arrestin1 is very weak in this regard. The data also indicate that the specific step enhanced by beta-arrestin2 involves phosphorylation of JNK3 by the MAP2 kinase MKK4. We reasoned that defining the region (or domain) in beta-arrestin2 responsible for high level JNK3 activation would provide insight into the mechanism by which beta-arrestin2 enhances the activity of this signaling pathway. Using chimeric beta-arrestins, we have determined that sequences in the carboxyl-terminal region of beta-arrestin2 are important for the enhancement of JNK3 phosphorylation. More detailed analysis of the carboxyl-terminal domains of the beta-arrestins indicated that beta-arrestin2, but not beta-arrestin1, contains a sequence (RRSLHL) highly homologous to the conserved docking motif present in many MAP kinase-binding proteins. Replacement of the beta-arrestin2 RRS residues with the corresponding KP residues present in beta-arrestin1 dramatically reduced both JNK3 interaction and enhancement of JNK3 phosphorylation. Conversely, replacement of the KP residues in beta-arrestin1 with RRS significantly increased both JNK3 binding and enhancement of JNK3 phosphorylation. These results delineate a mechanism by which beta-arrestin2 functions as a scaffold protein in the JNK3 signaling pathway and implicate the conserved docking site in beta-arrestin2 as an important factor in binding JNK3 and stimulating the phosphorylation of JNK3 by MKK4.
Collapse
Affiliation(s)
- W E Miller
- Howard Hughes Medical Institute, Department of Medicine, Duke University Medical Center, Box 3821, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Ste20p (sterile 20 protein) is a putative yeast mitogen-activated protein kinase kinase kinase kinase (MAP4K) involved in the mating pathway. Its homologs in mammals, Drosophila, Caenorhabditis elegans and other organisms make up a large emerging group of protein kinases including 28 members in human. The Ste20 group kinases are further divided into the p21-activated kinase (PAK) and germinal center kinase (GCK) families. They are characterized by the presence of a conserved kinase domain and a noncatalytic region of great structural diversity that enables the kinases to interact with various signaling molecules and regulatory proteins of the cytoskeleton. This review describes the phylogenetic relationships of the Ste20 group kinases based on discussions with many researchers in this field. With the newly established phylogenetic relationships, crucial arguments can be advanced regarding the functions of these kinases as upstream activators of the MAPK pathways and possible activity as MAP4Ks. Their involvement in apoptosis, morphogenesis and cytoskeletal rearrangements is also discussed.
Collapse
Affiliation(s)
- I Dan
- Department of Biological Science, Nagoya University, Chikusa-ku, 464-8602, Nagoya, Japan.
| | | | | |
Collapse
|
64
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1337] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Bardwell AJ, Flatauer LJ, Matsukuma K, Thorner J, Bardwell L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 2001; 276:10374-86. [PMID: 11134045 PMCID: PMC3021106 DOI: 10.1074/jbc.m010271200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.
Collapse
Affiliation(s)
- A J Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
66
|
Abstract
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.
Collapse
Affiliation(s)
- M Karandikar
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
67
|
Abstract
Saccharomyces cerevisiae responds to mating pheromones by activating a receptor-G-protein-coupled mitogen-activated protein kinase (MAPK) cascade that is also used by other signaling pathways. The activation of the MAPK cascade may involve conformational changes through prebound receptor and heterotrimeric G-protein. G beta may then recruit Cdc42-bound MAPKKKK Ste20 to MAPKKK Ste11 through direct interactions with Ste20 and the Ste5 scaffold. Ste20 activates Ste11 by derepressing an autoinhibitory domain. An underlying nuclear shuttling machinery may be required for proper recruitment of Ste5 to G beta. Subsequent polarized growth is mediated by a similar mechanism involving Far1, which binds G beta in addition to Cdc24 and Bem1. Far1 and Cdc24 also undergo nuclear shuttling and the nuclear pool of Far1 may temporally regulate access of Cdc24 to the cell cortex.
Collapse
Affiliation(s)
- E A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
68
|
Sette C, Inouye CJ, Stroschein SL, Iaquinta PJ, Thorner J. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Mol Biol Cell 2000; 11:4033-49. [PMID: 11071925 PMCID: PMC15055 DOI: 10.1091/mbc.11.11.4033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ste5 is essential for pheromone response and binds components of a mitogen-activated protein kinase (MAPK) cascade: Ste11 (MEKK), Ste7 (MEK), and Fus3 (MAPK). Pheromone stimulation releases Gbetagamma (Ste4-Ste18), which recruits Ste5 and Ste20 (p21-activated kinase) to the plasma membrane, activating the MAPK cascade. A RING-H2 domain in Ste5 (residues 177-229) negatively regulates Ste5 function and mediates its interaction with Gbetagamma. Ste5(C177A C180A), carrying a mutated RING-H2 domain, cannot complement a ste5Delta mutation, yet supports mating even in ste4Delta ste5Delta cells when artificially dimerized by fusion to glutathione S-transferase (GST). In contrast, wild-type Ste5 fused to GST permits mating of ste5Delta cells, but does not allow mating of ste4Delta ste5Delta cells. This differential behavior provided the basis of a genetic selection for STE5 gain-of-function mutations. MATa ste4Delta ste5Delta cells expressing Ste5-GST were mutagenized chemically and plasmids conferring the capacity to mate were selected. Three independent single-substitution mutations were isolated. These constitutive STE5 alleles induce cell cycle arrest, transcriptional activation, and morphological changes normally triggered by pheromone, even when Gbetagamma is absent. The first, Ste5(C226Y), alters the seventh conserved position in the RING-H2 motif, confirming that perturbation of this domain constitutively activates Ste5 function. The second, Ste5(P44L), lies upstream of a basic segment, whereas the third, Ste5(S770K), is situated within an acidic segment in a region that contacts Ste7. None of the mutations increased the affinity of Ste5 for Ste11, Ste7, or Fus3. However, the positions of these novel-activating mutations suggested that, in normal Ste5, the N terminus may interact with the C terminus. Indeed, in vitro, GST-Ste5(1-518) was able to associate specifically with radiolabeled Ste5(520-917). Furthermore, both the P44L and S770K mutations enhanced binding of full-length Ste5 to GST-Ste5(1-518), whereas they did not affect Ste5 dimerization. Thus, binding of Gbetagamma to the RING-H2 domain may induce a conformational change that promotes association of the N- and C-terminal ends of Ste5, stimulating activation of the MAPK cascade by optimizing orientation of the bound kinases and/or by increasing their accessibility to Ste20-dependent phosphorylation (or both). In accord with this model, the novel Ste5 mutants copurified with Ste7 and Fus3 in their activated state and their activation required Ste20.
Collapse
Affiliation(s)
- C Sette
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | |
Collapse
|
69
|
Moskow JJ, Gladfelter AS, Lamson RE, Pryciak PM, Lew DJ. Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:7559-71. [PMID: 11003652 PMCID: PMC86308 DOI: 10.1128/mcb.20.20.7559-7571.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Accepted: 07/21/2000] [Indexed: 11/20/2022] Open
Abstract
CDC42 encodes a highly conserved GTPase of the Rho family that is best known for its role in regulating cell polarity and actin organization. In addition, various studies of both yeast and mammalian cells have suggested that Cdc42p, through its interaction with p21-activated kinases (PAKs), plays a role in signaling pathways that regulate target gene transcription. However, recent studies of the yeast pheromone response pathway suggested that prior results with temperature-sensitive cdc42 mutants were misleading and that Cdc42p and the Cdc42p-PAK interaction are not involved in signaling. To clarify this issue, we have identified and characterized novel viable pheromone-resistant cdc42 alleles that retain the ability to perform polarity-related functions. Mutation of the Cdc42p residue Val36 or Tyr40 caused defects in pheromone signaling and in the localization of the Ste20p PAK in vivo and affected binding to the Ste20p Cdc42p-Rac interactive binding (CRIB) domain in vitro. Epistasis analysis suggested that they affect the signaling step at which Ste20p acts, and overproduction of Ste20p rescued the defect. These results suggest that Cdc42p is in fact required for pheromone response and that interaction with the PAK Ste20p is critical for that role. Furthermore, the ste20DeltaCRIB allele, previously used to disrupt the Cdc42p-Ste20p interaction, behaved as an activated allele, largely bypassing the signaling defect of the cdc42 mutants. Additional observations lead us to suggest that Cdc42p collaborates with the SH3-domain protein Bem1p to facilitate signal transduction, possibly by providing a cell surface scaffold that aids in the local concentration of signaling kinases, thus promoting activation of a mitogen-activated protein kinase cascade by Ste20p.
Collapse
Affiliation(s)
- J J Moskow
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
70
|
Jaspers I, Samet JM, Erzurum S, Reed W. Vanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol 2000; 23:95-102. [PMID: 10873158 DOI: 10.1165/ajrcmb.23.1.3989] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activation of nuclear factor (NF)-kappaB and subsequent proinflammatory gene expression in human airway epithelial cells can be evoked by oxidative stress. In this study we examined signal transduction pathways activated by vanadyl sulfate (V(IV))-induced oxidative stress in normal human bronchial epithelial cells. Both nuclear translocation of NF-kappaB and enhanced kappaB-dependent transcription induced by V(IV) were inhibited by overexpression of catalase, but not Cu,Zn superoxide dismutase (Cu,Zn-SOD), indicating that peroxides rather than superoxides initiated signaling. Catalase selectively blocked the response to V(IV) because it inhibited neither NF-kappaB translocation nor kappaB-dependent transcription evoked by the proinflammatory cytokine tumor necrosis factor (TNF)-alpha. The V(IV)-induced kappaB-dependent transcription was dependent upon activation of the p38 mitogen-activated protein kinase because overexpression of dominant-negative mutants of the p38 MAPK pathway inhibited V(IV)-induced kappaB-dependent transcription. This inhibition was not due to suppression of NF-kappaB nuclear translocation because NF-kappaB DNA binding was unaffected by the inhibition of p38 activity. Overexpression of catalase, but not Cu,Zn-SOD, inhibited p38 activation, indicating that peroxides activated p38. Catalase failed to block V(IV)- induced increases in phosphotyrosine levels, suggesting that the catalase-sensitive signaling components were independent of V(IV)-induced tyrosine phosphorylation. The data demonstrate that V(IV)-induced oxidative stress activates at least two distinct pathways, NF-kappaB nuclear translocation and p38-dependent transactivation of NF-kappaB, both of which are required to fully activate kappaB-dependent transcription. Moreover, V(IV)-induced oxidative stress activated these pathways in bronchial epithelial cells by upstream signaling cascades that were distinct at some level from those used by the proinflammatory cytokine TNF-alpha.
Collapse
Affiliation(s)
- I Jaspers
- Center for Environmental Medicine and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, USA.
| | | | | | | |
Collapse
|
71
|
Drogen F, O'Rourke SM, Stucke VM, Jaquenoud M, Neiman AM, Peter M. Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Curr Biol 2000; 10:630-9. [PMID: 10837245 DOI: 10.1016/s0960-9822(00)00511-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Many signals are transduced from the cell surface to the nucleus through mitogen-activated protein (MAP) kinase cascades. Activation of MAP kinase requires phosphorylation by MEK, which in turn is controlled by Raf, Mos or a group of structurally related kinases termed MEKKs. It is not understood how MEKKs are regulated by extracellular signals. In yeast, the MEKK Ste11p functions in multiple MAP kinase cascades activated in response to pheromones, high osmolarity and nutrient starvation. Genetic evidence suggests that the p21-activated protein kinase (PAK) Ste20p functions upstream of Ste11p, and Ste20p has been shown to phosphorylate Ste11p in vitro. RESULTS Ste20p phosphorylated Ste11p on Ser302 and/or Ser306 and Thr307 in yeast, residues that are conserved in MEKKs of other organisms. Mutating these sites to non-phosphorylatable residues abolished Ste11p function, whereas changing them to aspartic acid to mimic the phosphorylated form constitutively activated Ste11p in vivo in a Ste20p-independent manner. The amino-terminal regulatory domain of Ste11p interacted with its catalytic domain, and overexpression of a small amino-terminal fragment of Ste11p was able to inhibit signaling in response to pheromones. Mutational analysis suggested that this interaction was regulated by phosphorylation and dependent on Thr596, which is located in the substrate cleft of the catalytic domain. CONCLUSIONS Our results suggest that, in response to multiple extracellular signals, phosphorylation of Ste11p by Ste20p removes an amino-terminal inhibitory domain, leading to activation of the Ste11 protein kinase. This mechanism may serve as a paradigm for the activation of mammalian MEKKs.
Collapse
Affiliation(s)
- F Drogen
- Swiss Institute for Experimental Cancer Research (ISREC), Switzerland
| | | | | | | | | | | |
Collapse
|
72
|
Kelkar N, Gupta S, Dickens M, Davis RJ. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol 2000; 20:1030-43. [PMID: 10629060 PMCID: PMC85220 DOI: 10.1128/mcb.20.3.1030-1043.2000] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) is activated in response to the treatment of cells with inflammatory cytokines and by exposure to environmental stress. JNK activation is mediated by a protein kinase cascade composed of a MAPK kinase and a MAPK kinase kinase. Here we describe the molecular cloning of a putative molecular scaffold protein, JIP3, that binds the protein kinase components of a JNK signaling module and facilitates JNK activation in cultured cells. JIP3 is expressed in the brain and at lower levels in the heart and other tissues. Immunofluorescence analysis demonstrated that JIP3 was present in the cytoplasm and accumulated in the growth cones of developing neurites. JIP3 is a member of a novel class of putative MAPK scaffold proteins that may regulate signal transduction by the JNK pathway.
Collapse
Affiliation(s)
- N Kelkar
- Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
73
|
Feng Y, Davis NG. Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase. Mol Cell Biol 2000; 20:563-74. [PMID: 10611235 PMCID: PMC85133 DOI: 10.1128/mcb.20.2.563-574.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two yeast pheromone receptors, the a and alpha-factor receptors, share many functional similarities: both G protein-coupled receptors couple to the same downstream signal transduction pathway, and both receptors undergo feedback regulation involving increased phosphorylation on their C-terminal domains in response to ligand challenge. The present work, which focuses on the signaling mechanism controlling this feedback phosphorylation, indicates one striking difference. While the alpha-factor-induced phosphorylation of the alpha-factor receptor does not require activation of the downstream G protein-directed signaling pathway (B. Zanolari, S. Raths, B. Singer-Kruger, and H. Riezman, Cell 71:755-763, 1992), the a-factor-induced phosphorylation of the a-factor receptor (Ste3p) clearly does. Induced Ste3p phosphorylation was blocked in cells with disruptions of various components of the pheromone response pathway, indicating a requirement of pathway components extending from the G protein down through the mitogen-activated protein kinase (MAPK). Furthermore, Ste3p phosphorylation can be induced in the absence of the a-factor ligand when the signaling pathway is artificially activated, indicating that the liganded receptor is not required as a substrate for induced phosphorylation. While the activation of signaling is critical for the feedback phosphorylation of Ste3p, pheromone-induced gene transcription, one of the major outcomes of pheromone signaling, appears not to be required. This conclusion is indicated by three results. First, ste12Delta cells differ from cells with disruptions of the upstream signaling elements (e.g., ste4Delta, ste20Delta, ste5Delta, ste11Delta, ste7Delta, or fus3Delta kss1Delta cells) in that they clearly retain some capacity for inducing Ste3p phosphorylation. Second, while activated alleles of STE11 and STE12 induce a strong transcriptional response, they fail to induce a-factor receptor phosphorylation. Third, blocking of new pheromone-induced protein synthesis with cycloheximide fails to block phosphorylation. These findings are discussed within the context of a recently proposed model for pheromone signaling (P. M. Pryciak and F. A. Huntress, Genes Dev. 12:2684-2697, 1998): a key step of this model is the activation of the MAPK Fus3p through the G(betagamma)-dependent relocalization of the Ste5p-MAPK cascade to the plasma membrane. Ste3p phosphorylation may involve activated MAPK Fus3p feeding back upon plasma membrane targets.
Collapse
Affiliation(s)
- Y Feng
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
74
|
English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, Cobb MH. New insights into the control of MAP kinase pathways. Exp Cell Res 1999; 253:255-70. [PMID: 10579927 DOI: 10.1006/excr.1999.4687] [Citation(s) in RCA: 343] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J English
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75235-9041, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
MAP kinases are a family of protein kinases that are ubiquitously expressed and play roles in most signal transduction pathways. They are activated within protein kinase cascades consisting of at least three kinases acting in series. In many, if not all cases, the three-kinase cascade, conveniently referred to as a MAP kinase module, is organized on scaffolds with a variety of forms and functions. This review discusses similarities and differences in scaffolding proteins and mechanisms in yeast, flies, worms and mammals.
Collapse
Affiliation(s)
- M Karandikar
- Department of Pharmacology, Southwestern Medical Center, Dallas, TX 75235-9041, USA
| | | |
Collapse
|
76
|
Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 1999; 19:7245-54. [PMID: 10490659 PMCID: PMC84717 DOI: 10.1128/mcb.19.10.7245] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein (MAP) kinases is mediated by a protein kinase cascade. This signaling mechanism may be coordinated by the interaction of components of the protein kinase cascade with scaffold proteins. The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates signaling by the mixed-lineage kinase (MLK)-->MAP kinase kinase 7 (MKK7)-->JNK pathway. The scaffold proteins JIP1 and JIP2 interact to form oligomeric complexes that accumulate in peripheral cytoplasmic projections extended at the cell surface. The JIP proteins function by aggregating components of a MAP kinase module (including MLK, MKK7, and JNK) and facilitate signal transmission by the protein kinase cascade.
Collapse
Affiliation(s)
- J Yasuda
- Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
77
|
Choi YJ, Kim SH, Park KS, Choi KY. Differential transmission of G1 cell cycle arrest and mating signals bySaccharomyces cerevisiaeSte5 mutants in the pheromone pathway. Biochem Cell Biol 1999. [DOI: 10.1139/o99-054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccharomyces cerevisiae Ste5 is a scaffold protein that recruits many pheromone signaling molecules to sequester the pheromone pathway from other homologous mitogen-activated protein kinase pathways. G1 cell cycle arrest and mating are two different physiological consequences of pheromone signal transduction and Ste5 is required for both processes. However, the roles of Ste5 in G1 arrest and mating are not fully understood. To understand the roles of Ste5 better, we isolated 150 G1 cell cycle arrest defective STE5 mutants by chemical mutagenesis of the gene. Here, we found that two G1 cell cycle arrest defective STE5 mutants (ste5MD248Vand ste5delta-776) retained mating capacity. When overproduced in a wild-type strain, several ste5 mutants also showed different dominant phenotypes for G1 arrest and mating. Isolation and characterization of the mutants suggested separable roles of Ste5 in G1 arrest and mating of S. cerevisiae. In addition, the roles of Asp-248 and Tyr-421, which are important for pheromone signal transduction were further characterized by site-directed mutagenesis studies.Key words: Ste5, Saccharomyces cerevisiae, signal transduction, mating, G1 cell cycle arrest.
Collapse
|
78
|
Mahanty SK, Wang Y, Farley FW, Elion EA. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 1999; 98:501-12. [PMID: 10481914 DOI: 10.1016/s0092-8674(00)81978-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Localization of Ste5 to GP at the plasma membrane is essential for transmission of the pheromone signal to associated MAP kinase cascade enzymes. Here, we show that this crucial localization requires prior shuttling of Ste5 through the nucleus. Ste5 shuttles through the nucleus constitutively during vegetative growth. Pheromone enhances nuclear export of Ste5, and this pool translocates vectorially to the cell periphery. Remarkably, Ste5 that cannot transit the nucleus is unable to localize at the periphery and activate the pathway, while Ste5 with enhanced transit through the nucleus has enhanced ability to localize to the periphery and activate the pathway. This novel regulatory scheme may ensure that cytoplasmic Ste5 does not activate downstream kinases in the absence of pheromone and could be applicable to other membrane-recruited signaling proteins.
Collapse
Affiliation(s)
- S K Mahanty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
79
|
Wu C, Leberer E, Thomas DY, Whiteway M. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae. Mol Biol Cell 1999; 10:2425-40. [PMID: 10397774 PMCID: PMC25464 DOI: 10.1091/mbc.10.7.2425] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae Ste11p protein kinase is a homologue of mammalian MAPK/extracellular signal-regulated protein kinase kinase kinases (MAPKKKs or MEKKs) as well as the Schizosaccharomyces pombe Byr2p kinase. Ste11p functions in several signaling pathways, including those for mating pheromone response and osmotic stress response. The Ste11p kinase has an N-terminal domain that interacts with other signaling molecules to regulate Ste11p function and direct its activity in these pathways. One of the Ste11p regulators is Ste50p, and Ste11p and Ste50p associate through their respective N-terminal domains. This interaction relieves a negative activity of the Ste11p N terminus, and removal of this negative function is required for Ste11p function in the high-osmolarity glycerol (HOG) pathway. The Ste50p/Ste11p interaction is also important (but not essential) for Ste11p function in the mating pathway; in this pathway binding of the Ste11p N terminus with both Ste50p and Ste5p is required, with the Ste5p association playing the major role in Ste11p function. In vitro, Ste50p disrupts an association between the catalytic C terminus and the regulatory N terminus of Ste11p. In addition, Ste50p appears to modulate Ste11p autophosphorylation and is itself a substrate of the Ste11p kinase. Therefore, both in vivo and in vitro data support a role for Ste50p in the regulation of Ste11p activity.
Collapse
Affiliation(s)
- C Wu
- Eukaryotic Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | |
Collapse
|
80
|
Choi KY, Kranz JE, Mahanty SK, Park KS, Elion EA. Characterization of Fus3 localization: active Fus3 localizes in complexes of varying size and specific activity. Mol Biol Cell 1999; 10:1553-68. [PMID: 10233162 PMCID: PMC25340 DOI: 10.1091/mbc.10.5.1553] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The MAP kinase Fus3 regulates many different signal transduction outputs that govern the ability of Saccharomyces cerevisiae haploid cells to mate. Here we characterize Fus3 localization and association with other proteins. By indirect immunofluorescence, Fus3 localizes in punctate spots throughout the cytoplasm and nucleus, with slightly enhanced nuclear localization after pheromone stimulation. This broad distribution is consistent with the critical role Fus3 plays in mating and contrasts that of Kss1, which concentrates in the nucleus and is not required for mating. The majority of Fus3 is soluble and not bound to any one protein; however, a fraction is stably bound to two proteins of approximately 60 and approximately 70 kDa. Based on fractionation and gradient density centrifugation properties, Fus3 exists in a number of complexes, with its activity critically dependent upon association with other proteins. In the presence of alpha factor, nearly all of the active Fus3 localizes in complexes of varying size and specific activity, whereas monomeric Fus3 has little activity. Fus3 has highest specific activity within a 350- to 500-kDa complex previously shown to contain Ste5, Ste11, and Ste7. Ste5 is required for Fus3 to exist in this complex. Upon alpha factor withdrawal, a pool of Fus3 retains activity for more than one cell cycle. Collectively, these results support Ste5's role as a tether and suggest that association of Fus3 in complexes in the presence of pheromone may prevent inactivation in addition to enhancing activation.
Collapse
Affiliation(s)
- K Y Choi
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, Massachusetts 02115-5701, USA
| | | | | | | | | |
Collapse
|
81
|
Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11:211-8. [PMID: 10209154 DOI: 10.1016/s0955-0674(99)80028-3] [Citation(s) in RCA: 955] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are components of a three kinase regulatory cascade. There are multiple members of each component family of kinases in the MAPK module. Specificity of regulation is achieved by organization of MAPK modules, in part, by use of scaffolding and anchoring proteins. Scaffold proteins bring together specific kinases for selective activation, sequestration and localization of signaling complexes. The recent elucidation of scaffolding mechanisms for MAPK pathways has begun to solve the puzzle of how specificity in signaling can be achieved for each MAPK pathway in different cell types and in response to different stimuli. As new MAPK members are defined, determining their organization in kinase modules will be critical in understanding their select role in cellular regulation.
Collapse
Affiliation(s)
- T P Garrington
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
82
|
Farley FW, Satterberg B, Goldsmith EJ, Elion EA. Relative dependence of different outputs of the Saccharomyces cerevisiae pheromone response pathway on the MAP kinase Fus3p. Genetics 1999; 151:1425-44. [PMID: 10101167 PMCID: PMC1460551 DOI: 10.1093/genetics/151.4.1425] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fus3p and Kss1p act at the end of a conserved signaling cascade that mediates numerous cellular responses for mating. To determine the role of Fus3p in different outputs, we isolated and characterized a series of partial-function fus3 point mutants for their ability to phosphorylate a substrate (Ste7p), activate Ste12p, undergo G1 arrest, form shmoos, select partners, mate, and recover. All the mutations lie in residues that are conserved among MAP kinases and are predicted to affect either enzyme activity or binding to Ste7p or substrates. The data argue that Fus3p regulates the various outputs assayed through the phosphorylation of multiple substrates. Different levels of Fus3p function are required for individual outputs, with the most function required for shmoo formation, the terminal output. The ability of Fus3p to promote shmoo formation strongly correlates with its ability to promote G1 arrest, suggesting that the two events are coupled. Fus3p promotes recovery through a mechanism that is distinct from its ability to promote G1 arrest and may involve a mechanism that does not require kinase activity. Moreover, catalytically inactive Fus3p inhibits the ability of active Fus3p to activate Ste12p and hastens recovery without blocking G1 arrest or shmoo formation. These results raise the possibility that in the absence of sustained activation of Fus3p, catalytically inactive Fus3p blocks further differentiation by restoring mitotic growth. Finally, suppression analysis argues that Kss1p contributes to the overall pheromone response in a wild-type strain, but that Fus3p is the critical kinase for all of the outputs tested.
Collapse
Affiliation(s)
- F W Farley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
83
|
Bell B, Xing H, Yan K, Gautam N, Muslin AJ. KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation. J Biol Chem 1999; 274:7982-6. [PMID: 10075696 DOI: 10.1074/jbc.274.12.7982] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase KSR-1 is a recently identified participant in the Ras signaling pathway. The subcellular localization of KSR-1 is variable. In serum-deprived cultured cells, KSR-1 is primarily found in the cytoplasm; in serum-stimulated cells, a significant portion of KSR-1 is found at the plasma membrane. To identify the mechanism that mediates KSR-1 translocation, we performed a yeast two-hybrid screen. Three clones that interacted with KSR-1 were found to encode the full-length gamma10 subunit of heterotrimeric G-proteins. KSR-1 also interacted with gamma2 and gamma3 in a two-hybrid assay. Deletion analysis demonstrated that the isolated CA3 domain of KSR-1, which contains a cysteine-rich zinc finger-like domain, interacted with gamma subunits. Coimmunoprecipitation experiments demonstrated that KSR-1 bound to beta1 gamma3 subunits when all three were transfected into cultured cells. Lysophosphatidic acid treatment of cells induced KSR-1 translocation to the plasma membrane from the cytoplasm that was blocked by administration of pertussis toxin but not by dominant-negative Ras. Finally, transfection of wild-type KSR-1 inhibited beta1 gamma3-induced mitogen-activated protein kinase activation in cultured cells. These results demonstrate that KSR-1 translocation to the plasma membrane is mediated, at least in part, by an interaction with beta gamma and that this interaction may modulate mitogen-activated protein kinase signaling.
Collapse
Affiliation(s)
- B Bell
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
84
|
Schillace RV, Scott JD. Organization of kinases, phosphatases, and receptor signaling complexes. J Clin Invest 1999; 103:761-5. [PMID: 10079095 PMCID: PMC408155 DOI: 10.1172/jci6491] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- R V Schillace
- Howard Hughes Medical Institute L-474, Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
85
|
Schenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:1-24. [PMID: 10076047 DOI: 10.1016/s0167-4889(98)00178-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells can react to environmental changes by transduction of extracellular signals, to produce intracellular responses. Membrane-impermeable signal molecules are recognized by receptors, which are localized on the plasma membrane of the cell. Binding of a ligand can result in the stimulation of an intrinsic enzymatic activity of its receptor or the modulation of a transducing protein. The modulation of one or more intracellular transducing proteins can finally lead to the activation or inhibition of a so-called 'effector protein'. In many instances, this also results in altered gene expression. Phosphorylation by protein kinases is one of the most common and important regulatory mechanisms in signal transmission. This review discusses the non-channel transmembrane receptors and their downstream signaling, with special focus on the role of protein kinases.
Collapse
Affiliation(s)
- P W Schenk
- Section of Cell Biology, Institute of Molecular Plant Sciences, Leiden University, P.O. Box 9505, 2300 RA, Leiden, Netherlands
| | | |
Collapse
|
86
|
Leza MA, Elion EA. POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2. Genetics 1999; 151:531-43. [PMID: 9927449 PMCID: PMC1460478 DOI: 10.1093/genetics/151.2.531] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the absence of a successful mating, pheromone-arrested Saccharomyces cerevisiae cells reenter the mitotic cycle through a recovery process that involves downregulation of the mating mitogen-activated protein kinase (MAPK) cascade. We have isolated a novel gene, POG1, whose promotion of recovery parallels that of the MAPK phosphatase Msg5. POG1 confers alpha-factor resistance when overexpressed and enhances alpha-factor sensitivity when deleted in the background of an msg5 mutant. Overexpression of POG1 inhibits alpha-factor-induced G1 arrest and transcriptional repression of the CLN1 and CLN2 genes. The block in transcriptional repression occurs at SCB/MCB promoter elements by a mechanism that requires Bck1 but not Cln3. Genetic tests strongly argue that POG1 promotes recovery through upregulation of the CLN2 gene and that the resulting Cln2 protein promotes recovery primarily through an effect on Ste20, an activator of the mating MAPK cascade. A pog1 cln3 double mutant displays synthetic mutant phenotypes shared by cell-wall integrity and actin cytoskeleton mutants, with no synthetic defect in the expression of CLN1 or CLN2. These and other results suggest that POG1 may regulate additional genes during vegetative growth and recovery.
Collapse
Affiliation(s)
- M A Leza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
87
|
Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1264-300. [PMID: 9841672 PMCID: PMC98946 DOI: 10.1128/mmbr.62.4.1264-1300.1998] [Citation(s) in RCA: 715] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Collapse
Affiliation(s)
- M C Gustin
- Department of Biochemistry and Cell Biology Rice University, Houston, Texas 77251-1892, USA.
| | | | | | | |
Collapse
|
88
|
Dowell SJ, Bishop AL, Dyos SL, Brown AJ, Whiteway MS. Mapping of a yeast G protein betagamma signaling interaction. Genetics 1998; 150:1407-17. [PMID: 9832519 PMCID: PMC1460424 DOI: 10.1093/genetics/150.4.1407] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein betagamma subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gbeta (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gbetagamma coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Galpha) and Ste18p (Ggamma) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gbetagamma coiled-coil in Ste5p binding may set a precedent for Gbetagamma-effector interactions in more complex organisms.
Collapse
Affiliation(s)
- S J Dowell
- Glaxo Wellcome Research and Development, Stevenage, SG1 2NY, United Kingdom.
| | | | | | | | | |
Collapse
|
89
|
Whitmarsh AJ, Davis RJ. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 1998; 23:481-5. [PMID: 9868371 DOI: 10.1016/s0968-0004(98)01309-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MAP-kinase signaling pathways are activated by multiple extracellular stimuli. The specificity of activation and function of MAP-kinase signaling modules is determined, in part, by scaffold proteins that create multienzyme complexes. In Saccharomyces cerevisiae, two MAP-kinase-scaffold proteins have been identified. Recent studies of mammalian cells have also led to the identification of putative scaffold proteins. These scaffold proteins appear to facilitate MAP-kinase activation, in response to specific physiological stimuli, and to insulate the bound MAP-kinase module against activation by irrelevant stimuli. Scaffold proteins are therefore critical components of MAP-kinase modules and ensure signaling specificity.
Collapse
Affiliation(s)
- A J Whitmarsh
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, USA
| | | |
Collapse
|
90
|
Butty AC, Pryciak PM, Huang LS, Herskowitz I, Peter M. The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 1998; 282:1511-6. [PMID: 9822386 DOI: 10.1126/science.282.5393.1511] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) determine tissue and cell polarity in a variety of organisms. In yeast, cells orient polarized growth toward the mating partner along a pheromone gradient by a mechanism that requires Far1p and Cdc24p. Far1p bound Gbetagamma and interacted with polarity establishment proteins, which organize the actin cytoskeleton. Cells containing mutated Far1p unable to bind Gbetagamma or polarity establishment proteins were defective for orienting growth toward their mating partner. In response to pheromones, Far1p moves from the nucleus to the cytoplasm. Thus, Far1p functions as an adaptor that recruits polarity establishment proteins to the site of extracellular signaling marked by Gbetagamma to polarize assembly of the cytoskeleton in a morphogenetic gradient.
Collapse
Affiliation(s)
- A C Butty
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, 1066 Epalinges/VD, Switzerland
| | | | | | | | | |
Collapse
|
91
|
O'Rourke SM, Herskowitz I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 1998; 12:2874-86. [PMID: 9744864 PMCID: PMC317168 DOI: 10.1101/gad.12.18.2874] [Citation(s) in RCA: 321] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The MAPKKK Ste11p functions in three Saccharomyces cerevisiae MAPK cascades [the high osmolarity glycerol (HOG), pheromone response, and pseudohyphal/invasive growth pathways], but its activation in response to high osmolarity stimulates only the HOG pathway. To determine what restricts cross-activation of MAPK cascades (cross talk), we have studied mutants in which the pheromone response pathway is activated by high osmolarity (1 M sorbitol). We found that mutations in the HOG1 gene, encoding the p38-type MAPK of the HOG pathway, and in the PBS2 gene, encoding the activating kinase for Hog1p, allowed osmolarity-induced activation of the pheromone response pathway. This cross talk required the osmosensor Sho1p, as well as Ste20p, Ste50p, the pheromone response MAPK cascade (Ste11p, Ste7p, and Fus3p or Kss1p), and Ste12p but not Ste4p or the MAPK scaffold protein, Ste5p. The cross talk in hog1 mutants induced multiple responses of the pheromone response pathway: induction of a FUS1::lacZ reporter, morphological changes, and mating in ste4 and ste5 mutants. We suggest that Hog1p may prevent osmolarity-induced cross talk by inhibiting Sho1p, perhaps as part of a feedback control on the HOG pathway. We have also shown that Ste20p and Ste50p function in the Sho1p branch of the HOG pathway and that a second osmosensor in addition to Sho1p may activate Ste11p. Finally, we have found that pseudohyphal growth exhibited by wild-type (HOG1) strains depends on SHO1, suggesting that Sho1p may be a receptor that feeds into the pseudohyphal growth pathway.
Collapse
Affiliation(s)
- S M O'Rourke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
92
|
Affiliation(s)
- E A Elion
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
93
|
Pryciak PM, Huntress FA. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev 1998; 12:2684-97. [PMID: 9732267 PMCID: PMC317142 DOI: 10.1101/gad.12.17.2684] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the Saccharomyces cerevisiae pheromone response pathway, the Gbetagamma complex activates downstream responses by an unknown mechanism involving a MAP kinase cascade, the PAK-like kinase Ste20, and a Rho family GTPase, Cdc42. Here we show that Gbetagamma must remain membrane-associated after release from Galpha to activate the downstream pathway. We also show that pheromone stimulates translocation of the kinase cascade scaffold protein Ste5 to the cell surface. This recruitment requires Gbetagamma function and the Gbetagamma-binding domain of Ste5, but not the kinases downstream of Gbetagamma, suggesting that it is mediated by Gbetagamma itself. Furthermore, this event has functional significance, as artificial targeting of Ste5 to the plasma membrane, but not intracellular membranes, activates the pathway in the absence of pheromone or Gbetagamma. Remarkably, although independent of Gbetagamma, activation by membrane-targeted Ste5 requires Ste20, Cdc42, and Cdc24, indicating that their participation in this pathway does not require them to be activated by Gbetagamma. Thus, membrane recruitment of Ste5 defines a molecular activity for Gbetagamma. Moreover, our results suggest that this event promotes kinase cascade activation by delivering the Ste5-associated kinases to the cell surface kinase Ste20, whose function may depend on Cdc42 and Cdc24.
Collapse
Affiliation(s)
- P M Pryciak
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester Foundation Campus, Shrewsbury, Massachusetts 01545, USA.
| | | |
Collapse
|