51
|
Song Z, Hu Y, Iorga BI, Vallières C, Fisher N, Meunier B. Mutational analysis of the Q i-site proton pathway in yeast cytochrome bc 1 complex. Biochem Biophys Res Commun 2020; 523:615-619. [PMID: 31941609 DOI: 10.1016/j.bbrc.2019.12.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
The respiratory cytochrome bc1 complex functions as a protonmotive ubiquinol:cytochrome c oxidoreductase. Lysine 228 (K228) located within the quinol reduction (Qi) site of the bc1 complex, has been reported as a key residue for proton transfer during the redox chemistry cycle to substrate quinone at Qi. In yeast, while single mutations had no effect, the combination of K228L and F225L resulted in a severe respiratory growth defect and inhibition of O2 consumption in intact cells. The inhibition was overcome by uncoupling the mitochondrial membrane or by suppressor mutations in the region of K228L-F225L. We propose that the K228L mutation introduces energetic (and kinetic) barriers into normal electron- and proton transfer chemistry at Qi, which are relieved by dissipation of the opposing protonmotive force or through the restoration of favourable intraprotein proton transfer networks via suppressor mutation.
Collapse
Affiliation(s)
- Zehua Song
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| | - Yangfeng Hu
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
52
|
Structures of AAA protein translocase Bcs1 suggest translocation mechanism of a folded protein. Nat Struct Mol Biol 2020; 27:202-209. [PMID: 32042153 DOI: 10.1038/s41594-020-0373-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 01/17/2023]
Abstract
The mitochondrial membrane-bound AAA protein Bcs1 translocate substrates across the mitochondrial inner membrane without previous unfolding. One substrate of Bcs1 is the iron-sulfur protein (ISP), a subunit of the respiratory Complex III. How Bcs1 translocates ISP across the membrane is unknown. Here we report structures of mouse Bcs1 in two different conformations, representing three nucleotide states. The apo and ADP-bound structures reveal a homo-heptamer and show a large putative substrate-binding cavity accessible to the matrix space. ATP binding drives a contraction of the cavity by concerted motion of the ATPase domains, which could push substrate across the membrane. Our findings shed light on the potential mechanism of translocating folded proteins across a membrane, offer insights into the assembly process of Complex III and allow mapping of human disease-associated mutations onto the Bcs1 structure.
Collapse
|
53
|
Kater L, Wagener N, Berninghausen O, Becker T, Neupert W, Beckmann R. Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Nat Struct Mol Biol 2020; 27:142-149. [DOI: 10.1038/s41594-019-0364-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022]
|
54
|
Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 2020; 11:322. [PMID: 31949167 PMCID: PMC6965120 DOI: 10.1038/s41467-019-14201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1lp.S78G mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cybp.D254N), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1lp.S78G tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dynamics. In Rhodobacter cytochrome bc1 complex the equivalent substitution causes a kinetics defect with longer occupancy of RISP head domain towards the quinol oxidation site. These findings represent a unique case of spontaneous mitonuclear epistasis and highlight the role of mtDNA variation as modifier of mitochondrial disease phenotypes.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav Grigorjev
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Noora Aho
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Department of Chemistry, University of Jyväskylä, P.O. Box 35 (Survontie 9B), FI-40014, Jyväskylä, Finland
| | - Jayasimman Rajendran
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarina Truvé
- Sahlgrenska Academy, University of Gothenburg, P.O. Box 413 (Medicinaregatan 3), 41390, Gothenburg, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Vineta Fellman
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Sciences, Pediatrics, BMC F12, Lund University, 221 84, Lund, Sweden.,Children's Hospital, Helsinki University Hospital, P.O. Box 281 (Stenbäckinkatu 11), FI-00029, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
55
|
Zhu G, Zeng H, Zhang S, Juli J, Pang X, Hoffmann J, Zhang Y, Morgner N, Zhu Y, Peng G, Michel H, Sun F. A 3.3 Å‐Resolution Structure of Hyperthermophilic Respiratory Complex III Reveals the Mechanism of Its Thermal Stability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoliang Zhu
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100101 China
| | - Hui Zeng
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Shuangbo Zhang
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Jana Juli
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | | | - Jan Hoffmann
- Institute of Physical and Theoretical Chemistry Goethe University Max-von Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Yan Zhang
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry Goethe University Max-von Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Yun Zhu
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Guohong Peng
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Fei Sun
- National Laboratory of Biomacromolecules Institute of Biophysics (IBP) Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
56
|
Zhu G, Zeng H, Zhang S, Juli J, Pang X, Hoffmann J, Zhang Y, Morgner N, Zhu Y, Peng G, Michel H, Sun F. A 3.3 Å-Resolution Structure of Hyperthermophilic Respiratory Complex III Reveals the Mechanism of Its Thermal Stability. Angew Chem Int Ed Engl 2020; 59:343-351. [PMID: 31778296 PMCID: PMC7004027 DOI: 10.1002/anie.201911554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/06/2019] [Indexed: 01/01/2023]
Abstract
Respiratory chain complexes convert energy by coupling electron flow to transmembrane proton translocation. Owing to a lack of atomic structures of cytochrome bc1 complex (Complex III) from thermophilic bacteria, little is known about the adaptations of this macromolecular machine to hyperthermophilic environments. In this study, we purified the cytochrome bc1 complex of Aquifex aeolicus, one of the most extreme thermophilic bacteria known, and determined its structure with and without an inhibitor at 3.3 Å resolution. Several residues unique for thermophilic bacteria were detected that provide additional stabilization for the structure. An extra transmembrane helix at the N-terminus of cyt. c1 was found to greatly enhance the interaction between cyt. b and cyt. c1 , and to bind a phospholipid molecule to stabilize the complex in the membrane. These results provide the structural basis for the hyperstability of the cytochrome bc1 complex in an extreme thermal environment.
Collapse
Affiliation(s)
- Guoliang Zhu
- National Laboratory of BiomacromoleculesInstitute of Biophysics (IBP)Chinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Hui Zeng
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Strasse 360438Frankfurt am MainGermany
| | - Shuangbo Zhang
- National Laboratory of BiomacromoleculesInstitute of Biophysics (IBP)Chinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Jana Juli
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Strasse 360438Frankfurt am MainGermany
| | | | - Jan Hoffmann
- Institute of Physical and Theoretical ChemistryGoethe UniversityMax-von Laue-Strasse 760438Frankfurt am MainGermany
| | - Yan Zhang
- National Laboratory of BiomacromoleculesInstitute of Biophysics (IBP)Chinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Nina Morgner
- Institute of Physical and Theoretical ChemistryGoethe UniversityMax-von Laue-Strasse 760438Frankfurt am MainGermany
| | - Yun Zhu
- National Laboratory of BiomacromoleculesInstitute of Biophysics (IBP)Chinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Guohong Peng
- National Laboratory of BiomacromoleculesInstitute of Biophysics (IBP)Chinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Strasse 360438Frankfurt am MainGermany
| | - Hartmut Michel
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Strasse 360438Frankfurt am MainGermany
| | - Fei Sun
- National Laboratory of BiomacromoleculesInstitute of Biophysics (IBP)Chinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| |
Collapse
|
57
|
Hadni H, Elhallaoui M. 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents. NEW J CHEM 2020. [DOI: 10.1039/c9nj05767f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malaria persists as the most infectious vector-borne disease in the world.
Collapse
Affiliation(s)
- Hanine Hadni
- Engineering Materials
- Modeling and Environmental Laboratory
- Faculty of Sciences Dhar El mahraz
- Sidi Mohammed Ben Abdellah University
- Atlas
| | - Menana Elhallaoui
- Engineering Materials
- Modeling and Environmental Laboratory
- Faculty of Sciences Dhar El mahraz
- Sidi Mohammed Ben Abdellah University
- Atlas
| |
Collapse
|
58
|
Brzezinski P. New Structures Reveal Interaction Dynamics in Respiratory Supercomplexes. Trends Biochem Sci 2020; 45:3-5. [DOI: 10.1016/j.tibs.2019.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 11/28/2022]
|
59
|
ALCAT1 Overexpression Affects Supercomplex Formation and Increases ROS in Respiring Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9186469. [PMID: 31885824 PMCID: PMC6925921 DOI: 10.1155/2019/9186469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
Cardiolipin (CL) is a multifunctional dimeric phospholipid that physically interacts with electron transport chain complexes I, III, and IV, and ATP synthase (complex V). The enzyme ALCAT1 catalyzes the conversion of cardiolipin by incorporating polyunsaturated fatty acids into cardiolipin. The resulting CL species are said to be more susceptible to oxidative damage. This is thought to negatively affect the interaction of cardiolipin and electron transport chain complexes, leading to increased ROS production and mitochondrial dysfunction. Furthermore, it is discussed that ALCAT1 itself is upregulated due to oxidative stress. Here, we investigated the effects of overexpression of ALCAT1 under different metabolic conditions. ALCAT1 is located at the ER and mitochondria, probably at contact sites. We found that respiration stimulated by galactose supply promoted supercomplex assembly but also led to increased mitochondrial ROS levels. Endogeneous ALCAT1 protein expression levels showed a fairly high variability. Artificially induced ALCAT1 overexpression reduced supercomplex formation, further promoted ROS production, and prevented upregulation of coupled respiration. Taken together, our data suggest that the amount of the CL conversion enzyme ALCAT1 is critical for coupling mitochondrial respiration and metabolic plasticity.
Collapse
|
60
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
61
|
Mitochondrial DNA Mutations and Rheumatic Heart Diseases. J Cardiovasc Dev Dis 2019; 6:jcdd6040036. [PMID: 31614609 PMCID: PMC6956112 DOI: 10.3390/jcdd6040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
Abstract
Acute rheumatic fever (ARF) is an autoimmune disease affecting the heart-valve endocardium in its final stage. Although rare in developing countries, ARF persists in third-world countries, particularly Senegal, where rheumatic heart diseases (RHDs) are the most common pediatric cardiovascular pathology. This study aimed to investigate mutations in MT-CYB in ARF and RHD in Senegalese patients. MT-CYB was amplified from blood samples from ARF patients at the Clinical of Thoracic and Cardiovascular Surgery of Fann National University Hospital Centre, Dakar, Senegal (control group, healthy individuals) and sequenced. More than half of the MT-CYB mutations (58.23%) were heteroplasmic. Transitions (61.67%) were more frequent than transversions (38.33%), and non-synonymous substitutions represented 38.33% of mutations. Unoperated RHD patients harbored frequent MT-CYB polymorphisms (7.14 ± 14.70 mutations per sample) and accounted for 72.73% of mutations. Paradoxically, subjects undergoing valvular replacement harbored infrequent polymorphisms (1.39 ± 2.97 mutations per patient) and lacked 36 mutations present in unoperated subjects. A genetic differentiation was observed between these two populations, and the mutations in operated subjects were neutral, while those in unoperated subjects were under positive selection. These results indicate a narrow link (perhaps even causal) between MT-CYB mutations and ARF and its complications (i.e., RHDs) and that these mutations are largely deleterious.
Collapse
|
62
|
Letts JA, Fiedorczuk K, Degliesposti G, Skehel M, Sazanov LA. Structures of Respiratory Supercomplex I+III 2 Reveal Functional and Conformational Crosstalk. Mol Cell 2019; 75:1131-1146.e6. [PMID: 31492636 PMCID: PMC6926478 DOI: 10.1016/j.molcel.2019.07.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 11/02/2022]
Abstract
The mitochondrial electron transport chain complexes are organized into supercomplexes (SCs) of defined stoichiometry, which have been proposed to regulate electron flux via substrate channeling. We demonstrate that CoQ trapping in the isolated SC I+III2 limits complex (C)I turnover, arguing against channeling. The SC structure, resolved at up to 3.8 Å in four distinct states, suggests that CoQ oxidation may be rate limiting because of unequal access of CoQ to the active sites of CIII2. CI shows a transition between "closed" and "open" conformations, accompanied by the striking rotation of a key transmembrane helix. Furthermore, the state of CI affects the conformational flexibility within CIII2, demonstrating crosstalk between the enzymes. CoQ was identified at only three of the four binding sites in CIII2, suggesting that interaction with CI disrupts CIII2 symmetry in a functionally relevant manner. Together, these observations indicate a more nuanced functional role for the SCs.
Collapse
Affiliation(s)
- James A Letts
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Karol Fiedorczuk
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria; Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY 10065, USA
| | | | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria.
| |
Collapse
|
63
|
The Novel Arylamidine T-2307 Selectively Disrupts Yeast Mitochondrial Function by Inhibiting Respiratory Chain Complexes. Antimicrob Agents Chemother 2019; 63:AAC.00374-19. [PMID: 31182539 PMCID: PMC6658782 DOI: 10.1128/aac.00374-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The mechanism by which T-2307 disrupts yeast mitochondrial function is poorly understood, and its elucidation may provide important information for developing novel antifungal agents. This study aimed to determine how T-2307 promotes yeast mitochondrial dysfunction and to investigate the selectivity of this mechanism between fungi and mammals. T-2307 inhibited the respiration of yeast whole cells and isolated yeast mitochondria in a dose-dependent manner. The similarity of the effects of T-2307 and respiratory chain inhibitors on mitochondrial respiration prompted us to investigate the effect of T-2307 on mitochondrial respiratory chain complexes. T-2307 particularly inhibited respiratory chain complexes III and IV not only in Saccharomyces cerevisiae but also in Candida albicans, indicating that T-2307 acts against pathogenic fungi in a manner similar to that of yeast. Conversely, T-2307 showed little effect on bovine respiratory chain complexes. Additionally, we demonstrated that the inhibition of respiratory chain complexes by T-2307 resulted in a decrease in the intracellular ATP levels in yeast cells. These results indicate that inhibition of respiratory chain complexes III and IV is a key factor for selective disruption of yeast mitochondrial function and antifungal activity.
Collapse
|
64
|
Cikánková T, Fišar Z, Bakhouche Y, Ľupták M, Hroudová J. In vitro effects of antipsychotics on mitochondrial respiration. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1209-1223. [PMID: 31104106 DOI: 10.1007/s00210-019-01665-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Yousra Bakhouche
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
65
|
Mosquera S, Chen LH, Aegerter B, Miyao E, Salvucci A, Chang TC, Epstein L, Stergiopoulos I. Cloning of the Cytochrome b Gene From the Tomato Powdery Mildew Fungus Leveillula taurica Reveals High Levels of Allelic Variation and Heteroplasmy for the G143A Mutation. Front Microbiol 2019; 10:663. [PMID: 31024474 PMCID: PMC6467933 DOI: 10.3389/fmicb.2019.00663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
Leveillula taurica is a major pathogen of tomato and several other crops that can cause substantial yield losses in favorable conditions for the fungus. Quinone outside inhibitor fungicides (QoIs) are routinely used for the control of the pathogen in tomato fields across California, but their recurrent use could lead to the emergence of resistance against these compounds. Here, we partially cloned the cytochrome b gene from L. taurica (Lt cytb) and searched within populations of the fungus collected from tomato fields across California for mutations that confer resistance to QoIs. A total of 21 single nucleotide polymorphisms (SNPs) were identified within a 704 bp fragment of the Lt cytb gene analyzed, of which five were non-synonymous substitutions. Among the most frequent SNPs encountered within field populations of the pathogen was the G143A substitution that confers high levels of resistance against QoIs in several fungi. The other four amino acid substitutions were novel mutations, whose effect on QoI resistance is currently unknown. Sequencing of the Lt cytb gene from individual single-cell conidia of the fungus further revealed that most SNPs, including the one leading to the G143A substitution, were present in a heteroplasmic state, indicating the co-existence of multiple mitotypes in single cells. Analysis of the field samples showed that the G143A substitution is predominantly heteroplasmic also within field populations of L. taurica in California, suggesting that QoI resistance in this fungus is likely to be quantitative rather than qualitative.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Li-Hung Chen
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Brenna Aegerter
- University of California Cooperative Extension, Stockton, CA, United States
| | - Eugene Miyao
- University of California Cooperative Extension, Woodland, CA, United States
| | - Anthony Salvucci
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Ti-Cheng Chang
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
66
|
Calzada E, Avery E, Sam PN, Modak A, Wang C, McCaffery JM, Han X, Alder NN, Claypool SM. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc 1 complex function. Nat Commun 2019; 10:1432. [PMID: 30926815 PMCID: PMC6441012 DOI: 10.1038/s41467-019-09425-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Of the four separate PE biosynthetic pathways in eukaryotes, one occurs in the mitochondrial inner membrane (IM) and is executed by phosphatidylserine decarboxylase (Psd1). Deletion of Psd1 is lethal in mice and compromises mitochondrial function. We hypothesize that this reflects inefficient import of non-mitochondrial PE into the IM. Here, we test this by re-wiring PE metabolism in yeast by re-directing Psd1 to the outer mitochondrial membrane or the endomembrane system and show that PE can cross the IMS in both directions. Nonetheless, PE synthesis in the IM is critical for cytochrome bc1 complex (III) function and mutations predicted to disrupt a conserved PE-binding site in the complex III subunit, Qcr7, impair complex III activity similar to PSD1 deletion. Collectively, these data challenge the current dogma of PE trafficking and demonstrate that PE made in the IM by Psd1 support the intrinsic functionality of complex III.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erica Avery
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingdewinde N Sam
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
67
|
Owen WJ, Meyer KG, Slanec TJ, Wang NX, Meyer ST, Niyaz NM, Rogers RB, Bravo-Altamirano K, Herrick JL, Yao C. Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. I. Impact of picolinamide ring replacement. PEST MANAGEMENT SCIENCE 2019; 75:413-426. [PMID: 29952118 DOI: 10.1002/ps.5130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/06/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The antifungal antibiotic UK-2A strongly inhibits mitochondrial electron transport at the Qi site of the cytochrome bc1 complex. Previous reports have described semi-synthetic modifications of UK-2A to explore the structure-activity relationship (SAR), but efforts to replace the picolinic acid moiety have been limited. RESULTS Nineteen UK-2A analogs were prepared and evaluated for Qi site (cytochrome c reductase) inhibition and antifungal activity. While the majority are weaker Qi site inhibitors than UK-2A (IC50 , 3.8 nM), compounds 2, 5, 13 and 16 are slightly more active (IC50 , 3.3, 2.02, 2.89 and 1.55 nM, respectively). Compared to UK-2A, compounds 13 and 16 also inhibit growth of Zymoseptoria tritici and Leptosphaeria nodorum more strongly, while 2 and 13 provide stronger control of Z. tritici and Puccinia triticina in glasshouse tests. The relative activities of compounds 1-19 are rationalized based on a homology model constructed for the Z. tritici Qi binding site. Physical properties of compounds 1-19 influence translation of intrinsic activity to antifungal growth inhibition and in planta disease control. CONCLUSIONS The 3-hydroxy-4-methoxy picolinic acid moiety of UK-2A can be replaced by a variety of o-hydroxy-substituted arylcarboxylic acids that retain strong activity against Z. tritici and other agriculturally relevant fungi. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- W John Owen
- Crop Protection Discovery-Biology, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Kevin G Meyer
- Crop Protection Discovery-Chemistry, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Thomas J Slanec
- Crop Protection Discovery-Biology, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Nick X Wang
- Crop Protection Discovery-Chemistry, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Stacy T Meyer
- Crop Protection Discovery-Biology, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Noormohamed M Niyaz
- Crop Protection Discovery-Chemistry, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Richard B Rogers
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL 36688, USA
| | - Karla Bravo-Altamirano
- Crop Protection Discovery-Chemistry, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Jessica L Herrick
- Crop Protection Discovery-Chemistry, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| | - Chenglin Yao
- Crop Protection Discovery-Biology, Dow AgroSciences LLC, 9330 Zionsville Rd., Indianapolis, IN 46268-1054, USA
| |
Collapse
|
68
|
|
69
|
Rathore S, Berndtsson J, Marin-Buera L, Conrad J, Carroni M, Brzezinski P, Ott M. Cryo-EM structure of the yeast respiratory supercomplex. Nat Struct Mol Biol 2018; 26:50-57. [PMID: 30598556 DOI: 10.1038/s41594-018-0169-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Respiratory chain complexes execute energy conversion by connecting electron transport with proton translocation over the inner mitochondrial membrane to fuel ATP synthesis. Notably, these complexes form multi-enzyme assemblies known as respiratory supercomplexes. Here we used single-particle cryo-EM to determine the structures of the yeast mitochondrial respiratory supercomplexes III2IV and III2IV2, at 3.2-Å and 3.5-Å resolutions, respectively. We revealed the overall architecture of the supercomplex, which deviates from the previously determined assemblies in mammals; obtained a near-atomic structure of the yeast complex IV; and identified the protein-protein and protein-lipid interactions implicated in supercomplex formation. Take together, our results demonstrate convergent evolution of supercomplexes in mitochondria that, while building similar assemblies, results in substantially different arrangements and structural solutions to support energy conversion.
Collapse
Affiliation(s)
- Sorbhi Rathore
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lorena Marin-Buera
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Julian Conrad
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
70
|
Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc 1. Nat Struct Mol Biol 2018; 26:78-83. [PMID: 30598554 PMCID: PMC6330080 DOI: 10.1038/s41594-018-0172-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023]
Abstract
Cytochrome c oxidase (complex IV, CIV) is known in mammals to exist independently or in association with other respiratory proteins to form supercomplexes (SCs). In Saccharomyces cerevisiae, CIV is found solely in an SC with cytochrome bc1 (complex III, CIII). Here, we present the cryogenic electron microscopy (cryo-EM) structure of S. cerevisiae CIV in a III2IV2 SC at 3.3 Å resolution. While overall similarity to mammalian homologs is high, we found notable differences in the supernumerary subunits Cox26 and Cox13; the latter exhibits a unique arrangement that precludes CIV dimerization as seen in bovine. A conformational shift in the matrix domain of Cox5A-involved in allosteric inhibition by ATP-may arise from its association with CIII. The CIII-CIV arrangement highlights a conserved interaction interface of CIII, albeit one occupied by complex I in mammalian respirasomes. We discuss our findings in the context of the potential impact of SC formation on CIV regulation.
Collapse
|
71
|
Wiseman B, Nitharwal RG, Fedotovskaya O, Schäfer J, Guo H, Kuang Q, Benlekbir S, Sjöstrand D, Ädelroth P, Rubinstein JL, Brzezinski P, Högbom M. Structure of a functional obligate complex III 2IV 2 respiratory supercomplex from Mycobacterium smegmatis. Nat Struct Mol Biol 2018; 25:1128-1136. [PMID: 30518849 DOI: 10.1038/s41594-018-0160-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
In the mycobacterial electron-transport chain, respiratory complex III passes electrons from menaquinol to complex IV, which in turn reduces oxygen, the terminal acceptor. Electron transfer is coupled to transmembrane proton translocation, thus establishing the electrochemical proton gradient that drives ATP synthesis. We isolated, biochemically characterized, and determined the structure of the obligate III2IV2 supercomplex from Mycobacterium smegmatis, a model for Mycobacterium tuberculosis. The supercomplex has quinol:O2 oxidoreductase activity without exogenous cytochrome c and includes a superoxide dismutase subunit that may detoxify reactive oxygen species produced during respiration. We found menaquinone bound in both the Qo and Qi sites of complex III. The complex III-intrinsic diheme cytochrome cc subunit, which functionally replaces both cytochrome c1 and soluble cytochrome c in canonical electron-transport chains, displays two conformations: one in which it provides a direct electronic link to complex IV and another in which it serves as an electrical switch interrupting the connection.
Collapse
Affiliation(s)
- Benjamin Wiseman
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Ram Gopal Nitharwal
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.,School of Sports Sciences, Central University of Rajasthan, Rajasthan, India
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Jacob Schäfer
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Hui Guo
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Qie Kuang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - John L Rubinstein
- Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
72
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
73
|
Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A 2018; 115:6285-6290. [PMID: 29844160 DOI: 10.1073/pnas.1804492115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria control is threatened by a limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum Components of the mitochondrial electron transport chain (ETC) are attractive targets for drug development, owing to exploitable differences between the parasite and human ETC. Disruption of ETC function interferes with metabolic processes including de novo pyrimidine synthesis, essential for nucleic acid replication. We investigated the effects of ETC inhibitor selection on two distinct P. falciparum clones, Dd2 and 106/1. Compounds CK-2-68 and RYL-552, substituted quinolones reported to block P. falciparum NADH dehydrogenase 2 (PfNDH2; a type II NADH:quinone oxidoreductase), unexpectedly selected mutations at the quinol oxidation (Qo) pocket of P. falciparum cytochrome B (PfCytB). Selection experiments with atovaquone (ATQ) on 106/1 parasites yielded highly resistant PfCytB Y268S mutants seen in clinical infections that fail ATQ-proguanil treatment. In contrast, ATQ pressure on Dd2 yielded moderately resistant parasites carrying a PfCytB M133I or K272R mutation. Strikingly, all ATQ-selected mutants demonstrated little change or slight increase of sensitivity to CK-2-68 or RYL-552. Molecular docking studies demonstrated binding of all three ETC inhibitors to the Qo pocket of PfCytB, where Y268 forms strong van der Waals interactions with the hydroxynaphthoquinone ring of ATQ but not the quinolone ring of CK-2-68 or RYL-552. Our results suggest that combinations of suitable ETC inhibitors may be able to subvert or delay the development of P. falciparum drug resistance.
Collapse
|
74
|
Ndi M, Marin-Buera L, Salvatori R, Singh AP, Ott M. Biogenesis of the bc 1 Complex of the Mitochondrial Respiratory Chain. J Mol Biol 2018; 430:3892-3905. [PMID: 29733856 DOI: 10.1016/j.jmb.2018.04.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
The oxidative phosphorylation system contains four respiratory chain complexes that connect the transport of electrons to oxygen with the establishment of an electrochemical gradient over the inner membrane for ATP synthesis. Due to the dual genetic source of the respiratory chain subunits, its assembly requires a tight coordination between nuclear and mitochondrial gene expression machineries. In addition, dedicated assembly factors support the step-by-step addition of catalytic and accessory subunits as well as the acquisition of redox cofactors. Studies in yeast have revealed the basic principles underlying the assembly pathways. In this review, we summarize work on the biogenesis of the bc1 complex or complex III, a central component of the mitochondrial energy conversion system.
Collapse
Affiliation(s)
- Mama Ndi
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lorena Marin-Buera
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Roger Salvatori
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abeer Prakash Singh
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
75
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial complex III Rieske Fe-S protein processing and assembly. Cell Cycle 2018; 17:681-687. [PMID: 29243944 PMCID: PMC5969560 DOI: 10.1080/15384101.2017.1417707] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
Regulation of the mitochondrial respiratory chain biogenesis is a matter of great interest because of its implications for mitochondrial disease. One of the mitochondrial disease genes recently discovered associated to encephalopathy and mitochondrial complex III (cIII) deficiency is TTC19. Our study of TTC19-deficient human and mouse models, has led us to propose a post-assembly quality control role or 'husbandry' function for this factor that is linked to Rieske Fe-S protein (UQCRFS1). UQCRFS1 is the last incorporated cIII subunit, and its presence is essential for enzymatic activity. During UQCRFS1 assembly, the precursor is cleaved and its N-terminal part remains bound to the complex, between the two core subunits (UQCRC1 and UQCRC2). In the absence of TTC19 there is a prominent accumulation of these UQCRFS1-derived N-terminal fragments that proved to be detrimental for cIII function. In this article we will discuss some ideas around the UQCRFS1 processing and assembly and its importance for the regulation of cIII activity and biogenesis.
Collapse
Affiliation(s)
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY, Cambridge, UK
| |
Collapse
|
76
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem Rev 2018; 118:3862-3886. [PMID: 29561602 DOI: 10.1021/acs.chemrev.7b00707] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| | - Rudolf K Thauer
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| |
Collapse
|
77
|
Amporndanai K, Johnson RM, O’Neill PM, Fishwick CWG, Jamson AH, Rawson S, Muench SP, Hasnain SS, Antonyuk SV. X-ray and cryo-EM structures of inhibitor-bound cytochrome bc1 complexes for structure-based drug discovery. IUCRJ 2018; 5:200-210. [PMID: 29765610 PMCID: PMC5947725 DOI: 10.1107/s2052252518001616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/26/2018] [Indexed: 05/10/2023]
Abstract
Cytochrome bc1, a dimeric multi-subunit electron-transport protein embedded in the inner mitochondrial membrane, is a major drug target for the treatment and prevention of malaria and toxoplasmosis. Structural studies of cytochrome bc1 from mammalian homologues co-crystallized with lead compounds have underpinned structure-based drug design to develop compounds with higher potency and selectivity. However, owing to the limited amount of cytochrome bc1 that may be available from parasites, all efforts have been focused on homologous cytochrome bc1 complexes from mammalian species, which has resulted in the failure of some drug candidates owing to toxicity in the host. Crystallographic studies of the native parasite proteins are not feasible owing to limited availability of the proteins. Here, it is demonstrated that cytochrome bc1 is highly amenable to single-particle cryo-EM (which uses significantly less protein) by solving the apo and two inhibitor-bound structures to ∼4.1 Å resolution, revealing clear inhibitor density at the binding site. Therefore, cryo-EM is proposed as a viable alternative method for structure-based drug discovery using both host and parasite enzymes.
Collapse
Affiliation(s)
- Kangsa Amporndanai
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
- School of Chemistry, University of Leeds, Leeds LS2 9JT, England
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, England
| | - Colin W. G. Fishwick
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
- School of Chemistry, University of Leeds, Leeds LS2 9JT, England
| | - Alexander H. Jamson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
78
|
Young DH, Wang NX, Meyer ST, Avila‐Adame C. Characterization of the mechanism of action of the fungicide fenpicoxamid and its metabolite UK-2A. PEST MANAGEMENT SCIENCE 2018; 74:489-498. [PMID: 28960782 PMCID: PMC5813142 DOI: 10.1002/ps.4743] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK-2A. Its mode of action and target site interactions have been investigated. RESULTS UK-2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK-2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK-2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK-2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross-resistance to strobilurin, azole or benzimidazole fungicides. CONCLUSION Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK-2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nick X Wang
- Dow AgroSciencesDiscovery ResearchIndianapolisINUSA
| | | | | |
Collapse
|
79
|
Membrane proteins structures: A review on computational modeling tools. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2021-2039. [DOI: 10.1016/j.bbamem.2017.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/02/2023]
|
80
|
Glatigny A, Gambette P, Bourand-Plantefol A, Dujardin G, Mucchielli-Giorgi MH. Development of an in silico method for the identification of subcomplexes involved in the biogenesis of multiprotein complexes in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2017; 11:67. [PMID: 28693620 PMCID: PMC5504824 DOI: 10.1186/s12918-017-0442-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/28/2017] [Indexed: 11/23/2022]
Abstract
Background Large sets of protein-protein interaction data coming either from biological experiments or predictive methods are available and can be combined to construct networks from which information about various cell processes can be extracted. We have developed an in silico approach based on these information to model the biogenesis of multiprotein complexes in the yeast Saccharomyces cerevisiae. Results Firstly, we have built three protein interaction networks by collecting the protein-protein interactions, which involved the subunits of three complexes, from different databases. The protein-protein interactions come from different kinds of biological experiments or are predicted. We have chosen the elongator and the mediator head complexes that are soluble and exhibit an architecture with subcomplexes that could be functional modules, and the mitochondrial bc1 complex, which is an integral membrane complex and for which a late assembly subcomplex has been described. Secondly, by applying a clustering strategy to these networks, we were able to identify subcomplexes involved in the biogenesis of the complexes as well as the proteins interacting with each subcomplex. Thirdly, in order to validate our in silico results for the cytochrome bc1 complex we have analysed the physical interactions existing between three subunits by performing immunoprecipitation experiments in several genetic context. Conclusions For the two soluble complexes (the elongator and mediator head), our model shows a strong clustering of subunits that belong to a known subcomplex or module. For the membrane bc1 complex, our approach has suggested new interactions between subunits in the early steps of the assembly pathway that were experimentally confirmed. Scripts can be downloaded from the site: http://bim.igmors.u-psud.fr/isips. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0442-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Philippe Gambette
- Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, 77454, Champs-sur-Marne, France
| | - Alexa Bourand-Plantefol
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Marie-Hélène Mucchielli-Giorgi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France. .,Sorbonne Universités, UPMC Univ Paris 06, UFR927, F-75005, Paris, France.
| |
Collapse
|
81
|
SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability. G3-GENES GENOMES GENETICS 2017; 7:1861-1873. [PMID: 28404662 PMCID: PMC5473764 DOI: 10.1534/g3.117.041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.
Collapse
|
82
|
Bhaduri S, Stadnytskyi V, Zakharov SD, Hasan SS, Bujnowicz Ł, Sarewicz M, Savikhin S, Osyczka A, Cramer WA. Pathways of Transmembrane Electron Transfer in Cytochrome bc Complexes: Dielectric Heterogeneity and Interheme Coulombic Interactions. J Phys Chem B 2017; 121:975-983. [DOI: 10.1021/acs.jpcb.6b11709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | - Ł. Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and
Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | - M. Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and
Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | | | - A. Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and
Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | | |
Collapse
|
83
|
Abstract
Membrane proteins are crucial components of cellular membranes and are responsible for a variety of physiological functions. The advent of new tools and technologies for structural biology of membrane proteins has led to a significant increase in the number of structures deposited to the Protein Data Bank during the past decade. This new knowledge has expanded our fundamental understanding of their mechanism of function and contributed to the drug-design efforts. In this chapter we discuss current approaches for membrane protein expression, solubilization, crystallization, and data collection. Additionally, we describe the protein quality-control assays that are often instrumental as a guideline for a shorter path toward the structure.
Collapse
Affiliation(s)
- Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Enrique E Abola
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
84
|
Esser L, Zhou F, Zhou Y, Xiao Y, Tang WK, Yu CA, Qin Z, Xia D. Hydrogen Bonding to the Substrate Is Not Required for Rieske Iron-Sulfur Protein Docking to the Quinol Oxidation Site of Complex III. J Biol Chem 2016; 291:25019-25031. [PMID: 27758861 DOI: 10.1074/jbc.m116.744391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Indexed: 11/06/2022] Open
Abstract
Complex III or the cytochrome (cyt) bc1 complex constitutes an integral part of the respiratory chain of most aerobic organisms and of the photosynthetic apparatus of anoxygenic purple bacteria. The function of cyt bc1 is to couple the reaction of electron transfer from ubiquinol to cytochrome c to proton pumping across the membrane. Mechanistically, the electron transfer reaction requires docking of its Rieske iron-sulfur protein (ISP) subunit to the quinol oxidation site (QP) of the complex. Formation of an H-bond between the ISP and the bound substrate was proposed to mediate the docking. Here we show that the binding of oxazolidinedione-type inhibitors famoxadone, jg144, and fenamidone induces docking of the ISP to the QP site in the absence of the H-bond formation both in mitochondrial and bacterial cyt bc1 complexes, demonstrating that ISP docking is independent of the proposed direct ISP-inhibitor interaction. The binding of oxazolidinedione-type inhibitors to cyt bc1 of different species reveals a toxophore that appears to interact optimally with residues in the QP site. The effect of modifications or additions to the toxophore on the binding to cyt bc1 from different species could not be predicted from structure-based sequence alignments, as demonstrated by the altered binding mode of famoxadone to bacterial cyt bc1.
Collapse
Affiliation(s)
- Lothar Esser
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Fei Zhou
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yihui Zhou
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.,the College of Science, China Agricultural University, Beijing 100193, China, and
| | - Yumei Xiao
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.,the College of Science, China Agricultural University, Beijing 100193, China, and
| | - Wai-Kwan Tang
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Chang-An Yu
- the Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Zhaohai Qin
- the College of Science, China Agricultural University, Beijing 100193, China, and
| | - Di Xia
- From the Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
85
|
Graf S, Fedotovskaya O, Kao WC, Hunte C, Ädelroth P, Bott M, von Ballmoos C, Brzezinski P. Rapid Electron Transfer within the III-IV Supercomplex in Corynebacterium glutamicum. Sci Rep 2016; 6:34098. [PMID: 27682138 PMCID: PMC5040959 DOI: 10.1038/srep34098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Complex III in C. glutamicum has an unusual di-heme cyt. c1 and it co-purifies with complex IV in a supercomplex. Here, we investigated the kinetics of electron transfer within this supercomplex and in the cyt. aa3 alone (cyt. bc1 was removed genetically). In the reaction of the reduced cyt. aa3 with O2, we identified the same sequence of events as with other A-type oxidases. However, even though this reaction is associated with proton uptake, no pH dependence was observed in the kinetics. For the cyt. bc1-cyt. aa3 supercomplex, we observed that electrons from the c-hemes were transferred to CuA with time constants 0.1–1 ms. The b-hemes were oxidized with a time constant of 6.5 ms, indicating that this electron transfer is rate-limiting for the overall quinol oxidation/O2 reduction activity (~210 e−/s). Furthermore, electron transfer from externally added cyt. c to cyt. aa3 was significantly faster upon removal of cyt. bc1 from the supercomplex, suggesting that one of the c-hemes occupies a position near CuA. In conclusion, isolation of the III-IV-supercomplex allowed us to investigate the kinetics of electron transfer from the b-hemes, via the di-heme cyt. c1 and heme a to the heme a3-CuB catalytic site of cyt. aa3.
Collapse
Affiliation(s)
- Simone Graf
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
86
|
Singharoy A, Barragan AM, Thangapandian S, Tajkhorshid E, Schulten K. Binding Site Recognition and Docking Dynamics of a Single Electron Transport Protein: Cytochrome c2. J Am Chem Soc 2016; 138:12077-89. [PMID: 27508459 PMCID: PMC5518707 DOI: 10.1021/jacs.6b01193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small diffusible redox proteins facilitate electron transfer in respiration and photosynthesis by alternately binding to their redox partners and integral membrane proteins and exchanging electrons. Diffusive search, recognition, binding, and unbinding of these proteins often amount to kinetic bottlenecks in cellular energy conversion, but despite the availability of structures and intense study, the physical mechanisms controlling redox partner interactions remain largely unknown. The present molecular dynamics study provides an all-atom description of the cytochrome c2-docked bc1 complex in Rhodobacter sphaeroides in terms of an ensemble of favorable docking conformations and reveals an intricate series of conformational changes that allow cytochrome c2 to recognize the bc1 complex and bind or unbind in a redox state-dependent manner. In particular, the role of electron transfer in triggering a molecular switch and in altering water-mediated interface mobility, thereby strengthening and weakening complex formation, is described. The results resolve long-standing discrepancies between structural and functional data.
Collapse
Affiliation(s)
- Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - Angela M. Barragan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana–Champaign, 1110 W. Green St., Urbana, IL 61801, USA
| | - Sundarapandian Thangapandian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana–Champaign, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
87
|
Nomura Y, Sato Y, Suno R, Horita S, Iwata S, Nomura N. The intervening removable affinity tag (iRAT) production system facilitates Fv antibody fragment-mediated crystallography. Protein Sci 2016; 25:2268-2276. [PMID: 27595817 DOI: 10.1002/pro.3035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Abstract
Fv antibody fragments have been used as co-crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large-scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL ) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH ) domain is expressed by a Gram-positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site-specific protease during the purification process to yield tag-free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT-based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA-approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies.
Collapse
Affiliation(s)
- Yayoi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumi Sato
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryoji Suno
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shoichiro Horita
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Japan Science and Technology Agency, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
88
|
Karsisiotis AI, Deacon OM, Wilson MT, Macdonald C, Blumenschein TMA, Moore GR, Worrall JAR. Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation. Sci Rep 2016; 6:30447. [PMID: 27461282 PMCID: PMC4962053 DOI: 10.1038/srep30447] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 12/26/2022] Open
Abstract
Thrombocytopenia 4 is an inherited autosomal dominant thrombocytopenia, which occurs due to mutations in the human gene for cytochrome c that results in enhanced mitochondrial apoptotic activity. The Gly41Ser mutation was the first to be reported. Here we report stopped-flow kinetic studies of azide binding to human ferricytochrome c and its Gly41Ser variant, together with backbone amide H/D exchange and 15N-relaxation dynamics using NMR spectroscopy, to show that alternative conformations are kinetically and thermodynamically more readily accessible for the Gly41Ser variant than for the wild-type protein. Our work reveals a direct conformational link between the 40–57 Ω-loop in which residue 41 resides and the dynamical properties of the axial ligand to the heme iron, Met80, such that the replacement of glycine by serine promotes the dissociation of the Met80 ligand, thereby increasing the population of a peroxidase active state, which is a key non-native conformational state in apoptosis.
Collapse
Affiliation(s)
| | - Oliver M Deacon
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Colin Macdonald
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | | | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
89
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Structure-Function of the Cytochrome b 6 f Lipoprotein Complex. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
91
|
Electron Transfer Reactions at the Qo Site of the Cytochrome bc 1 Complex: The Good, the Bad, and the Ugly. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
92
|
Nucleic acid import into mitochondria: New insights into the translocation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3165-81. [DOI: 10.1016/j.bbamcr.2015.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 11/18/2022]
|
93
|
Ambriz-Morales P, De La Rosa-Reyna XF, Sifuentes-Rincon AM, Parra-Bracamonte GM, Villa-Melchor A, Chassin-Noria O, Arellano-Vera W. The complete mitochondrial genomes of nine white-tailed deer subspecies and their genomic differences. J Mammal 2015. [DOI: 10.1093/jmammal/gyv172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The white-tailed deer ( Odocoileus virginianus ) is an important, sustainable-use species in Mexico; 14 subspecies are widely distributed throughout the Mexican territory. The criteria for classifying subspecies is based on morphological features throughout their geographical range; however, the complete genetic characterization of Mexican subspecies has not been established. The objective of the present work is to report the mitogenomes of 9 of the 14 white-tailed deer subspecies from Mexico and identify their unique variations. Typical vertebrate mitogenomes structures (i.e., 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes) were observed in the studied subspecies. The greatest numbers of polymorphisms were identified in the D-loop, ND4, ND5, CYTB/COI, ATP6, and COIII genes. Phylogenetic analyses showed that the southern and southeastern subspecies were distinct from the central and northern subspecies; the greatest genetic distances were also observed between these 2 groups. These subspecies-specific variations could be useful for designing a strategy to genetically characterize the studied subspecies.
El venado cola blanca es una de las especies de mayor importancia dentro del aprovechamiento de la fauna silvestre de México, donde se distribuyen de manera natural 14 subespecies. Actualmente, estas subespecies se han clasificado de acuerdo a sus variaciones fenotípicas que presentan a lo largo de su rango de distribución, sin embargo no se ha establecido la caracterización genética completa de las mismas. Es por esto que el objetivo del presente estudio es reportar los mitogenomas de 9 de las 14 subespecies de venado cola blanca, así como identificar las variaciones únicas de cada subespecie. En las 9 subespecies se observó la estructura típica de los mitogenomas de vertebrados (13 genes que codifican para proteínas, 22 ARNt, 2 ARNr). Los genes con mayor polimorfismo fueron D-loop, ND4, ND5, CYTB/COI, ATP6 y COIII. El análisis filogenético mostró la separación de las subespecies del sur y sureste de las subespecies del centro y norte del país, a su vez las distancias genéticas entre estos dos grupos fueron las más altas. Estas variaciones subespecie-específicas podrían ser útiles para diseñar una estrategia para caracterizar genéticamente las subespecies estudiadas.
Collapse
|
94
|
Abstract
Biological energy conversion in mitochondria is carried out by the membrane protein complexes of the respiratory chain and the mitochondrial ATP synthase in the inner membrane cristae. Recent advances in electron cryomicroscopy have made possible new insights into the structural and functional arrangement of these complexes in the membrane, and how they change with age. This review places these advances in the context of what is already known, and discusses the fundamental questions that remain open but can now be approached.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max von Laue Str. 3, D-60438, Frankfurt am Main, Germany.
| |
Collapse
|
95
|
Vladkova R. Chlorophyllais the crucial redox sensor and transmembrane signal transmitter in the cytochromeb6fcomplex. Components and mechanisms of state transitions from the hydrophobic mismatch viewpoint. J Biomol Struct Dyn 2015; 34:824-54. [DOI: 10.1080/07391102.2015.1056551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
96
|
Szarka A, Bánhegyi G. Oxidative folding: recent developments. Biomol Concepts 2015; 2:379-90. [PMID: 25962043 DOI: 10.1515/bmc.2011.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023] Open
Abstract
Disulfide bond formation in proteins is an effective tool of both structure stabilization and redox regulation. The prokaryotic periplasm and the endoplasmic reticulum of eukaryotes were long considered as the only compartments for enzyme mediated formation of stable disulfide bonds. Recently, the mitochondrial intermembrane space has emerged as the third protein-oxidizing compartment. The classic view on the mechanism of oxidative folding in the endoplasmic reticulum has also been reshaped by new observations. Moreover, besides the structure stabilizing function, reversible disulfide bridge formation in some proteins of the endoplasmic reticulum, seems to play a regulatory role. This review briefly summarizes the present knowledge of the redox systems supporting oxidative folding, emphasizing recent developments.
Collapse
|
97
|
Agarwal R, Hasan SS, Jones LM, Stofleth JT, Ryan CM, Whitelegge JP, Kehoe DM, Cramer WA. Role of domain swapping in the hetero-oligomeric cytochrome b6f lipoprotein complex. Biochemistry 2015; 54:3151-63. [PMID: 25928281 DOI: 10.1021/acs.biochem.5b00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Domain swapping that contributes to the stability of biologically crucial multisubunit complexes has been implicated in protein oligomerization. In the case of membrane protein assemblies, domain swapping of the iron-sulfur protein (ISP) subunit occurs in the hetero-oligomeric cytochrome b6f and bc1 complexes, which are organized as symmetric dimers that generate the transmembrane proton electrochemical gradient utilized for ATP synthesis. In these complexes, the ISP C-terminal predominantly β-sheet extrinsic domain containing the redox-active [2Fe-2S] cluster resides on the electrochemically positive side of each monomer in the dimeric complex. This domain is bound to the membrane sector of the complex through an N-terminal transmembrane α-helix that is "swapped' to the other monomer of the complex where it spans the complex and the membrane. Detailed analysis of the function and structure of the b6f complex isolated from the cyanobacterium Fremyella diplosiphon SF33 shows that the domain-swapped ISP structure is necessary for function but is not necessarily essential for maintenance of the dimeric structure of the complex. On the basis of crystal structures of the cytochrome complex, the stability of the cytochrome dimer is attributed to specific intermonomer protein-protein and protein-lipid hydrophobic interactions. The geometry of the domain-swapped ISP structure is proposed to be a consequence of the requirement that the anchoring helix of the ISP not perturb the heme organization or quinone channel in the conserved core of each monomer.
Collapse
Affiliation(s)
- Rachna Agarwal
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - S Saif Hasan
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - LaDonna M Jones
- ‡Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Jason T Stofleth
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher M Ryan
- §Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095, United States
| | - Julian P Whitelegge
- §Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095, United States
| | - David M Kehoe
- ‡Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - William A Cramer
- †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
98
|
Fernández-Vizarra E, Zeviani M. Nuclear gene mutations as the cause of mitochondrial complex III deficiency. Front Genet 2015; 6:134. [PMID: 25914718 PMCID: PMC4391031 DOI: 10.3389/fgene.2015.00134] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/20/2015] [Indexed: 11/13/2022] Open
Abstract
Complex III (CIII) deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than 10 years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last 3-4 years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided.
Collapse
Affiliation(s)
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council Cambridge, UK
| |
Collapse
|
99
|
Abstract
Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- *Corresponding author: E-mail:
| |
Collapse
|
100
|
Johnson JL, Entzminger KC, Hyun J, Kalyoncu S, Heaner DP, Morales IA, Sheppard A, Gumbart JC, Maynard JA, Lieberman RL. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:896-906. [PMID: 25849400 PMCID: PMC4388267 DOI: 10.1107/s1399004715001856] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.
Collapse
Affiliation(s)
- Jennifer L. Johnson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Kevin C. Entzminger
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712, USA
| | - Jeongmin Hyun
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712, USA
| | - Sibel Kalyoncu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - David P. Heaner
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ivan A. Morales
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Aly Sheppard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Jennifer A. Maynard
- McKetta Department of Chemical Engineering, University of Texas at Austin, MC0400, 1 University Station, Austin, TX 78712, USA
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| |
Collapse
|