51
|
Hong J, Gierasch LM. Macromolecular crowding remodels the energy landscape of a protein by favoring a more compact unfolded state. J Am Chem Soc 2010; 132:10445-52. [PMID: 20662522 PMCID: PMC2921862 DOI: 10.1021/ja103166y] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interior of cells is highly crowded with macromolecules, which impacts all physiological processes. To explore how macromolecular crowding may influence cellular protein folding, we interrogated the folding landscape of a model beta-rich protein, cellular retinoic acid-binding protein I (CRABP I), in the presence of an inert crowding agent (Ficoll 70). Urea titrations revealed a crowding-induced change in the water-accessible polar amide surface of its denatured state, based on an observed ca. 15% decrease in the change in unfolding free energy with respect to urea concentration (the m-value), and the effect of crowding on the equilibrium stability of CRABP I was less than our experimental error (i.e., < or = 1.2 kcal/mol). Consequently, we directly probed the effect of crowding on the denatured state of CRABP I by measuring side-chain accessibility using iodide quenching of tryptophan fluorescence and chemical modification of cysteines. We observed that the urea-denatured state is more compact under crowded conditions, and the observed extent of reduction of the m-value by crowding agent is fully consistent with the extent of reduction of the accessibility of the Trp and Cys probes, suggesting a random and nonspecific compaction of the unfolded state. The thermodynamic consequences of crowding-induced compaction are discussed. In addition, over a wide range of Ficoll concentration, crowding significantly retarded the unfolding kinetics of CRABP I without influencing the urea dependence of the unfolding rate, arguing for no appreciable change in the nature of the transition state. Our results demonstrate how macromolecular crowding may influence protein folding by effects on both the unfolded state ensemble and unfolding kinetics.
Collapse
Affiliation(s)
- Jiang Hong
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst 710 N. Pleasant St. Amherst, MA 01003 USA
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst 710 N. Pleasant St. Amherst, MA 01003 USA
- Department of Chemistry, University of Massachusetts, Amherst 710 N. Pleasant St. Amherst, MA 01003 USA
| |
Collapse
|
52
|
von Lintig J, Kiser PD, Golczak M, Palczewski K. The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends Biochem Sci 2010; 35:400-10. [PMID: 20188572 PMCID: PMC2891588 DOI: 10.1016/j.tibs.2010.01.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/08/2010] [Accepted: 01/20/2010] [Indexed: 01/20/2023]
Abstract
Recently, much progress has been made in elucidating the chemistry and metabolism of retinoids and carotenoids, as well as the structures of processing proteins related to vision. Carotenoids and their retinoid metabolites are isoprenoids, so only a limited number of chemical transformations are possible, and just a few of these occur naturally. Although there is an intriguing evolutionary conservation of the key components involved in the production and recycling of chromophores, these genes have also adapted to the specific requirements of insect and vertebrate vision. These 'ancestral footprints' in animal genomes bear witness to the common origin of the chemistry of vision, and will further stimulate research across evolutionary boundaries.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | |
Collapse
|
53
|
Itoh Y, Ishikawa M, Naito M, Hashimoto Y. Protein Knockdown Using Methyl Bestatin−Ligand Hybrid Molecules: Design and Synthesis of Inducers of Ubiquitination-Mediated Degradation of Cellular Retinoic Acid-Binding Proteins. J Am Chem Soc 2010; 132:5820-6. [DOI: 10.1021/ja100691p] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yukihiro Itoh
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Minoru Ishikawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Mikihiko Naito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
54
|
Abstract
Retinoic acid (RA) is a potent transcriptional activator whose actions are mediated by members of the nuclear hormone receptor family. In addition to playing key roles in embryonic development and in tissue maintenance in the adult, RA is a potent anticarcinogenic agent currently in clinical use for treatment of various cancers. Here, we describe an optical method for measuring the concentrations of RA in biological samples. This method uses cellular retinoic acid-binding protein I (CRABP-I), a protein that binds RA with high affinity and specificity, as a "read-out" for its ligand. Replacing (28)Leu of CRABP-I with a Cys residue allows for covalently attaching an environmentally sensitive fluorescent probe to the protein at a region that undergoes a significant conformational change upon ligand binding. Association of RA with the modified protein thus results in changes in the fluorescence of the probe, enabling reliable measurements of RA concentrations as low as 50 nM. We show that the method can be effectively used to measure RA concentrations in serum and to monitor the biosynthesis and the degradation of RA in cultured mammalian cells.
Collapse
Affiliation(s)
- Leslie J Donato
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
55
|
Himmel DM, Maegley KA, Pauly TA, Bauman JD, Das K, Dharia C, Clark AD, Ryan K, Hickey MJ, Love RA, Hughes SH, Bergqvist S, Arnold E. Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site. Structure 2009; 17:1625-1635. [PMID: 20004166 PMCID: PMC3365588 DOI: 10.1016/j.str.2009.09.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/03/2009] [Accepted: 09/19/2009] [Indexed: 01/07/2023]
Abstract
Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, such as RNH, should be effective against all of the current drug-resistant variants. Here, we present 2.80 A and 2.04 A resolution crystal structures of an RNH inhibitor, beta-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. beta-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that beta-thujaplicinol is a slow-binding RNH inhibitor with noncompetitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Karen A. Maegley
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Tom A. Pauly
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Chhaya Dharia
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Arthur D. Clark
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Kevin Ryan
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Michael J. Hickey
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Robert A. Love
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Stephen H. Hughes
- HIV Drug Resistance Program, NCI-Frederick, Building 539, Frederick, MD 21702-1201, USA
| | - Simon Bergqvist
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA 92121, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM) and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8021, USA,Corresponding author: , Tel.: 732-235-5323, FAX.: 732-235-5788
| |
Collapse
|
56
|
Himmel DM, Mui S, O'Neall-Hennessey E, Szent-Györgyi AG, Cohen C. The on-off switch in regulated myosins: different triggers but related mechanisms. J Mol Biol 2009; 394:496-505. [PMID: 19769984 PMCID: PMC2997636 DOI: 10.1016/j.jmb.2009.09.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 01/07/2023]
Abstract
In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long alpha-helical "heavy chain" stabilized by a "regulatory" light chain (RLC) and an "essential" light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca(2+) to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca(2+). Our results indicate that loss of Ca(2+) abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.
Collapse
Affiliation(s)
- Daniel M. Himmel
- Rosenstiel Basic Medical Sciences Research Center, Biology Department, Brandeis University, Waltham, Massachusetts 02453-2728, U.S.A.,Corresponding authors: C. Cohen, , Phone: (781) 736-2446, FAX: (781) 736-2419, D. M. Himmel, , Phone: 732-235-4498, FAX: 732-235-5788
| | - Suet Mui
- Rosenstiel Basic Medical Sciences Research Center, Biology Department, Brandeis University, Waltham, Massachusetts 02453-2728, U.S.A
| | - Elizabeth O'Neall-Hennessey
- Rosenstiel Basic Medical Sciences Research Center, Biology Department, Brandeis University, Waltham, Massachusetts 02453-2728, U.S.A
| | - Andrew G. Szent-Györgyi
- Rosenstiel Basic Medical Sciences Research Center, Biology Department, Brandeis University, Waltham, Massachusetts 02453-2728, U.S.A
| | - Carolyn Cohen
- Rosenstiel Basic Medical Sciences Research Center, Biology Department, Brandeis University, Waltham, Massachusetts 02453-2728, U.S.A.,Corresponding authors: C. Cohen, , Phone: (781) 736-2446, FAX: (781) 736-2419, D. M. Himmel, , Phone: 732-235-4498, FAX: 732-235-5788
| |
Collapse
|
57
|
Vasileiou C, Wang W, Jia X, Lee KSS, Watson CT, Geiger JH, Borhan B. Elucidating the exact role of engineered CRABPII residues for the formation of a retinal protonated Schiff base. Proteins 2009; 77:812-22. [PMID: 19603486 PMCID: PMC4306427 DOI: 10.1002/prot.22495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular Retinoic Acid Binding Protein II (CRABPII) has been reengineered to specifically bind and react with all-trans-retinal to form a protonated Schiff base. Each step of this process has been dissected and four residues (Lys132, Tyr134, Arg111, and Glu121) within the CRABPII binding site have been identified as crucial for imine formation and/or protonation. The precise role of each residue has been examined through site directed mutagenesis and crystallographic studies. The crystal structure of the R132K:L121E-CRABPII (PDB-3I17) double mutant suggests a direct interaction between engineered Glu121 and the native Arg111, which is critical for both Schiff base formation and protonation.
Collapse
Affiliation(s)
| | - Wenjing Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Xiaofei Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | | | - Camille T. Watson
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
58
|
Bikadi Z, Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J Cheminform 2009; 1:15. [PMID: 20150996 PMCID: PMC2820493 DOI: 10.1186/1758-2946-1-15] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated. RESULTS The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 A of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method. Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed. CONCLUSION Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.
Collapse
Affiliation(s)
- Zsolt Bikadi
- Virtua Drug Ltd, Csalogany Street 4C Budapest, Hungary
| | - Eszter Hazai
- Virtua Drug Ltd, Csalogany Street 4C Budapest, Hungary
| |
Collapse
|
59
|
Vasileiou C, Lee KSS, Crist RM, Vaezeslami S, Goins SM, Geiger JH, Borhan B. Dissection of the critical binding determinants of cellular retinoic acid binding protein II by mutagenesis and fluorescence binding assay. Proteins 2009; 76:281-90. [PMID: 19156818 PMCID: PMC4004609 DOI: 10.1002/prot.22334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The binding of retinoic acid to mutants of Cellular Retinoic Acid Binding Protein II (CRABPII) was evaluated to better understand the importance of the direct protein/ligand interactions. The important role of Arg111 for the correct structure and function of the protein was verified and other residues that directly affect retinoic acid binding have been identified. Furthermore, retinoic acid binding to CRABPII mutants that lack all previously identified interacting amino acids was rescued by providing a carboxylic acid dimer partner in the form of a Glu residue.
Collapse
Affiliation(s)
- Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| | - Rachael M. Crist
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| | - Soheila Vaezeslami
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| | - Sarah M. Goins
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| | - James H. Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, (517)-355-9715 X 138
| |
Collapse
|
60
|
Vaezeslami S, Jia X, Vasileiou C, Borhan B, Geiger JH. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:1228-39. [PMID: 19018099 PMCID: PMC2631107 DOI: 10.1107/s0907444908032216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/06/2008] [Indexed: 11/10/2022]
Abstract
The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the alpha2 helix at its entrance. This chain of interactions acts as a ;pillar' that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the alpha2 helix adopting an altered conformation compared with wild-type CRABPII.
Collapse
Affiliation(s)
- Soheila Vaezeslami
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA
| | - Xiaofei Jia
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | - Chrysoula Vasileiou
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | - Babak Borhan
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | - James H. Geiger
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| |
Collapse
|
61
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
62
|
Abstract
Structural transitions are important for the stability and function of proteins, but these phenomena are poorly understood. An extensive analysis of Protein Data Bank entries reveals 103 regions in proteins with a tendency to transform from helical to nonhelical conformation and vice versa. We find that these dynamic helices, unlike other helices, are depleted in hydrophobic residues. Furthermore, the dynamic helices have higher surface accessibility and conformational mobility (P-value = 3.35e-07) than the rigid helices. Contact analyses show that these transitions result from protein-ligand, protein-nucleic acid, and crystal-contacts. The immediate structural environment differs quantitatively (P-value = 0.003) as well as qualitatively in the two alternate conformations. Often, dynamic helix experiences more contacts in its helical conformation than in the nonhelical counterpart (P-value = 0.001). There is differential preference for the type of short contacts observed in two conformational states. We also demonstrate that the regions in protein that can undergo such large conformational transitions can be predicted with a reasonable accuracy using logistic regression model of supervised learning. Our findings have implications in understanding the molecular basis of structural transitions that are coupled with binding and are important for the function and stability of the protein. Based on our observations, we propose that several functionally relevant regions on the protein surface can switch over their conformation from coil to helix and vice-versa, to regulate the recognition and binding of their partner and hence these may work as "molecular switches" in the proteins to regulate certain biological process. Our results supports the idea that protein structure-function paradigm should transform from static to a highly dynamic one.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | | |
Collapse
|
63
|
Sjoelund V, Kaltashov IA. Transporter-to-trap conversion: a disulfide bond formation in cellular retinoic acid binding protein I mutant triggered by retinoic acid binding irreversibly locks the ligand inside the protein. Biochemistry 2007; 46:13382-90. [PMID: 17958379 PMCID: PMC2519245 DOI: 10.1021/bi700867c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transport proteins must bind their ligands reversibly to enable release at the point of delivery, while irreversible binding is usually associated with the extreme cases of ligand sequestration. Protein conformational dynamics is an important modulator of binding kinetics, as increased flexibility in the regions adjacent to the binding site may facilitate both association and dissociation processes. Ligand entry to, and exit from, the internal binding site of the cellular retinoic acid binding protein I (CRABP I) occurs via a flexible portal region, which functions as a dynamic aperture. We designed and expressed a CRABP I mutant (A35C/T57C), in which a small-scale conformational switch caused by the ligand binding event triggers formation of a disulfide bond in the portal region, thereby arresting structural fluctuations and effectively locking the ligand inside the binding cavity. At the same time, no formation of the disulfide bond is observed in the apo form of the mutant, and most characteristics of the mutant, including protein stability, are very similar to those of the wild-type protein in the absence of retinoic acid. The mutation does not alter the kinetics of retinoic acid binding to the protein, although the disulfide formation makes the binding effectively irreversible, as suggested by the absence of retinoic acid transfer from the holo form of the mutant to lipid vesicles in the absence of a reducing agent. Taken together, these data suggest that the disulfide bond formation in the portal region arrests large-scale structural fluctuations, which are required for retinoic acid release from the protein. The unique properties of the CRABP I mutant described in this work can be used to inspire and guide a design of nanodevices for multiple tasks ranging from sequestering small-molecule toxins in both tissue and circulation to nutrient deprivation of pathogens.
Collapse
Affiliation(s)
- Virginie Sjoelund
- Department of Chemistry and Molecular and Cellular Biology Program, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
64
|
Crist RM, Vasileiou C, Rabago-Smith M, Geiger JH, Borhan B. Engineering a rhodopsin protein mimic. J Am Chem Soc 2007; 128:4522-3. [PMID: 16594659 DOI: 10.1021/ja058591m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the difficulties in handling and manipulating membrane-bound proteins, such as rhodopsin, and the lack of crystallographic information on the cone opsins, we have opted to engineer a protein mimic of the transmembrane G-protein coupled receptor. Human cellular retinoic acid binding protein (CRABPII), a well studied and characterized protein, has been reengineered into a protein that now will bind retinal as a protonated Schiff base with high binding affinity (Kd = 2 nM) mimicking that of rhodopsin.
Collapse
Affiliation(s)
- Rachael M Crist
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
65
|
Abstract
Retinoids play important roles in cell differentiation and apoptosis, notably in epithelial tissues. Their utility in cancer therapy has been demonstrated in specific cancer types. Use of retinoic acid (RA) in the treatment of acute promyelocytic leukemia was the first successful example of retinoid-based differentiation therapy. RA has since been evaluated for treatment of other cancers, revealing variable effectiveness. The observation that expression of enzymes involved in RA biosynthesis is suppressed during tumorigenesis suggests that intra-tumor depletion in RA levels may contribute to tumor development and argues for the use of retinoids in cancer treatment. However, the induction of RA-inactivating enzymes is one of the mechanisms that may limit the efficacy of retinoid therapy and contribute to acquired resistance to RA treatment, suggesting that retinoic acid metabolism blocking agents may be effective agents in differentiation therapy.
Collapse
Affiliation(s)
- Maxime Parisotto
- Département de biochimie et Institut de recherche en immunologie et cancérologie, Université de Montréal, CP 6128, succursale Centre-ville, Montréal (Québec), H3C 3J7 Canada
| | | | | | | |
Collapse
|
66
|
Schug TT, Berry DC, Shaw NS, Travis SN, Noy N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007; 129:723-33. [PMID: 17512406 PMCID: PMC1948722 DOI: 10.1016/j.cell.2007.02.050] [Citation(s) in RCA: 529] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/21/2006] [Accepted: 02/23/2007] [Indexed: 02/07/2023]
Abstract
Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here, we show that, in addition to functioning through RAR, RA activates the "orphan" nuclear receptor PPARbeta/delta, which, in turn, induces the expression of prosurvival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARbeta/delta, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a proapoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARbeta/delta and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Keratinocytes
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/physiopathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- PPAR-beta/drug effects
- PPAR-beta/metabolism
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Thaddeus T Schug
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Natacha S. Shaw
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Skylar N. Travis
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
| | - Noa Noy
- Division of Nutritional Sciences, Cornell University, Ithaca NY 14850
- and Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
67
|
Vasileiou C, Vaezeslami S, Crist RM, Rabago-Smith M, Geiger JH, Borhan B. Protein design: reengineering cellular retinoic acid binding protein II into a rhodopsin protein mimic. J Am Chem Soc 2007; 129:6140-8. [PMID: 17447762 DOI: 10.1021/ja067546r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational redesign of the binding pocket of Cellular Retinoic Acid Binding Protein II (CRABPII) has provided a mutant that can bind retinal as a protonated Schiff base, mimicking the binding observed in rhodopsin. The reengineering was accomplished through a series of choreographed manipulations to ultimately orient the reactive species (the epsilon-amino group of Lys132 and the carbonyl of retinal) in the proper geometry for imine formation. The guiding principle was to achieve the appropriate Bürgi-Dunitz trajectory for the reaction to ensue. Through crystallographic analysis of protein mutants incapable of forming the requisite Schiff base, a highly ordered water molecule was identified as a key culprit in orienting retinal in a nonconstructive manner. Removal of the ordered water, along with placing reinforcing mutations to favor the desired orientation of retinal, led to a triple mutant CRABPII protein capable of nanomolar binding of retinal as a protonated Schiff base. The high-resolution crystal structure of all-trans-retinal bound to the CRABPII triple mutant (1.2 A resolution) unequivocally illustrates the imine formed between retinal and the protein.
Collapse
Affiliation(s)
- Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
68
|
Spyrakis F, Amadasi A, Fornabaio M, Abraham DJ, Mozzarelli A, Kellogg GE, Cozzini P. The consequences of scoring docked ligand conformations using free energy correlations. Eur J Med Chem 2007; 42:921-33. [PMID: 17346861 DOI: 10.1016/j.ejmech.2006.12.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 12/04/2006] [Accepted: 12/29/2006] [Indexed: 11/17/2022]
Abstract
Ligands from a set of 19 protein-ligand complexes were re-docked with AutoDock, GOLD and FlexX using the scoring algorithms native to these programs supplemented by analysis using the HINT free energy force field. A HINT scoring function was calibrated for this data set using a simple linear regression of total HINT score for crystal-structure complexes vs. measured free energy of binding. This function had an r(2) of 0.84 and a standard error of +/-0.42 kcal mol(-1). The free energies of binding were calculated for the best poses using the AutoDock, GOLD and FlexX scoring functions. The AutoDock and GoldScore algorithms estimated more than half of the binding free energies within the reported calibration standard errors for these functions, while that of FlexX did not. In contrast, the calibrated HINT scoring function identified optimized poses with standard errors near +/-0.5 kcal mol(-1). When the metric of success is minimum RMSD (vs. crystallographic coordinates) the three docking programs were more successful, with mean RMSDs for the top-ranking poses in the 19 complexes of 3.38, 2.52 and 2.62 A for AutoDock, GOLD and FlexX, respectively. Two key observations in this study have general relevance for computational medicinal chemistry: first, while optimizing RMSD with docking score functions is clearly of value, these functions may be less well optimized for free energy of binding, which has broader applicability in virtual screening and drug discovery than RMSD; second, scoring functions uniquely calibrated for the data set or sets under study should nearly always be preferable to universal scoring functions. Due to these advantages, the poses selected by the HINT score also required less post-docking structure optimization to produce usable molecular models. Most of these features may be achievable with other scoring functions.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
69
|
Marcelino AMC, Smock RG, Gierasch LM. Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins 2007; 63:373-84. [PMID: 16477649 DOI: 10.1002/prot.20860] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have mined the evolutionary record for the large family of intracellular lipid-binding proteins (iLBPs) by calculating the statistical coupling of residue variations in a multiple sequence alignment using methods developed by Ranganathan and coworkers (Lockless and Ranganathan, Science 1999:286;295-299). The 213 sequences analyzed have a wide range of ligand-binding functions as well as highly divergent phylogenetic origins, assuring broad sampling of sequence space. Emerging from this analysis were two major clusters of coupled residues, which when mapped onto the structure of a representative iLBP under study in our laboratory, cellular retinoic-acid binding protein I, are largely contiguous and provide useful points of comparison to available data for the folding of this protein. One cluster comprises a predominantly hydrophobic core away from the ligand-binding site and likely represents key structural information for the iLBP fold. The other cluster includes the portal region where ligand enters its binding site, regions of the ligand-binding cavity, and the region where the 10-stranded beta-barrel characteristic of this family closes (between strands 1' and 10). Linkages between these two clusters suggest that evolutionary pressures on this family constrain structural and functional sequence information in an interdependent fashion. The necessity of the structure to wrap around a hydrophobic ligand confounds the typical sequestration of hydrophobic side chains. Additionally, ligand entry and exit require these structures to have a capacity for specific conformational change during binding and release. We conclude that an essential and structurally apparent separation of local and global sequence information is conserved throughout the iLBP family.
Collapse
|
70
|
Kleywegt GJ. Crystallographic refinement of ligand complexes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2007; 63:94-100. [PMID: 17164531 PMCID: PMC2483469 DOI: 10.1107/s0907444906022657] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
Model building and refinement of complexes between biomacromolecules and small molecules requires sensible starting coordinates as well as the specification of restraint sets for all but the most common non-macromolecular entities. Here, it is described why this is necessary, how it can be accomplished and what pitfalls need to be avoided in order to produce chemically plausible models of the low-molecular-weight entities. A number of programs, servers, databases and other resources that can be of assistance in the process are also discussed.
Collapse
Affiliation(s)
- Gerard J. Kleywegt
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
71
|
Vaezeslami S, Mathes E, Vasileiou C, Borhan B, Geiger JH. The Structure of Apo-wild-type Cellular Retinoic Acid Binding Protein II at 1.4 Å and its Relationship to Ligand Binding and Nuclear Translocation. J Mol Biol 2006; 363:687-701. [PMID: 16979656 DOI: 10.1016/j.jmb.2006.08.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/16/2006] [Accepted: 08/22/2006] [Indexed: 11/30/2022]
Abstract
CRABPII is a small, cytosolic protein that solubilizes and transfers retinoic acid (RA) to the nucleus while also enhancing its transcriptional activity. We have determined the first high-resolution structure of apo-wild type (WT) CRABPII at 1.35 A. Using three different data sets collected on apo-WT CRABPII we have shown that apo- and holo-CRABPII share very similar structures. Binding of RA appears to increase the overall rigidity of the structure, although the induced structural changes are not as pronounced as previously thought. The enhanced structural rigidity may be an important determinant for the enhanced nuclear localization of the RA-bound protein. Comparison of our apo-WT with a mutant apo-CRABPII structure shows that mutation of Arg111, a conserved residue of CRABPII and a key residue in RA binding, causes structural changes in the molecule. We further investigated the structural importance of conserved residues by determining the structure of the F15W mutant CRABPII (F15W-CRABPII). Our structures also demonstrate structural changes induced by crystal packing and show that a crystal can harbor demonstrative structural differences in the asymmetric unit.
Collapse
Affiliation(s)
- Soheila Vaezeslami
- Chemistry Department, Michigan State University, East Lansing, MI 48824-1322, USA
| | | | | | | | | |
Collapse
|
72
|
Dy CY, Buczek P, Imperial JS, Bulaj G, Horvath MP. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 62:980-90. [PMID: 16929098 PMCID: PMC2924234 DOI: 10.1107/s0907444906021123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/02/2006] [Indexed: 05/11/2023]
Abstract
Most Kunitz proteins like BPTI and α-dendrotoxin are stabilized by three disulfide bonds. The crystal structure shows how subtle repacking of non-covalent interactions may compensate for disulfide bond loss in a naturally occurring two-disulfide variant, conkunitzin-S1, the first discovered member of a new conotoxin family. Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50–200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine–cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as α-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and α-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 310–β–β–α Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in α-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed the cost of losing a disulfide bond by augmenting and optimizing weaker yet nonetheless effective non-covalent interactions.
Collapse
Affiliation(s)
- Catherine Y. Dy
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
| | - Pawel Buczek
- Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108, USA
| | - Julita S. Imperial
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
| | - Grzegorz Bulaj
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
- Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108, USA
| | - Martin P. Horvath
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
- Correspondence e-mail:
| |
Collapse
|
73
|
Zaitseva J, Lu J, Olechoski KL, Lamb AL. Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa. J Biol Chem 2006; 281:33441-9. [PMID: 16914555 DOI: 10.1074/jbc.m605470200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
74
|
Donato LJ, Noy N. A fluorescence-based method for analyzing retinoic acid in biological samples. Anal Biochem 2006; 357:249-56. [PMID: 16919229 DOI: 10.1016/j.ab.2006.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 11/18/2022]
Abstract
Retinoic acid (RA) modulates the rates of transcription of numerous genes and thus plays key roles in multiple biological processes and is used in therapy of a number of diseases. However, RA therapy is often confounded by toxicity, raising the need for methodologies for its ready quantitation in biological samples. We describe a fluorescence-based method for quantitating RA that takes advantage of the high affinity and selectivity of the intracellular lipid-binding protein termed CRABP-I and CRABP-II and that uses them as RA sensors. L28C CRABP mutants were generated, and the inserted cysteine was covalently labeled with an environmentally sensitive fluorescent probe. The label was introduced into a region of the protein that undergoes a conformational shift on ligation. Consequently, RA binding resulted in distinct changes in the fluorescence of the protein-bound probe, allowing direct quantitation of RA. We show that the method can be used to monitor the biosynthesis of RA from its precursor retinal in cultured mammalian cells as well as the detection of exogenous RA in serum. The assay provides ease of use and sensitivity that enable quantitation of RA in biological samples of limited size, and it should prove to be useful in a variety of research and clinical applications.
Collapse
Affiliation(s)
- Leslie J Donato
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
75
|
Söderhäll I, Tangprasittipap A, Liu H, Sritunyalucksana K, Prasertsan P, Jiravanichpaisal P, Söderhäll K. Characterization of a hemocyte intracellular fatty acid-binding protein from crayfish (Pacifastacus leniusculus) and shrimp (Penaeus monodon). FEBS J 2006; 273:2902-12. [PMID: 16734719 DOI: 10.1111/j.1742-4658.2006.05303.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Intracellular fatty acid-binding proteins (FABPs) are small members of the superfamily of lipid-binding proteins, which occur in invertebrates and vertebrates. Included in this superfamily are the cellular retinoic acid-binding proteins and retinol-binding proteins, which seem to be restricted to vertebrates. Here, we report the cDNA cloning and characterization of two FABPs from hemocytes of the freshwater crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon. In both these proteins, the binding triad residues involved in interaction with ligand carboxylate groups are present. From the sequence and homology modeling, the proteins are probably FABPs and not retinoic acid-binding proteins. The crayfish transcript (plFABP) was detected at high level in hemocytes, hepatopancreas, intestine and ovary and at low level in hematopoietic tissue and testis. Its expression in hematopoietic cells varied depending on the state of the crayfish from which it was isolated. Expression was 10-15 times higher in cultures isolated from crayfish with red colored plasma, in which hemocyte synthesis was high, if retinoic acid was added to the culture medium. In normal colored crayfish, with normal levels of hemocytes, no increase in expression of p1FABP was detected. Two other putative plFABP ligands, stearic acid and oleic acid, did not have any effect on plFABP expression in hematopoietic cells. These results suggest that retinoic acid-dependent signaling may be present in crustaceans.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
76
|
Ignatova Z, Gierasch LM. Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent beta barrel protein. J Biol Chem 2006; 281:12959-67. [PMID: 16524881 DOI: 10.1074/jbc.m511523200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of fibrillar intranuclear inclusions and related neuropathologies of the CAG-repeat disorders are linked to the expansion of a polyglutamine tract. Despite considerable effort, the etiology of these devastating diseases remains unclear. Although polypeptides with glutamine tracts recapitulate many of the observed characteristics of the gene products with CAG repeats, such as in vitro and in vivo aggregation and toxicity in model organisms, extended polyglutamine segments have also been reported to structurally perturb proteins into which they are inserted. Additionally, the sequence context of a polyglutamine tract has recently been shown to modulate its propensity to aggregate. These findings raise the possibility that indirect influences of the repeat tract on adjacent protein domains are contributory to pathologies. Destabilization of an adjacent domain may lead to loss of function, as well as favoring non-native structures in the neighboring domain causing them to be prone to intermolecular association and consequent aggregation. To explore these phenomena, we have used chimeras of a well studied globular protein and exon 1 of huntingtin. We find that expansion of the polyglutamine segment beyond the pathological threshold (>35 glutamines) results in structural perturbation of the neighboring protein whether the huntingtin exon is N- or C-terminal. Elongation of the polyglutamine region also substantially increases the propensity of the chimera to aggregate, both in vitro and in vivo, and in vitro aggregation kinetics of a chimera with a 53-glutamine repeat follow a nucleation polymerization mechanism with a monomeric nucleus.
Collapse
Affiliation(s)
- Zoya Ignatova
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
77
|
Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. J Mol Biol 2006; 358:289-309. [PMID: 16497327 DOI: 10.1016/j.jmb.2006.01.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 12/30/2005] [Accepted: 01/14/2006] [Indexed: 11/15/2022]
Abstract
The energetics and hydrogen bonding pattern of water molecules bound to proteins were mapped by analyzing structural data (resolution better than 2.3A) for sets of uncomplexed and ligand-complexed proteins. Water-protein and water-ligand interactions were evaluated using hydropatic interactions (HINT), a non-Newtonian forcefield based on experimentally determined logP(octanol/water) values. Potential water hydrogen bonding ability was assessed by a new Rank algorithm. The HINT-derived binding energies and Ranks for second shell water molecules were -0.04 kcal mol(-1) and 0.0, respectively, for first shell water molecules -0.38 kcal mol(-1) and 1.6, for active site water molecules -0.45 kcal mol(-1) and 2.3, for cavity water molecules -0.55 kcal mol(-1) and 3.3, and for buried water molecules -0.56 kcal mol(-1) and 4.4. For the last four classes, similar energies indicate that internal and external water molecules interact with protein almost equally, despite different degrees of hydrogen bonding. The binding energies and Ranks for water molecules bridging ligand-protein were -1.13 kcal mol(-1) and 4.5, respectively. This energetic contribution is shared equally between protein and ligand, whereas Rank favors the protein. Lastly, by comparing the uncomplexed and complexed forms of proteins, guidelines were developed for prediction of the roles played by active site water molecules in ligand binding. A water molecule with high Rank and HINT score is unlikely to make further interactions with the ligand and is largely irrelevant to the binding process, while a water molecule with moderate Rank and high HINT score is available for ligand interaction. Water molecule displaced for steric reasons were characterized by lower Rank and HINT score. These guidelines, tested by calculating HINT score and Rank for 50 water molecules bound in the active site of four uncomplexed proteins (for which the structures of the liganded forms were also available), correctly predicted the ultimate roles (in the complex) for 76% of water molecules. Some failures were likely due to ambiguities in the structural data.
Collapse
Affiliation(s)
- Alessio Amadasi
- Department of Biochemistry and Molecular Biology University of Parma, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
78
|
Xiao H, Kaltashov IA. Transient structural disorder as a facilitator of protein-ligand binding: native H/D exchange-mass spectrometry study of cellular retinoic acid binding protein I. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:869-79. [PMID: 15907702 DOI: 10.1016/j.jasms.2005.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/14/2005] [Accepted: 02/17/2005] [Indexed: 05/02/2023]
Abstract
Binding of all-trans Retinoic Acid (RA) to Cellular Retinoic Acid Binding Protein I (CRABP I) does not result in significant changes of the protein tertiary structure, even though the binding site is inaccessible in a static apo-protein conformation. One of the proposed scenarios for the protein-ligand binding process invokes the notion of a flexible portal region adjacent to the binding site, while another model suggests that the requisite dynamic events are induced by dimerization of the apo-protein in solution. In this work, RA binding to CRABP I is studied in dilute solutions (low micro-molar range), where no dimer and/or oligomer formation occurs. Modulation of backbone dynamics within various segments of the protein by its ligand is assessed using a combination of hydrogen exchange, electrospray ionization mass spectrometry, and collision-induced dissociation of protein ions in the gas phase. Consistent with the portal model of ligand entry, several protein segments (most of them containing residues making hydrophobic contacts to RA in the holo-form of the protein) are flexible in the absence of the ligand. At the same time, the two segments containing arginine residues forming a salt bridge with RA form the least flexible region in the apo-form of the protein. Although the presence of RA in solution reduces flexibility of all protein segments, the largest effect is observed within four strands that form one of the two beta-sheets enveloping a cavity which houses the ligand-binding site. These results are consistent with a model in which ligand binding occurs through a partially unstructured state of the protein with unobstructed access to the ligand-binding site. This intermediate (whose core is formed by the two stable arginine-containing strands) corresponds to a relatively low-energy local minimum on the apo-protein energy surface and is frequently sampled under native conditions.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | |
Collapse
|
79
|
Sessler RJ, Noy N. A Ligand-Activated Nuclear Localization Signal in Cellular Retinoic Acid Binding Protein-II. Mol Cell 2005; 18:343-53. [PMID: 15866176 DOI: 10.1016/j.molcel.2005.03.026] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/28/2004] [Accepted: 03/31/2005] [Indexed: 12/30/2022]
Abstract
Primary sequences of proteins often contain motifs that serve as "signatures" for subcellular targeting, such as a nuclear localization signal (NLS). However, many nuclear proteins do not harbor a recognizable NLS, and the pathways that mediate their nuclear translocation are unknown. This work focuses on CRABP-II, a cytosolic protein that moves to the nucleus upon binding of retinoic acid. While CRABP-II does not contain an NLS in its primary sequence, such a motif could be recognized in the protein's tertiary structure. We map the retinoic acid-induced structural rearrangements that result in the presence of this NLS in holo- but not apo-CRABP-II. The signal, whose three-dimensional configuration aligns strikingly well with a "classical" NLS, mediates ligand-induced association of CRABP-II with importin alpha and is critical for nuclear localization of the protein. The ligand-controlled NLS "switch" of CRABP-II may represent a general mechanism for posttranslational regulation of the subcellular distribution of a protein.
Collapse
Affiliation(s)
- Richard J Sessler
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
80
|
Folli C, Ramazzina I, Percudani R, Berni R. Ligand-binding specificity of an invertebrate (Manduca sexta) putative cellular retinoic acid binding protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:229-37. [PMID: 15698958 DOI: 10.1016/j.bbapap.2004.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 11/11/2004] [Accepted: 11/17/2004] [Indexed: 11/16/2022]
Abstract
Intracellular lipid-binding proteins (iLBPs) are small cytoplasmic proteins that specifically interact with hydrophobic ligands. Fatty acid-binding proteins (FABPs), cellular retinoic acid-binding proteins (CRABPs) and cellular retinol-binding proteins (CRBPs) belong to the iLBP family. A recently identified insect (Manduca sexta) iLBP has been reported to possibly represent an invertebrate CRABP mimicking the role of CRABPs in vertebrate organisms. The presence in this protein of the characteristic binding triad residues involved in the interaction with ligand carboxylate head groups, a feature pertaining to several FABPs and to CRABPs, and the close phylogenetic relationships with both groups of vertebrate heart-type FABPs and CRBPs/CRABPs, makes it difficult to assign it to either FABPs or CRABPs. However, its negligible interaction with retinoic acid and high affinity (K(d) values in the 10(-8) M range) for fatty acids have been established by means of direct and competitive binding assays. As shown by phylogenetic analysis, the M. sexta iLBP belongs to a wide group of invertebrate iLBPs, which, besides being closely related phylogenetically, share distinctive features, such as the conservation of chemically distinct residues in their amino acid sequences and the ability to bind fatty acids. Our results are in keeping with the lack of cellular retinoid-binding proteins in invertebrates and with their later appearance during the course of chordate evolution.
Collapse
Affiliation(s)
- Claudia Folli
- Department of Biochemistry and Molecular Biology, University of Parma, P.co Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
81
|
Xiong JP, Stehle T, Goodman SL, Arnaout MA. A novel adaptation of the integrin PSI domain revealed from its crystal structure. J Biol Chem 2004; 279:40252-4. [PMID: 15299032 DOI: 10.1074/jbc.c400362200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin beta-subunits contain an N-terminal PSI (for plexin-semaphorin-integrin) domain that contributes to integrin activation and harbors the PI(A) alloantigen associated with immune thrombocytopenias and susceptibility to sudden cardiac death. Here we report the crystal structure of PSI in the context of the crystallized alphaVbeta3 ectodomain. The integrin PSI forms a two-stranded antiparallel beta-sheet flanked by two short helices; its long interstrand loop houses Pl(A) and may face the EGF2 domain. The integrin PSI contains four cysteine pairs connected in a 1-4, 2-8, 3-6, 5-7 pattern. An unexpected feature of the structure is that the final, eighth cysteine is located C-terminal to the Ig-like hybrid domain and is thus separated by the hybrid domain from the other seven cysteines of PSI. This architecture may be relevant to the evolution of integrins and should help refine the current models of integrin activation.
Collapse
Affiliation(s)
- Jian-Ping Xiong
- Structural Biology Program, Leukocyte Biology and Inflammation Program, Renal Unit
| | | | | | | |
Collapse
|
82
|
Abstract
Experimental protein structures often provide extensive insight into the mode and specificity of small molecule binding, and this information is useful for understanding protein function and for the design of drugs. We have performed an analysis of the reliability with which ligand-binding information can be deduced from computer model structures, as opposed to experimentally derived ones. Models produced as part of the CASP experiments are used. The accuracy of contacts between protein model atoms and experimentally determined ligand atom positions is the main criterion. Only comparative models are included (i.e., models based on a sequence relationship between the protein of interest and a known structure). We find that, as expected, contact errors increase with decreasing sequence identity used as a basis for modeling. Analysis of the causes of errors shows that sequence alignment errors between model and experimental template have the most deleterious effect. In general, good, but not perfect, insight into ligand binding can be obtained from models based on a sequence relationship, providing there are no alignment errors in the model. The results support a structural genomics strategy based on experimental sampling of structure space so that all protein domains can be modeled on the basis of 30% or higher sequence identity.
Collapse
Affiliation(s)
- Carol DeWeese-Scott
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland, USA
| | | |
Collapse
|
83
|
Risal D, Gourinath S, Himmel DM, Szent-Györgyi AG, Cohen C. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci U S A 2004; 101:8930-5. [PMID: 15184651 PMCID: PMC428449 DOI: 10.1073/pnas.0403002101] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural studies of myosin have indicated some of the conformational changes that occur in this protein during the contractile cycle, and we have now observed a conformational change in a bound nucleotide as well. The 3.1-A x-ray structure of the scallop myosin head domain (subfragment 1) in the ADP-bound near-rigor state (lever arm =45 degrees to the helical actin axis) shows the diphosphate moiety positioned on the surface of the nucleotide-binding pocket, rather than deep within it as had been observed previously. This conformation strongly suggests a specific mode of entry and exit of the nucleotide from the nucleotide-binding pocket through the so-called "front door." In addition, using a variety of scallop structures, including a relatively high-resolution 2.75-A nucleotide-free near-rigor structure, we have identified a conserved complex salt bridge connecting the 50-kDa upper and N-terminal subdomains. This salt bridge is present only in crystal structures of muscle myosin isoforms that exhibit a strong reciprocal relationship (also known as coupling) between actin and nucleotide affinity.
Collapse
Affiliation(s)
- Dipesh Risal
- Rosenstiel Basic Medical Sciences Research Center, MS 029, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
84
|
Burns-Hamuro LL, Dalessio PM, Ropson IJ. Replacement of proline with valine does not remove an apparent proline isomerization-dependent folding event in CRABP I. Protein Sci 2004; 13:1670-6. [PMID: 15152096 PMCID: PMC2279983 DOI: 10.1110/ps.03317804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 09/30/2003] [Accepted: 09/30/2003] [Indexed: 10/26/2022]
Abstract
Site-directed mutagenesis has frequently been used to replace proline with other amino acids in order to determine if proline isomerization is responsible for a slow phase during refolding. Replacement of Pro 85 with alanine in cellular retinoic acid binding protein I (CRABP-I) abolished the slowest refolding phase, suggesting that this phase is due to proline isomerization in the unfolded state. To further test this assumption, we mutated Pro 85 to valine, which is the conservative replacement in the two most closely related proteins in the family (cellular retinoic acid binding protein II and cellular retinol binding protein I). The mutant protein was about 1 kcal/mole more stable than wild type. Retinoic acid bound equally well to wild type and P85V-CRABP I, confirming the functional integrity of this mutation. The refolding and unfolding kinetics of the wild-type and mutant proteins were characterized by stopped flow fluorescence and circular dichroism. The mutant P85V protein refolded with three kinetic transitions, the same number as wild-type protein. This result conflicts with the P85A mutant, which lost the slowest refolding rate. The P85V mutation also lacked a kinetic unfolding intermediate found for wild-type protein. These data suggest that proline isomerization may not be responsible for the slowest folding phase of CRABP I. As such, the loss of a slow refolding phase upon mutation of a proline residue may not be diagnostic for proline isomerization effects on protein folding.
Collapse
Affiliation(s)
- Lora L Burns-Hamuro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
85
|
Gunasekaran K, Hagler AT, Gierasch LM. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions. Proteins 2004; 54:179-94. [PMID: 14696180 DOI: 10.1002/prot.10520] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteins in the intracellular lipid-binding protein (iLBP) family show remarkably high structural conservation despite their low-sequence identity. A multiple-sequence alignment using 52 sequences of iLBP family members revealed 15 fully conserved positions, with a disproportionately high number of these (n=7) located in the relatively small helical region. The conserved positions displayed high structural conservation based on comparisons of known iLBP crystal structures. It is striking that the beta-sheet domain had few conserved positions, despite its high structural conservation. This observation prompted us to analyze pair-wise interactions within the beta-sheet region to ask whether structural information was encoded in interacting amino acid pairs. We conducted this analysis on the iLBP family member, cellular retinoic acid-binding protein I (CRABP I), whose folding mechanism is under study in our laboratory. Indeed, an analysis based on a simple classification of hydrophobic and polar amino acids revealed a network of conserved interactions in CRABP I that cluster spatially, suggesting a possible nucleation site for folding. Significantly, a small number of residues participated in multiple conserved interactions, suggesting a key role for these sites in the structure and folding of CRABP I. The results presented here correlate well with available experimental evidence on folding of CRABPs and their family members and suggest future experiments. The analysis also shows the usefulness of considering pair-wise conservation based on a simple classification of amino acids, in analyzing sequences and structures to find common core regions among homologues.
Collapse
Affiliation(s)
- Kannan Gunasekaran
- Department of Biochemistry, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
86
|
Rotondi KS, Gierasch LM. Local sequence information in cellular retinoic acid-binding protein I: Specific residue roles in β-turns*. Biopolymers 2004; 71:638-51. [PMID: 14991674 DOI: 10.1002/bip.10592] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein.
Collapse
Affiliation(s)
- Kenneth S Rotondi
- Department of Chemistry, The University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
87
|
Abstract
We studied the equilibrium binding of two hydrophobic fluorescent dyes, ANS and bisANS, to four members of a family of intracellular lipid-binding proteins: IFABP, CRABP I, CRABP II, and ILBP. The spectral and binding parameters for the probes bound to the proteins were determined. Typically, there was a single binding site on each protein for the ligands. However, IFABP cooperatively bound a second bisANS molecule in the binding pocket. Comparative analysis of affinities and spectral characteristics for the two probes allowed us to examine the contributions of electrostatic and hydrophobic interactions to the binding process, and to address some aspects of the internal structure of the studied proteins.
Collapse
Affiliation(s)
- Alexander V Pastukhov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
88
|
Careri M, Elviri L, Zagnoni I, Cavazzini D, Rossi GL. Complexes between recombinant intracellular carriers of vitamin A and their specific ligands investigated by electrospray-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:429-436. [PMID: 15187302 DOI: 10.1255/ejms.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intracellular carriers of vitamin A, cellular retinol-binding protein type I, cellular retinol-binding protein type II and cellular retinoic acid-binding protein type I are members of the intracellular lipid-binding proteins family, in which the ligand-binding cavity is located in the interior of a barrel-like structure. The dissociation constants of the specific complexes in water solutions around neutrality are very low (in the 0.1 to 10 nM range). Because of their high stability, they represent ideal systems to verify the adequacy of electrospray ionization-mass spectrometry in the analysis of non-covalent protein-ligand complexes. The electrospray interface parameters were varied to detect the presence of species not present in solution but generated as artefacts during transfer of complexes from the condensed state to the gas-phase. The results clearly indicate that mass-spectrometry data reflect the situation present in solution only if the electrospray conditions are carefully selected. In particular, the values of cone voltage and temperature compatible with persistence of the complexes in the gas phase were determined for each vitamin A carrier. Lack of correlation between complex stability in solution and in the gas phase is attributable to the specific and differential effects of the two environments on protein conformation and ligand-protein interactions.
Collapse
Affiliation(s)
- Maria Careri
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, I-43100 Parma, Italy
| | | | | | | | | |
Collapse
|
89
|
Rotondi KS, Rotondi LF, Gierasch LM. Native structural propensity in cellular retinoic acid-binding protein I 64-88: the role of locally encoded structure in the folding of a beta-barrel protein. Biophys Chem 2003; 100:421-36. [PMID: 12646381 DOI: 10.1016/s0301-4622(02)00296-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A central question in protein folding is the relative importance of locally encoded structure and cooperative interactions among residues distant in sequence. We have been exploring this question in a predominantly beta-sheet protein, since beta-structure formation clearly relies on both local and global sequence information. We present evidence that a 24-residue peptide corresponding to two linked hairpins of cellular retinoic acid-binding protein I (CRABP I) adopts significant native structure in aqueous solution. Prior work from our laboratory showed that the two turns contained in this fragment (turns III and IV) had the highest tendency of any of the eight turns in this anti-parallel beta-barrel to fold into native turns. In addition, the primary sequence of these two turns is well conserved throughout the structural family to which CRABP I belongs, and residues in the turns and their associated hairpins participate in a network of conserved long-range interactions. We propose that the strong local-sequence biases within the chain segment comprising turns III and IV favor longer-range interactions that are crucial to the folding and native-state stability of CRABP I, and may play a similar role in related intracellular lipid-binding proteins (iLBPs).
Collapse
Affiliation(s)
- Kenneth S Rotondi
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
90
|
Abstract
The family of proteins accountable for the intracellular movement of lipids is characterized by a 10-stranded beta-barrel that forms an internalized cavity varying in size and binding preferences. The loop connecting beta-strands E and F (the fifth and sixth strands) is the most striking conformational difference between adipocyte lipid binding protein (ALBP; fatty acids) and cellular retinoic acid binding protein type I (CRABP I). A three-residue mutation was made in wild-type (WT)-ALBP [ALBP with a three-residue mutation (EF-ALBP)] to mimic CRABP I. Crystal structures of ligand-free and EF-ALBP with bound oleic acid were solved to resolutions of 1.5 A and 1.7 A, respectively, and compared with previous studies of WT-ALBP. The changes in three residues of one loop of the protein appear to have altered the positioning of the C18 fatty acid, as observed in the electron density of EF-ALBP. The crystallographic studies made it possible to compare the protein conformation and ligand positioning with those found in the WT protein. Although the cavity binding sites in both the retinoid and fatty acid binding proteins are irregular, the ligand atoms appear to favor a relatively planar region of the cavities. Preliminary chemical characterization of the mutant protein indicated changes in some binding properties and overall protein stability.
Collapse
Affiliation(s)
- Amy J Reese
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
91
|
Jakobsson E, Alvite G, Bergfors T, Esteves A, Kleywegt GJ. The crystal structure of Echinococcus granulosus fatty-acid-binding protein 1. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:40-50. [PMID: 12818189 DOI: 10.1016/s1570-9639(03)00151-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the 1.6 A crystal structure of the fatty-acid-binding protein EgFABP1 from the parasitic platyhelminth Echinococcus granulosus. E. granulosus causes hydatid disease, which is a major zoonosis. EgFABP1 has been implicated in the acquisition, storage, and transport of lipids, and may be important to the organism since it is incapable of synthesising most of its lipids de novo. Moreover, EgFABP1 is a promising candidate for a vaccine against hydatid disease. The crystal structure reveals that EgFABP1 has the expected 10-stranded beta-barrel fold typical of the family of intracellular lipid-binding proteins, and that it is structurally most similar to P2 myelin protein. We describe the comparison of the crystal structure of EgFABP1 with these proteins and with an older homology model for EgFABP1. The electron density reveals the presence of a bound ligand inside the cavity, which we have interpreted as palmitic acid. The carboxylate group of the fatty acid interacts with the protein's P2 motif, consisting of a conserved triad R em leader R-x-Y. The hydrophobic tail of the ligand assumes a fairly flat, U-shaped conformation and has relatively few interactions with the protein.We discuss some of the structural implications of the crystal structure of EgFABP1 for related platyhelminthic FABPs.
Collapse
Affiliation(s)
- Emma Jakobsson
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
92
|
Xiao H, Kaltashov IA, Eyles SJ. Indirect assessment of small hydrophobic ligand binding to a model protein using a combination of ESI MS and HDX/ESI MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:506-515. [PMID: 12745220 DOI: 10.1016/s1044-0305(03)00135-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Direct mass spectrometric characterization of interactions between proteins and small hydrophobic ligands often poses a serious problem due to the complex instability in the gas phase. We have developed a method that probes the efficacy of ligand-protein interactions indirectly by monitoring changes in protein flexibility. The latter is assessed quantitatively using a combination of charge state distribution analysis and amide hydrogen exchange under both native and mildly denaturing conditions. The method was used to evaluate binding of a model protein cellular retinoic acid binding protein I to its natural ligand all-trans retinoic acid (RA), isomers 13-cis- and 9-cis-RA, and retinol, yielding the following order of ligand affinities: All-trans RA > 9-cis RA > 13-cis RA, with no detectable binding of retinol. This order is in agreement with the results of earlier fluorimetric titration studies. Furthermore, binding energy of the protein to each of retinoic acid isomers was determined based on the measured hydrogen exchange kinetics data acquired under native conditions.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
93
|
Kurz M, Brachvogel V, Matter H, Stengelin S, Thüring H, Kramer W. Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures. Proteins 2003; 50:312-28. [PMID: 12486725 DOI: 10.1002/prot.10289] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bile acids are generated in vivo from cholesterol in the liver, and they undergo an enterohepatic circulation involving the small intestine, liver, and kidney. To understand the molecular mechanism of this transportation, it is essential to gain insight into the three-dimensional (3D) structures of proteins involved in the bile acid recycling in free and complexed form and to compare them with homologous members of this protein family. Here we report the solution structure of the human ileal lipid-binding protein (ILBP) in free form and in complex with cholyltaurine. Both structures are compared with a previously published structure of the porcine ILBP-cholylglycine complex and with related lipid-binding proteins. Protein structures were determined in solution by using two-dimensional (2D)- and 3D-homo and heteronuclear NMR techniques, leading to an almost complete resonance assignment and a significant number of distance constraints for distance geometry and restrained molecular dynamics simulations. The identification of several intermolecular distance constraints unambiguously determines the cholyltaurine-binding site. The bile acid is deeply buried within ILBP with its flexible side-chain situated close to the fatty acid portal as entry region into the inner ILBP core. This binding mode differs significantly from the orientation of cholylglycine in porcine ILBP. A detailed analysis using the GRID/CPCA strategy reveals differences in favorable interactions between protein-binding sites and potential ligands. This characterization will allow for the rational design of potential inhibitors for this relevant system.
Collapse
Affiliation(s)
- Michael Kurz
- Aventis Pharma Deutschland GmbH, DI&A Chemistry, DG Metabolic Diseases, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
94
|
Haunerland NH, Spener F. Properties and physiological significance of fatty acid binding proteins. LIPOBIOLOGY 2003. [DOI: 10.1016/s1569-2558(03)33007-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
95
|
Lücke C, Huang S, Rademacher M, Rüterjans H. New insights into intracellular lipid binding proteins: The role of buried water. Protein Sci 2002; 11:2382-92. [PMID: 12237460 PMCID: PMC2373707 DOI: 10.1110/ps.0212902] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The crystal structures of most intracellular lipid binding proteins (LBPs) show between 5 and 20 internally bound water molecules, depending on the presence or the absence of ligand inside the protein cavity. The structural and functional significance of these waters has been discussed for several LBPs based on studies that used various biophysical techniques. The present work focuses on two very different LBPs, heart-type fatty acid binding protein (H-FABP) and ileal lipid binding protein (ILBP). Using high-resolution nuclear magnetic resonance spectroscopy, certain resonances belonging to side-chain protons that are located inside the water-filled lipid binding cavity were observed. In the case of H-FABP, the pH- and temperature-dependent behavior of selected side-chain resonances (Ser82 OgH and the imidazole ring protons of His93) indicated an unusually slow exchange with the solvent, implying that the intricate hydrogen-bonding network of amino-acid side-chains and water molecules in the protein interior is very rigid. In addition, holo H-FABP appeared to display a reversible self-aggregation at physiological pH. For ILBP, on the other hand, a more solvent-accessible protein cavity was deduced based on the pH titration behavior of its histidine residues. Comparison with data from other LBPs implies that the evolutionary specialization of LBPs for certain ligand types was not only because of mutations of residues directly involved in ligand binding but also to a refinement of the internal water scaffold.
Collapse
Affiliation(s)
- Christian Lücke
- Institut für Biophysikalische Chemie, Johann Wolfgang Goethe-Universität Frankfurt, D-60439 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
96
|
Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Györgyi AG, Cohen C. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci U S A 2002; 99:12645-50. [PMID: 12297624 PMCID: PMC130514 DOI: 10.1073/pnas.202476799] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we report a 2.3-A crystal structure of scallop myosin S1 complexed with ADP.BeF(x), as well as three additional structures (at 2.8-3.8 A resolution) for this S1 complexed with ATP analogs, some of which are cross-linked by para-phenyl dimaleimide, a short intramolecular cross-linker. In all cases, the complexes are characterized by an unwound SH1 helix first seen in an unusual 2.5-A scallop myosin-MgADP structure and described as corresponding to a previously unrecognized actin-detached internally uncoupled state. The unwinding of the SH1 helix effectively uncouples the converter/lever arm module from the motor and allows cross-linking by para-phenyl dimaleimide, which has been shown to occur only in weak actin-binding states of the molecule. Mutations near the metastable SH1 helix that disable the motor can be accounted for by viewing this structural element as a clutch controlling the transmission of torque to the lever arm. We have also determined a 3.2-A nucleotide-free structure of scallop myosin S1, which suggests that in the near-rigor state there are two conformations in the switch I loop, depending on whether nucleotide is present. Analysis of the subdomain motions in the weak actin-binding states revealed by x-ray crystallography, together with recent electron microscopic results, clarify the mechanical roles of the parts of the motor in the course of the contractile cycle and suggest how strong binding to actin triggers both the power stroke and product release.
Collapse
Affiliation(s)
- D M Himmel
- Rosenstiel Basic Medical Sciences Research Center, Waltham, MA 02454-9110, USA
| | | | | | | | | | | |
Collapse
|
97
|
Franzoni L, Lücke C, Pérez C, Cavazzini D, Rademacher M, Ludwig C, Spisni A, Rossi GL, Rüterjans H. Structure and backbone dynamics of Apo- and holo-cellular retinol-binding protein in solution. J Biol Chem 2002; 277:21983-97. [PMID: 11934897 DOI: 10.1074/jbc.m201994200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid-binding proteins play an important role in regulating transport, storage, and metabolism of vitamin A and its derivatives. The solution structure and backbone dynamics of rat cellular retinol-binding protein type I (CRBP) in the apo- and holo-form have been determined and compared using multidimensional high resolution NMR spectroscopy. The global fold of the protein is consistent with the common motif described for members of the intracellular lipid-binding protein family. The most relevant difference between the NMR structure ensembles of apo- and holoCRBP is the higher backbone disorder, in the ligand-free form, of some segments that frame the putative entrance to the ligand-binding site. These comprise alpha-helix II, the subsequent linker to beta-strand B, the hairpin turn between beta-strands C and D, and the betaE-betaF turn. The internal backbone dynamics, obtained from 15N relaxation data (T1, T2, and heteronuclear nuclear Overhauser effect) at two different fields, indicate several regions with significantly higher backbone mobility in the apoprotein, including the betaC-betaD and betaE-betaF turns. Although apoCRBP contains a binding cavity more shielded than that of any other retinoid carrier, conformational flexibility in the portal region may assist retinol uptake. The stiffening of the backbone in the holoprotein guarantees the stability of the complex during retinol transport and suggests that targeted retinol release requires a transiently open state that is likely to be promoted by the acceptor or the local environment.
Collapse
Affiliation(s)
- Lorella Franzoni
- Department of Experimental Medicine, Section of Chemistry and Structural Biochemistry, University of Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Kaltashov IA, Eyles SJ. Crossing the phase boundary to study protein dynamics and function: combination of amide hydrogen exchange in solution and ion fragmentation in the gas phase. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:557-565. [PMID: 12112737 DOI: 10.1002/jms.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein dynamics are the key to understanding their behavior. The static protein structure alone in most cases is insufficient to describe the vast array of complex functions they perform in vivo. Until recently there were relatively few techniques available to investigate the dynamic nature of these proteins. Mass spectrometry has recently emerged as a powerful biophysical method, capable of providing both structural and dynamic information. By utilizing the labile nature of amide hydrogens as a marker of the backbone dynamics in solution, combined with gas-phase dissociation techniques, we now have a high-resolution tool to locate these exchanging hydrogens within the sequence of the protein and to probe the functional importance of its structural elements. In this paper we describe several applications of these methodologies to illustrate the importance of dynamics to the biological functions of proteins.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
99
|
Budhu AS, Noy N. Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol 2002; 22:2632-41. [PMID: 11909957 PMCID: PMC133717 DOI: 10.1128/mcb.22.8.2632-2641.2002] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional activity of RAR and the functional consequences of these effects were studied. We show that CRABP-II, a predominantly cytosolic protein, massively undergoes nuclear localization upon binding of retinoic acid; that it interacts with RAR in a ligand-dependent fashion; and that, in the presence of retinoic acid, the CRABP-II-RAR complex is a short-lived intermediate. The data establish that potentiation of the transcriptional activity of RAR stems directly from the ability of CRABP-II to channel retinoic acid to the receptor. We demonstrate further that overexpression of CRABP-II in MCF-7 mammary carcinoma cells dramatically enhances their sensitivity to retinoic acid-induced growth inhibition. Conversely, diminished expression of CRABP-II renders these cells retinoic acid resistant. Taken together, the data unequivocally establish the function of CRABP-II in modulating the RAR-mediated biological activities of retinoic acid.
Collapse
Affiliation(s)
- Anuradha S Budhu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
100
|
Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, Terada H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1512:251-8. [PMID: 11406102 DOI: 10.1016/s0005-2736(01)00326-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of the carotenoids beta-carotene and astaxanthin on the peroxidation of liposomes induced by ADP and Fe(2+) were examined. Both compounds inhibited production of lipid peroxides, astaxanthin being about 2-fold more effective than beta-carotene. The difference in the modes of destruction of the conjugated polyene chain between beta-carotene and astaxanthin suggested that the conjugated polyene moiety and terminal ring moieties of the more potent astaxanthin trapped radicals in the membrane and both at the membrane surface and in the membrane, respectively, whereas only the conjugated polyene chain of beta-carotene was responsible for radical trapping near the membrane surface and in the interior of the membrane. The efficient antioxidant activity of astaxanthin is suggested to be due to the unique structure of the terminal ring moiety.
Collapse
Affiliation(s)
- S Goto
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|