51
|
Feng X, Bai S, Zhou L, Song Y, Jia S, Guo Q, Zhang C. Integrated Analysis of Transcriptome and Metabolome Provides Insights into Flavonoid Biosynthesis of Blueberry Leaves in Response to Drought Stress. Int J Mol Sci 2024; 25:11135. [PMID: 39456917 PMCID: PMC11508776 DOI: 10.3390/ijms252011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Blueberries (Vaccinium spp.) are extremely sensitive to drought stress. Flavonoids are crucial secondary metabolites that possess the ability to withstand drought stress. Therefore, improving the drought resistance of blueberries by increasing the flavonoid content is crucial for the development of the blueberry industry. To explore the underlying molecular mechanism of blueberry in adaptation to drought stress, we performed an integrated analysis of the metabolome and transcriptome of blueberry leaves under drought stress. We found that the most enriched drought-responsive genes are mainly involved in flavonoid biosynthesis and plant hormone signal transduction pathways based on transcriptome data and the main drought-responsive metabolites come from the flavonoid class based on metabolome data. The UDP-glucose flavonoid 3-O-glucosyl transferase (UFGT), flavonol synthase (FLS), and anthocyanidin reductase (ANR-2) genes may be the key genes for the accumulation of anthocyanins, flavonols, and flavans in response to drought stress in blueberry leaves, respectively. Delphinidin 3-glucoside and delphinidin-3-O-glucoside chloride may be the most important drought-responsive flavonoid metabolites. VcMYB1, VcMYBPA1, MYBPA1.2, and MYBPA2.1 might be responsible for drought-induced flavonoid biosynthesis and VcMYB14, MYB14, MYB102, and MYB108 may be responsible for blueberry leaf drought tolerance. ABA responsive elements binding factor (ABF) genes, MYB genes, bHLH genes, and flavonoid biosynthetic genes might form a regulatory network to regulate drought-induced accumulation of flavonoid metabolites in blueberry leaves. Our study provides a useful reference for breeding drought-resistant blueberry varieties.
Collapse
Affiliation(s)
- Xinghua Feng
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Sining Bai
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Lianxia Zhou
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Yan Song
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Sijin Jia
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxun Guo
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun 130062, China
| | - Chunyu Zhang
- Department of Horticulture, College of Plant Science, Jilin University, Changchun 130062, China
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
52
|
Zhao X, Wang S, Zhang H, Dong S, Chen J, Sun Y, Zhang Y, Liu Q. Genome-wide identification, expression analysis of the R2R3-MYB gene family and their potential roles under cold stress in Prunus sibirica. BMC Genomics 2024; 25:953. [PMID: 39402463 PMCID: PMC11472476 DOI: 10.1186/s12864-024-10868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The R2R3-MYB transcription factors in plants participate in various physiological and biochemical processes and responds to various external stimuli. Prunus sibirica (known as Siberian apricot) is a drupe tree species that produces extremely high nutritional value kernels. However, it is susceptiblility to frost damage during the flowering period, results in a marked reduction in kernel yield. RESULTS In this study, the MYB gene family of P. sibirica (PsMYB) was systematically analyzed, and 116 R2R3-MYB genes that were distributed unevenly over eight chromosomes were ultimately screened. Phylogenetic analysis divided these 116 genes into 30 subgroups. We discovered that 37 PsMYBs had cold stress-responsive promoters, and six PsMYBs were annotated to be associated with cold response. Intraspecific homology analysis identified segmental duplication as the primary gene amplification mechanism, and homology analysis of the PsMYB genes with those of five other species revealed phylogenetic relationships with Rosaceae species. Protein interaction studies revealed collaborative regulation of the PsMYB proteins with Arabidopsis protein, and transcriptome analysis identified PsMYB genes that were highly expressed at low temperatures. Additionally, the expression levels of 22 PsMYBs in different tissue parts of P. sibirica and under different low-temperature stress conditions were evaluated using quantitative real-time PCR, with the results verifying that PsMYBs are specifically expressed in different plant parts and may be involved in the growth and development of P. sibirica species. Genes upregulated after exposure to low-temperature stress and likely involved in cold response were identified. CONCLUSION This study lays a foundation for understanding the molecular biology of PsMYBs in P. sibirica and provides a theoretical basis for the future study of transgenic lines with cold resistance during the flowering period of this tree.
Collapse
Affiliation(s)
- Xin Zhao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongrui Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yueyuan Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
53
|
Xie L, Wang Y, Tao Y, Chen L, Lin H, Qi Z, Li J. Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla. BMC Genomics 2024; 25:952. [PMID: 39396954 PMCID: PMC11472487 DOI: 10.1186/s12864-024-10882-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.
Collapse
Affiliation(s)
- Liangmu Xie
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yinuo Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yutian Tao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Hanyang Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Advanced Study, Taizhou University, Taizhou, 318000, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- School of Advanced Study, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
54
|
Gao L, Lv Q, Wang L, Han S, Wang J, Chen Y, Zhu W, Zhang X, Bao F, Hu Y, Li L, He Y. Abscisic acid-mediated autoregulation of the MYB41-BRAHMA module enhances drought tolerance in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1608-1626. [PMID: 39052943 DOI: 10.1093/plphys/kiae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
Drought stress poses a substantial challenge to plant growth and agricultural productivity worldwide. Upon water depletion, plants activate an abscisic acid (ABA) signaling pathway, leading to stomatal closure to reduce water loss. The MYB family of transcription factors plays diverse roles in growth, development, stress responses, and biosynthesis, yet their involvement in stomatal regulation remains unclear. Here, we demonstrate that ABA significantly upregulates the expression of MYB41, MYB74, and MYB102, with MYB41 serving as a key regulator that induces the expression of both MYB74 and MYB102. Through luciferase assays, chromatin immunoprecipitation (ChIP) assays, and electrophoretic mobility shift assays (EMSA), we reveal that MYB41 engages in positive feedback regulation by binding to its own promoter, thus amplifying its transcription in Arabidopsis (Arabidopsis thaliana). Furthermore, our investigation showed that MYB41 recruits BRAHMA (BRM), the core ATPase subunit of the SWI/SNF complex, to the MYB41 promoter, facilitating the binding of HISTONE DEACETYLASE 6 (HDA6). This recruitment triggers epigenetic modifications, resulting in reduced MYB41 expression characterized by elevated H3K27me3 levels and concurrent decreases in H3ac, H3K27ac, and H3K14ac levels in wild-type plants compared to brm knockout mutant plants. Our genetic and molecular analyses show that ABA mediates autoregulation of the MYB41-BRM module, which intricately modulates stomatal movement in A. thaliana. This discovery sheds light on a drought response mechanism with the potential to greatly enhance agricultural productivity.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Shuang Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuli Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenwen Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xia Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
55
|
Zhang Y, Hu L, Wang S, Gou X, Guo Q, Liang G. Genome-wide identification of R2R3-MYB family in Eriobotrya japonica and functional analysis of EjMYB5 involved in proanthocyanidin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112198. [PMID: 39029629 DOI: 10.1016/j.plantsci.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Loquat (Eriobotrya japonica Lindl.) is a popular fruit and medicinal plant. Proanthocyanidins (PAs), as one of the main types of flavonoids, are the key components of loquat fruit quality and medicinal properties. However, the identification of transcription factors (TFs) involved in PA accumulation in loquat remains limited. R2R3-MYB TFs play key regulatory role in PA accumulation in plants. In this study, 190 R2R3-MYB TFs were identified in loquat genome. Combined with transcriptome data, R2R3-MYB TF EjMYB5 involved in PA accumulation in loquat was isolated. EjMYB5 was transcriptional activator localized to nucleus. Expression of EjMYB5 was closely related to PA accumulation in loquat fruits. Heterogenous overexpression of EjMYB5 in tomato (Solanum lycopersicum) inhibited anthocyanin accumulation and promoted PA accumulation. Additionally, transient overexpression of EjMYB5 in tobacco (Nicotiana benthamiana) leaves promoted PA accumulation by upregulating flavonoid biosynthesis genes (NtDFR, NtANS, and NtLAR). Transcriptome analysis of EjMYB5-overexpressing tomato fruits suggested that EjMYB5 was involved in several biological pathways, including lipid metabolism, MAPK signaling, phenylpropanoid biosynthesis, and flavonoid biosynthesis. Collectively, our findings provided basic data for further analysis the function of R2R3-MYB TFs in loquat, and revealed that EjMYB5 functioned as PA accumulation in loquat.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Luyan Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Xiuhong Gou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
56
|
Hu H, Wang Y, Zhong H, Li B, Qi J, Wang Y, Liu J, Zhang S, Zhang H, Luo B, Zhang X, Nie Z, Zhang H, Gao D, Gao S, Liu D, Wu L, Gao S. Functional analysis of ZmPHR1 and ZmPHR2 under low-phosphate stress in maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:69. [PMID: 39359407 PMCID: PMC11442720 DOI: 10.1007/s11032-024-01508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of ZmPHR1 and ZmPHR2, including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that ZmPHR1 and ZmPHR2 have high homology with AtPHR1 and OsPHR2, and share the characteristic features of nuclear localisation and transcriptional self-activation. Real-time quantitative PCR analysis showed that low phosphate (Pi) stress significantly induced the expression of ZmPHR1 and ZmPHR2 in maize seedling stage, and candidate gene association analysis further revealed the close association of these two genes with root traits under Pi stress conditions. Transgenic plants overexpressing ZmPHR1 and ZmPHR2 in Arabidopsis show a significant increase in lateral root number, fresh weight and total phosphorus accumulation under low-Pi stress. Besides, CHIP-PCR experiments identified target genes involved in hormone regulation, metal ion transport and homeostasis, phosphatase encoding, and photosynthesis, providing new insights into the biological functions of ZmPHR1 and ZmPHR2. Furthermore, our study showed that ZmPHR1 interacts with six SPX domain-only proteins (ZmSPXs) in maize, while ZmPHR2 interacts with five of these proteins. ZmPHR1 and ZmPHR2 expression was repressed in low Pi conditions, but was up-regulated in ZmSPX1 knockout material, according to our study of transgenic seedlings overexpressing ZmSPX1 in maize. We identified downstream target genes involved in the phosphorus signaling pathway, which are mainly involved in plant-pathogen interactions, ascorbic acid and arabinose metabolism, and ABC transporter proteins, by RNA-seq analysis of transgenic seedlings grown under low Pi stress for 7 days. Collectively, these results provide important clues to elucidate the role and functional significance of ZmPHR1 and ZmPHR2 under low Pi stress and also provide insights into understand the molecular mechanism of phosphorus homeostasis in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01508-2.
Collapse
Affiliation(s)
- Hongmei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Yikai Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Haixu Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Binyang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Jingxiao Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Yarong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Jin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Shuhao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Haiying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Xiao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Zhi Nie
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan China
| | - Hongkai Zhang
- Sichuan University of Science and Engineering, Yibin, Sichuan China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dan Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Ling Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| |
Collapse
|
57
|
Chae J, Han SJ, Karthik S, Kim HJ, Kim JH, Yun HR, Chung YS, Sung S, Heo JB. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) partially inhibits the transcriptional activation of FT by MYB73 and regulates flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:187-198. [PMID: 39133829 PMCID: PMC11424248 DOI: 10.1111/tpj.16980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 09/27/2024]
Abstract
Polycomb group (PcG) proteins are essential gene repressors in higher eukaryotes. However, how PcG proteins mediate transcriptional regulation of specific genes remains unknown. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), as a component of Polycomb Repression Complexes (PRC), epigenetically mediates several plant developmental processes together with PcG proteins. We observed physical interaction between MYB73 and LHP1 in vitro and in vivo. Genetic analysis indicated that myb73 mutants showed slightly late flowering, and the lhp1-3 myb73-2 double mutant exhibited delayed flowering and downregulated FT expression compared to lhp1-3. Chromatin immunoprecipitation and yeast one-hybrid assays revealed that MYB73 preferentially binds to the FT promoter. Additionally, our protoplast transient assays demonstrated that MYB73 activates to the FT promoter. Interestingly, the LHP1-MYB73 interaction is necessary to repress the FT promoter, suggesting that the LHP1-MYB73 interaction prevents FT activation by MYB73 in Arabidopsis. Our results show an example in which a chromatin regulator affects transcriptional regulation by negatively regulating a transcription factor through direct interaction.
Collapse
Affiliation(s)
- Jia Chae
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Seong Ju Han
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Sivabalan Karthik
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jeong Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Jee Hye Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hee Rang Yun
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Young-Soo Chung
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Jae Bok Heo
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
58
|
Miao C, Song C, Ding N, Zuo X, Zhang Z, Zhang X, Mu J, Wang F. De novo transcriptome analysis identifies RpMYB1 as an activator of anthocyanin biosynthesis in Rehmannia piasezkii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108964. [PMID: 39094477 DOI: 10.1016/j.plaphy.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Rehmannia piasezkii is a kind of medicinal plants, of the Orobanchaceae family, and well known for its large pink or purple corolla. However, no research on the molecular mechanism of flower color formation in R. piasezkii has been conducted so far. In this study, we investigated the transcriptome of root, stem, leaf and corollas of R. piasezkii using transcriptome sequencing technology and assembled 144,582 unigenes. A total of 58 anthocyanin biosynthetic genes were identified in the R. piasezkii transcriptome, fourteen of which were highly correlated with anthocyanin content, especially RpF3H2, RpDFR2, RpANS1, RpANS2 and RpUFGT. Totally, 35 MYB genes with FPKM values greater than 5 were identified in the R. piasezkii transcriptome, including an R2R3 MYB transcriptional factor RpMYB1, which belongs to subgroup 6 of the R2R3 MYB family. Agrobacterium-mediated transient expression of Nicotiana benthamiana revealed that overexpression of RpMYB1 could activate the expression of structural genes in anthocyanin synthesis pathway and promote the accumulation of anthocyanins in N. benthamiana leaves, indicating that RpMYB1 is a positive regulator of anthocyanin synthesis. Furthermore, combined transient overexpression of RpMYB1 with RpANS1, RpMYB1+RpANS1 with other structural genes all could further enhance the accumulation of anthocyanins in N. benthamiana leaves. Permanent overexpression of RpMYB1 in R. glutinosa promoted anthocyanin accumulation and expression levels of RgCHS, RgF3H, RgDFR and RgANS. Further evidence from dual-luciferase assay suggested that RpMYB1 could bind to the promoter of RpDFR2 and hence activating its expression. These findings provide insight into the molecular regulation in anthocyanin biosynthesis in R. piasezkii and provide valuable genetic resources for the genetic improvement of flower color.
Collapse
Affiliation(s)
- Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ning Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jing Mu
- National Resource Center for Chinese Meteria Medica, State Key Laboratory of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
59
|
Ning K, Huai H, Li M, Xu Y, Wei F, Chen Z, Wang Y, Huang P, Yu Y, Chen S, Dong L. Transcriptomics and metabolomics revealed the molecular basis of the color formation in the roots of Panax notoginseng. Heliyon 2024; 10:e37532. [PMID: 39381219 PMCID: PMC11459398 DOI: 10.1016/j.heliyon.2024.e37532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Panax notoginseng is a traditional Chinese medicine rich in many pharmacological components. The root of the 'Miaoxiang Sanqi No. 2' is yellow or greenish yellow, while a novel cultivar-'Wenyuan Ziqi No. 1' shows purple root and is thought to have high medicinal value. Little information is available about the anthocyanin biosynthesis in P. notoginseng root. In this study, we compared the 'Miaoxiang Sanqi No. 2' and 'Wenyuan Ziqi No. 1' in morphological, transcriptional and metabolic levels. The results showed that purple rich in the periderm, rhizome and phloem around cambium of the 'Wenyuan Ziqi No. 1' root and cyanidin 3-O-galactoside was the main anthocyanin causing purple. Moreover, 'Wenyuan Ziqi No. 1' highly accumulated in 155 metabolites, including flavones, phenylpropanoids and lipids. Transcriptome data showed that phenylpropanoid biosynthesis pathway genes are highly expressed in 'Wenyuan Ziqi No. 1'. Conjoint analysis showed that anthocyanin biosynthesis pathway substances were highly accumulated in 'Wenyuan Ziqi No. 1', and the expression level of structural genes involved in anthocyanin biosynthesis pathway was higher in 'Wenyuan Ziqi No. 1'. Meanwhile, eight R2R3-MYB genes that might be involved in anthocyanin biosynthesis were identified. The comprehensive analysis of two cultivars provides new insights into the understanding of root coloration in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hao Huai
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuli Xu
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Pengcheng Huang
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Yuqi Yu
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| |
Collapse
|
60
|
Du H, Ke J, Sun X, Tan L, Yu Q, Wei C, Ryan PR, Wang A, Li H. FtMYB163 Gene Encodes SG7 R2R3-MYB Transcription Factor from Tartary Buckwheat ( Fagopyrum tataricum Gaertn.) to Promote Flavonol Accumulation in Transgenic Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2704. [PMID: 39409574 PMCID: PMC11478641 DOI: 10.3390/plants13192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a coarse grain crop rich in flavonoids that are beneficial to human health because they function as anti-inflammatories and provide protection against cardiovascular disease and diabetes. Flavonoid biosynthesis is a complex process, and relatively little is known about the regulatory pathways involved in Tartary buckwheat. Here, we cloned and characterized the FtMYB163 gene from Tartary buckwheat, which encodes a member of the R2R3-MYB transcription factor family. Amino acid sequence and phylogenetic analysis indicate that FtMYB163 is a member of subgroup 7 (SG7) and closely related to FeMYBF1, which regulates flavonol synthesis in common buckwheat (F. esculentum). We demonstrated that FtMYB163 localizes to the nucleus and has transcriptional activity. Expression levels of FtMYB163 in the roots, stems, leaves, flowers, and seeds of F. tataricum were positively correlated with the total flavonoid contents of these tissues. Overexpression of FtMYB163 in transgenic Arabidopsis enhanced the expression of several genes involved in early flavonoid biosynthesis (AtCHS, AtCHI, AtF3H, and AtFLS) and significantly increased the accumulation of several flavonoids, including naringenin chalcone, naringenin-7-O-glucoside, eriodictyol, and eight flavonol compounds. Our findings demonstrate that FtMYB163 positively regulates flavonol biosynthesis by changing the expression of several key genes in flavonoid biosynthetic pathways.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Jin Ke
- Research Center of Buckwheat Industry Technology, College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (J.K.); (X.S.)
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (J.K.); (X.S.)
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Peter R. Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| | - An’hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang 615000, China; (L.T.); (Q.Y.); (C.W.); (A.W.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (J.K.); (X.S.)
| |
Collapse
|
61
|
Ranade SS, García-Gil MR. Lignin biosynthesis pathway repressors in gymnosperms: differential repressor domains as compared to angiosperms. FORESTRY RESEARCH 2024; 4:e031. [PMID: 39524426 PMCID: PMC11524278 DOI: 10.48130/forres-0024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Lignin is a polyphenolic polymer present in the cell walls of specialized plant cell types in vascular plants that provides structural support and plays a major role in plant protection. The lignin biosynthesis pathway is regulated by transcription factors from the MYB (myeloblastosis) family. While several MYB members positively regulate lignin synthesis, only a few negatively regulate lignin synthesis. These lignin suppressors are well characterized in model plant species; however, their role has not been fully explored in gymnosperms. Lignin forms one of the major hurdles for the forest-based industry e.g. paper, pulp, and biofuel production. Therefore, the detailed mechanisms involved in the regulation of lignin synthesis are valuable, especially in conifers that form the major source of softwood for timber and paper production. In this review, the potential and differential domains present in the MYB suppressors in gymnosperms are discussed, along with their phylogenetic analysis. Sequence analysis revealed that the N-terminal regions of the MYB suppressor members were found to be conserved among the gymnosperms and angiosperms containing the R2, R3, and bHLH domains, while the C-terminal regions were found to be highly variable. The typical repressor motifs like the LxLxL-type EAR motif and the TLLLFR motif were absent from the C-terminal regions of MYB suppressors from most gymnosperms. However, although the gymnosperms lacked the characteristic repressor domains, a R2R3-type MYB member from Ginkgo was reported to repress the lignin biosynthetic pathway. It is proposed that gymnosperms possess unique kinds of repressors that need further functional validation.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - María Rosario García-Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
62
|
Si CC, Li YB, Hai X, Bao CC, Zhao JY, Ahmad R, Li J, Wang SC, Li Y, Yang YD. Genome-Wide Identification and Expression Analysis of MYB Transcription Factor Family in Response to Various Abiotic Stresses in Coconut ( Cocos nucifera L.). Int J Mol Sci 2024; 25:10048. [PMID: 39337532 PMCID: PMC11432468 DOI: 10.3390/ijms251810048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut's response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R-MYB, 171 R2R3-MYB, 2 3R-MYB, and 2 4R-MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut's drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family's role in abiotic stress in coconut.
Collapse
Affiliation(s)
- Cheng-Cheng Si
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yu-Bin Li
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Xue Hai
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Ci-Ci Bao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jin-Yang Zhao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Rafiq Ahmad
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
| | - Shou-Chuang Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yao-Dong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
| |
Collapse
|
63
|
Fan R, Huang K, Zhao Z, Hao Y, Guan X, Luo H, Hao C. Genome-Wide Identification, Characterization, and Expression Analysis of the MYB-R2R3 Gene Family in Black Pepper ( Piper nigrum L.). Int J Mol Sci 2024; 25:9851. [PMID: 39337340 PMCID: PMC11432665 DOI: 10.3390/ijms25189851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Black pepper (Piper nigrum L.), a prominent spice crop, known as the "king of spices", originated from India. The growth and development of black pepper are influenced by various environmental conditions. MYB transcription factors play a crucial role in controlling metabolic processes, abiotic stress management, and plant growth and development. In this study, we identified 160 PnMYB transcription factors in the black pepper genome. Phylogenetic analysis was performed using 125 R2R3-MYB proteins from black pepper and Arabidopsis thaliana, resulting in the mapping of 20 groups on the phylogenetic tree, each containing members from both species. Most members of the PnMYB family possess two introns, and motif 3 and motif 4 are conserved in all members. The number of genes on each chromosome ranges from 1 to 10. Collinear analysis indicated the creation of new members through gene fragments and tandem replication. The Ka/Ks ratio indicated that purifying selection and positive selection acted on PnMYB of pepper. The majority of pepper PnMYB family members were in the nucleus. Significant differences in gene expression levels were observed between different species and infection periods when Piper nigrum L. and Piper flaviflorum were infected with Phytophthora capsici. These findings are valuable for future studies on the biological role and molecular mechanism of the PnMYB gene.
Collapse
Affiliation(s)
- Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning 571533, China
| | - Kai Huang
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Zhican Zhao
- College of Tropical Crops, Yunnan Agricultural University, Pu'er 665099, China
| | - Yupeng Hao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueying Guan
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Haiyan Luo
- Tropical Croups Genetic Resources, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 571101, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning 571533, China
| |
Collapse
|
64
|
Tang P, Huang J, Wang J, Wang M, Huang Q, Pan L, Liu F. Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum. BMC Genomics 2024; 25:851. [PMID: 39261781 PMCID: PMC11389352 DOI: 10.1186/s12864-024-10681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.
Collapse
Affiliation(s)
- Peng Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jingcai Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Meiqi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qing Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
65
|
Pang B, Li J, Zhang R, Luo P, Wang Z, Shi S, Gao W, Li S. RNA-Seq and WGCNA Analyses Reveal Key Regulatory Modules and Genes for Salt Tolerance in Cotton. Genes (Basel) 2024; 15:1176. [PMID: 39336767 PMCID: PMC11431110 DOI: 10.3390/genes15091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The problem of soil salinization has seriously hindered agricultural development. Cotton is a pioneering salinity-tolerant crop, so harvesting its key salinity-tolerant genes is important for improving crop salt tolerance. In this study, we analyzed changes in the transcriptome expression profiles of the salt-tolerant cultivar Lu Mian 28 (LM) and the salt-sensitive cultivar Zhong Mian Suo 12 (ZMS) after applying salt stress, and we constructed weighted gene co-expression networks (WGCNA). The results indicated that photosynthesis, amino acid biosynthesis, membrane lipid remodeling, autophagy, and ROS scavenging are key pathways in the salt stress response. Plant-pathogen interactions, plant hormone signal transduction, the mitogen-activated protein kinase (MAPK) signaling pathway, and carotenoid biosynthesis are the regulatory networks associated with these metabolic pathways that confer cotton salt tolerance. The gene-weighted co-expression network was used to screen four modules closely related to traits, identifying 114 transcription factors, including WRKYs, ERFs, NACs, bHLHs, bZIPs, and MYBs, and 11 hub genes. This study provides a reference for acquiring salt-tolerant cotton and abundant genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Bo Pang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Jing Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ru Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Ping Luo
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Zhengrui Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shunyu Shi
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Wenwei Gao
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
| | - Shengmei Li
- College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; (B.P.); (J.L.); (R.Z.); (P.L.); (Z.W.); (S.S.)
- College of Biotechnology, Xinjiang Agricultural Vocational and Technical University, Changji 831100, China
| |
Collapse
|
66
|
Li X, Xu Q, Gulinuer A, Tian J, Zheng J, Chang G, Gao J, Tian Z, Liang Y. AcMYB96 promotes anthocyanin accumulation in onion (Allium cepa L) without forming the MBW complex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108965. [PMID: 39067107 DOI: 10.1016/j.plaphy.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Anthocyanins are major flavonoid compounds with established health benefits. Although the molecular mechanisms of MYB transcription factors (TFs) within the MYB-basic helix-loop-helix (bHLH)-WD-repeat protein (MBW) complex in anthocyanin biosynthesis have been revealed, the functions of other MYB TFs that are unable to form the MBW complex in this process remain unclear. In this study, we uncovered and extensively characterized an R2R3-MYB TF in onion (Allium cepa L.), named AcMYB96, which was identified as a potential anthocyanin activator. AcMYB96 was classified into subgroup 1 of the R2R3-MYB TF family and lacked the conserved sequences required for interactions with bHLH IIIf TFs. Consistently, yeast two-hybrid assays showed that AcMYB96 did not interact with any bHLH IIIf TFs examined, including AcB2 and AtTT8. The transcription pattern of AcMYB96 correlated with the level of anthocyanin accumulation, and its role in activating anthocyanin biosynthesis was confirmed through overexpression in the epithelial cells of onion bulbs and Arabidopsis. Yeast one-hybrid, electrophoretic mobility shift, and promoter transactivation assays further demonstrated that AcMYB96 promoted anthocyanin biosynthesis by binding to the promoters of the chalcone synthase (AcCHS1), anthocyanidin synthase (AcANS), and UDP-glucose-flavonoid 3-O-glucosyltransferase (AcUFGT) genes, thereby activating their expression independent of bHLH IIIf TFs. These results demonstrate that AcMYB96 activates anthocyanin biosynthesis without forming the MBW complex, providing a theoretical foundation to further enrich the gene resources for promoting anthocyanin accumulation and breeding red onions with high anthocyanin content.
Collapse
Affiliation(s)
- Xiaojie Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | | | - Jiaxing Tian
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Junwei Zheng
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China
| | - Guojun Chang
- Jiuquan Academy of Agricultural Sciences, Jiuquan, 735000, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhaohui Tian
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China.
| | - Yi Liang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
67
|
Bredenbruch S, Müller C, Nvenankeng HA, Schröder L, Zeisel AC, Medina RC, Tiso T, Blank LM, Grundler FMW, Schleker ASS. The biological activity of bacterial rhamnolipids on Arabidopsis thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106103. [PMID: 39277425 DOI: 10.1016/j.pestbp.2024.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
Rhamnolipids (RLs) are amphiphilic compounds of bacterial origin that offer a broad range of potential applications as biosurfactants in industry and agriculture. They are reported to be active against different plant pests and pathogens and thus are considered promising candidates for nature-derived plant protection agents. However, as these glycolipids are structurally diverse, little is known about their exact mode of action and, in particular, the relation between molecular structure and biological activity against plant pests and pathogens. Engineering the synthesis pathway in recombinant Pseudomonas putida strains in combination with advanced HPLC techniques allowed us to separately analyze the activities of mixtures of pure mono-RLs (mRLs) and of pure di-RL (dRLs), as well as the activity of single congeners. In a model system with the plant Arabidopsis thaliana and the plant-parasitic nematode (PPN) Heterodera schachtii we demonstrate that RLs can significantly reduce infection, whereas their impact on the host plant varied depending on their molecular structure. While mRLs reduced plant growth even at a low concentration, dRLs showed a neutral to beneficial impact on plant development. Treating plants with dRLs triggered an increased reactive oxygen species (ROS) production, indicating the activation of stress-response signaling and possibly plant defense. Pretreatment of plants with mRLs or dRLs prior to application of flagellin (flg22), a known ROS inducer, further increased the ROS response to flg22. While dRLs stimulated an elevated flg22-induced ROS peak, a pretreatment with mRLs resulted in a prolonged synthesis of ROS indicating a generally elevated stress level. Neither mRLs nor dRLs induced the expression of plant defense marker genes of salicylic acid, jasmonic acid, and ethylene pathways. Detailed studies on dRLs revealed that even high concentrations up to 755 ppm of these molecules have no lethal impact on H. schachtii infective juveniles. Infection assays with individual dRL congeners showed that the C10-C8 acyl chained dRL was the only congener without effect, while dRLs with C10-C12 and C10-C12:1 acyl chains were most efficient in reducing nematode infection even at concentrations below 2 ppm. As determined by phenotyping and ROS measurements, A. thaliana reacted more sensitive to long-chained dRLs in a concentration-dependent manner. Our experiments show a clear structure-activity relation for the effect of RLs on plants. In conclusion, functional assessment and analysis of the mode of action of RLs in plants and other organisms require careful consideration of their molecular structure and composition.
Collapse
Affiliation(s)
- Sandra Bredenbruch
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Conrad Müller
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany
| | - Henry A Nvenankeng
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Lukas Schröder
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Antonia C Zeisel
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Rainier C Medina
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany.
| | - Florian M W Grundler
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany.
| | - A Sylvia S Schleker
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany.
| |
Collapse
|
68
|
Zhang HC, Gong YH, Tao T, Lu S, Zhou WY, Xia H, Zhang XY, Yang QQ, Zhang MQ, Hong LM, Guo QQ, Ren XZ, Yang ZD, Cai XL, Ren DY, Gao JP, Jin SK, Leng YJ. Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.). BMC Genomics 2024; 25:797. [PMID: 39179980 PMCID: PMC11342600 DOI: 10.1186/s12864-024-10693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND R2R3-MYB transcription factors belong to one of the largest gene subfamilies in plants, and they are involved in diverse biological processes. However, the role of R2R3-MYB transcription factor subfamily genes in the response of rice (Oryza sativa L.) to salt stress has been rarely reported. RESULTS In this study, we performed a genome-wide characterization and expression identification of rice R2R3-MYB transcription factor subfamily genes. We identified a total of 117 R2R3-MYB genes in rice and characterized their gene structure, chromosomal location, and cis-regulatory elements. According to the phylogenetic relationships and amino acid sequence homologies, the R2R3-MYB genes were divided into four groups. qRT-PCR of the R2R3-MYB genes showed that the expression levels of 10 genes significantly increased after 3 days of 0.8% NaCl treatment. We selected a high expression gene OsMYB2-115 for further analysis. OsMYB2-115 was highly expressed in the roots, stem, leaf, and leaf sheath. OsMYB2-115 was found to be localized in the nucleus, and the yeast hybrid assay showed that OsMYB2-115 has transcriptional activation activity. CONCLUSION This result provides important information for the functional analyses of rice R2R3-MYB transcription factor subfamily genes related to the salt stress response and reveals that OsMYB2-115 may be an important gene associated with salt tolerance in rice.
Collapse
Affiliation(s)
- Hao-Cheng Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yuan-Hang Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuai Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wen-Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Han Xia
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xin-Yi Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lian-Min Hong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qian-Qian Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xin-Zhe Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zhi-Di Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - De-Yong Ren
- State Key Laboratory of Rice Biology and Breeding, National Rice Research Institute, Hangzhou, 310006, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
69
|
Luo G, Cai W, Wang H, Liu W, Liu X, Shi S, Wang L. Overexpression of a ' Paulownia fortunei' MYB Factor Gene, PfMYB44, Increases Salt and Drought Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2264. [PMID: 39204700 PMCID: PMC11360487 DOI: 10.3390/plants13162264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Paulownia fortunei (Seem.) Hemsl is a Paulownia Sieb.et tree of the family Scrophulariaceae. It has become an important short-to-medium-term fast-growing multi-purpose tree species in China due to its rapid growth, strong adaptability, and excellent material properties. MYB transcription factors in plants have numerous and diverse functions, playing important roles in various aspects such as plant stress response. To investigate the function of MYB transcription factors in Paulownia fortunei, this study used PCR technology to clone the PfMYB44 gene from Paulownia fortunei. The homology of PfMYB44 and SiMYB44 (Sesamum indicum) was the highest. Expression analysis results showed that PfMYB44 was expressed in the root, stem, young leaf, and mature leaf of Paulownia fortunei, with the highest content in the root. Cold, drought, hot, salt, and ABA treatments could increase the expression level of PfMYB44. Overexpression-PfMYB44 plants were constructed, and physiological and molecular analysis showed that PfMYB44 could positively regulate salt and drought stresses. Under drought stress, the expression levels of AtP5CS, AtCAT1, AtNCED3 and AtSnRK2.4 in transgenic lines were significantly induced. Salt stress induced the expression of AtNHX1, AtSOS1, AtSOS2 and AtSOS3 genes, and the relative expression levels of these genes in transgenic Arabidopsis were higher. In conclusion, the functional study of PfMYB44 laid a certain foundation for the study of Paulownia stress resistance, and was helpful to the study of its stress resistance mechanism and the cultivation of new stress resistance varieties.
Collapse
Affiliation(s)
- Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Weijia Cai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Hao Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Wei Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xu Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Shizheng Shi
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China
| |
Collapse
|
70
|
Yu J, Duan S, Shua Z, Li K, Xiang G, Baldwin TC, Lu Y, Liang Y. R2R3-MYB Gene Family in Coptis teeta Wall.: Genome-Wide Identification, Phylogeny, Evolutionary Expansion, and Expression Analyses during Floral Development. Int J Mol Sci 2024; 25:8902. [PMID: 39201588 PMCID: PMC11354770 DOI: 10.3390/ijms25168902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The R2R3-MYB gene family represents a widely distributed class of plant transcription factors. This gene family plays an important role in many aspects of plant growth and development. However, the characterization of R2R3-MYB genes present in the genome of Coptis teeta has not been reported. Here, we describe the bioinformatic identification and characterization of 88 R2R3-MYB genes in this species, and the identification of members of the R2R3-MYB gene family in species within the order Ranales most closely related to Coptis teeta. The CteR2R3-MYB genes were shown to exhibit a higher degree of conservation compared to those of A. thaliana, as evidenced by phylogeny, conserved motifs, gene structure, and replication event analyses. Cis-acting element analysis confirmed the involvement of CteR2R3-MYB genes in a variety of developmental processes, including growth, cell differentiation, and reproduction mediated by hormone synthesis. In addition, through homology comparisons with the equivalent gene family in A. thaliana, protein regulatory network prediction and transcriptome data analysis of floral organs across three time periods of flower development, 17 candidate genes were shown to exhibit biased expression in two floral phenotypes of C. teeta. This suggests their potential involvement in floral development (anther development) in this species.
Collapse
Affiliation(s)
- Jichen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasm Innovation, Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.Y.); (K.L.); (G.X.)
| | - Shaofeng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasm Innovation, Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.Y.); (K.L.); (G.X.)
| | - Zhenyang Shua
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Kecheng Li
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasm Innovation, Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.Y.); (K.L.); (G.X.)
| | - Guisheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasm Innovation, Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.Y.); (K.L.); (G.X.)
| | | | - Yingchun Lu
- College of Education and Vocational Education, Yunnan Agricultural University, Kunming 650201, China;
| | - Yanli Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasm Innovation, Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (J.Y.); (K.L.); (G.X.)
| |
Collapse
|
71
|
Wang Y, Tu H, Zhang J, Wang H, Liu Z, Zhou J, He W, Lin Y, Zhang Y, Li M, Wu Z, Chen Q, Zhang Y, Luo Y, Tang H, Wang X. Identifying potential anthocyanin biosynthesis regulator in Chinese cherry by comprehensive genome-wide characterization of the R2R3-MYB transcription factor gene family. BMC Genomics 2024; 25:784. [PMID: 39138573 PMCID: PMC11323479 DOI: 10.1186/s12864-024-10675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] (syn. Prunus pseudocerasus Lindl.) is an economically important fruiting cherry species with a diverse range of attractive colors, spanning from the lightest yellow to the darkest black purple. However, the MYB transcription factors involved in anthocyanin biosynthesis underlying fruit color variation in Chinese cherry remain unknown. RESULTS In this study, we characterized the R2R3-MYB gene family of Chinese cherry by genome-wide identification and compared it with those of 10 Rosaceae relatives and Arabidopsis thaliana. A total of 1490 R2R3-MYBs were classified into 43 subfamilies, which included 29 subfamilies containing both Rosaceae MYBs and AtMYBs. One subfamily (S45) contained only Rosaceae MYBs, while three subfamilies (S12, S75, and S77) contained only AtMYBs. The variation in gene numbers within identical subfamilies among different species and the absence of certain subfamilies in some species indicated the species-specific expansion within MYB gene family in Chinese cherry and its relatives. Segmental and tandem duplication events primarily contributed to the expansion of Chinese cherry R2R3-CpMYBs. The duplicated gene pairs underwent purifying selection during evolution after duplication events. Phylogenetic relationships and transcript profiling revealed that CpMYB10 and CpMYB4 are involved in the regulation of anthocyanin biosynthesis in Chinese cherry fruits. Expression patterns, transient overexpression and VIGS results confirmed that CpMYB10 promotes anthocyanin accumulation in the fruit skin, while CpMYB4 acts as a repressor, inhibiting anthocyanin biosynthesis of Chinese cherry. CONCLUSIONS This study provides a comprehensive and systematic analysis of R2R3-MYB gene family in Chinese cherry and Rosaceae relatives, and identifies two regulators, CpMYB10 and CpMYB4, involved in anthocyanin biosynthesis in Chinese cherry. These results help to develop and utilize the potential functions of anthocyanins in Chinese cherry.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Agricultural Bioinformatics (Ministry of Education), Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hongxia Tu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Agricultural Bioinformatics (Ministry of Education), Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Key Laboratory of Agricultural Bioinformatics (Ministry of Education), Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Agricultural Bioinformatics (Ministry of Education), Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
72
|
Martínez-Barradas V, Galbiati M, Barco-Rubio F, Paolo D, Espinoza C, Cominelli E, Arce-Johnson P. PvMYB60 gene, a candidate for drought tolerance improvement in common bean in a climate change context. Biol Res 2024; 57:52. [PMID: 39127708 PMCID: PMC11316432 DOI: 10.1186/s40659-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated. RESULTS The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant. CONCLUSIONS Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.
Collapse
Affiliation(s)
- Vera Martínez-Barradas
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Massimo Galbiati
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Francisco Barco-Rubio
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dario Paolo
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Carmen Espinoza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy.
| | - Patricio Arce-Johnson
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
73
|
Zhang X, Ekwealor JTB, Mishler BD, Silva AT, Yu L, Jones AK, Nelson ADL, Oliver MJ. Syntrichia ruralis: emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants. THE NEW PHYTOLOGIST 2024; 243:981-996. [PMID: 38415863 DOI: 10.1111/nph.19620] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.
Collapse
Affiliation(s)
- Xiaodan Zhang
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Jenna T B Ekwealor
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Brent D Mishler
- University and Jepson Herbaria, Berkeley, CA, 94720-2465, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720-2465, USA
| | | | - Li'ang Yu
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea K Jones
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew D L Nelson
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Melvin J Oliver
- Division of Plant Sciences and Technology and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
74
|
Winkler TS, Vollmer SK, Dyballa-Rukes N, Metzger S, Stetter MG. Isoform-resolved genome annotation enables mapping of tissue-specific betalain regulation in amaranth. THE NEW PHYTOLOGIST 2024; 243:1082-1100. [PMID: 38584577 DOI: 10.1111/nph.19736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024]
Abstract
Betalains are coloring pigments produced in some families of the order Caryophyllales, where they replace anthocyanins as coloring pigments. While the betalain pathway itself is well studied, the tissue-specific regulation of the pathway remains mostly unknown. We enhance the high-quality Amaranthus hypochondriacus reference genome and produce a substantially more complete genome annotation, incorporating isoform details. We annotate betalain and anthocyanin pathway genes along with their regulators in amaranth and map the genetic control and tissue-specific regulation of the betalain pathway. Our improved genome annotation allowed us to identify causal mutations that lead to a knock-out of red betacyanins in natural accessions of amaranth. We reveal the tissue-specific regulation of flower color via a previously uncharacterized MYB transcription factor, AhMYB2. Downregulation of AhMYB2 in the flower leads to reduced expression of key betalain enzyme genes and loss of red flower color. Our improved amaranth reference genome represents the most complete genome of amaranth to date and is a valuable resource for betalain and amaranth research. High similarity of the flower betalain regulator AhMYB2 to anthocyanin regulators and a partially conserved interaction motif support the co-option of anthocyanin regulators for the betalain pathway as a possible reason for the mutual exclusiveness of the two pigments.
Collapse
Affiliation(s)
- Tom S Winkler
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Susanne K Vollmer
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
- Heinrich Heine University, Duesseldorf, 40225, Germany
| | - Nadine Dyballa-Rukes
- MS Platform, Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Sabine Metzger
- MS Platform, Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Markus G Stetter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
75
|
Zhang F, Wang J, Ding T, Lin X, Hu H, Ding Z, Tian H. MYB2 and MYB108 regulate lateral root development by interacting with LBD29 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1675-1687. [PMID: 38923126 DOI: 10.1111/jipb.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
AUXIN RESPONSE FACTOR 7 (ARF7)-mediated auxin signaling plays a key role in lateral root (LR) development by regulating downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor genes, including LBD16, LBD18, and LBD29. LBD proteins are believed to regulate the transcription of downstream genes as homodimers or heterodimers. However, whether LBD29 forms dimers with other proteins to regulate LR development remains unknown. Here, we determined that the Arabidopsis thaliana (L.) Heynh. MYB transcription factors MYB2 and MYB108 interact with LBD29 and regulate auxin-induced LR development. Both MYB2 and MYB108 were induced by auxin in an ARF7-dependent manner. Disruption of MYB2 by fusion with an SRDX domain severely affected auxin-induced LR formation and the ability of LBD29 to induce LR development. By contrast, overexpression of MYB2 or MYB108 resulted in greater LR numbers, except in the lbd29 mutant background. These findings underscore the interdependence and importance of MYB2, MYB108, and LBD29 in regulating LR development. In addition, MYB2-LBD29 and MYB108-LBD29 complexes promoted the expression of CUTICLE DESTRUCTING FACTOR 1 (CDEF1), a member of the GDSL (Gly-Asp-Ser-Leu) lipase/esterase family involved in LR development. In summary, this study identified MYB2-LBD29 and MYB108-LBD29 regulatory modules that act downstream of ARF7 and intricately control auxin-mediated LR development.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tingting Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xuefeng Lin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Haiying Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
76
|
Zhang J, Han N, Zhao A, Wang Z, Wang D. ZbMYB111 Expression Positively Regulates ZbUFGT-Mediated Anthocyanin Biosynthesis in Zanthoxylum bungeanum with the Involvement of ZbbHLH2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16941-16954. [PMID: 39024128 DOI: 10.1021/acs.jafc.3c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Anthocyanin (ACN)-derived pigmentation in the red Zanthoxylum bungeanum peel is an essential commercial trait. Therefore, exploring the metabolic regulatory networks involved in peel ACN levels in this species is crucial for improving its quality. However, its underlying transcriptional regulatory mechanisms are still unknown. This transcriptomic and bioinformatics study not only discovered a new TF (ZbMYB111) as a potential regulator for ACN biosynthesis in Z. bungeanum peel, but also deciphered the underlying molecular mechanisms of ACN biosynthesis. Overexpression of ZbMYB111 and flavonoid 3-O-glucosyltransferase (ZbUFGT) induced ACN accumulation in both Z. bungeanum peels and callus along with Arabidopsis thaliana and tobacco flowers, whereas their silencing impaired ACN biosynthesis. Therefore, the dual-luciferase reporter, yeast-one-hybrid, and electrophoretic mobility shift assays showed that ZbMYB111 directly interacted with the ZbUFGT promoter to activate its expression. This diverted the secondary metabolism toward the ACN pathway, thereby promoting ACN accumulation.
Collapse
Affiliation(s)
- Jie Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Nuan Han
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Ziyi Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| |
Collapse
|
77
|
Zhou Y, Li X, Wang D, Yu Z, Liu Y, Hu L, Bian Z. Identification of Transcription Factors of Santalene Synthase Gene Promoters and SaSSY Cis-Elements through Yeast One-Hybrid Screening in Santalum album L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1882. [PMID: 38999721 PMCID: PMC11244121 DOI: 10.3390/plants13131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
The main components of sandalwood heartwood essential oil are terpenoids, approximately 80% of which are α-santalol and β-santalol. In the synthesis of the main secondary metabolites of sandalwood heartwood, the key gene, santalene synthase (SaSSY), can produce α-santalene and β-santalene by catalyzed (E, E)-FPP. Furthermore, santalene is catalyzed by the cytochrome monooxygenase SaCYP736A167 to form sandalwood essential oil, which then produces a fragrance. However, the upstream regulatory mechanism of the key gene santalene synthase remains unclear. In this study, SaSSY (Sal3G10690) promoter transcription factors and SaSSY cis-elements were screened. The results showed that the titer of the sandalwood cDNA library was 1.75 × 107 CFU/mL, 80% of the inserted fragments identified by PCR were over 750 bp in length, and the positivity rate of the library was greater than 90%. The promoter region of the SaSSY gene was shown to have the structural basis for potential regulatory factor binding. After sequencing and bioinformatics analysis, we successfully obtained 51 positive clones and identified four potential SaSSY transcriptional regulators. Sal6G03620 was annotated as the transcription factor MYB36-like, and Sal8G07920 was annotated as the small heat shock protein HSP20 in sandalwood. Sal1G00910 was annotated as a hypothetical protein of sandalwood. Sal4G10880 was annotated as a homeobox-leucine zipper protein (ATHB-15) in sandalwood. In this study, a cDNA library of sandalwood was successfully constructed using a yeast one-hybrid technique, and the transcription factors that might interact with SaSSY gene promoters were screened. This study provides a foundation for exploring the molecular regulatory mechanism involved in the formation of sandalwood heartwood.
Collapse
Affiliation(s)
- Yunqing Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiang Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dongli Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zequn Yu
- Shanghai Gardening-Landscaping Construction Co., Ltd., Shanghai 200333, China
| | - Yunshan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Lipan Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Zhan Bian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
78
|
Song Z, Zhang C, Song G, Wei H, Xu W, Pan H, Ding C, Xu M, Zhen Y. Unraveling the lncRNA-miRNA-mRNA Regulatory Network Involved in Poplar Coma Development through High-Throughput Sequencing. Int J Mol Sci 2024; 25:7403. [PMID: 39000510 PMCID: PMC11242837 DOI: 10.3390/ijms25137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Poplar coma, the fluff-like appendages of seeds originating from the differentiated surface cells of the placenta and funicle, aids in the long-distance dispersal of seeds in the spring. However, it also poses hazards to human safety and causes pollution in the surrounding environment. Unraveling the regulatory mechanisms governing the initiation and development of coma is essential for addressing this issue comprehensively. In this study, strand-specific RNA-seq was conducted at three distinct stages of coma development, revealing 1888 lncRNAs and 52,810 mRNAs. The expression profiles of lncRNAs and mRNAs during coma development were analyzed. Subsequently, potential target genes of lncRNAs were predicted through co-localization and co-expression analyses. Integrating various types of sequencing data, lncRNA-miRNA-TF regulatory networks related to the initiation of coma were constructed. Utilizing identified differentially expressed genes encoding kinesin and actin, lncRNA-miRNA-mRNA regulatory networks associated with the construction and arrangement of the coma cytoskeleton were established. Additionally, relying on differentially expressed genes encoding cellulose synthase, sucrose synthase, and expansin, lncRNA-miRNA-mRNA regulatory networks related to coma cell wall synthesis and remodeling were developed. This study not only enhances the comprehension of lncRNA but also provides novel insights into the molecular mechanisms governing the initiation and development of poplar coma.
Collapse
Affiliation(s)
- Zihe Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chenghao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guotao Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hang Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenlin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huixin Pan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
79
|
Marin-Recinos MF, Pucker B. Genetic factors explaining anthocyanin pigmentation differences. BMC PLANT BIOLOGY 2024; 24:627. [PMID: 38961369 PMCID: PMC11221117 DOI: 10.1186/s12870-024-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Collapse
Affiliation(s)
- Maria F Marin-Recinos
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
80
|
Fattorini R, Khojayori FN, Mellers G, Moyroud E, Herrero E, Kellenberger RT, Walker R, Wang Q, Hill L, Glover BJ. Complex petal spot formation in the Beetle Daisy (Gorteria diffusa) relies on spot-specific accumulation of malonylated anthocyanin regulated by paralogous GdMYBSG6 transcription factors. THE NEW PHYTOLOGIST 2024; 243:240-257. [PMID: 38725421 DOI: 10.1111/nph.19804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3-MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3-glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3-MYB transcription factors (GdMYBSG6-1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3-MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Farahnoz N Khojayori
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Gregory Mellers
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Edwige Moyroud
- Sainsbury Laboratory Cambridge University, Bateman St., Cambridge, CB2 1LR, UK
- Department of Genetics, University of Cambridge, Downing St., Cambridge, CB2 3EH, UK
| | - Eva Herrero
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Rachel Walker
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Qi Wang
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| | - Lionel Hill
- Biomolecular Analysis Facility, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK
| |
Collapse
|
81
|
Wei X, Geng M, Yuan J, Zhan J, Liu L, Chen Y, Wang Y, Qin W, Duan H, Zhao H, Li F, Ge X. GhRCD1 promotes cotton tolerance to cadmium by regulating the GhbHLH12-GhMYB44-GhHMA1 transcriptional cascade. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1777-1796. [PMID: 38348566 PMCID: PMC11182589 DOI: 10.1111/pbi.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 06/19/2024]
Abstract
Heavy metal pollution poses a significant risk to human health and wreaks havoc on agricultural productivity. Phytoremediation, a plant-based, environmentally benign, and cost-effective method, is employed to remove heavy metals from contaminated soil, particularly in agricultural or heavy metal-sensitive lands. However, the phytoremediation capacity of various plant species and germplasm resources display significant genetic diversity, and the mechanisms underlying these differences remain hitherto obscure. Given its potential benefits, genetic improvement of plants is essential for enhancing their uptake of heavy metals, tolerance to harmful levels, as well as overall growth and development in contaminated soil. In this study, we uncover a molecular cascade that regulates cadmium (Cd2+) tolerance in cotton, involving GhRCD1, GhbHLH12, GhMYB44, and GhHMA1. We identified a Cd2+-sensitive cotton T-DNA insertion mutant with disrupted GhRCD1 expression. Genetic knockout of GhRCD1 by CRISPR/Cas9 technology resulted in reduced Cd2+ tolerance in cotton seedlings, while GhRCD1 overexpression enhanced Cd2+ tolerance. Through molecular interaction studies, we demonstrated that, in response to Cd2+ presence, GhRCD1 directly interacts with GhbHLH12. This interaction activates GhMYB44, which subsequently activates a heavy metal transporter, GhHMA1, by directly binding to a G-box cis-element in its promoter. These findings provide critical insights into a novel GhRCD1-GhbHLH12-GhMYB44-GhHMA1 regulatory module responsible for Cd2+ tolerance in cotton. Furthermore, our study paves the way for the development of elite Cd2+-tolerant cultivars by elucidating the molecular mechanisms governing the genetic control of Cd2+ tolerance in cotton.
Collapse
Affiliation(s)
- Xi Wei
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Menghan Geng
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Jingjing Zhan
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Lisen Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Yanli Chen
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Ye Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Wenqiang Qin
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Hongying Duan
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
| | - Hang Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Fuguang Li
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Western Agricultural Research Center, Chinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Xiaoyang Ge
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Western Agricultural Research Center, Chinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
82
|
Moss SMA, Zhou Y, Butelli E, Waite CN, Yeh SM, Cordiner SB, Harris NN, Copsey L, Schwinn KE, Davies KM, Hudson A, Martin C, Albert NW. Painted flowers: Eluta generates pigment patterning in Antirrhinum. THE NEW PHYTOLOGIST 2024; 243:738-752. [PMID: 38822654 DOI: 10.1111/nph.19866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
In the early 1900s, Erwin Baur established Antirrhinum majus as a model system, identifying and characterising numerous flower colour variants. This included Picturatum/Eluta, which restricts the accumulation of magenta anthocyanin pigments, forming bullseye markings on the flower face. We identified the gene underlying the Eluta locus by transposon-tagging, using an Antirrhinum line that spontaneously lost the nonsuppressive el phenotype. A candidate MYB repressor gene at this locus contained a CACTA transposable element. We subsequently identified plants where this element excised, reverting to a suppressive Eluta phenotype. El alleles inhibit expression of anthocyanin biosynthetic genes, confirming it to be a regulatory locus. The modes of action of Eluta were investigated by generating stable transgenic tobacco lines, biolistic transformation of Antirrhinum petals and promoter activation/repression assays. Eluta competes with MYB activators for promoter cis-elements, and also by titrating essential cofactors (bHLH proteins) to reduce transcription of target genes. Eluta restricts the pigmentation established by the R2R3-MYB factors, Rosea and Venosa, with the greatest repression on those parts of the petals where Eluta is most highly expressed. Baur questioned the origin of heredity units determining flower colour variation in cultivated A. majus. Our findings support introgression from wild species into cultivated varieties.
Collapse
Affiliation(s)
- Sarah M A Moss
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | | | - Chethi N Waite
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Shin-Mei Yeh
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1025, New Zealand
| | - Sarah B Cordiner
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Nilangani N Harris
- The New Zealand Institute for Crop and Food Research Ltd, Palmerston North, 4410, New Zealand
| | | | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | | | | | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| |
Collapse
|
83
|
Florez-Rueda AM, Miguel CM, Figueiredo DD. Comparative transcriptomics of seed nourishing tissues: uncovering conserved and divergent pathways in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1134-1157. [PMID: 38709819 DOI: 10.1111/tpj.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
The evolutionary and ecological success of spermatophytes is intrinsically linked to the seed habit, which provides a protective environment for the initial development of the new generation. This environment includes an ephemeral nourishing tissue that supports embryo growth. In gymnosperms this tissue originates from the asexual proliferation of the maternal megagametophyte, while in angiosperms it is a product of fertilization, and is called the endosperm. The emergence of these nourishing tissues is of profound evolutionary value, and they are also food staples for most of the world's population. Here, using Orthofinder to infer orthologue genes among newly generated and previously published datasets, we provide a comparative transcriptomic analysis of seed nourishing tissues from species of several angiosperm clades, including those of early diverging lineages, as well as of one gymnosperm. Our results show that, although the structure and composition of seed nourishing tissues has seen significant divergence along evolution, there are signatures that are conserved throughout the phylogeny. Conversely, we identified processes that are specific to species within the clades studied, and thus illustrate their functional divergence. With this, we aimed to provide a foundation for future studies on the evolutionary history of seed nourishing structures, as well as a resource for gene discovery in future functional studies.
Collapse
Affiliation(s)
- Ana Marcela Florez-Rueda
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Karl-Liebknechts-Str. 24-25, Haus 26, 14476, Potsdam, Germany
| | - Célia M Miguel
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisboa, Portugal
| | - Duarte D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
84
|
Zhang Y, Qin X, He Z, Zhang Y, Li Z, Nie G, Zhao J, Feng G, Peng Y. The White Clover TrMYB33-TrSAMS1 Module Contributes to Drought Tolerance by Modulation of Spermidine Biosynthesis via an ABA-Dependent Pathway. Int J Mol Sci 2024; 25:6974. [PMID: 39000081 PMCID: PMC11241196 DOI: 10.3390/ijms25136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.
Collapse
Affiliation(s)
- Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofang Qin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhirui He
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
85
|
Ma Q, Zhong S, Ma T, Yue Y, Zou S, Sui S, Ai L, Guo Y. Transcriptome Analysis Reveals That FvPAP1 Genes Are Related to the Prolongation of Red-Leaf Period in Ficus virens. Curr Issues Mol Biol 2024; 46:5724-5743. [PMID: 38921014 PMCID: PMC11202158 DOI: 10.3390/cimb46060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Ficus virens is a deciduous tree that is highly valuable both economically and medicinally. Like other plants with 'red young leaves', the red-leaf period of most F. virens trees lasts only a few days, and the red leaves have little ornamental value. However, in recent years, some lines of F. virens with bright red young leaves and a prolonged red-leaf period have been utilized for urban greening. To explore the mechanism of the different lengths of the duration of F. virens leaves, we analyzed the physiology and changes in gene expression during the development of two varieties of leaves. The detection of anthocyanin in different developmental stages of the F. virens leaves showed that the changes in color of the red leaves of F. virens were primarily caused by the change in anthocyanin content. A transcriptome analysis showed that the expression of genes related to the biosynthesis of anthocyanin changed significantly during the development of leaves. A MYB gene FvPAP1, which was consistent with the change in anthocyanin content, was identified. A real-time quantitative reverse transcription PCR analysis and heterologous expression transgenic studies showed that FvPAP1 promoted the biosynthesis of anthocyanins. The difference in the expression of FvPAP1 in time and intensity in the young leaves may be the reason for the difference in the duration of the red-leaf period in different lines of F. virens. A sequence analysis showed that the cDNA sequence of FvPAP1 was polymorphic, and possible reasons were discussed. These results can provide insight for similar studies on the mechanism of the formation of red coloring in other woody plant leaves and provide molecular targets to breed new materials with more prolonged red-leaf periods in F. virens.
Collapse
Affiliation(s)
- Qingchao Ma
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Q.M.)
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Shuhua Zhong
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Tianci Ma
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Yajie Yue
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Shihui Zou
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Q.M.)
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| | - Lijiao Ai
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing 400715, China; (Q.M.)
| | - Yulong Guo
- Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape, Southwest University, Chongqing 401329, China; (S.Z.); (Y.Y.); (S.S.)
| |
Collapse
|
86
|
Yi S, Cai Q, Yang Y, Shen H, Sun Z, Li L. Identification and Functional Characterization of the SaMYB113 Gene in Solanum aculeatissimum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1570. [PMID: 38891379 PMCID: PMC11174649 DOI: 10.3390/plants13111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
The MYB transcription factors (TFs) have substantial functions in anthocyanin synthesis as well as being widely associated with plant responses to various adversities. In the present investigation, we found an unreported MYB TF from Solanum aculeatissimum (a wild relative of eggplant) and named it SaMYB113 in reference to its homologous gene. Bioinformatics analysis demonstrated that the open reading frame of SaMYB113 was 825 bp in length, encoding 275 amino acids, with a typical R2R3-MYB gene structure, and predicted subcellular localization in the nucleus. Analysis of the tissue-specific expression pattern through qRT-PCR showed that the SaMYB113 was expressed at a high level in young stems as well as leaves of S. aculeatissimum. Transgenic Arabidopsis and tobacco plants overexpressing SaMYB113 pertinent to the control of the 35S promoter exhibited a distinct purple color trait, suggesting a significant change in their anthocyanin content. Furthermore, we obtained three tobacco transgenic lines with significant differences in anthocyanin accumulation and analyzed the differences in anthocyanin content by LC-MS/MS. The findings demonstrated that overexpression of SaMYB113 caused tobacco to have considerably raised levels of several anthocyanin components, with the most significant increases in delphinidin-like anthocyanins and cyanidin-like anthocyanins. The qRT-PCR findings revealed significant differences in the expression levels of structural genes for anthocyanin synthesis among various transgenic lines. In summary, this study demonstrated that the SaMYB113 gene has a substantial impact on anthocyanin synthesis, and overexpression of the SaMYB113 gene leads to significant modifications to the expression levels of a variety of anthocyanin-synthesizing genes, which leads to complex changes in anthocyanin content and affects plant phenotypes. This present research offers the molecular foundation for the research of the mechanism of anthocyanin formation within plants, as well as providing some reference for the improvement of traits in solanum crops.
Collapse
Affiliation(s)
- Songheng Yi
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Qihang Cai
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Yanbo Yang
- College of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China;
| | - Hongquan Shen
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Zhenghai Sun
- College of Landscape and Horticulture, Southwest Forestry University, Kunming 650224, China; (S.Y.); (Q.C.); (H.S.)
| | - Liping Li
- College of Wetland, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
87
|
Molnar M, Jakovljević Kovač M, Pavić V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024; 29:2615. [PMID: 38893491 PMCID: PMC11173854 DOI: 10.3390/molecules29112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
88
|
Keyl A, Kwas V, Lewandowska M, Herrfurth C, Kunst L, Feussner I. AtMYB41 acts as a dual-function transcription factor that regulates the formation of lipids in an organ- and development-dependent manner. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:568-582. [PMID: 38634447 DOI: 10.1111/plb.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The plant cuticle controls non-stomatal water loss and can serve as a barrier against biotic agents, whereas the heteropolymer suberin and its associated waxes are deposited constitutively at specific cell wall locations. While several transcription factors controlling cuticle formation have been identified, those involved in the transcriptional regulation of suberin biosynthesis remain poorly characterized. The major goal of this study was to further analyse the function of the R2R3-Myeloblastosis (MYB) transcription factor AtMYB41 in formation of the cuticle, suberin, and suberin-associated waxes throughout plant development. For functional analysis, the organ-specific expression pattern of AtMYB41 was analysed and Atmyb41ge alleles were generated using the CRISPR/Cas9 system. These were investigated for root growth and water permeability upon stress. In addition, the fatty acid, wax, cutin, and suberin monomer composition of different organs was evaluated by gas chromatography. The characterization of Atmyb41ge mutants revealed that AtMYB41 negatively regulates the production of cuticular lipids and fatty acid biosynthesis in leaves and seeds, respectively. Remarkably, biochemical analyses indicate that AtMYB41 also positively regulates the formation of cuticular waxes in stems of Arabidopsis thaliana. Overall, these results suggest that the AtMYB41 acts as a negative regulator of cuticle and fatty acid biosynthesis in leaves and seeds, respectively, but also as a positive regulator of wax production in A. thaliana stems.
Collapse
Affiliation(s)
- A Keyl
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - V Kwas
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - M Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
| | - C Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - L Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - I Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
89
|
Ma J, He T, Yu R, Zhao Y, Hu H, Zhang W, Zhang Y, Liu Z, Chen M. Brassica napus BnaA09.MYB52 enhances seed coat mucilage accumulation and tolerance to osmotic stress during seed germination in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:602-611. [PMID: 38634818 DOI: 10.1111/plb.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
Seed coat mucilage plays an important role in promoting seed germination under adversity. Previous studies have shown that Arabidopsis thaliana MYB52 (AtMYB52) can positively regulate seed coat mucilage accumulation. However, the role of Brassica napus MYB52 (BnaMYB52) in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination remains largely unknown. We cloned the BnaA09.MYB52 coding domain sequence from B. napus cv ZS11, identified its conserved protein domains and elucidated its relationship with homologues from a range of plant species. Transgenic plants overexpressing BnaA09.MYB52 in the A. thaliana myb52-1 mutant were generated through Agrobacterium-mediated transformation and used to assess the possible roles of BnaA09.MYB52 in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination. Subcellular localization and transcriptional activity assays demonstrated that BnaA09.MYB52 functions as a transcription factor. RT-qPCR results indicate that BnaA09.MYB52 is predominantly expressed in roots and developing seeds of B. napus cv ZS11. Introduction of BnaA09.MYB52 into myb52-1 restored thinner seed coat mucilage in this mutant to levels in the wild type. Consistently, expression levels of three key genes participating in mucilage formation in developing seeds of myb52-1 were also restored to wild type levels by overexpressing BnaA09.MYB52. Furthermore, BnaA09.MYB52 was induced by osmotic stress during seed germination in B. napus, and ectopic expression of BnaA09.MYB52 successfully corrected sensitivity of the myb52-1 mutant to osmotic stress during seed germination. These findings enhance our understanding of the functions of BnaA09.MYB52 and provide a novel strategy for future B. napus breeding.
Collapse
Affiliation(s)
- J Ma
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - T He
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - R Yu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Zhao
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - H Hu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - W Zhang
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Zhang
- Department of Ecological and Environmental Engineering, Yangling Vocational & Technical College, Yangling, Shaanxi, China
| | - Z Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - M Chen
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
90
|
Wang C, Yao H, Wang C, Gao L, Chai X, Fang K, Du Y, Hao N, Cao J, Wu T. Transcription factor CsMYB36 regulates fruit neck length via mediating cell expansion in cucumber. PLANT PHYSIOLOGY 2024; 195:958-969. [PMID: 38447074 DOI: 10.1093/plphys/kiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024]
Abstract
The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow-green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative PCR (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast 1-hybrid and dual-luciferase assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Hongxin Yao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Chen Wang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Luyao Gao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Xingwen Chai
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Kai Fang
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Yalin Du
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Ning Hao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Jiajian Cao
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Tao Wu
- College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| |
Collapse
|
91
|
Wang D, Cheng B, Zhang J. High-density genetic map and quantitative trait loci map of skin color in hawthorn ( Crataegus pinnatifida bge. Var. major N.E.Br.). Front Genet 2024; 15:1405604. [PMID: 38873113 PMCID: PMC11169616 DOI: 10.3389/fgene.2024.1405604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Fruit skin color is an important trait of the hawthorn tree, which has an important influence on fruit quality. Crataegus pinnatifida Bge. var. Major N.E.Br. Is one of the most widely cultivated varieties in China and has a long history of medicinal use. In recent years, it has attracted the attention of the world due to its nutritional and medicinal values. Skin color is the focus of breeders and food processors. At present, skin color-related genes have still not been mapped. In this study, "Shandong Da Mianqiu" (♀, red skin color), "Da Huang Mianzha" (♂, yellow skin color) and 131 F1 hybrids were used to construct genetic map of hawthorn by RAD-seq, and QTL mapping was performed by combining these features with the hue angle and the observed color. In this study, 13,260 SNP was assigned to 17 linkage groups, with an integrated map covering 2,297.75 cM was constructed. A total of 5 QTLs related to hawthorn skin color were detected on LG1, LG3 and LG15. Whether hue angle or pericarp color acts as phenotype for QTL mapping, the candidate genes include bHLH086, WD repeat regions and Myb-like. bHLH, WD and Myb play an important role in the color regulation of Hawthorn skin color. These results lay a solid foundation for QTL mapping and molecular marker-assisted breeding of hawthorn.
Collapse
Affiliation(s)
- Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Beibei Cheng
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, China
| | - Jijun Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
- Hebei Higher Institute Application Technology Research and Development Center of Horticultural Plant Biological Breeding, Qinhuangdao, China
| |
Collapse
|
92
|
Han Y, Qu M, Liu Z, Kang C. Transcription factor FveMYB117a inhibits axillary bud outgrowth by regulating cytokinin homeostasis in woodland strawberry. THE PLANT CELL 2024; 36:2427-2446. [PMID: 38547429 PMCID: PMC11132891 DOI: 10.1093/plcell/koae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024]
Abstract
Shoot branching affects plant architecture. In strawberry (Fragaria L.), short branches (crowns) develop from dormant axillary buds to form inflorescences and flowers. While this developmental transition contributes greatly to perenniality and yield in strawberry, its regulatory mechanism remains unclear and understudied. In the woodland strawberry (Fragaria vesca), we identified and characterized 2 independent mutants showing more crowns. Both mutant alleles reside in FveMYB117a, a R2R3-MYB transcription factor gene highly expressed in shoot apical meristems, axillary buds, and young leaves. Transcriptome analysis revealed that the expression of several cytokinin pathway genes was altered in the fvemyb117a mutant. Consistently, active cytokinins were significantly increased in the axillary buds of the fvemyb117a mutant. Exogenous application of cytokinin enhanced crown outgrowth in the wild type, whereas the cytokinin inhibitors suppressed crown outgrowth in the fvemyb117a mutant. FveMYB117a binds directly to the promoters of the cytokinin homeostasis genes FveIPT2 encoding an isopentenyltransferase and FveCKX1 encoding a cytokinin oxidase to regulate their expression. Conversely, the type-B Arabidopsis response regulators FveARR1 and FveARR2b can directly inhibit the expression of FveMYB117a, indicative of a negative feedback regulation. In conclusion, we identified FveMYB117a as a key repressor of crown outgrowth by inhibiting cytokinin accumulation and provide a mechanistic basis for bud fate transition in an herbaceous perennial plant.
Collapse
Affiliation(s)
- Yafan Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Minghao Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
93
|
Panda M, Pradhan S, Mukherjee PK. Transcriptomics reveal useful resources for examining fruit development and variation in fruit size in Coccinia grandis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386041. [PMID: 38863541 PMCID: PMC11165041 DOI: 10.3389/fpls.2024.1386041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Introduction The Cucurbitaceae family comprises many agronomically important members, that bear nutritious fruits and vegetables of great economic importance. Coccinia grandis, commonly known as Ivy gourd, belongs to this family and is widely consumed as a vegetable. Members of this family are known to display an impressive range of variation in fruit morphology. Although there have been studies on flower development in Ivy gourd, fruit development remains unexplored in this crop. Methods In this study, comparative transcriptomics of two Ivy gourd cultivars namely "Arka Neelachal Kunkhi" (larger fruit size) and "Arka Neelachal Sabuja" (smaller fruit size) differing in their average fruit size was performed. A de novo transcriptome assembly for Ivy gourd was developed by collecting fruits at different stages of development (5, 10, 15, and 20 days after anthesis i.e. DAA) from these two varieties. The transcriptome was analyzed to identify differentially expressed genes, transcription factors, and molecular markers. Results The transcriptome of Ivy gourd consisted of 155205 unigenes having an average contig size of 1472bp. Unigenes were annotated on publicly available databases to categorize them into different biological functions. Out of these, 7635 unigenes were classified into 38 transcription factor (TF) families, of which Trihelix TFs were most abundant. A total of 11,165 unigenes were found to be differentially expressed in both the varieties and the in silico expression results were validated through real-time PCR. Also, 98768 simple sequence repeats (SSRs) were identified in the transcriptome of Ivy gourd. Discussion This study has identified a number of genes, including transcription factors, that could play a crucial role in the determination of fruit shape and size in Ivy gourd. The presence of polymorphic SSRs indicated a possibility for marker-assisted selection for crop breeding in Ivy gourd. The information obtained can help select candidate genes that may be implicated in regulating fruit development and size in other fruit crops.
Collapse
Affiliation(s)
- Mitrabinda Panda
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Seema Pradhan
- Biotechnology Research Innovation Council-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Pulok K. Mukherjee
- Biotechnology Research Innovation Council-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Imphal, India
| |
Collapse
|
94
|
Wang C, Lei J, Jin X, Chai S, Jiao C, Yang X, Wang L. A Sweet Potato MYB Transcription Factor IbMYB330 Enhances Tolerance to Drought and Salt Stress in Transgenic Tobacco. Genes (Basel) 2024; 15:693. [PMID: 38927629 PMCID: PMC11202548 DOI: 10.3390/genes15060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in response to abiotic stresses. In this study, an R2R3 MYB gene, IbMYB330 was isolated from sweet potato (Ipomoea batatas). IbMYB330 was ectopically expressed in tobacco and the functional characterization was performed by overexpression in transgenic plants. The IbMYB330 protein has a 268 amino acid sequence and contains two highly conserved MYB domains. The molecular weight and isoelectric point of IbMYB330 are 29.24 kD and 9.12, respectively. The expression of IbMYB330 in sweet potato is tissue-specific, and levels in the root were significantly higher than that in the leaf and stem. It showed that the expression of IbMYB330 was strongly induced by PEG-6000, NaCl, and H2O2. Ectopic expression of IbMYB330 led to increased transcript levels of stress-related genes such as SOD, POD, APX, and P5CS. Moreover, compared to the wild-type (WT), transgenic tobacco overexpression of IbMYB330 enhanced the tolerance to drought and salt stress treatment as CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. Taken together, our study demonstrated that IbMYB330 plays a role in enhancing the resistance of sweet potato to stresses. These findings lay the groundwork for future research on the R2R3-MYB genes of sweet potato and indicates that IbMYB330 may be a candidate gene for improving abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Chong Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
- Crop Institute of Jiangxi Academy Agricultural Sciences, Nanchang 330200, China
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| |
Collapse
|
95
|
Xing HT, Shi JY, Yin SQ, Wu QH, Lv JL, Li HL. The MYB family and their response to abiotic stress in ginger (Zingiber officinale Roscoe). BMC Genomics 2024; 25:460. [PMID: 38730330 PMCID: PMC11088133 DOI: 10.1186/s12864-024-10392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. RESULTS In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. CONCLUSION This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.
Collapse
Affiliation(s)
- Hai-Tao Xing
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Biological Sciences Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Jia-Yu Shi
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Shi-Qing Yin
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Qing-Hong Wu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Jian-Ling Lv
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
96
|
Kim G, Cho H, Kim S. Identification of a candidate gene for the I locus determining the dominant white bulb color in onion (Allium cepa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:118. [PMID: 38709404 DOI: 10.1007/s00122-024-04626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci. The causal gene for the C locus was previously isolated, but the gene responsible for the I locus has not been identified yet. To identify candidate genes for the I locus, an approximately 7-Mb genomic DNA region harboring the I locus was obtained from onion and bunching onion (A. fistulosum) whole genome sequences using two tightly linked molecular markers. Within this interval, the AcMYB1 gene, known as a positive regulator of anthocyanin production, was identified. No polymorphic sequences were found between white and red AcMYB1 alleles in the 4,860-bp full-length genomic DNA sequences. However, a 4,838-bp LTR-retrotransposon was identified in the white allele, in the 79-bp upstream coding region from the stop codon. The insertion of this LTR-retrotransposon created a premature stop codon, resulting in the replacement of 26 amino acids with seven different residues. A molecular marker was developed based on the insertion of this LTR-retrotransposon to genotype the I locus. A perfect linkage between bulb color phenotypes and marker genotypes was observed among 5,303 individuals of segregating populations. The transcription of AcMYB1 appeared to be normal in both red and white onions, but the transcription of CHS-A, which encodes chalcone synthase and is involved in the first step of the anthocyanin biosynthesis pathway, was inactivated in the white onions. Taken together, an aberrant AcMYB1 protein produced from the mutant allele might be responsible for the dominant white bulb color in onions.
Collapse
Affiliation(s)
- Geonjoong Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Heejung Cho
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
97
|
Zuo D, Yan Y, Ma J, Zhao P. Genome-Wide Analysis of Transcription Factor R2R3-MYB Gene Family and Gene Expression Profiles during Anthocyanin Synthesis in Common Walnut ( Juglans regia L.). Genes (Basel) 2024; 15:587. [PMID: 38790216 PMCID: PMC11121633 DOI: 10.3390/genes15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.
Collapse
Affiliation(s)
| | | | | | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (D.Z.); (Y.Y.); (J.M.)
| |
Collapse
|
98
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
99
|
Zhao X, Feng Y, Ke D, Teng Y, Yuan Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. PLANT MOLECULAR BIOLOGY 2024; 114:51. [PMID: 38691187 DOI: 10.1007/s11103-024-01446-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingyi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
100
|
Huang W, Xu B, Guo W, Huang Z, Li Y, Wu W. De novo genome assembly and population genomics of a shrub tree Barthea barthei (Hance) krass provide insights into the adaptive color variations. FRONTIERS IN PLANT SCIENCE 2024; 15:1365686. [PMID: 38751846 PMCID: PMC11094225 DOI: 10.3389/fpls.2024.1365686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Flower color is a classic example of an ecologically important trait under selection in plants. Understanding the genetic mechanisms underlying shifts in flower color can provide key insights into ecological speciation. In this study, we investigated the genetic basis of flower color divergence in Barthea barthei, a shrub tree species exhibiting natural variation in flower color. We assembled a high-quality genome assembly for B. barthei with a contig N50 of 2.39 Mb and a scaffold N50 of 16.21 Mb. The assembly was annotated with 46,430 protein-coding genes and 1,560 non-coding RNAs. Genome synteny analysis revealed two recent tetraploidization events in B. barthei, estimated to have occurred at approximately 17 and 63 million years ago. These tetraploidization events resulted in massive duplicated gene content, with over 70% of genes retained in collinear blocks. Gene family members of the core regulators of the MBW complex were significantly expanded in B. barthei compared to Arabidopsis, suggesting that these duplications may have provided raw genetic material for the evolution of novel regulatory interactions and the diversification of anthocyanin pigmentation. Transcriptome profiling of B. barthei flowers revealed differential expression of 9 transcription factors related to anthocyanin biosynthesis between the two ecotypes. Six of these differentially expressed transcription factors were identified as high-confidence candidates for adaptive evolution based on positive selection signals. This study provides insights into the genetic basis of flower color divergence and the evolutionary mechanisms underlying ecological adaptation in plants.
Collapse
Affiliation(s)
- Weicheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zecheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|