51
|
Lv M, Ji X, Zhao J, Li Y, Zhang C, Su L, Ding W, Deng Z, Yu Y, Zhang Q. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis. J Am Chem Soc 2016; 138:6427-35. [PMID: 27120352 DOI: 10.1021/jacs.6b02221] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.
Collapse
Affiliation(s)
- Meinan Lv
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Junfeng Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China.,Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Chen Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Li Su
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Wei Ding
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Qi Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| |
Collapse
|
52
|
Wiegmann D, Koppermann S, Wirth M, Niro G, Leyerer K, Ducho C. Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents. Beilstein J Org Chem 2016; 12:769-795. [PMID: 27340469 PMCID: PMC4902027 DOI: 10.3762/bjoc.12.77] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 11/23/2022] Open
Abstract
Muraymycins are a promising class of antimicrobial natural products. These uridine-derived nucleoside-peptide antibiotics inhibit the bacterial membrane protein translocase I (MraY), a key enzyme in the intracellular part of peptidoglycan biosynthesis. This review describes the structures of naturally occurring muraymycins, their mode of action, synthetic access to muraymycins and their analogues, some structure-activity relationship (SAR) studies and first insights into muraymycin biosynthesis. It therefore provides an overview on the current state of research, as well as an outlook on possible future developments in this field.
Collapse
Affiliation(s)
- Daniel Wiegmann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbruecken, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbruecken, Germany
| | - Marius Wirth
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbruecken, Germany
| | - Giuliana Niro
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbruecken, Germany
| | - Kristin Leyerer
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbruecken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbruecken, Germany
| |
Collapse
|
53
|
Niu H, Yu H, Hu T, Tian G, Zhang L, Guo X, Hu H, Wang Z. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol 2016; 47:691-6. [PMID: 27268115 PMCID: PMC4927675 DOI: 10.1016/j.bjm.2016.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
This study highlights the prevalence of aminoglycoside-modifying enzyme genes and virulence determinants among clinical enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Screening for high-level aminoglycoside resistance against 117 enterococcal clinical isolates was performed using the agar-screening method. Out of the 117 enterococcal isolates, 46 were selected for further detection and determination of the distribution of aminoglycoside-modifying enzyme-encoding genes and virulence determinants using polymerase chain reaction -based methods. Enterococcus faecium and Enterococcus faecalis were identified as the species of greatest clinical importance. The aac(6′)-Ie-aph(2″)-Ia and ant(6′)-Ia genes were found to be the most common aminoglycoside-modifying enzyme genes among high-level gentamicin resistance and high-level streptomycin resistance isolates, respectively. Moreover, gelE was the most common virulence gene among high-level aminoglycoside resistance isolates. Compared to Enterococcus faecium, Enterococcus faecalis harbored multiple virulence determinants. The results further indicated no correlation between aminoglycoside-modifying enzyme gene profiles and the distribution of virulence genes among the enterococcal isolates with high-level gentamicin resistance or high-level streptomycin resistance evaluated in our study.
Collapse
Affiliation(s)
- Haiying Niu
- The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hui Yu
- The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Tangping Hu
- The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Gailin Tian
- The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Lixia Zhang
- The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Xiang Guo
- The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hai Hu
- Department of Pathophysiology, Baotou Medical College, Baotou, China.
| | - Zhanli Wang
- The First Affiliated Hospital, Baotou Medical College, Baotou, China.
| |
Collapse
|
54
|
|
55
|
Hasani A, Sheikhalizadeh V, Ahangarzadeh Rezaee M, Rahmati-Yamchi M, Hasani A, Ghotaslou R, Goli HR. Frequency of Aminoglycoside-Modifying Enzymes and ArmA Among Different Sequence Groups of Acinetobacter baumannii in Iran. Microb Drug Resist 2016; 22:347-53. [PMID: 26779992 DOI: 10.1089/mdr.2015.0254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We evaluated aminoglycoside resistance in 87 Acinetobacter baumannii strains isolated from four hospitals located in the North West region of Iran and typed them in sequence groups (SGs) using trilocus sequence-based scheme to compare their clonal relationships with international clones. Resistance toward aminoglycosides was assayed by minimum inhibitory concentration (MIC) and presence of aminoglycoside-modifying enzymes (AMEs), and ArmA-encoding genes were evaluated in different SGs. The majority of isolates belonged to SG1 (39%), SG2 (33.3%), and SG3 (12.6%), whereas the remaining ones were assigned to six novel variants of SGs. MIC determination revealed netilmicin as the most and kanamycin as the least active aminoglycosides against all groups. Among the varied SGs, isolates of SG2 showed more susceptibility toward all tested aminoglycosides. APH(3'')-VIa-encoding gene was predominant in SG1 (47%), SG2 (62%), and SG6-9 (100%). However, AAC(3')-Ia (100%) and ANT(2')-Ia (90.9%) were the dominant AMEs in SG3. There was significant association between harboring of aminoglycoside resistance genes and specific aminoglycosides: gene encoded by APH(3')-VIa was allied to resistance against amikacin and kanamycin, whereas ANT(2')-Ia was related to the resistance toward gentamicin and tobramycin in SG2. In SG1, tobramycin resistance was correlated with harboring of AAC(6')-Ib. Screening of armA demonstrated the presence of this gene in SG1 (58.8%), SG2 (10.3%), as well as SG3 (9%). Our results revealed definite correlation between the phenotypes and genotypes of aminoglycoside resistance in different clonal lineages of A. baumannii.
Collapse
Affiliation(s)
- Alka Hasani
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran .,2 Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Vajihe Sheikhalizadeh
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran .,2 Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Mohammad Rahmati-Yamchi
- 3 Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Akbar Hasani
- 3 Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Ghotaslou
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Goli
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
56
|
Latorre M, Revuelta J, García-Junceda E, Bastida A. 6- O-Nucleotidyltransferase: an aminoglycoside-modifying enzyme specific for streptomycin/streptidine. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00496a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ANT(6) has a narrow tolerance to chemical variations in the aminoglycoside/nucleotide, making it very useful in the design of non-inactivable derivatives.
Collapse
Affiliation(s)
- Montserrat Latorre
- Departamento de Química Orgánica Biológica
- Instituto de Química Orgánica General
- CSIC
- Madrid
- Spain
| | - Julia Revuelta
- Departamento de Química Orgánica Biológica
- Instituto de Química Orgánica General
- CSIC
- Madrid
- Spain
| | - Eduardo García-Junceda
- Departamento de Química Orgánica Biológica
- Instituto de Química Orgánica General
- CSIC
- Madrid
- Spain
| | - Agatha Bastida
- Departamento de Química Orgánica Biológica
- Instituto de Química Orgánica General
- CSIC
- Madrid
- Spain
| |
Collapse
|
57
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
58
|
Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6')-Ih. J Antimicrob Chemother 2015; 71:601-6. [PMID: 26645270 DOI: 10.1093/jac/dkv390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/17/2015] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES The aac(6')-Ih gene encoding aminoglycoside 6'-N-acetyltransferase type I subtype h [AAC(6')-Ih] is plasmid-borne in Acinetobacter baumannii where it confers high-level amikacin resistance, but its origin remains unknown. We searched for the gene in the genomes of a collection of 133 Acinetobacter spp. and studied its species specificity, expression and dissemination. METHODS Gene copy number was determined by quantitative PCR, expression by quantitative RT-PCR, MIC by microdilution and transfer by plasmid mobilization. RESULTS The aac(6')-Ih gene was present in the chromosome of the two Acinetobacter gyllenbergii of the collection and was detected in all seven A. gyllenbergii clinical isolates. They had indistinguishable flanking regions indicating that the gene was intrinsic to this species. A. baumannii PIS Aba23 promoters were provided by insertion of ISAba23, which disrupted the Pnative promoter in A. gyllenbergii. Both types of promoters were similarly potent in Escherichia coli and A. baumannii. Aminoglycoside MICs for A. baumannii harbouring pIP1858 were higher than for A. gyllenbergii due to gene dosage. The non-self-transferable plasmid could be mobilized to other A. baumannii cells by the broad host range plasmid RP4. CONCLUSIONS We have found the origin of aac(6')-Ih in A. gyllenbergii, a species isolated, although rarely, in humans, and documented that dissemination of this gene is restricted to the Acinetobacter genus.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Institut Pasteur, Unité des Agents Antibactériens, Paris, France
| | - Sylvie Goussard
- Institut Pasteur, Unité des Agents Antibactériens, Paris, France
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Prague, Czech Republic
| | - Thierry Lambert
- EA4043, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France
| | | | | |
Collapse
|
59
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
60
|
Chen Y, Näsvall J, Wu S, Andersson DI, Selmer M. Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3'')(9) adenyltransferase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2267-77. [PMID: 26527143 PMCID: PMC4631478 DOI: 10.1107/s1399004715016429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Aminoglycoside resistance is commonly conferred by enzymatic modification of drugs by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). Here, the first crystal structure of an ANT(3'')(9) adenyltransferase, AadA from Salmonella enterica, is presented. AadA catalyses the magnesium-dependent transfer of adenosine monophosphate from ATP to the two chemically dissimilar drugs streptomycin and spectinomycin. The structure was solved using selenium SAD phasing and refined to 2.5 Å resolution. AadA consists of a nucleotidyltransferase domain and an α-helical bundle domain. AadA crystallizes as a monomer and is a monomer in solution as confirmed by small-angle X-ray scattering, in contrast to structurally similar homodimeric adenylating enzymes such as kanamycin nucleotidyltransferase. Isothermal titration calorimetry experiments show that ATP binding has to occur before binding of the aminoglycoside substrate, and structure analysis suggests that ATP binding repositions the two domains for aminoglycoside binding in the interdomain cleft. Candidate residues for ligand binding and catalysis were subjected to site-directed mutagenesis. In vivo resistance and in vitro binding assays support the role of Glu87 as the catalytic base in adenylation, while Arg192 and Lys205 are shown to be critical for ATP binding.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
61
|
Biophysical and enzymatic properties of aminoglycoside adenylyltransferase AadA6 from Pseudomonas aeruginosa. Biochem Biophys Rep 2015; 4:152-157. [PMID: 29124199 PMCID: PMC5668923 DOI: 10.1016/j.bbrep.2015.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
The gene coding for the aminoglycoside adenylyltransferase (aadA6) from a clinical isolate of Pseudomonas aeruginosa was cloned and expressed in Escherichia coli strain BL21(DE3)pLysS. The overexpressed enzyme (AadA6, 281 amino-acid residues) and a carboxy-terminal truncated variant molecule ([1-264]AadA6) were purified to near homogeneity and characterized. Light scattering experiments conducted under low ionic strength supported equilibrium between monomeric and homodimeric arrangements of the enzyme subunits. Circular Dichroism spectropolarimetry indicated a close structural relation to adenylate kinases. Both forms modified covalently the aminoglycosides streptomycin and spectinomycin. The enzyme required at least 5 mM MgCl2 for normal Michaelis–Menten kinetics. Streptomycin exhibited a strong substrate inhibition effect at 1 mM MgCl2. The truncated 17 residues at the C-terminus have little influence on protein folding, whereas they have a positive effect on the enzymic activity and stabilize dimers at high protein concentrations (>100 μM). Homology modelling and docking based on known crystal structures yielded models of the central ternary complex of monomeric AadA6 with ATP and streptomycin or spectinomycin. AadA6 from P. aeruginosa confers antibiotic resistance to sensitive E. coli strain. AadA6 at concentrations >100 μM equilibrates between monomeric and dimeric forms. Deletion of 17 residues from the carboxy-terminus decreases enzymatic activity. At 1 mM MgCl2 there is a strong substrate inhibition effect by streptomycin. A model of the central ternary complex suggests a mode of action of AadA6.
Collapse
|
62
|
Hammad AM, Hassan HA, Shimamoto T. Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.10.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Soblosky L, Ramamoorthy A, Chen Z. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Chem Phys Lipids 2015; 187:20-33. [PMID: 25707312 DOI: 10.1016/j.chemphyslip.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties.
Collapse
Affiliation(s)
- Lauren Soblosky
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
64
|
Phong TQ, Ha DTT, Volker U, Hammer E. Using a Label Free Quantitative Proteomics Approach to Identify Changes in Protein Abundance in Multidrug-Resistant Mycobacterium tuberculosis. Indian J Microbiol 2015; 55:219-30. [PMID: 25805910 DOI: 10.1007/s12088-015-0511-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Reports in recent years indicate that the increasing emergence of resistance to drugs be using to TB treatment. The resistance to them severely affects to options for effective treatment. The emergence of multidrug-resistant tuberculosis has increased interest in understanding the mechanism of drug resistance in M. tuberculosis and the development of new therapeutics, diagnostics and vaccines. In this study, a label-free quantitative proteomics approach has been used to analyze proteome of multidrug-resistant and susceptible clinical isolates of M. tuberculosis and identify differences in protein abundance between the two groups. With this approach, we were able to identify a total of 1,583 proteins. The majority of identified proteins have predicted roles in lipid metabolism, intermediary metabolism, cell wall and cell processes. Comparative analysis revealed that 68 proteins identified by at least two peptides showed significant differences of at least twofolds in relative abundance between two groups. In all protein differences, the increase of some considering proteins such as NADH dehydrogenase, probable aldehyde dehydrogenase, cyclopropane mycolic acid synthase 3, probable arabinosyltransferase A, putative lipoprotein, uncharacterized oxidoreductase and six membrane proteins in resistant isolates might be involved in the drug resistance and to be potential diagnostic protein targets. The decrease in abundance of proteins related to secretion system and immunogenicity (ESAT-6-like proteins, ESX-1 secretion system associated proteins, O-antigen export system and MPT63) in the multidrug-resistant strains can be a defensive mechanism undertaken by the resistant cell.
Collapse
Affiliation(s)
- Truong Quoc Phong
- Center for Research and Development in Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Do Thi Thu Ha
- Center for Research and Development in Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Uwe Volker
- Interfaculty Institute for Genetic and Functional Genomic, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetic and Functional Genomic, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
65
|
Witek MA, Conn GL. Expansion of the aminoglycoside-resistance 16S rRNA (m(1)A1408) methyltransferase family: expression and functional characterization of four hypothetical enzymes of diverse bacterial origin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1648-55. [PMID: 24963996 DOI: 10.1016/j.bbapap.2014.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 02/02/2023]
Abstract
The global dissemination, potential activity in diverse species and broad resistance spectrum conferred by the aminoglycoside-resistance ribosomal RNA methyltransferases make them a significant potential new threat to the efficacy of aminoglycoside antibiotics in the treatment of serious bacterial infections. The N1 methylation of adenosine 1408 (m(1)A1408) confers resistance to structurally diverse aminoglycosides, including kanamycin, neomycin and apramycin. The limited analyses to date of the enzymes responsible have identified common features but also potential differences in their molecular details of action. Therefore, with the goal of expanding the known 16S rRNA (m(1)A1408) methyltransferase family as a platform for developing a more complete mechanistic understanding, we report here the cloning, expression and functional analyses of four hypothetical aminoglycoside-resistance rRNA methyltransferases from recent genome sequences of diverse bacterial species. Each of the genes produced a soluble, folded protein with a secondary structure, as determined from circular dichroism (CD) spectra, consistent with enzymes for which high-resolution structures are available. For each enzyme, antibiotic minimum inhibitory concentration (MIC) assays revealed a resistance spectrum characteristic of the known 16S rRNA (m(1)A1408) methyltransferases and the modified nucleotide was confirmed by reverse transcription as A1408. In common with other family members, higher binding affinity for the methylation reaction by-product S-adenosylhomocysteine (SAH) than the cosubstrate S-adenosyl-L-methionine (SAM) was observed for three methyltransferases, while one unexpectedly showed no measurable affinity for SAH. Collectively, these results confirm that each hypothetical enzyme is a functional 16S rRNA (m(1)A1408) methyltransferase but also point to further potential mechanistic variation within this enzyme family.
Collapse
Affiliation(s)
- Marta A Witek
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
66
|
Smith CA, Toth M, Bhattacharya M, Frase H, Vakulenko SB. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1561-71. [PMID: 24914967 PMCID: PMC4051501 DOI: 10.1107/s1399004714005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 01/04/2023]
Abstract
The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Monolekha Bhattacharya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
67
|
Singh K, Kumar M, Pavadai E, Naran K, Warner DF, Ruminski PG, Chibale K. Synthesis of new verapamil analogues and their evaluation in combination with rifampicin against Mycobacterium tuberculosis and molecular docking studies in the binding site of efflux protein Rv1258c. Bioorg Med Chem Lett 2014; 24:2985-90. [PMID: 24894561 DOI: 10.1016/j.bmcl.2014.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022]
Abstract
New verapamil analogues were synthesized and their inhibitory activities against Mycobacterium tuberculosis H37Rv determined in vitro alone and in combination with rifampicin (RIF). Some analogues showed comparable activity to verapamil and exhibited better synergies with RIF. Molecular docking studies of the binding sites of Rv1258c, a M. tuberculosis efflux protein previously implicated in intrinsic resistance to RIF, suggested a potential rationale for the superior synergistic interactions observed with some analogues.
Collapse
Affiliation(s)
- Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Elumalai Pavadai
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Krupa Naran
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Peter G Ruminski
- Centre for World Health and Medicine, Saint Louis University, USA
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
68
|
Su JQ, Wei B, Xu CY, Qiao M, Zhu YG. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. ENVIRONMENT INTERNATIONAL 2014; 65:9-15. [PMID: 24412260 DOI: 10.1016/j.envint.2013.12.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/13/2013] [Accepted: 12/13/2013] [Indexed: 05/12/2023]
Abstract
Soil has been regarded as a rich source of antibiotic resistance genes (ARGs) due to the complex microbial community and diverse antibiotic-producing microbes in soil, however, little is known about the ARGs in unculturable bacteria. To investigate the diversity and distribution of ARGs in soil and assess the impact of agricultural practice on the ARGs, we screened soil metagenomic library constructed using DNA from four different agricultural soil for ARGs. We identified 45 clones conferring resistance to minocycline, tetracycline, streptomycin, gentamicin, kanamycin, amikacin, chloramphenicol and rifampicin. The similarity of identified ARGs with the closest protein in GenBank ranged from 26% to 92%, with more than 60% of identified ARGs had low similarity less than 60% at amino acid level. The identified ARGs include aminoglycoside acetyltransferase, aminoglycoside 6-adenyltransferase, ADP-ribosyl transferase, ribosome protection protein, transporters and other antibiotic resistant determinants. The identified ARGs from the soil with manure application account for approximately 70% of the total ARGs in this study, implying that manure amendment may increase the diversity of antibiotic resistance genes in soil bacteria. These results suggest that antibiotic resistance in soil remains unexplored and functional metagenomic approach is powerful in discovering novel ARGs and resistant mechanisms.
Collapse
Affiliation(s)
- Jian Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bei Wei
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chun Yan Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
69
|
Nikolaus N, Strehlitz B. DNA-aptamers binding aminoglycoside antibiotics. SENSORS 2014; 14:3737-55. [PMID: 24566637 PMCID: PMC3958260 DOI: 10.3390/s140203737] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 02/05/2023]
Abstract
Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.
Collapse
Affiliation(s)
- Nadia Nikolaus
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| | - Beate Strehlitz
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany.
| |
Collapse
|
70
|
Smith AME, Brennan JD. Simultaneous inhibition assay for human and microbial kinases via MALDI-MS/MS. Chembiochem 2014; 15:587-94. [PMID: 24478228 DOI: 10.1002/cbic.201300739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Indexed: 11/05/2022]
Abstract
Selective inhibition of one kinase over another is a critical issue in drug development. For antimicrobial development, it is particularly important to selectively inhibit bacterial kinases, which can phosphorylate antimicrobial compounds such as aminoglycosides, without affecting human kinases. Previous work from our group showed the development of a MALDI-MS/MS assay for the detection of small molecule modulators of the bacterial aminoglycoside kinase APH3'IIIa. Herein, we demonstrate the development of an enhanced kinase MALDI-MS/MS assay involving simultaneous assaying of two kinase reactions, one for APH3'IIIa, and the other for human protein kinase A (PKA), which leads to an output that provides direct information on selectivity and mechanism of action. Specificity of the respective enzyme substrates were verified, and the assay was validated through generation of Z'-factors of 0.55 for APH3'IIIa with kanamycin and 0.60 for PKA with kemptide. The assay was used to simultaneously screen a kinase-directed library of mixtures of ten compounds each against both enzymes, leading to the identification of selective inhibitors for each enzyme as well as one non-selective inhibitor following mixture deconvolution.
Collapse
Affiliation(s)
- Anne Marie E Smith
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4L8 (Canada), Homepage: brennanlab.ca; biointerfaces.mcmaster.ca
| | | |
Collapse
|
71
|
Onishi M, Mizusawa M, Tsuchiya T, Kuroda T, Ogawa W. Suppression of stop codon UGA in acrB can contribute to antibiotic resistance in Klebsiella pneumoniae ATCC10031. Gene 2014. [DOI: 10.1016/j.gene.2013.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
72
|
Kavanagh E, Winn M, Gabhann CN, O'Connor NK, Beier P, Murphy CD. Microbial biotransformation of aryl sulfanylpentafluorides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:753-758. [PMID: 23872898 DOI: 10.1007/s11356-013-1985-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
We report, for the first time, the biotransformation of potential pollutants bearing the pentafluorosulfanyl (SF5-) functional group in a fungus and bacteria. Cunninghamella elegans transformed p-methoxy phenyl SF5 via demethylation; Pseudomonas knackmussii and P. pseudoalcaligenes KF707 transformed amino-, hydroxyamino- and diamino- substituted phenyl SF5, forming the N-acetylated derivatives as the main product. Cell-free extract of Streptomyces griseus transformed 4-amino-3-hydroxy-phenyl SF5 to the N-acetylated derivative in the presence of acetyl CoA, confirming that an N-acetyltransferase is responsible for the bacterial biotransformations. Approximately 25% of drugs and 30% of agrochemicals contain fluorine, and the trifluoromethyl group is a prominent feature of many of these since it improves lipophilicity and stability. The pentafluorosulfanyl substituent is seen as an improvement on the trifluoromethyl group and research efforts are underway to develop synthetic methods to incorporate this moiety into biologically active compounds. It is important to determine the potential environmental impact of these compounds, including the potential biotransformation reactions that may occur when they are exposed to microorganisms.
Collapse
Affiliation(s)
- Emma Kavanagh
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, Ardmore House, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
73
|
Norris AL, Nickels J, Sokolov AP, Serpersu EH. Protein dynamics are influenced by the order of ligand binding to an antibiotic resistance enzyme. Biochemistry 2013; 53:30-8. [PMID: 24320996 DOI: 10.1021/bi401635r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoglycoside N3 acetyltransferase-IIIb (AAC) is responsible for conferring bacterial resistance to a variety of aminoglycoside antibiotics. Nuclear magnetic resonance spectroscopy and dynamic light scattering analyses revealed a surprising result; the dynamics of the ternary complex between AAC and its two ligands, an antibiotic and coenzyme A, are dependent upon the order in which the ligands are bound. Additionally, two structurally similar aminoglycosides, neomycin and paromomycin, induce strikingly different dynamic properties when they are in their ternary complexes. To the best of our knowledge, this is the first example of a system in which two identically productive pathways of forming a simple ternary complex yield significant differences in dynamic properties. These observations emphasize the importance of the sequence of events in achieving optimal protein-ligand interactions and demonstrate that even a minor difference in molecular structure can have a profound effect on biochemical processes.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | | | |
Collapse
|
74
|
Ashenafi M, Ammosova T, Nekhai S, Byrnes WM. Purification and characterization of aminoglycoside phosphotransferase APH(6)-Id, a streptomycin-inactivating enzyme. Mol Cell Biochem 2013; 387:207-16. [PMID: 24248535 DOI: 10.1007/s11010-013-1886-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified, and characterized the enzyme. When expressed in Escherichia coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration needed to inhibit cell growth. Size-exclusion chromatography gave a molecular mass of 31.4 ± 1.3 kDa for the enzyme, showing that it functions as a monomer. Activity was assayed using three methods: (1) an HPLC-based method that measures the consumption of streptomycin over time; (2) a spectrophotometric method that utilizes a coupled assay; and (3) a radioenzymatic method that detects production of (32)P-labeled streptomycin phosphate. Altogether, the three methods demonstrated that streptomycin was consumed in the APH(6)-Id-catalyzed reaction, ATP was hydrolyzed, and streptomycin phosphate was produced in a substrate-dependent manner, demonstrating that APH(6)-Id is a streptomycin phosphotransferase. Steady-state kinetic analysis gave the following results: K(m)(streptomycin) of 0.38 ± 0.13 mM, K(m)(ATP) of 1.03 ± 0.1 mM, V(max) of 3.2 ± 1.1 μmol/min/mg, and k(cat) of 1.7 ± 0.6 s(-1). Our study demonstrates that APH(6)-Id is a bona fide streptomycin phosphotransferase, functions as a monomer, and confers resistance to streptomycin.
Collapse
Affiliation(s)
- Meseret Ashenafi
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC, 20059, USA
| | | | | | | |
Collapse
|
75
|
Malkhed V, Mustyala KK, Potlapally SR, Vuruputuri U. Identification of novel leads applyingin silicostudies for Mycobacterium multidrug resistant (MMR) protein. J Biomol Struct Dyn 2013; 32:1889-906. [DOI: 10.1080/07391102.2013.842185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
76
|
Arumugam G, Nair AG, Hariharaputran S, Ramanathan S. Rebelling for a reason: protein structural "outliers". PLoS One 2013; 8:e74416. [PMID: 24073209 PMCID: PMC3779223 DOI: 10.1371/journal.pone.0074416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/31/2013] [Indexed: 11/29/2022] Open
Abstract
Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or 'rebels', are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities.
Collapse
Affiliation(s)
- Gandhimathi Arumugam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| | - Anu G. Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| | - Sridhar Hariharaputran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| | - Sowdhamini Ramanathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyana Kendra Campus, Bangalore, India
| |
Collapse
|
77
|
Cicek AC, Duzgun AO, Saral A, Sandalli C. Determination of a novel integron-located variant (bla
OXA
-320
) of Class D β-lactamase in Proteus mirabilis. J Basic Microbiol 2013; 54:1030-5. [DOI: 10.1002/jobm.201300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Aysegul Copur Cicek
- Department of Medical Microbiology, Faculty of Medicine; Recep Tayyip Erdogan University; Rize Turkey
| | - Azer Ozad Duzgun
- Department of Biology, Faculty of Arts & Sciences; Giresun University; Giresun Turkey
| | - Aysegul Saral
- Department of Biology, Faculty of Arts & Sciences; Artvin Coruh University; Artvin Turkey
| | - Cemal Sandalli
- Department of Biology, Faculty of Arts & Sciences; Recep Tayyip Erdogan University; Rize Turkey
| |
Collapse
|
78
|
Smith AME, Awuah E, Capretta A, Brennan JD. A matrix-assisted laser desorption/ionization tandem mass spectrometry method for direct screening of small molecule mixtures against an aminoglycoside kinase. Anal Chim Acta 2013; 786:103-10. [DOI: 10.1016/j.aca.2013.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022]
|
79
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|
80
|
Ramirez MS, Nikolaidis N, Tolmasky ME. Rise and dissemination of aminoglycoside resistance: the aac(6')-Ib paradigm. Front Microbiol 2013; 4:121. [PMID: 23730301 PMCID: PMC3656343 DOI: 10.3389/fmicb.2013.00121] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 11/21/2022] Open
Abstract
Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-Ib (aminoglycoside 6′-N-acetyltransferase type Ib) is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The AAC(6′)-Ib enzyme is of interest not only because of his ubiquity but also because of other characteristics, it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic structures. Excluding the highly heterogeneous N-termini, there are 45 non-identical AAC(6′)-Ib related entries in the NCBI database, 32 of which have identical name in spite of not having identical amino acid sequence. While some variants conserved similar properties, others show dramatic differences in specificity, including the case of AAC(6′)-Ib-cr that mediates acetylation of ciprofloxacin representing a rare case where a resistance enzyme acquires the ability to utilize an antibiotic of a different class as substrate. Efforts to utilize antisense technologies to turn off expression of the gene or to identify enzymatic inhibitors to induce phenotypic conversion to susceptibility are under way.
Collapse
Affiliation(s)
- María S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton, CA, USA
| | | | | |
Collapse
|
81
|
Dutta P, Tanti GK, Sharma S, Goswami SK, Komath SS, Mayo MW, Hockensmith JW, Muthuswami R. Global epigenetic changes induced by SWI2/SNF2 inhibitors characterize neomycin-resistant mammalian cells. PLoS One 2012; 7:e49822. [PMID: 23209606 PMCID: PMC3509132 DOI: 10.1371/journal.pone.0049822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/17/2012] [Indexed: 11/24/2022] Open
Abstract
Background Previously, we showed that aminoglycoside phosphotransferases catalyze the formation of a specific inhibitor of the SWI2/SNF2 proteins. Aminoglycoside phosphotransferases, for example neomycin-resistant genes, are used extensively as selection markers in mammalian transfections as well as in transgenic studies. However, introduction of the neomycin-resistant gene is fraught with variability in gene expression. We hypothesized that the introduction of neomycin-resistant genes into mammalian cells results in inactivation of SWI2/SNF2 proteins thereby leading to global epigenetic changes. Methodology Using fluorescence spectroscopy we have shown that the inhibitor, known as Active DNA-dependent ATPase ADomain inhibitor (ADAADi), binds to the SWI2/SNF2 proteins in the absence as well as presence of ATP and DNA. This binding occurs via a specific region known as Motif Ia leading to a conformational change in the SWI2/SNF2 proteins that precludes ATP hydrolysis. ADAADi is produced from a plethora of aminoglycosides including G418 and Streptomycin, two commonly used antibiotics in mammalian cell cultures. Mammalian cells are sensitive to ADAADi; however, cells stably transfected with neomycin-resistant genes are refractory to ADAADi. In resistant cells, endogenous SWI2/SNF2 proteins are inactivated which results in altered histone modifications. Microarray data shows that the changes in the epigenome are reflected in altered gene expression. The microarray data was validated using real-time PCR. Finally, we show that the epigenetic changes are quantized. Significance The use of neomycin-resistant genes revolutionized mammalian transfections even though questions linger about efficacy. In this study, we have demonstrated that selection of neomycin-resistant cells results in survival of only those cells that have undergone epigenetic changes, and therefore, data obtained using these resistant genes as selection markers need to be cautiously evaluated.
Collapse
Affiliation(s)
- Popy Dutta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Goutam Kumar Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Soni Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Shyamal K. Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Marty W. Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joel W. Hockensmith
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (JWH); (RM)
| | - Rohini Muthuswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- * E-mail: (JWH); (RM)
| |
Collapse
|
82
|
Serpersu EH, Norris AL. Effect of protein dynamics and solvent in ligand recognition by promiscuous aminoglycoside-modifying enzymes. Adv Carbohydr Chem Biochem 2012; 67:221-48. [PMID: 22794185 DOI: 10.1016/b978-0-12-396527-1.00005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
83
|
Jing X, Wright E, Bible AN, Peterson CB, Alexandre G, Bruce BD, Serpersu EH. Thermodynamic characterization of a thermostable antibiotic resistance enzyme, the aminoglycoside nucleotidyltransferase (4'). Biochemistry 2012; 51:9147-55. [PMID: 23066871 DOI: 10.1021/bi301126g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoglycoside nucleotidyltransferase (4') (ANT) is an aminoglycoside-modifying enzyme that detoxifies antibiotics by nucleotidylating at the C4'-OH site. Previous crystallographic studies show that the enzyme is a homodimer and each subunit binds one kanamycin and one Mg-AMPCPP, where the transfer of the nucleotidyl group occurs between the substrates bound to different subunits. In this work, sedimentation velocity analysis of ANT by analytical ultracentrifugation showed the enzyme exists as a mixture of a monomer and a dimer in solution and that dimer formation is driven by hydrophobic interactions between the subunits. The binding of aminoglycosides shifts the equilibrium toward dimer formation, while the binding of the cosubstrate, Mg-ATP, has no effect on the monomer-dimer equilibrium. Surprisingly, binding of several divalent cations, including Mg(2+), Mn(2+), and Ca(2+), to the enzyme also shifted the equilibrium in favor of dimer formation. Binding studies, performed by electron paramagnetic resonance spectroscopy, showed that divalent cations bind to the aminoglycoside binding site in the absence of substrates with a stoichiometry of 2:1. Energetic aspects of binding of all aminoglycosides to ANT were determined by isothermal titration calorimetry to be enthalpically favored and entropically disfavored with an overall favorable Gibbs energy. Aminoglycosides in the neomycin class each bind to the enzyme with significantly different enthalpic and entropic contributions, while those of the kanamycin class bind with similar thermodynamic parameters.
Collapse
Affiliation(s)
- Xiaomin Jing
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | |
Collapse
|
84
|
Caldwell SJ, Berghuis AM. Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6') acetyltransferase-ie/aminoglycoside (2'') phosphotransferase-ia reveals a rigid solution structure. Antimicrob Agents Chemother 2012; 56:1899-906. [PMID: 22290965 PMCID: PMC3318351 DOI: 10.1128/aac.06378-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/20/2012] [Indexed: 11/20/2022] Open
Abstract
Aminoglycoside (6') acetyltransferase-Ie/aminoglycoside (2″) phosphotransferase-Ia [AAC(6')-Ie/APH(2″)-Ia] is one of the most problematic aminoglycoside resistance factors in clinical pathogens, conferring resistance to almost every aminoglycoside antibiotic available to modern medicine. Despite 3 decades of research, our understanding of the structure of this bifunctional enzyme remains limited. We used small-angle X-ray scattering (SAXS) to model the structure of this bifunctional enzyme in solution and to study the impact of substrate binding on the enzyme. It was observed that the enzyme adopts a rigid conformation in solution, where the N-terminal AAC domain is fixed to the C-terminal APH domain and not loosely tethered. The addition of acetyl-coenzyme A, coenzyme A, GDP, guanosine 5'-[β,γ-imido]triphosphate (GMPPNP), and combinations thereof to the protein resulted in only modest changes to the radius of gyration (R(G)) of the enzyme, which were not consistent with any large changes in enzyme structure upon binding. These results imply some selective advantage to the bifunctional enzyme beyond coexpression as a single polypeptide, likely linked to an improvement in enzymatic properties. We propose that the rigid structure contributes to improved electrostatic steering of aminoglycoside substrates toward the two active sites, which may provide such an advantage.
Collapse
Affiliation(s)
| | - Albert M. Berghuis
- Department of Biochemistry
- Department of Microbiology and Immunology, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
85
|
Vong K, Auclair K. Understanding and overcoming aminoglycoside resistance caused by N-6'-acetyltransferase. MEDCHEMCOMM 2012; 3:397-407. [PMID: 28018574 PMCID: PMC5179255 DOI: 10.1039/c2md00253a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides occupy a special niche amongst antibiotics in part because of their broad spectrum of action. Bacterial resistance is however menacing to render these drugs obsolete. A significant amount of work has been devoted to understand and overcome aminoglycoside resistance. This mini-review will discuss aminoglycoside-modifying enzymes (AMEs), with a special emphasis on the efforts to comprehend and block resistance caused by aminoglycoside 6'-N-acetyltransferase (AAC(6')).
Collapse
Affiliation(s)
- Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
86
|
Vong K, Tam IS, Yan X, Auclair K. Inhibitors of aminoglycoside resistance activated in cells. ACS Chem Biol 2012; 7:470-5. [PMID: 22217014 DOI: 10.1021/cb200366u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most common mechanism of resistance to aminoglycoside antibiotics entails bacterial expression of drug-metabolizing enzymes, such as the clinically widespread aminoglycoside N-6'-acetyltransferase (AAC(6')). Aminoglycoside-CoA bisubstrates are highly potent AAC(6') inhibitors; however, their inability to penetrate cells precludes in vivo studies. Some truncated bisubstrates are known to cross cell membranes, yet their activities against AAC(6') are in the micromolar range at best. We report here the synthesis and biological activity of aminoglycoside-pantetheine derivatives that, although devoid of AAC(6') inhibitory activity, can potentiate the antibacterial activity of kanamycin A against an aminoglycoside-resistant strain of Enterococcus faecium. Biological studies demonstrate that these molecules are potentially extended to their corresponding full-length bisubstrates by enzymes of the coenzyme A biosynthetic pathway. This work provides a proof-of-concept for the utility of prodrug compounds activated by enzymes of the coenzyme A biosynthetic pathway, to resensitize resistant strains of bacteria to aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal,
Québec, Canada
H3A 2K6
| | - Ingrid S. Tam
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal,
Québec, Canada
H3A 2K6
| | - Xuxu Yan
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal,
Québec, Canada
H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal,
Québec, Canada
H3A 2K6
| |
Collapse
|
87
|
Smith CA, Toth M, Frase H, Byrnes LJ, Vakulenko SB. Aminoglycoside 2''-phosphotransferase IIIa (APH(2'')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2'' kinases. J Biol Chem 2012; 287:12893-903. [PMID: 22367198 DOI: 10.1074/jbc.m112.341206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2''-phosphotransferase IIIa (APH(2'')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2'')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.
Collapse
Affiliation(s)
- Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, USA.
| | | | | | | | | |
Collapse
|
88
|
Li PY, Xie BB, Zhang XY, Qin QL, Dang HY, Wang XM, Chen XL, Yu J, Zhang YZ. Genetic structure of three fosmid-fragments encoding 16S rRNA genes of the Miscellaneous Crenarchaeotic Group (MCG): implications for physiology and evolution of marine sedimentary archaea. Environ Microbiol 2011; 14:467-79. [DOI: 10.1111/j.1462-2920.2011.02637.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini GM, Soussy CJ, Steinbakk M, Winstanley TG, Kahlmeter G. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 2011; 19:141-60. [PMID: 22117544 DOI: 10.1111/j.1469-0691.2011.03703.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
EUCAST expert rules have been developed to assist clinical microbiologists and describe actions to be taken in response to specific antimicrobial susceptibility test results. They include recommendations on reporting, such as inferring susceptibility to other agents from results with one, suppression of results that may be inappropriate, and editing of results from susceptible to intermediate or resistant or from intermediate to resistant on the basis of an inferred resistance mechanism. They are based on current clinical and/or microbiological evidence. EUCAST expert rules also include intrinsic resistance phenotypes and exceptional resistance phenotypes, which have not yet been reported or are very rare. The applicability of EUCAST expert rules depends on the MIC breakpoints used to define the rules. Setting appropriate clinical breakpoints, based on treating patients and not on the detection of resistance mechanisms, may lead to modification of some expert rules in the future.
Collapse
Affiliation(s)
- R Leclercq
- Laboratoire de Microbiologie, CHU Côte de Nacre, Caen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Xiao Y, Hu Y. The major aminoglycoside-modifying enzyme AAC(3)-II found in Escherichia coli determines a significant disparity in its resistance to gentamicin and amikacin in China. Microb Drug Resist 2011; 18:42-6. [PMID: 22066787 DOI: 10.1089/mdr.2010.0190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the prevalence of aminoglycoside-modifying enzymes in Escherichia coli in different areas of China and to explore the relationship between pandemic enzyme type and bacterial resistance to antimicrobial agents in China. Gentamicin- or etimicin-resistant clinical isolates of E. coli were collected from different areas of China, and the in vitro antibacterial activity of 11 aminoglycoside agents was determined using standard (Clinical and Laboratory Standards Institute) agar dilution methods. Twelve aminoglycoside-modifying enzyme genes were detected by PCR and confirmed by DNA sequencing. A total of 205 E. coli strains were collected from nine hospitals in seven cities. All strains were highly resistant to gentamicin or etimicin, whereas resistance to tobramycin, netilmicin, and kanamycin was slightly lower. However, less than 15% of isolates were resistant to amikacin and isepamicin. Of the gentamicin-resistant strains, 88.2% and 86.7% were sensitive to isepamicin and amikacin, respectively. Five aminoglycoside-modifying enzyme genes were detected in 191 strains, whereas the remaining 14 strains were negative. The most common gene type was aac(3)-II (162 strains), followed by aac(6')-I (50 strains), ant(3″)-I (28 strains), aph(3')-II (20 strains), and ant(2″)-I (20 strains). Ninety-five strains yielded aac(3)-II only, whereas the others contained two or three genes. The three main gene combinations were aac(6')-I/aac(3)-II (28 strains), aac(3)-II/ant(3″)-I (11 strains), and aac(3)-II/aac(6')-I (10 strains). Regional bacterial resistance and enzyme distribution were roughly similar, although minor differences were found in Guangzhou, Jinan, and Dalian, which were the sources of most of the amikacin- or isepamicin-resistant strains. Chinese clinical isolates of E. coli remain highly resistant to gentamicin and etimicin, but are susceptible to amikacin and isepamicin. The dominant type of aminoglycoside-modifying enzyme, AAC(3)-II, might be the main source of the disparity in E. coli resistance to different aminoglycoside agents.
Collapse
Affiliation(s)
- Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
91
|
van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol 2011; 2:203. [PMID: 22046172 PMCID: PMC3202223 DOI: 10.3389/fmicb.2011.00203] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/08/2011] [Indexed: 01/18/2023] Open
Abstract
In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria.
Collapse
Affiliation(s)
- Angela H. A. M. van Hoek
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute of Public Health and the EnvironmentUtrecht, Netherlands
| | - Dik Mevius
- Central Veterinary Institute of Wageningen URLelystad, Netherlands
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Beatriz Guerra
- National Salmonella Reference Laboratory, Federal Institute for Risk AssessmentBerlin, Germany
| | - Peter Mullany
- Department of Microbial Diseases, University College London Eastman Dental Institute, University College LondonLondon, UK
| | - Adam Paul Roberts
- Department of Microbial Diseases, University College London Eastman Dental Institute, University College LondonLondon, UK
| | - Henk J. M. Aarts
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute of Public Health and the EnvironmentUtrecht, Netherlands
| |
Collapse
|
92
|
Kim S, Nguyen CMT, Kim EJ, Kim KJ. Crystal structure of Mycobacterium tuberculosis Rv3168: a putative aminoglycoside antibiotics resistance enzyme. Proteins 2011; 79:2983-7. [PMID: 21905120 DOI: 10.1002/prot.23119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/16/2011] [Accepted: 05/04/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Sangwoo Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | | | | | | |
Collapse
|
93
|
Kim S, Nguyen CMT, Yeo SJ, Ahn JW, Kim EJ, Kim KJ. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of Rv3168 from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:627-9. [PMID: 21543877 DOI: 10.1107/s1744309111010487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Tuberculosis is a widespread and deadly infectious disease, with one third of the human population already being infected. Aminoglycoside antibiotics have become less effective in recent years owing to antibiotic resistance, which arises primarily through enzymatic modification of the antibiotics. The gene product Rv3168, a putative aminoglycoside phosphotransferase (APH), from Mycobacterium tuberculosis was crystallized using the sitting-drop vapour-diffusion method in the presence of 0.2 M calcium acetate, 0.1 M Tris-HCl pH 7.0 and 20% PEG 3000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 1.67 Å on a synchrotron beamline. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 56.74, b = 62.37, c = 103.61 Å. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V(M)) is 2.91 Å(3) Da(-1). The structure was solved by the single-wavelength anomalous dispersion method and refinement of the selenomethionine structure is in progress.
Collapse
Affiliation(s)
- Sangwoo Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
94
|
Routh MD, Zalucki Y, Su CC, Zhang Q, Shafer WM, Yu EW. Efflux pumps of the resistance-nodulation-division family: a perspective of their structure, function, and regulation in gram-negative bacteria. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:109-46. [PMID: 21692368 DOI: 10.1002/9780470920541.ch3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Mathew D Routh
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | |
Collapse
|
95
|
Toth M, Frase H, Antunes NT, Smith CA, Vakulenko SB. Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2''-IVa. Protein Sci 2010; 19:1565-76. [PMID: 20556826 DOI: 10.1002/pro.437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acquired resistance to aminoglycoside antibiotics primarily results from deactivation by three families of aminoglycoside-modifying enzymes. Here, we report the kinetic mechanism and structure of the aminoglycoside phosphotransferase 2''-IVa (APH(2'')-IVa), an enzyme responsible for resistance to aminoglycoside antibiotics in clinical enterococcal and staphylococcal isolates. The enzyme operates via a Bi-Bi sequential mechanism in which the two substrates (ATP or GTP and an aminoglycoside) bind in a random manner. The APH(2'')-IVa enzyme phosphorylates various 4,6-disubstituted aminoglycoside antibiotics with catalytic efficiencies (k(cat)/K(m)) of 1.5 x 10(3) to 1.2 x 10(6) (M(-1) s(-1)). The enzyme uses both ATP and GTP as the phosphate source, an extremely rare occurrence in the phosphotransferase and protein kinase enzymes. Based on an analysis of the APH(2'')-IVa structure, two overlapping binding templates specifically tuned for hydrogen bonding to either ATP or GTP have been identified and described. A detailed understanding of the structure and mechanism of the GTP-utilizing phosphotransferases is crucial for the development of either novel aminoglycosides or, more importantly, GTP-based enzyme inhibitors which would not be expected to interfere with crucial ATP-dependent enzymes.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
96
|
Armstrong ES, Miller GH. Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol 2010; 13:565-73. [PMID: 20932796 DOI: 10.1016/j.mib.2010.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
97
|
Nepal KK, Yoo JC, Sohng JK. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus. Microbiol Res 2010; 165:557-64. [PMID: 20015628 DOI: 10.1016/j.micres.2009.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/12/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer.
Collapse
Affiliation(s)
- Keshav Kumar Nepal
- Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, SunMoon University, #100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam 336-708, Republic of Korea
| | | | | |
Collapse
|
98
|
Abstract
ACHN-490 is a neoglycoside, or "next-generation" aminoglycoside (AG), that has been identified as a potentially useful agent to combat drug-resistant bacteria emerging in hospitals and health care facilities around the world. A focused medicinal chemistry campaign produced a collection of over 400 sisomicin analogs from which ACHN-490 was selected. We tested ACHN-490 against two panels of Gram-negative and Gram-positive pathogens, many of which harbored AG resistance mechanisms. Unlike legacy AGs, ACHN-490 was active against strains expressing known AG-modifying enzymes, including the three most common such enzymes found in Enterobacteriaceae. ACHN-490 inhibited the growth of AG-resistant Enterobacteriaceae (MIC(90), ≤4 μg/ml), with the exception of Proteus mirabilis and indole-positive Proteae (MIC(90), 8 μg/ml and 16 μg/ml, respectively). ACHN-490 was more active alone in vitro against Pseudomonas aeruginosa and Acinetobacter baumannii isolates with AG-modifying enzymes than against those with altered permeability/efflux. The MIC(90) of ACHN-490 against AG-resistant staphylococci was 2 μg/ml. Due to its promising in vitro and in vivo profiles, ACHN-490 has been advanced into clinical development as a new antibacterial agent.
Collapse
|
99
|
Biosynthesis of Ribostamycin Derivatives by Reconstitution and Heterologous Expression of Required Gene Sets. Appl Biochem Biotechnol 2010; 163:373-82. [DOI: 10.1007/s12010-010-9045-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
100
|
|