51
|
Cohen JV, Tawbi H, Margolin KA, Amravadi R, Bosenberg M, Brastianos PK, Chiang VL, de Groot J, Glitza IC, Herlyn M, Holmen SL, Jilaveanu LB, Lassman A, Moschos S, Postow MA, Thomas R, Tsiouris JA, Wen P, White RM, Turnham T, Davies MA, Kluger HM. Melanoma central nervous system metastases: current approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2016; 29:627-642. [PMID: 27615400 DOI: 10.1111/pcmr.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area.
Collapse
Affiliation(s)
- Justine V Cohen
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Hussain Tawbi
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim A Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope Cancer Center, Duarte, CA, USA
| | - Ravi Amravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - John de Groot
- Division of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Isabella C Glitza
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meenhard Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Andrew Lassman
- Department of Neurology & Herbert Irving Comprehensive, Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Stergios Moschos
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Postow
- Department of Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Reena Thomas
- Division of Neuro-Oncology, Department of Neurology, Stanford University, Stanford, CA, USA
| | - John A Tsiouris
- Department of Radiology, New York-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Patrick Wen
- Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard M White
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | | | - Michael A Davies
- Department of Melanoma, Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
52
|
Veliparib in combination with whole-brain radiation therapy for patients with brain metastases from non-small cell lung cancer: results of a randomized, global, placebo-controlled study. J Neurooncol 2016; 131:105-115. [PMID: 27655223 PMCID: PMC5258788 DOI: 10.1007/s11060-016-2275-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 10/26/2022]
Abstract
Veliparib is a potent, orally bioavailable, poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor that crosses the blood-brain barrier and has been shown to potentiate the effects of radiation in preclinical and early clinical studies. This phase 2, randomized, global study evaluated the efficacy and safety of veliparib in combination with whole-brain radiation therapy (WBRT) in patients with brain metastases from non-small cell lung cancer (NSCLC). Three-hundred and seven patients with brain metastases from NSCLC were randomized 1:1:1 to WBRT (30 Gy in 10 fractions) plus 50 mg veliparib twice daily (BID; n = 103), 200 mg veliparib BID (n = 102), or placebo BID (n = 102). Treatment began within 28 days of diagnosis. Tumor response and safety were assessed; the primary endpoint was overall survival (OS). Patients who received ≥1 dose of treatment were included in the safety analysis. All randomized patients were included in the efficacy endpoint analyses. Patient characteristics were well balanced between treatment arms. Median OS was 185 days for patients treated with WBRT plus placebo and 209 days for WBRT plus veliparib (50 or 200 mg). No statistically significant differences in OS, intracranial response rate, and time to clinical or radiographic progression between any of the treatment arms were noted. No differences were observed in adverse events (all grades) across treatment arms; nausea, fatigue, alopecia, and headache were the most commonly reported. No new safety signals were identified for veliparib. A significant unmet need for therapies that improve the outcomes of patients with brain metastases from NSCLC remains.
Collapse
|
53
|
Huang RY, Wen PY. Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magn Reson Imaging Clin N Am 2016; 24:705-718. [PMID: 27742111 DOI: 10.1016/j.mric.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Response Assessment in Neuro-Oncology (RANO) Working Group is an international multidisciplinary group whose goal is to improve response criteria and define endpoints for neuro-oncology trials. The RANO criteria for high-grade gliomas attempt to address the issues of pseudoprogression, pseudoresponse, and nonenhancing tumor progression. Incorporation of advanced MR imaging may eventually help improve the ability of these criteria to define enhancing and nonenhancing disease better. The RANO group has also developed criteria for neurologic response and evaluation of patients receiving immunologic therapies. RANO criteria have been developed for brain metastases and are in progress for meningiomas, leptomeningeal disease, spinal tumors, and pediatric tumors.
Collapse
Affiliation(s)
- Raymond Y Huang
- Division of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Patrick Y Wen
- Division of Neuro-Oncology, Department of Neurology, Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
54
|
Arvold ND, Lee EQ, Mehta MP, Margolin K, Alexander BM, Lin NU, Anders CK, Soffietti R, Camidge DR, Vogelbaum MA, Dunn IF, Wen PY. Updates in the management of brain metastases. Neuro Oncol 2016; 18:1043-65. [PMID: 27382120 PMCID: PMC4933491 DOI: 10.1093/neuonc/now127] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
The clinical management/understanding of brain metastases (BM) has changed substantially in the last 5 years, with key advances and clinical trials highlighted in this review. Several of these changes stem from improvements in systemic therapy, which have led to better systemic control and longer overall patient survival, associated with increased time at risk for developing BM. Development of systemic therapies capable of preventing BM and controlling both intracranial and extracranial disease once BM are diagnosed is paramount. The increase in use of stereotactic radiosurgery alone for many patients with multiple BM is an outgrowth of the desire to employ treatments focused on local control while minimizing cognitive effects associated with whole brain radiotherapy. Complications from BM and their treatment must be considered in comprehensive patient management, especially with greater awareness that the majority of patients do not die from their BM. Being aware of significant heterogeneity in prognosis and therapeutic options for patients with BM is crucial for appropriate management, with greater attention to developing individual patient treatment plans based on predicted outcomes; in this context, recent prognostic models of survival have been extensively revised to incorporate molecular markers unique to different primary cancers.
Collapse
Affiliation(s)
| | | | | | - Kim Margolin
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Brian M. Alexander
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Nancy U. Lin
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Carey K. Anders
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Riccardo Soffietti
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - D. Ross Camidge
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Michael A. Vogelbaum
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Ian F. Dunn
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| | - Patrick Y. Wen
- St. Luke's Radiation Oncology Associates, St. Luke's Cancer Center, Whiteside Institute for Clinical Research and University of Minnesota Duluth, Duluth, Minnesota (N.D.A.); Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (E.Q.L., P.Y.W.); Harvard Medical School, Boston, Massachusetts (E.Q.L., B.M.A., N.U.L., I.F.D., P.Y.W.); Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (M.P.M.); Department of Medical Oncology, City of Hope, Duarte, California (K.M.); Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, Massachusetts (B.M.A.); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (N.U.L.); Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, North Carolina (C.K.A.); Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Division of Medical Oncology, University of Colorado Denver, Denver, Colorado (D.R.C.); Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurosurgery, Brigham & Women's Hospital, Boston, Massachusetts (I.F.D.)
| |
Collapse
|
55
|
Larkins E, Blumenthal GM, Chen H, He K, Agarwal R, Gieser G, Stephens O, Zahalka E, Ringgold K, Helms W, Shord S, Yu J, Zhao H, Davis G, McKee AE, Keegan P, Pazdur R. FDA Approval: Alectinib for the Treatment of Metastatic, ALK-Positive Non-Small Cell Lung Cancer Following Crizotinib. Clin Cancer Res 2016; 22:5171-5176. [PMID: 27413075 DOI: 10.1158/1078-0432.ccr-16-1293] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022]
Abstract
On December 11, 2015, the FDA granted accelerated approval to alectinib (Alecensa; Genentech) for the treatment of patients with anaplastic lymphoma receptor tyrosine kinase (ALK)-positive, metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib. This approval was based on two single-arm trials including 225 patients treated with alectinib 600 mg orally twice daily. The objective response rates (ORR) by an independent review committee in these studies were 38% [95% confidence interval (CI), 28-49] and 44% (95% CI, 36-53); the median durations of response (DOR) were 7.5 months and 11.2 months. In a pooled analysis of 51 patients with measurable disease in the central nervous system (CNS) at baseline, the CNS ORR was 61% (95% CI, 46-74); the CNS DOR was 9.1 months. The primary safety analysis population included 253 patients. The most common adverse reactions were fatigue (41%), constipation (34%), edema (30%), and myalgia (29%). The most common laboratory abnormalities were anemia (56%), increased aspartate aminotransferase (51%), increased alkaline phosphatase (47%), increased creatine phosphokinase (43%), hyperbilirubinemia (39%), hyperglycemia (36%), increased alanine aminotransferase (34%), and hypocalcemia (32%). Dose reductions due to adverse reactions occurred in 12% of patients, whereas 27% of patients had alectinib dosing interrupted for adverse reactions. Permanent discontinuation of alectinib due to adverse reactions occurred in only 6% of patients. With the clinically meaningful ORR and DOR as well as the safety profile observed in these trials, alectinib was determined to have a favorable benefit-risk profile for the treatment of the indicated population. Clin Cancer Res; 22(21); 5171-6. ©2016 AACR.
Collapse
Affiliation(s)
- Erin Larkins
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland.
| | - Gideon M Blumenthal
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Huanyu Chen
- Office of Biostatistics, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Kun He
- Office of Biostatistics, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Rajiv Agarwal
- Office of Pharmaceutical Quality, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Gerlie Gieser
- Office of Pharmaceutical Quality, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Olen Stephens
- Office of Pharmaceutical Quality, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Eias Zahalka
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Kimberly Ringgold
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Whitney Helms
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Stacy Shord
- Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Jingyu Yu
- Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Hong Zhao
- Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Gina Davis
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Amy E McKee
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Patricia Keegan
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Richard Pazdur
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
56
|
|
57
|
|
58
|
Ou SHI, Weitz M, Jalas JR, Kelly DF, Wong V, Azada MC, Quines O, Klempner SJ. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation. Lung Cancer 2016; 96:15-8. [DOI: 10.1016/j.lungcan.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
|
59
|
Abstract
Abnormal tumor vasculature is a potent mediator of treatment resistance because it results in heterogeneous perfusion, hypoxia, increased interstitial fluid pressure, and incomplete penetration of cytotoxic chemotherapies. Targeting this abnormal tumor vasculature is a promising therapeutic strategy, but results with antiangiogenic drugs in brain cancer have been mixed. Vasculature's response to treatment is a dynamic physiological process that can change rapidly throughout treatment, so it requires noninvasive techniques to serially monitor these changes in order to improve outcome. We review the role of vascular magnetic resonance imaging to measure tumor response to treatment and highlight opportunities and future avenues for expanding these promising techniques.
Collapse
|
60
|
The impact of brain metastasis on quality of life, resource utilization and survival in patients with non-small-cell lung cancer. Cancer Treat Rev 2016; 45:139-62. [DOI: 10.1016/j.ctrv.2016.03.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/17/2023]
|
61
|
Berghoff AS, Schur S, Füreder LM, Gatterbauer B, Dieckmann K, Widhalm G, Hainfellner J, Zielinski CC, Birner P, Bartsch R, Preusser M. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open 2016; 1:e000024. [PMID: 27843591 PMCID: PMC5070252 DOI: 10.1136/esmoopen-2015-000024] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 12/25/2022] Open
Abstract
Aim We provide a descriptive statistical analysis of baseline characteristics and the clinical course of a large real-life cohort of brain metastases (BM) patients. Methods We performed a retrospective chart review for patients treated for BM of solid cancers at the Medical University of Vienna between 1990 and 2011. Results We identified a total of 2419 BM patients (50.5% male, 49.5% female, median age 59 years). The primary tumour was lung cancer in 43.2%, breast cancer in 15.7%, melanoma in 16.4%, renal cell carcinoma in 9.1%, colorectal cancer in 9.3% and unknown in 1.4% of cases. Rare tumour types associated with BM included genitourinary cancers (4.1%), sarcomas (0.7%). gastro-oesophageal cancer (0.6%) and head and neck cancers (0.2%). 48.7% of patients presented with a singular BM, 27.7% with 2–3 and 23.5% with >3 BM. Time from primary tumour to BM diagnosis was shortest in lung cancer (median 11 months; range 1–162) and longest in breast cancer (median 44 months; 1–443; p<0.001). Multiple BM were most frequent in breast cancer (30.6%) and least frequent in colorectal cancer (8.5%; p<0.001). Patients with breast cancer had the longest median overall survival times (8 months), followed by patients with lung cancer (7 months), renal cell carcinoma (7 months), melanoma (5 months) and colorectal cancer (4 months; p<0.001; log rank test). Recursive partitioning analysis and graded prognostic assessment scores showed significant correlation with overall survival (both p<0.001, log rank test). Evaluation of the disease status in the past 2 months prior to patient death showed intracranial progression in 35.9%, extracranial progression in 27.5% and combined extracranial and intracranial progression in 36.6% of patients. Conclusions Our data highlight the heterogeneity in presentation and clinical course of BM patients in the everyday clinical setting and may be useful for rational planning of clinical studies.
Collapse
Affiliation(s)
- Anna S Berghoff
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sophie Schur
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa M Füreder
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Brigitte Gatterbauer
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Hainfellner
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christoph C Zielinski
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Peter Birner
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
62
|
Wefel JS, Noll KR, Scheurer ME. Neurocognitive functioning and genetic variation in patients with primary brain tumours. Lancet Oncol 2016; 17:e97-e108. [PMID: 26972863 PMCID: PMC5215729 DOI: 10.1016/s1470-2045(15)00380-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023]
Abstract
Impairment of neurocognitive functioning is a common result of cerebral neoplasms and treatment, although there is substantial heterogeneity in the pattern and severity of neurocognitive dysfunction across individuals and tumour types. The effects of many clinical and patient characteristics on neurocognitive functioning have been documented, but little research has been devoted to understanding the effect of genetic variation on neurocognitive outcomes in patients with brain tumours. This Review highlights preliminary evidence that suggests an association between various genes and risk of adverse neurocognitive outcomes in patients with brain tumours. Studies include genes specific to neuronal function, and those associated with more systemic cellular regulation. Related scientific literature in other disease populations is briefly discussed to indicate additional candidate genes. We consider methodological issues central to the study of neurocognitive functioning and genetic associations for patients with brain tumours, and emphasise the need for future research integrating novel investigative techniques.
Collapse
Affiliation(s)
- Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
63
|
Salama AKS, Postow MA, Salama JK. Irradiation and immunotherapy: From concept to the clinic. Cancer 2016; 122:1659-71. [DOI: 10.1002/cncr.29889] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Affiliation(s)
- April K. S. Salama
- Division of Medical Oncology, Department of Medicine; Duke University; Durham North Carolina
| | - Michael A. Postow
- Memorial Sloan Kettering Cancer Center; New York New York
- Weill Cornell Medical College; New York New York
| | - Joseph K. Salama
- Department of Radiation Oncology; Duke University; Durham North Carolina
| |
Collapse
|
64
|
Moraes FY, Taunk NK, Marta GN, Suh JH, Yamada Y. The Rationale for Targeted Therapies and Stereotactic Radiosurgery in the Treatment of Brain Metastases. Oncologist 2016; 21:244-51. [PMID: 26764249 DOI: 10.1634/theoncologist.2015-0293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Brain metastases are the most common intracranial malignancy. Many approaches, including radiation therapy, surgery, and cytotoxic chemotherapy, have been used to treat patients with brain metastases depending on the patient's disease burden and symptoms. However, stereotactic surgery (SRS) has revolutionized local treatment of brain metastases. Likewise, targeted therapies, including small-molecule inhibitors and monoclonal antibodies that target cancer cell metabolism or angiogenesis, have transformed managing systemic disease. Prospective data on combining these treatments for synergistic effect are limited, but early data show favorable safety and efficacy profiles. The combination of SRS and targeted therapy will further individualize treatment, potentially obviating the need for cytotoxic chemotherapy or whole-brain radiation. There is a great need to pursue research into these exciting modalities and novel combinations to further improve the treatment of patients with brain metastases. This article discusses reported and ongoing clinical trials assessing the safety and efficacy of targeted therapy during SRS. IMPLICATIONS FOR PRACTICE Treatment of patients with brain metastases requires a multidisciplinary approach. Stereotactic radiosurgery is increasingly used in the upfront setting to treat new brain metastasis. Targeted therapies have revolutionized systemic treatment of many malignancies and may sometimes be used as initial treatment in metastatic patients. There is sparse literature regarding safety and efficacy of combining these two treatment modalities. This article summarizes the supporting literature and highlights ongoing clinical trials in combining radiosurgery with targeted therapy.
Collapse
Affiliation(s)
- Fabio Ynoe Moraes
- Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Neil K Taunk
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gustavo Nader Marta
- Department of Radiation Oncology, Hospital Sírio-Libanês, São Paulo, Brazil Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
65
|
Martínez-Aranda A, Hernández V, Guney E, Muixí L, Foj R, Baixeras N, Cuadras D, Moreno V, Urruticoechea A, Gil M, Oliva B, Moreno F, González-Suarez E, Vidal N, Andreu X, Seguí MA, Ballester R, Castella E, Sierra A. FN14 and GRP94 expression are prognostic/predictive biomarkers of brain metastasis outcome that open up new therapeutic strategies. Oncotarget 2015; 6:44254-73. [PMID: 26497551 PMCID: PMC4792555 DOI: 10.18632/oncotarget.5471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/09/2015] [Indexed: 11/25/2022] Open
Abstract
Brain metastasis is a devastating problem in patients with breast, lung and melanoma tumors. GRP94 and FN14 are predictive biomarkers over-expressed in primary breast carcinomas that metastasized in brain. To further validate these brain metastasis biomarkers, we performed a multicenter study including 318 patients with breast carcinomas. Among these patients, there were 138 patients with metastasis, of whom 84 had brain metastasis. The likelihood of developing brain metastasis increased by 5.24-fold (95%CI 2.83-9.71) and 2.55- (95%CI 1.52-4.3) in the presence of FN14 and GRP94, respectively. Moreover, FN14 was more sensitive than ErbB2 (38.27 vs. 24.68) with similar specificity (89.43 vs. 89.55) to predict brain metastasis and had identical prognostic value than triple negative patients (p < 0.0001). Furthermore, we used GRP94 and FN14 pathways and GUILD, a network-based disease-gene prioritization program, to pinpoint the genes likely to be therapeutic targets, which resulted in FN14 as the main modulator and thalidomide as the best scored drug. The treatment of mice with brain metastasis improves survival decreasing reactive astrocytes and angiogenesis, and down-regulate FN14 and its ligand TWEAK. In conclusion our results indicate that FN14 and GRP94 are prediction/prognosis markers which open up new possibilities for preventing/treating brain metastasis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Area Under Curve
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/secondary
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/secondary
- Cell Line, Tumor
- Cytokine TWEAK
- Female
- Humans
- Immunohistochemistry
- Likelihood Functions
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Nude
- Middle Aged
- Precision Medicine
- Predictive Value of Tests
- Prognosis
- ROC Curve
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Risk Assessment
- Risk Factors
- Spain
- TWEAK Receptor
- Thalidomide/therapeutic use
- Tissue Array Analysis
- Tumor Microenvironment
- Tumor Necrosis Factors/metabolism
- Xenograft Model Antitumor Assays
- Young Adult
Collapse
Affiliation(s)
- Antonio Martínez-Aranda
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Biochemistry and Molecular Biology Department, Faculty of Biosciences, Campus Bellaterra, Edifici C, Cerdanyola del Vallés, 08193 Barcelona, Spain
| | - Vanessa Hernández
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Emre Guney
- Structural Bioinformatics Laboratory, Experimental Sciences Department, Universitat Pompeu Fabra-IMIM, Barcelona Research Park of Biomedicine, 08003 Barcelona, Spain
| | - Laia Muixí
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ruben Foj
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Biochemistry and Molecular Biology Department, Faculty of Biosciences, Campus Bellaterra, Edifici C, Cerdanyola del Vallés, 08193 Barcelona, Spain
| | - Núria Baixeras
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Cuadras
- Biomarkers and Susceptibility Unit, Institut Català d'Oncologia - IDIBELL, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Moreno
- Biomarkers and Susceptibility Unit, Institut Català d'Oncologia - IDIBELL, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ander Urruticoechea
- Breast Cancer Unit and Neuroncology Unit, Institut Català d'Oncologia - IDIBELL, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Gil
- Oncology Service, Institut Català d'Oncologia - IDIBELL, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Baldo Oliva
- Structural Bioinformatics Laboratory, Experimental Sciences Department, Universitat Pompeu Fabra-IMIM, Barcelona Research Park of Biomedicine, 08003 Barcelona, Spain
| | - Ferran Moreno
- Radiation Oncology Service, Institut Català d'Oncologia - IDIBELL, Hospital Duran i Reynals, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva González-Suarez
- Transformation and Metastasis Grup, Cancer Epigenetics and Biology Department, IDIBELL, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Noemí Vidal
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Andreu
- Pathology Service, Corporació Sanitaria Parc Taulí, 08208 Sabadell, Spain
| | - Miquel A. Seguí
- Oncology Service, Corporació Sanitaria Parc Taulí, 08208 Sabadell, Spain
| | - Rosa Ballester
- Radiation Oncology Service, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eva Castella
- Pathology Service, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Angels Sierra
- Biological Clues of the Invasive and Metastatic Phenotype Group, Molecular Oncology Department, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular and Translational Oncology Laboratory, Biomedical Research Center CELLEX-CRBC Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS 08036 Barcelona, Spain
| |
Collapse
|
66
|
A Brief Report of the Status of Central Nervous System Metastasis Enrollment Criteria for Advanced Non-Small Cell Lung Cancer Clinical Trials: A Review of the ClinicalTrials.gov Trial Registry. J Thorac Oncol 2015; 11:407-13. [PMID: 26725180 DOI: 10.1016/j.jtho.2015.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/25/2015] [Accepted: 10/30/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Central nervous system (CNS) metastases are common in non-small cell lung cancer (NSCLC), yet clinical trials of new drugs in advanced NSCLC have varying inclusion and exclusion criteria for CNS disease. The true extent of variation in CNS-related enrollment criteria in NSCLC clinical trials has not been documented. METHODS We performed a systematic search of the ClinicalTrials.gov website to characterize interventional drug trials enrolling adult patients with advanced NSCLC. RESULTS Of 413 open trials, 78 (19%) strictly excluded patients with leptomeningeal disease (LMD). Separate from LMD, patients with any history of CNS metastases were strictly excluded in 59 trials (14%), allowed after local treatment in 169 (41%), and allowed with no prior treatment in 106 (26%). No explicit mention of CNS disease was made in 79 trials (19%). In multivariate analysis looking at trial phase, location, sponsor, and treatment type, only sponsor was statistically significant, with pharmaceutical industry-sponsored trials having higher odds of excluding patients with brain metastases than did university or investigator-initiated trials (OR = 2.262, 95% confidence interval: 1.063-4.808, p = 0.0342) CONCLUSIONS: With 14% to 19% of trials excluding any history of LMD or CNS parenchymal metastatic disease and 41% of trials permitting CNS disease only after prior CNS-directed treatment, direct evidence of activity of a treatment on CNS disease cannot be reliably generated in most NSCLC trials. Given the high frequency of CNS disease in NSCLC and only sponsor being associated with specific CNS exclusion criteria, sponsors should consider tailoring trial designs to explore CNS benefit more explicitly.
Collapse
|
67
|
Noonan SA, Camidge DR. PROFILE 1014: lessons for the new era of lung cancer clinical research. Transl Lung Cancer Res 2015; 4:642-8. [PMID: 26629438 DOI: 10.3978/j.issn.2218-6751.2015.05.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PROFILE 1014 compared crizotinib to up to six cycles of standard platinum-pemetrexed chemotherapy as the first line treatment of advanced anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer (NSCLC). Overall, PROFILE 1014 has taught us many valuable lessons about the natural history of ALK+ NSCLC, the effectiveness of key therapies and the positive ways in which clinical research in oncogene addicted subtypes of cancer continue to evolve. These lessons include (I) confirming the benefit of using personalized medicine approaches compared to chemotherapy that had already been established in EGFR mutant disease and in ALK+ disease in later lines of therapy; (II) demonstrating that molecular preselection can also affect outcomes from standard chemotherapy in addition to from targeted therapy. Specifically, the benefit of the control arm (platinum-pemetrexed), although inferior to that of crizotinib, was remarkable and expands the dataset on the increased sensitivity of ALK+ NSCLC to pemetrexed; (III) identifying the central nervous system (CNS) as a key battleground for metastatic NSCLC, especially for ALK+ disease. In PROFILE 1014 CNS time to progression (TTP) was included as a prominent secondary endpoint, which showed no difference between crizotinib and chemotherapy but all CNS lesions at baseline had to be both stable and treated, so any apparent stabilizing effect of the drug may be confounded. Ongoing studies with other ALK inhibitors vs. crizotinib that include untreated CNS diseases will provide greater clarity on the true effect of these drugs in the brain.
Collapse
Affiliation(s)
- Sinead A Noonan
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, USA
| | - D Ross Camidge
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, USA
| |
Collapse
|
68
|
Chang SM, Wen PY, Vogelbaum MA, Macdonald DR, van den Bent MJ. Response Assessment in Neuro-Oncology (RANO): more than imaging criteria for malignant glioma. Neurooncol Pract 2015; 2:205-209. [PMID: 31386074 PMCID: PMC6664617 DOI: 10.1093/nop/npv037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/12/2022] Open
Abstract
The introduction of antiangiogenic therapies for the treatment of malignant glioma and the effect of these agents on standard imaging studies were the stimuli for forming a small group of investigators to critically evaluate the limitations of the Macdonald criteria in assessing response to treatment. The initial goal of this group was to highlight the challenges in accurately determining the efficacy of therapeutic interventions for malignant glioma and to develop new criteria that could be implemented in clinical care as well as in the design and conduct of clinical trials. This initial Response Assessment in Neuro-Oncology (RANO) effort started in 2008 and over the last 7 years, it has expanded to include a critical review of response assessment across several tumor types as well as endpoint selection and trial design to improve outcome criteria for neuro-oncological trials. In this paper, we review the overarching principles of the RANO initiative and the efforts to date. We also highlight the diverse and expanding efforts of the multidisciplinary groups of investigators who have volunteered their time as part of this endeavor.
Collapse
Affiliation(s)
- Susan M. Chang
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California (S.M.C.); Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.); Rose Ella Burkhardt Brain Tumor and NeuroOncology Center, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (M.A.V.); Medical Oncology, London Regional Cancer Program, Western University, London, ON, Canada (D.R.M.); Dept Neuro-oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (M.J.v.d.B.)
| | - Patrick Y. Wen
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California (S.M.C.); Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.); Rose Ella Burkhardt Brain Tumor and NeuroOncology Center, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (M.A.V.); Medical Oncology, London Regional Cancer Program, Western University, London, ON, Canada (D.R.M.); Dept Neuro-oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (M.J.v.d.B.)
| | - Michael A. Vogelbaum
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California (S.M.C.); Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.); Rose Ella Burkhardt Brain Tumor and NeuroOncology Center, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (M.A.V.); Medical Oncology, London Regional Cancer Program, Western University, London, ON, Canada (D.R.M.); Dept Neuro-oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (M.J.v.d.B.)
| | - David R. Macdonald
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California (S.M.C.); Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.); Rose Ella Burkhardt Brain Tumor and NeuroOncology Center, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (M.A.V.); Medical Oncology, London Regional Cancer Program, Western University, London, ON, Canada (D.R.M.); Dept Neuro-oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (M.J.v.d.B.)
| | - Martin J. van den Bent
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California (S.M.C.); Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (P.Y.W.); Rose Ella Burkhardt Brain Tumor and NeuroOncology Center, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio (M.A.V.); Medical Oncology, London Regional Cancer Program, Western University, London, ON, Canada (D.R.M.); Dept Neuro-oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (M.J.v.d.B.)
| |
Collapse
|
69
|
Habets EJJ, Dirven L, Wiggenraad RG, Verbeek-de Kanter A, Lycklama À Nijeholt GJ, Zwinkels H, Klein M, Taphoorn MJB. Neurocognitive functioning and health-related quality of life in patients treated with stereotactic radiotherapy for brain metastases: a prospective study. Neuro Oncol 2015; 18:435-44. [PMID: 26385615 DOI: 10.1093/neuonc/nov186] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) is expected to have a less detrimental effect on neurocognitive functioning and health-related quality of life (HRQoL) than whole-brain radiotherapy. To evaluate the impact of brain metastases and SRT on neurocognitive functioning and HRQoL, we performed a prospective study. METHODS Neurocognitive functioning and HRQoL of 97 patients with brain metastases were measured before SRT and 1, 3, and 6 months after SRT. Seven cognitive domains were assessed. HRQoL was assessed with the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 and BN20 questionnaires. Neurocognitive functioning and HRQoL over time were analyzed with linear mixed models and stratified for baseline Karnofsky performance status (KPS), total metastatic volume, and systemic disease. RESULTS Median overall survival of patients was 7.7 months. Before SRT, neurocognitive domain and HRQoL scores were lower in patients than in healthy controls. At group level, patients worsened in physical functioning and fatigue at 6 months, while other outcome parameters of HRQoL and cognition remained stable. KPS < 90 and tumor volume >12.6 cm(3) were both associated with worse information processing speed and lower HRQoL scores over 6 months time. Intracranial tumor progression was associated with worsening of executive functioning and motor function. CONCLUSIONS Prior to SRT, neurocognitive functioning and HRQoL are moderately impaired in patients with brain metastases. Lower baseline KPS and larger tumor volume are associated with worse functioning. Over time, SRT does not have an additional detrimental effect on neurocognitive functioning and HRQoL, suggesting that SRT may be preferred over whole-brain radiotherapy.
Collapse
Affiliation(s)
- Esther J J Habets
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Linda Dirven
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Ruud G Wiggenraad
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Antoinette Verbeek-de Kanter
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Geert J Lycklama À Nijeholt
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Hanneke Zwinkels
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Martin Klein
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| | - Martin J B Taphoorn
- Department of Neurology, Medical Center Haaglanden, The Hague, the Netherlands (E.J.J.H., H.Z., M.J.B.T.); Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands (L.D., M.J.B.T.); Radiotherapy Center West, The Hague, the Netherlands (R.G.W., A.V.-d.K.); Department of Radiology, Medical Center Haaglanden, The Hague, the Netherlands (G.J.L.àN.); Department of Medical Psychology, VU University Medical Center, Amsterdam, the Netherlands (M.K.)
| |
Collapse
|
70
|
Nayak L, DeAngelis LM, Robins HI, Govindan R, Gadgeel S, Kelly K, Rigas JR, Peereboom DM, Rosenfeld SS, Muzikansky A, Zheng M, Urban P, Abrey LE, Omuro A, Wen PY. Multicenter phase 2 study of patupilone for recurrent or progressive brain metastases from non-small cell lung cancer. Cancer 2015; 121:4165-72. [PMID: 26308485 DOI: 10.1002/cncr.29636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Treatment options for patients with non-small cell lung cancer (NSCLC) with brain metastases are limited. Patupilone (EPO906), a blood-brain barrier-penetrating, microtubule-targeting, cytotoxic agent, has shown clinical activity in phase 1/2 studies in patients with NSCLC. This study evaluates the efficacy, pharmacokinetics, and safety of patupilone in NSCLC brain metastases. METHODS Adult patients with NSCLC and confirmed progressive brain metastases received patupilone intravenously at 10 mg/m(2) every 3 weeks. The primary endpoint of this multinomial 2-stage study combined early progression (EP; death or progression within 3 weeks) and progression-free survival at 9 weeks (PFS9w) to determine drug activity. RESULTS Fifty patients with a median age of 60 years (range, 33-74 years) were enrolled; the majority were men (58%), and most had received prior therapy for brain metastases (98%). The PFS9w rate was 36%, and the EP rate was 26%. Patupilone blood pharmacokinetic analyses showed mean areas under the concentration-time curve from time zero to 504 hours for cycles 1 and 3 of 1544 and 1978 ng h/mL, respectively, and a mean steady state distribution volume of 755 L/m(2) . Grade 3/4 adverse events (AEs), regardless of their relation with the study drug, included diarrhea (24%), pulmonary embolisms (8%), convulsions (4%), and peripheral neuropathy (4%). All patients discontinued the study drug: 31 (62%) for disease progression and 13 (26%) for AEs. Twenty-five of 32 deaths were due to brain metastases. The median time to progression and the overall survival were 3.2 and 8.8 months, respectively. CONCLUSIONS This is the first prospective study of chemotherapy for recurrent brain metastases from NSCLC. In this population, patupilone demonstrated activity in heavily treated patients.
Collapse
Affiliation(s)
- Lakshmi Nayak
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - H Ian Robins
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Ramaswamy Govindan
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Shirish Gadgeel
- Karmanos Cancer Institute/Wayne State University, Detroit, Michigan
| | - Karen Kelly
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, California
| | - James R Rigas
- Norris Cotton Cancer Center/Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David M Peereboom
- Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
| | - Steven S Rosenfeld
- Department of Neurology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Ming Zheng
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Patrick Urban
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Lauren E Abrey
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Antonio Omuro
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
71
|
Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clin Exp Metastasis 2015; 32:729-37. [PMID: 26303828 DOI: 10.1007/s10585-015-9740-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022]
Abstract
Brain metastases (BM) are frequently diagnosed in metastatic Her2-positive breast cancer. Local treatment remains the standard of care but lapatinib plus capecitabine was recently established as systemic therapy option. Due to a disruption of the blood-brain/tumour-barrier at metastatic sites, even large molecules may penetrate into the central nervous system (CNS). Here, we report on the activity of T-DM1 in Her2-positive breast cancer BM. T-DM1 was administered at a dose of 3.6 mg once every 3 weeks as primary systemic therapy for BM or upon documented CNS progression after initial local treatment. Thus, this study allowed for the appraisal of T-DM1 activity in BM. Restaging was conducted every 12 weeks with MRI or whenever symptoms of disease progression occurred. Ten patients were included; in two asymptomatic subjects, T-DM1 was administered as primary therapy, while eight had progressive BM. All patients had received prior treatment with trastuzumab, six had already received lapatinib, and three pertuzumab as well. Three patients had partial remission of BM, and two patient had stable disease lasting for ≥6 months; two further patients had stable disease for <6 months while three progressed despite treatment. At 8.5 months median follow-up, intracranial PFS was 5 months, and median OS from initiation of T-DM1 was not reached. Local treatment of BM remains the standard of care; lapatinib plus capecitabine is currently the best established systemic therapy option. Still, T-DM1 apparently offers relevant clinical activity in BM and further investigation is warranted.
Collapse
|
72
|
Berghoff AS, Preusser M. The future of targeted therapies for brain metastases. Future Oncol 2015; 11:2315-27. [DOI: 10.2217/fon.15.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain metastases (BM) are an increasing challenge in the management of patients with advanced cancer. Treatment options for BM are limited and mainly focus on the application of local therapies. Systemic therapies including targeted therapies are only poorly investigated, as patients with BM were frequently excluded from clinical trials. Several targeted therapies have shown promising activity in patients with BM. In the present review we discuss existing and emerging targeted therapies for the most frequent BM primary tumor types. We focus on challenges in the conduction of clinical trials on targeted therapies in BM patients such as patient selection, combination with radiotherapy, the obstacles of the blood–brain barrier and the definition of study end points.
Collapse
Affiliation(s)
- Anna S Berghoff
- Department for Medicine I, Comprehensive Cancer Center Central Nervous System Unit (CCC-CNS), Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center – CNS Tumors Unit, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department for Medicine I, Comprehensive Cancer Center Central Nervous System Unit (CCC-CNS), Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center – CNS Tumors Unit, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Brain tumors differ in histology, biology, prognosis and treatment options. Although structural magnetic resonance is still the gold standard for morphological tumor characterization, molecular imaging has gained an increasing importance in assessment of tumor activity and malignancy. RECENT FINDINGS Amino acid PET is frequently used for surgery and biopsy planning as well as therapy monitoring in suspected primary brain tumors as well as metastatic lesions, whereas 18F-fluorodeoxyglucose (18F-FDG) remains the tracer of choice for evaluation of patients with primary central nervous system lymphoma. Application of somatostatin receptor ligands has improved tumor delineation in skull base meningioma and concurrently opened up new treatment possibilities in recurrent or surgically not assessable tumors.Recent development focuses on the implementation of hybrid PET/MRI as well as on the development of new tracers targeting tumor hypoxia, enzymes involved in neoplastic metabolic pathways and the combination of PET tracers with therapeutic agents. SUMMARY Implementation of molecular imaging in the clinical routine continues to improve management in patients with brain tumors. However, more prospective large sample studies are needed to validate the additional informative value of PET.
Collapse
|
74
|
Kimmell KT, LaSota E, Weil RJ, Marko NF. Comparative Effectiveness Analysis of Treatment Options for Single Brain Metastasis. World Neurosurg 2015; 84:1316-32. [PMID: 26100168 DOI: 10.1016/j.wneu.2015.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Brain metastases (BMs) occur in up to 30% of patients with cancer. Treatments include surgery, whole-brain radiotherapy (WBRT), and stereotactic radiosurgery (SRS), alone or in combination. Although guidelines exist, data to inform individualized approaches to therapy remain sparse. We sought to compare semiquantitatively the effectiveness of various modalities in the treatment of single brain metastasis. METHODS We performed a comparative effectiveness analysis (CEA) that integrated efficacy, cost, and quality of life (QoL) data for alternate BM treatments. Efficacy data were obtained from a comprehensive review of current literature. Cost estimates were based on publicly available data. QoL data included the Karnofsky Performance Status (KPS) and other questionnaires. Six treatment strategies using combinations of surgery, WBRT, and SRS were compared with decision tree software. RESULTS The clinical efficacy, cost, and QoL effects of each strategy were scored semiquantitatively. We constructed a model to integrate individual preferences regarding the relative importance of efficacy, QoL, and cost to provide personalized rankings of the effectiveness of each strategy. CONCLUSION The choice of strategy must be individualized for patients with a single BM. Our CEA and decision model combines empirical data with patient priorities to produce a ranking of alternate management strategies.
Collapse
Affiliation(s)
- Kristopher T Kimmell
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA.
| | - Emily LaSota
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert J Weil
- Department of Neurosurgery, Geisinger Health System, Danville, Pennsylvania, USA
| | - Nicholas F Marko
- Department of Neurosurgery, Geisinger Health System, Danville, Pennsylvania, USA
| |
Collapse
|
75
|
Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, Bendszus M, Brown PD, Camidge DR, Chang SM, Dancey J, de Vries EGE, Gaspar LE, Harris GJ, Hodi FS, Kalkanis SN, Linskey ME, Macdonald DR, Margolin K, Mehta MP, Schiff D, Soffietti R, Suh JH, van den Bent MJ, Vogelbaum MA, Wen PY. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 2015; 16:e270-8. [PMID: 26065612 DOI: 10.1016/s1470-2045(15)70057-4] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CNS metastases are the most common cause of malignant brain tumours in adults. Historically, patients with brain metastases have been excluded from most clinical trials, but their inclusion is now becoming more common. The medical literature is difficult to interpret because of substantial variation in the response and progression criteria used across clinical trials. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) working group is an international, multidisciplinary effort to develop standard response and progression criteria for use in clinical trials of treatment for brain metastases. Previous efforts have focused on aspects of trial design, such as patient population, variations in existing response and progression criteria, and challenges when incorporating neurological, neuro-cognitive, and quality-of-life endpoints into trials of patients with brain metastases. Here, we present our recommendations for standard response and progression criteria for the assessment of brain metastases in clinical trials. The proposed criteria will hopefully facilitate the development of novel approaches to this difficult problem by providing more uniformity in the assessment of CNS metastases across trials.
Collapse
Affiliation(s)
- Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hidefumi Aoyama
- Department of Radiology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Igor J Barani
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Daniel P Barboriak
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Brigitta G Baumert
- Department of Radiation-Oncology, MediClin Robert Janker Clinic & University of Bonn Medical Centre, Cooperation Unit Neuro-oncology, Bonn, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Paul D Brown
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Ross Camidge
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Janet Dancey
- NCIC Clinical Trials Group, Ontario Institute for Cancer Research, Queen's University, Kingston, ON, Canada
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, RB Groningen, Netherlands
| | - Laurie E Gaspar
- Department of Radiation Oncology, The Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Gordon J Harris
- MGH 3D Imaging Lab, Massachusetts General Hospital, Boston, MA, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Mark E Linskey
- Department of Neurological Surgery, University of California, San Francisco, CA, USA; UC Irvine Medical Center, Orange, CA, USA
| | - David R Macdonald
- Department of Oncology, London Regional Cancer Program, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Kim Margolin
- Division of Oncology, Stanford University, Stanford, CA, USA
| | - Minesh P Mehta
- Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore, MA, USA
| | - David Schiff
- Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, USA
| | - Riccardo Soffietti
- Department of Neurology/Neuro-Oncology, University of Turin, Turin, Italy
| | - John H Suh
- Department of Radiation Oncology/T28, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J van den Bent
- Neuro-Oncology Unit, Daniel den Hoed Cancer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Michael A Vogelbaum
- Department of Neurosurgery/ND40, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
76
|
Radiation necrosis presenting as pseudoprogression (PsP) during alectinib treatment of previously radiated brain metastases in ALK-positive NSCLC: Implications for disease assessment and management. Lung Cancer 2015; 88:355-9. [PMID: 25882777 DOI: 10.1016/j.lungcan.2015.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Radiation necrosis presenting as pseudoprogression (PsP) is relatively common after radiation and temozolomide (TMZ) treatment in glioblastoma multiforme (GBM), especially among patients with GBM that harbors intrinsic increased responsiveness to TMZ (methylated O6-methylguanine-DNA methyltransferase [MGMT] promoter). Alectinib is a second generation ALK inhibitor that has significant CNS activity against brain metastases in anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS We report 2 ALK+ NSCLC patients who met RECIST criteria for progressive disease by central radiologic review due to increased in size from increased contrast enhancement in previously stereotactically radiated brain metastases with ongoing extra-cranial response to alectinib. In both patients alectinib was started within 4 months of completing stereotactic radiosurgery (SRS). The enlarging lesions in both patients were resected and found to have undergone extensive necrosis with no residual tumor pathologically. PsP was incorrectly classified as progressive disease even by central independent imaging review. CONCLUSIONS Treatment-related necrosis of previously SRS-treated brain metastasis during alectinib treatment can present as PsP. It may be impossible to distinguish PsP from true disease progression without a pathologic examination from resected sample. High degree of clinical suspicion, close monitoring and more sensitive imaging modalities may be needed to distinguish PsP versus progression in radiated brain lesions during alectinib treatment especially if there is no progression extra-cranially.
Collapse
|
77
|
Lu YS, Chen TWW, Lin CH, Yeh DC, Tseng LM, Wu PF, Rau KM, Chen BB, Chao TC, Huang SM, Huang CS, Shih TTF, Cheng AL. Bevacizumab preconditioning followed by Etoposide and Cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy. Clin Cancer Res 2015; 21:1851-8. [PMID: 25700303 DOI: 10.1158/1078-0432.ccr-14-2075] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE We hypothesized that a window period between bevacizumab and cytotoxic agents may enhance drug delivery into tumor tissue through bevacizumab-induced vascular normalization in patients with brain metastases of breast cancer (BMBC). EXPERIMENTAL DESIGN A single-arm phase II study was conducted in which BMBC patients refractory to whole-brain radiotherapy (WBRT) were enrolled. In a 21-day cycle, patients received bevacizumab (15 mg/kg) on day 1, which, with a 1-day window period, was followed by etoposide (70 mg/m(2)/day; days 2-4) and cisplatin (70 mg/m(2); day 2; BEEP regimen). The BEEP regimen was administered for a maximum of 6 cycles. The primary endpoint was the central nervous system (CNS)-objective response rate according to volumetric response criteria. RESULTS A total of 35 patients were enrolled between January 2011 and January 2013. The median age was 54.3 years (range, 33-75); 19 patients (54.3%) had an Eastern Cooperative Oncology Group performance status of 2 or 3. Twenty-seven patients [77.1%; 95% confidence interval (CI), 59.9-89.6] achieved a CNS-objective response, including 13 patients (37.1%) with a ≥80% volumetric reduction of CNS lesions. With a median follow-up of 16.1 months, the median CNS progression-free survival and overall survival times were 7.3 months (95% CI, 6.5-8.1) and 10.5 months (95% CI, 7.8-13.2), respectively. Common grade 3 or 4 toxicities included neutropenia (30.8%) and infection (21.3%). CONCLUSIONS By administering bevacizumab 1 day before etoposide and cisplatin, the BEEP regimen appeared highly effective in BMBC refractory to WBRT. Further study of vascular normalization window concept is warranted.
Collapse
Affiliation(s)
- Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Dah-Cherng Yeh
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Fang Wu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kun-Ming Rau
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Min Huang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | |
Collapse
|
78
|
Comparison Between Surgical Resection and Stereotactic Radiosurgery in Patients with a Single Brain Metastasis from Non-Small Cell Lung Cancer. World Neurosurg 2015; 83:900-6. [PMID: 25659803 DOI: 10.1016/j.wneu.2015.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND The management of patients with single brain metastasis (BM) from non-small cell lung cancer (NSCLC) is controversial. Surgical resection (SR) with adjuvant irradiation and stereotactic radiosurgery (SRS) are performed in the treatment of such lesions. This study compared both modalities in terms of tumor control and survival. METHODS During the period 2004-2011, 115 patients with single BM from NSCLC were treated with SR or SRS at our institution. Median patient age was 61 years. SR was performed in 43 patients, and SRS was performed in 72 patients. Most patients who underwent SR had adjuvant irradiation. Of patients, 63% in the SR group and 56% in the SRS group had synchronous presentation of BM and lung primary tumor. Thoracic disease was managed with curative intent in 60% of patients in the SR group compared with 50% of patients in the SRS group. RESULTS Median follow-up was 10.2 months. Local control was 72% in patients in the SR group and 79% in patients in the SRS group (P = 0.992). Median survival for patients in the SR group was 13.3 months, and median survival for patients in the SRS group was 7.8 months (P = 0.047). Multivariate analyses revealed aggressive treatment of the primary NSCLC as an independent factor associated with prolonged survival in patients undergoing SR. In the SRS group, patients with metachronous metastasis showed a better prognosis. Metachronous presentation was associated with more aggressive management of the primary tumor. CONCLUSIONS In this study, patients with single BM undergoing SR had a survival advantage. However, because SR and SRS achieved comparable local control of BM, patients receiving SRS should benefit from an equally aggressive treatment of the primary NSCLC, as thoracic management was the most important predictor of survival.
Collapse
|
79
|
Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: Local tumour control and survival. Strahlenther Onkol 2015; 191:461-9. [PMID: 25592907 DOI: 10.1007/s00066-014-0808-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/19/2014] [Indexed: 01/27/2023]
Abstract
PURPOSE Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) for multiple brain metastases may prevent treatment-related cognitive decline, compared to standard WBRT. Additionally, simultaneous integrated boost (SIB) on individual metastases may further improve the outcome. Here, we present initial data concerning local tumour control (LTC), intracranial progression-free survival (PFS), overall survival (OS), toxicity and safety for this new irradiation technique. METHODS AND MATERIALS Twenty patients, enrolled between 2011 and 2013, were treated with HA-WBRT (30 Gy in 12 fractions, D98% to hippocampus ≤ 9 Gy) and a SIB (51 Gy) on multiple (2-13) metastases using a volumetric modulated arc therapy (VMAT) approach based on 2-4 arcs. Metastases were evaluated bidimensionally along the two largest diameters in contrast-enhanced three-dimensional T1-weighed MRI. RESULTS Median follow-up was 40 weeks. The median time to progression of boosted metastases has not been reached yet, corresponding to a LTC rate of 73%. Median intracranial PFS was 40 weeks, corresponding to a 1-year PFS of 45.3%. Median OS was 71.5 weeks, corresponding to a 1-year OS of 60%. No obvious acute or late toxicities grade > 2 (NCI CTCAE v4.03) were observed. Dmean to the bilateral hippocampi was 6.585 Gy ± 0.847 (α/β = 2 Gy). Two patients developed a new metastasis in the area of hippocampal avoidance. CONCLUSION HA-WBRT (simultaneous integrated protection, SIP) with SIB to metastases is a safe and tolerable regime that shows favorable LTC for patients with multiple brain metastases, while it has the potential to minimize the side-effect of cognitive deterioration.
Collapse
|
80
|
Rogers L, Barani I, Chamberlain M, Kaley T, McDermott M, Raizer J, Schiff D, Weber DC, Wen PY, Vogelbaum MA. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 2015; 122:4-23. [PMID: 25343186 PMCID: PMC5062955 DOI: 10.3171/2014.7.jns131644] [Citation(s) in RCA: 426] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evolving interest in meningioma, the most common primary brain tumor, has refined contemporary management of these tumors. Problematic, however, is the paucity of prospective clinical trials that provide an evidence-based algorithm for managing meningioma. This review summarizes the published literature regarding the treatment of newly diagnosed and recurrent meningioma, with an emphasis on outcomes stratified by WHO tumor grade. Specifically, this review focuses on patient outcomes following treatment (either adjuvant or at recurrence) with surgery or radiation therapy inclusive of radiosurgery and fractionated radiation therapy. Phase II trials for patients with meningioma have recently completed accrual within the Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer consortia, and Phase III studies are being developed. However, at present, there are no completed prospective, randomized trials assessing the role of either surgery or radiation therapy. Successful completion of future studies will require a multidisciplinary effort, dissemination of the current knowledge base, improved implementation of WHO grading criteria, standardization of response criteria and other outcome end points, and concerted efforts to address weaknesses in present treatment paradigms, particularly for patients with progressive or recurrent low-grade meningioma or with high-grade meningioma. In parallel efforts, Response Assessment in Neuro-Oncology (RANO) subcommittees are developing a paper on systemic therapies for meningioma and a separate article proposing standardized end point and response criteria for meningioma.
Collapse
Affiliation(s)
- Leland Rogers
- GammaWest Cancer Services, Radiation Oncology, Salt Lake City, UT
| | - Igor Barani
- University of California San Francisco, Department of Radiation Oncology, San Francisco, CA
| | - Marc Chamberlain
- University of Washington, Department of Neurology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Thomas Kaley
- Memorial Sloan-Kettering Cancer Center, Division of Neuro-Oncology, New York, NY
| | - Michael McDermott
- University of California, San Francisco, Department of Neurosurgery, San Francisco, CA
| | - Jeffrey Raizer
- Northwestern University, Department of Neurology, Chicago, IL
| | - David Schiff
- Neuro-Oncology Center, University of Virginia. Charlottesville, VA
| | - Damien C. Weber
- Geneva University Hospital, Radiation Oncology, Geneva, Switzerland
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Center, Boston, MA
| | - Michael A. Vogelbaum
- Cleveland Clinic, Brain Tumor and NeuroOncology Center and Department of Neurosurgery, Cleveland, OH
| |
Collapse
|
81
|
Lin G, Xu H, Huang C. [Advances in treatment of brain metastases from primary non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:877-83. [PMID: 25539615 PMCID: PMC6000406 DOI: 10.3779/j.issn.1009-3419.2014.12.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
脑是非小细胞肺癌常见的转移部位,手术和放疗是以往脑转移治疗的基石,但近年来随着对肿瘤发生发展机制的认识深化,靶向治疗在脑转移治疗中开始崭露头角。本文主要针对一些相关热点问题如脑转移治疗手段等(手术、放疗、化疗、靶向治疗)进行简要述评。
Collapse
Affiliation(s)
- Gen Lin
- Department of Medical Thoracic Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital,
Fuzhou 350014, China
| | - Haipeng Xu
- Department of Medical Thoracic Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital,
Fuzhou 350014, China
| | - Cheng Huang
- Department of Medical Thoracic Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Teaching Hospital,
Fuzhou 350014, China
| |
Collapse
|
82
|
Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients. Transl Oncol 2014; 7:752-8. [PMID: 25500085 PMCID: PMC4311040 DOI: 10.1016/j.tranon.2014.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. METHODS: 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue–labeled Annexin V positivity were used to identify the MVs reported herein. RESULTS: We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). CONCLUSION: These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings.
Collapse
|
83
|
Ahluwalia MS, Vogelbaum MV, Chao ST, Mehta MM. Brain metastasis and treatment. F1000PRIME REPORTS 2014; 6:114. [PMID: 25580268 PMCID: PMC4251415 DOI: 10.12703/p6-114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite major therapeutic advances in the management of patients with systemic malignancies, management of brain metastases remains a significant challenge. These patients often require multidisciplinary care that includes surgical resection, radiation therapy, chemotherapy, and targeted therapies. Complex decisions about the sequencing of therapies to control extracranial and intracranial disease require input from neurosurgeons, radiation oncologists, and medical/neuro-oncologists. With advances in understanding of the biology of brain metastases, molecularly defined disease subsets and the advent of targeted therapy as well as immunotherapeutic agents offer promise. Future care of these patients will entail tailoring treatment based on host (performance status and age) and tumor (molecular cytogenetic characteristics, number of metastases, and extracranial disease status) factors. Considerable work involving preclinical models and better clinical trial designs that focus not only on effective control of tumor but also on quality of life and neurocognition needs to be done to improve the outcome of these patients.
Collapse
Affiliation(s)
- Manmeet S. Ahluwalia
- Burkhardt Brain Tumor Neuro-Oncology Center, Neurological InstituteCleveland Clinic, 9500 Euclid Avenue, Cleveland, OHUSA
| | - Michael V. Vogelbaum
- Burkhardt Brain Tumor Neuro-Oncology Center, Neurological InstituteCleveland Clinic, 9500 Euclid Avenue, Cleveland, OHUSA
| | - Samuel T. Chao
- Burkhardt Brain Tumor Neuro-Oncology Center, Neurological InstituteCleveland Clinic, 9500 Euclid Avenue, Cleveland, OHUSA
| | - Minesh M. Mehta
- Department of Radiation Oncology, University of Maryland School of MedicineBaltimore, MD 21201USA
| |
Collapse
|
84
|
Functional dynamic contrast-enhanced magnetic resonance imaging in an animal model of brain metastases: a pilot study. PLoS One 2014; 9:e109308. [PMID: 25280000 PMCID: PMC4184857 DOI: 10.1371/journal.pone.0109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background Brain metastasis is a common disease with a poor prognosis. The purpose of this study is to test feasibility and safety of the animal models for brain metastases and to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to enhance detection of brain metastases. Methods With approval from the institutional animal ethics committee, 18 New Zealand rabbits were randomly divided into three groups: Group A received an intra-carotid infusion (ICI) of mannitol followed by VX2 cells; group B received successive ICI of mannitol and heparin followed by VX2 cells; and group C received an ICI of normal saline. The survival rate and clinical symptoms were recorded after inoculation. After two weeks, conventional MRI and DCE-MRI were performed using 3.0 Tesla scanner. The number of tumors and detection rate were analyzed. After MRI measurements, the tumors were stained with hematoxylin-eosin. Results No rabbits died during the procedure. The rabbits had common symptoms, including loss of appetite, lassitude and lethargy, etc. at 10.8±1.8 days and 8.4±1.5 days post-inoculation in group A and B, respectively. Each animal in groups A and B re-gained the lost weight within 14 days. Brain metastases could be detected by MRI at 14 days post-inoculation in both groups A and B, with metastases manifesting as nodules in the brain parenchyma and thickening in the meninges. DCE-MRI increased the total detection of tumors compared to non-contrast MRI (P<0.05). The detection rates of T1-weighted image, T2-weighted image and DCE-MRI were 12%, 32% and 100%, respectively (P<0.05). Necropsy revealed nodules or thickening meninges in the gross samples and VX2 tumor cytomorphologic features in the slides, which were consistent with the MRI results. Conclusions The VX2 rabbit model of brain metastases is feasible, as verified by MRI and pathologic findings, and may be a suitable platform for future studies of brain metastases. Functional DCE-MRI can be used to evaluate brain metastases in a rabbit model.
Collapse
|
85
|
Emblem KE, Farrar CT, Gerstner ER, Batchelor TT, Borra RJH, Rosen BR, Sorensen AG, Jain RK. Vessel caliber--a potential MRI biomarker of tumour response in clinical trials. Nat Rev Clin Oncol 2014; 11:566-84. [PMID: 25113840 PMCID: PMC4445139 DOI: 10.1038/nrclinonc.2014.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research.
Collapse
Affiliation(s)
- Kyrre E Emblem
- The Intervention Centre, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Christian T Farrar
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Tracy T Batchelor
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| | - Ronald J H Borra
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce R Rosen
- Department of Radiology and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - A Gregory Sorensen
- Siemens Healthcare Health Services, 51 Valley Stream Parkway, Malvern, PA 19355, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
86
|
Fontana EJ, Benzinger T, Cobbs C, Henson J, Fouke SJ. The evolving role of neurological imaging in neuro-oncology. J Neurooncol 2014; 119:491-502. [PMID: 25081974 DOI: 10.1007/s11060-014-1505-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 11/30/2022]
Abstract
Neuroimaging has played a critical role in the management of patients with neurological disease, since the first ventriculogram was performed in 1918 by Walter Dandy (Mezger et al. Langenbecks Arch Surg 398(4):501-514, 2013). Over the last century, technology has evolved significantly, and within the last decade, the role of imaging in the management of patients with neuro-oncologic disease has shifted from a tool for gross identification of intracranial pathology, to an integral part of real-time neurological surgery. Current neurological imaging provides detailed information about anatomical structure, neurological function, and metabolic and metabolism-important characteristics that help clinicians and surgeons non-invasively manage patients with brain tumors. It is valuable to review the evolution of neurological imaging over the past several decades, focusing on its role in the management of patients with intracranial tumors. Novel neuro-imaging tools and developing technology with the potential to further transform clinical practice will be discussed, as will the key role neurological imaging plays in neurosurgical planning and intraoperative navigation. With increasingly complex imaging modalities creating growing amounts of raw data, validation of techniques, data analysis, and integrating various pieces of imaging data into individual patient management plans, remain significant challenges for clinicians. We thus suggest mechanisms that might ultimately allow for evidence based integration of imaging in the management of patients with neuro-oncologic disease.
Collapse
Affiliation(s)
- E J Fontana
- Swedish Neuroscience Institute, 550 17th Ave, Seattle, WA, 98122, USA
| | | | | | | | | |
Collapse
|
87
|
Onodera S, Aoyama H, Tha KK, Hashimoto N, Toyomaki A, Terae S, Shirato H. The value of 4-month neurocognitive function as an endpoint in brain metastases trials. J Neurooncol 2014; 120:311-9. [PMID: 25037611 DOI: 10.1007/s11060-014-1550-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/06/2014] [Indexed: 11/27/2022]
Abstract
To investigate whether the neurocognitive function at 4 months could be a relevant primary endpoint in clinical trials dealing with brain metastases, we created a Japanese neurocognitive battery and examined the changes in patients' neurocognitive function for 1 year after their brain radiotherapy. In this prospective pilot study, we enrolled 27 patients (20 patients who received whole-brain radiation therapy [WBRT] and seven who received stereotactic irradiation [STI] alone) between March 2009 and December 2010. The follow-up neurocognitive data at 4, 8 and 12 months were available in 22 (17 WBRT, 5 STI), 19 patients (14 WBRT, 5 STI) and 13 patients (9 WBRT, 4 STI), respectively. Among the patients who received WBRT, significant deterioration in delayed memory compared to the baseline (p = 0.04) was observed at 4 months, and at 8 months, significant improvements were observed in immediate memory compared to the baseline (p = 0.008) and 4-months scores (p = 0.005). At 12 months, however, the immediate memory scores had returned to the baseline. Similar trends were observed in other functions (delayed memory, attention and executive functions). In these patients, the correlations between 4-months scores of neurocognitive functions and 12-months scores were significant in immediate memory (γ = 0.68, p = 0.004), delayed memory (γ = 0.738, p = 0.023) and attention (γ = 0.817, p = 0.007). Among the patients who received STI, no significant changes were observed in any functions. These results suggest that 4-months changes in neurocognitive functions were transient but could also be a premonitory index for predicting the neurocognitive function 1 year or later after brain radiation therapy.
Collapse
Affiliation(s)
- Shunsuke Onodera
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Lin NU, Amiri-Kordestani L, Palmieri D, Liewehr DJ, Steeg PS. CNS metastases in breast cancer: old challenge, new frontiers. Clin Cancer Res 2014; 19:6404-18. [PMID: 24298071 DOI: 10.1158/1078-0432.ccr-13-0790] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite major therapeutic advances in the management of patients with breast cancer, central nervous system (CNS) metastases remain an intractable problem, particularly in patients with metastatic HER2-positive and triple-negative breast cancer. As systemic therapies to treat extracranial disease improve, some patients are surviving longer, and the frequency of CNS involvement seems to be increasing. Furthermore, in the early-stage setting, the CNS remains a potential sanctuary site for relapse. This review highlights advances in the development of biologically relevant preclinical models, including the development of brain-tropic cell lines for testing of agents to prevent and treat brain metastases, and summarizes our current understanding of the biology of CNS relapse. From a clinical perspective, a variety of therapeutic approaches are discussed, including methods to improve drug delivery, novel cytotoxic agents, and targeted therapies. Challenges in current trial design and endpoints are reviewed. Finally, we discuss promising new directions, including novel trial designs, correlative imaging techniques, and enhanced translational opportunities.
Collapse
Affiliation(s)
- Nancy U Lin
- Authors' Affiliations: Dana-Farber Cancer Institute, Boston, Massachusetts; Medical Oncology Branch, Center for Cancer Research, National Cancer Institute; Women's Cancers Section, Laboratory of Molecular Pharmacology; and Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
89
|
Pseudo-progression after stereotactic radiotherapy of brain metastases: lesion analysis using MRI cine-loops. J Neurooncol 2014; 119:437-43. [DOI: 10.1007/s11060-014-1519-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 06/22/2014] [Indexed: 01/13/2023]
|
90
|
Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 2014; 11:473-81. [PMID: 24981256 DOI: 10.1038/nrclinonc.2014.104] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of advanced molecular profiling to direct the use of targeted therapy, such as tyrosine kinase inhibitors (TKIs) for patients with advanced-stage non-small-cell lung cancer (NSCLC), has revolutionized the treatment of this disease. However, acquired resistance, defined as progression after initial benefit, to targeted therapies inevitably occurs. This Review explores breakthroughs in the understanding and treatment of acquired resistance in NSCLC, focusing on EGFR mutant and ALK rearrangement-positive disease, which may be relevant across multiple different solid malignancies with oncogene-addicted subtypes. Mechanisms of acquired resistance may be pharmacological (that is, failure of delivery of the drug to its target) or biological, resulting from evolutionary selection on molecularly diverse tumours. A number of clinical approaches can maintain control of the disease in the acquired resistance setting, including the use of radiation to treat isolated areas of progression and adding or switching to cytotoxic chemotherapy. Furthermore, novel approaches that have already proven successful include the development of second-generation and third-generation inhibitors and the combination of some of these inhibitors with antibodies directed against the same target. With our increased understanding of the spectrum of acquired resistance, major changes in how we conduct clinical research in this setting are now underway.
Collapse
Affiliation(s)
- D Ross Camidge
- University of Colorado Comprehensive Cancer Center, Mailstop F704, Anschutz Cancer Pavilion Room 5327, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William Pao
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
91
|
Reiss-Zimmermann M, Streitberger KJ, Sack I, Braun J, Arlt F, Fritzsch D, Hoffmann KT. High Resolution Imaging of Viscoelastic Properties of Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography. Clin Neuroradiol 2014; 25:371-8. [PMID: 24916129 DOI: 10.1007/s00062-014-0311-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE In recent years Magnetic Resonance Elastography (MRE) emerged into a clinically applicable imaging technique. It has been shown that MRE is capable of measuring global changes of the viscoelastic properties of cerebral tissue. The purpose of our study was to evaluate a spatially resolved three-dimensional multi-frequent MRE (3DMMRE) for assessment of the viscoelastic properties of intracranial tumours. METHODS A total of 27 patients (63 ± 13 years) were included. All examinations were performed on a 3.0 T scanner, using a modified phase-contrast echo planar imaging sequence. We used 7 vibration frequencies in the low acoustic range with a temporal resolution of 8 dynamics per wave cycle. Post-processing included multi-frequency dual elasto-visco (MDEV) inversion to generate high-resolution maps of the magnitude |G*| and the phase angle φ of the complex valued shear modulus. RESULTS The tumour entities included in this study were: glioblastoma (n = 11), anaplastic astrocytoma (n = 3), meningioma (n = 7), cerebral metastasis (n = 5) and intracerebral abscess formation (n = 1). Primary brain tumours and cerebral metastases were not distinguishable in terms of |G*| and φ. Glioblastoma presented the largest range of |G*| values and a trend was delineable that glioblastoma were slightly softer than WHO grade III tumours. In terms of φ, meningiomas were clearly distinguishable from all other entities. CONCLUSIONS In this pilot study, while analysing the viscoelastic constants of various intracranial tumour entities with an improved spatial resolution, it was possible to characterize intracranial tumours by their mechanical properties. We were able to clearly delineate meningiomas from intraaxial tumours, while for the latter group an overlap remains in viscoelastic terms.
Collapse
Affiliation(s)
- M Reiss-Zimmermann
- Department of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - K-J Streitberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - I Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - J Braun
- Department of Radiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - F Arlt
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - D Fritzsch
- Department of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - K-T Hoffmann
- Department of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
92
|
Kondziolka D, Kalkanis SN, Mehta MP, Ahluwalia M, Loeffler JS. It Is Time to Reevaluate the Management of Patients With Brain Metastases. Neurosurgery 2014; 75:1-9. [DOI: 10.1227/neu.0000000000000354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
There are many elements to the science that drives the clinical care of patients with brain metastases. Although part of an understanding that continues to evolve, a number of key historical misconceptions remain that commonly drive physicians' and researchers' attitudes and approaches. By understanding how these relate to current practice, we can better comprehend our available science to provide both better research and care. These past misconceptions include: Misconception 1: Once a primary cancer spreads to the brain, the histology of that primary tumor does not have much impact on response to chemotherapy, sensitivity to radiation, risk of further brain relapse, development of additional metastatic lesions, or survival. All tumor primary histologies are the same once they spread to the brain. They are the same in terms of the number of tumors, radiosensitivity, chemoresponsiveness, risk of further brain relapse, and survival. Misconception 2: The number of brain metastases matters. This number matters in terms of subsequent brain relapse, survival, and cognitive dysfunction; the precise number of metastases can also be used as a limit in determining which patients might be eligible for a particular treatment option. Misconception 3: Cancer in the brain is always a diffuse problem due to the presence of micrometastases. Misconception 4: Whole-brain radiation therapy invariably causes disabling cognitive dysfunction if a patient lives long enough. Misconception 5: Most brain metastases are symptomatic. Thus, it is not worth screening patients for brain metastases, especially because the impact on survival is minimal. The conduct and findings of past clinical research have led to conceptions that affect clinical care yet appear limiting.
Collapse
Affiliation(s)
- Douglas Kondziolka
- Departments of Neurosurgery and Radiation Oncology, NYU Langone Medical Center, New York, New York
| | | | - Minesh P. Mehta
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Manmeet Ahluwalia
- Department of Medicine (Neuro-Oncology), Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jay S. Loeffler
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
93
|
Lin NU, Wefel JS, Lee EQ, Schiff D, van den Bent MJ, Soffietti R, Suh JH, Vogelbaum MA, Mehta MP, Dancey J, Linskey ME, Camidge DR, Aoyama H, Brown PD, Chang SM, Kalkanis SN, Barani IJ, Baumert BG, Gaspar LE, Hodi FS, Macdonald DR, Wen PY. Challenges relating to solid tumour brain metastases in clinical trials, part 2: neurocognitive, neurological, and quality-of-life outcomes. A report from the RANO group. Lancet Oncol 2013; 14:e407-16. [PMID: 23993385 DOI: 10.1016/s1470-2045(13)70308-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurocognitive function, neurological symptoms, functional independence, and health-related quality of life are major concerns for patients with brain metastases. The inclusion of these endpoints in trials of brain metastases and the methods by which these measures are assessed vary substantially. If functional independence or health-related quality of life are planned as key study outcomes, then the reliability and validity of these endpoints can be crucial because methodological issues might affect the interpretation and acceptance of findings. The Response Assessment in Neuro-Oncology (RANO) working group is an independent, international, and collaborative effort to improve the design of clinical trials in patients with brain tumours. In this report, the second in a two-part series, we review clinical trials of brain metastases in relation to measures of clinical benefit and provide a framework for the design and conduct of future trials.
Collapse
Affiliation(s)
- Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|