51
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
52
|
Shan KS, Rehman TU, Ivanov S, Domingo G, Raez LE. Molecular Targeting of the BRAF Proto-Oncogene/Mitogen-Activated Protein Kinase (MAPK) Pathway across Cancers. Int J Mol Sci 2024; 25:624. [PMID: 38203795 PMCID: PMC10779188 DOI: 10.3390/ijms25010624] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is essential for cellular proliferation, growth, and survival. Constitutive activation of this pathway by BRAF mutations can cause downstream activation of kinases, leading to uncontrolled cellular growth and carcinogenesis. Therefore, inhibition of BRAF and the downstream substrate MEK has been shown to be effective in controlling tumor growth and proliferation. Over the last decade, several BRAF and MEK inhibitors have been investigated, ranging from primarily melanoma to various cancer types with BRAF alterations. This subsequently led to several Food and Drug Administration (FDA) approvals for BRAF/MEK inhibitors for melanoma, non-small cell lung cancer, anaplastic thyroid cancer, colorectal cancer, histiocytosis neoplasms, and finally, tumor-agnostic indications. Here, this comprehensive review will cover the developments of BRAF and MEK inhibitors from melanomas to tumor-agnostic indications, novel drugs, challenges, future directions, and the importance of those drugs in personalized medicine.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Tauseef U. Rehman
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Stan Ivanov
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Gelenis Domingo
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33328, USA; (T.U.R.); (S.I.); (G.D.)
| | - Luis E. Raez
- Memorial Health Care, Thoracic Oncology Program, Pembroke Pines, FL 33328, USA;
| |
Collapse
|
53
|
Basilicata M, Terrano V, D’Aurelio A, Bruno G, Troiani T, Bollero P, Napolitano S. Oral Adverse Events Associated with BRAF and MEK Inhibitors in Melanoma Treatment: A Narrative Literature Review. Healthcare (Basel) 2024; 12:105. [PMID: 38201012 PMCID: PMC10778825 DOI: 10.3390/healthcare12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Melanoma cancer represents the most lethal type of skin cancer originating from the malignant transformation of melanocyte cells. Almost 50% of melanomas show the activation of BRAF mutations. The identification and characterization of BRAF mutations led to the development of specific drugs that radically changed the therapeutic approach to melanoma. METHODS We conducted a narrative review of the literature according to a written protocol before conducting the study. This article is based on previously conducted studies. We identified articles by searching electronic databases (Medline, Google Scholar and PubMed). We used a combination of "melanoma", "Braf-Mek inhibitors", " targeted therapy" and "oral side effects". RESULTS Eighteen studies were reported in this article showing the relationship between the use of targeted therapy in melanoma cancer and the development of oral side effects, such as mucositis, hyperkeratosis and cellular proliferation. CONCLUSION Targeted therapy plays an important role in the treatment of melanoma cancer, showing a notable increase in response rate, prolonged progression-free survival and overall survival in BRAF-mutated melanoma patients. Oral side effects represent a common finding over the course of treatment. However, these adverse effects can be easily managed in a multidisciplinary approach involving collaboration between medical oncologists and dental doctors.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, 00133 Rome, Italy; (M.B.); (A.D.); (P.B.)
- UniCamillus-Saint Camillus, International University of Health Sciences, 00131 Rome, Italy
| | - Vincenzo Terrano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.T.); (T.T.); (S.N.)
| | - Alessandro D’Aurelio
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, 00133 Rome, Italy; (M.B.); (A.D.); (P.B.)
| | - Giovanni Bruno
- Department of Neuroscience, University of Padua, 35121 Padova, Italy
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
| | - Teresa Troiani
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.T.); (T.T.); (S.N.)
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, 00133 Rome, Italy; (M.B.); (A.D.); (P.B.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (V.T.); (T.T.); (S.N.)
| |
Collapse
|
54
|
Wagner NB, Lenders MM, Kühl K, Reinhardt L, Fuchß M, Ring N, Stäger R, Zellweger C, Ebel C, Kimeswenger S, Oellinger A, Amaral T, Forschner A, Leiter U, Klumpp B, Hoetzenecker W, Terheyden P, Mangana J, Loquai C, Cozzio A, Garbe C, Meier F, Eigentler TK, Flatz L. Baseline metastatic growth rate is an independent prognostic marker in patients with advanced BRAF V600 mutated melanoma receiving targeted therapy. Eur J Cancer 2024; 196:113425. [PMID: 38039778 DOI: 10.1016/j.ejca.2023.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Targeted therapy (TT) of BRAF V600 mutated unresectable melanoma with inhibitors of the MAPK pathway achieves response rates of up to 76%, but most patients develop secondary resistance. Albeit TT is strikingly efficacious during the first days of treatment, even in advanced cases, long-term survival is highly unlikely, especially in patients with unfavorable baseline characteristics like elevated lactate dehydrogenase (LDH). In patients treated with anti-PD-1 immune checkpoint inhibitors, elevated baseline metastatic growth rate (MGR) was the most important prognostic factor. Here, we aimed at investigating the prognostic impact of MGR in patients with unresectable melanoma receiving TT. METHODS Clinical records of 242 patients with at least one measurable target lesion (TL) receiving TT at seven skin cancer centers were reviewed. Baseline MGR was determined measuring the largest TL at baseline and at one earlier timepoint. RESULTS Overall survival (OS) and progression-free survival (PFS) were significantly impaired in patients with an MGR > 3.9 mm/month (median OS: 11.4 vs. 35.5 months, P < 0.0001; median PFS: 4.8 vs. 9.2 months, P < 0.0001). Multivariable analysis of OS and PFS revealed that the prognostic impact of elevated MGR was independent of LDH, presence of brain and liver metastases, tumor burden, and line of treatment. The prognostic significance of elevated MGR was highest in patients with normal LDH. CONCLUSIONS Baseline MGR is an important independent prognostic marker for OS and PFS in melanoma patients treated with TT. Its implementation in clinical routine is easy and could facilitate the prognostic stratification.
Collapse
Affiliation(s)
- Nikolaus B Wagner
- Department of Dermatology, Venereology and Allergology, Kantonsspital St. Gallen, Switzerland; Department of Dermatology, University Hospital Tuebingen, Germany.
| | - Max M Lenders
- Department of Dermatology, University Hospital Tuebingen, Germany
| | - Kathrin Kühl
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Lydia Reinhardt
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Milena Fuchß
- Department of Dermatology, University Medical Center Mainz, Germany
| | - Natalie Ring
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany
| | - Ramon Stäger
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | - Caroline Zellweger
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Switzerland
| | - Chiara Ebel
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Germany
| | - Susanne Kimeswenger
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Angela Oellinger
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tuebingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tuebingen, Germany
| | - Bernhard Klumpp
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Germany; Institute for Radiology, Rems-Murr-Kliniken, Winnenden, Germany
| | - Wolfram Hoetzenecker
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Patrick Terheyden
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Germany
| | - Joanna Mangana
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | - Carmen Loquai
- Department of Dermatology, University Medical Center Mainz, Germany
| | - Antonio Cozzio
- Department of Dermatology, Venereology and Allergology, Kantonsspital St. Gallen, Switzerland
| | - Claus Garbe
- Department of Dermatology, University Hospital Tuebingen, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Thomas K Eigentler
- Department of Dermatology, University Hospital Tuebingen, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Flatz
- Department of Dermatology, Venereology and Allergology, Kantonsspital St. Gallen, Switzerland; Department of Dermatology, University Hospital Tuebingen, Germany
| |
Collapse
|
55
|
Zhang S, Xie R, Zhong A, Chen J. Targeted therapeutic strategies for melanoma. Chin Med J (Engl) 2023; 136:2923-2930. [PMID: 37144745 PMCID: PMC10752476 DOI: 10.1097/cm9.0000000000002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
ABSTRACT Melanoma accounts for a small proportion of skin cancers diagnosed each year, but it has a high degree of malignancy and rapid progression, resulting in a short survival period for patients. The incidence of melanoma continues to rise, and now melanoma accounts for 1.7% of cancer diagnoses worldwide and is the fifth most common cancer in the United States. With the development of high-throughput sequencing technologies, the understanding of the pathophysiology of melanoma had also been improved. The most common activating mutations in melanoma cells are BRAF , NRAS , and KIT mutations, which disrupt cell signaling pathways related to tumor proliferation. The progress has led to the emergence of molecularly targeted drugs, which extends the survival of patients with advanced melanoma. A large number of clinical trials have been conducted to confirm that targeted therapy for patients with advanced melanoma can improve progression-free survival and overall survival, and for stage III patients after radical tumor resection targeted therapy can reduce the recurrence of melanoma. Patients who were originally stage III or IV inoperable have the opportunity to achieve tumor radical resection after targeted therapy. This article reviewed the clinical trial data and summarized the clinical benefits and limitations of these therapies.
Collapse
Affiliation(s)
| | | | | | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
56
|
Bonnefin C, Duval F, Rouanet M, Kostine M, Gerard E. Case report: Parsonage-turner syndrome in a melanoma patient treated by BRAF/MEK inhibitors after immune checkpoint inhibitors. Front Oncol 2023; 13:1268693. [PMID: 38192629 PMCID: PMC10773839 DOI: 10.3389/fonc.2023.1268693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Combination molecular BRAF/MEK inhibitors targeted therapy has been shown to improve overall survival in patients with BRAF V600 mutated unresectable or metastatic melanoma. Most patients treated with BRAF/MEK inhibitors will experience adverse events but neurological adverse events (nAEs) remain rare. Case report A 42-year-old woman diagnosed with metastatic melanoma presented with an intense pain in the left shoulder 7 days after the beginning of encorafenib/binimetinib after immune checkpoint inhibitors (ICI) combination. No other triggering factors were identified. Electromyogram performed one month after the pain onset revealed a left brachial plexopathy suggestive of a Parsonage-Turner syndrome. The weakness slowly improved with intensive rehabilitation and targeted therapies were continued. Conclusion We report the first case of Parsonage-Turner syndrome in a melanoma patient treated with encorafenib/binimetinib following checkpoint inhibitors combination.We cannot rule out the implication of ICI in the development of this syndrome but the rapid onset of the symptoms after the beginning of targeted therapies makes their involvment more likely.Given the increased use of BRAF/MEK inhibitors in managing of stage III and IV melanoma, as well as the development in stage II, clinicians should be aware of this potential side effect.
Collapse
Affiliation(s)
- Charlotte Bonnefin
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Fanny Duval
- Atlantique Occitanie Caraïbe (AOC) Referral Center for Neuromuscular Diseases, Neurology and Neuromuscular Diseases Department, Filière Neuromusculaire (FILNEMUS), Bordeaux University Hospital, Bordeaux, France
| | - Marie Rouanet
- Department of Neurology, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Marie Kostine
- ImmunoConcEpT, Université (Univ.) Bordeaux, Bordeaux, France
- Department of Rheumatology, Bordeaux University Hospital, Bordeaux, France
| | - Emilie Gerard
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| |
Collapse
|
57
|
Lim SH, Jung J, Hong JY, Kim ST, Park SH, Park JO, Kim KM, Lee J. Prevalence of RAF1 Aberrations in Metastatic Cancer Patients: Real-World Data. Biomedicines 2023; 11:3264. [PMID: 38137485 PMCID: PMC10740931 DOI: 10.3390/biomedicines11123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
PURPOSE Therapeutic targeting of RAF1 is a promising cancer treatment, but the relationship between clinical features and RAF1 aberrations in terms of the MAPK signaling pathway is poorly understood in various solid tumors. METHODS Between October 2019 and June 2023 at Samsung Medical Center, 3895 patients with metastatic solid cancers underwent next-generation sequencing (NGS) using TruSight Oncology 500 (TSO500) assays as routine clinical practice. We surveyed the incidence of RAF1 aberrations including mutations (single-nucleotide variants [SNVs]), amplifications (copy number variation), and fusions. RESULTS Among the 3895 metastatic cancer patients, 77 (2.0%) exhibited RAF1 aberrations. Of these 77 patients, 44 (1.1%) had RAF1 mutations (SNV), 25 (0.6%) had RAF1 amplifications, and 10 (0.3%) had RAF1 fusions. Among the 10 patients with RAF1 fusions, concurrent RAF1 amplifications and RAF1 mutations were detected in one patient each. The most common tumor types were bladder cancer (11.5%), followed by ampulla of Vater (AoV) cancer (5.3%), melanoma (3.0%), gallbladder (GB) cancer (2.6%), and gastric (2.3%) cancer. Microsatellite instability high (MSI-H) tumors were observed in five of 76 patients (6.6%) with RAF1 aberrations, while MSI-H tumors were found in only 2.1% of patients with wild-type RAF1 cancers (p < 0.0001). CONCLUSION We demonstrated that approximately 2.0% of patients with metastatic solid cancers have RAF1 aberrations according to NGS of tumor specimens.
Collapse
Affiliation(s)
- Sung Hee Lim
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Jaeyun Jung
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
- Experimental Therapeutics Development Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jung Young Hong
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Seung Tae Kim
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Se Hoon Park
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Joon Oh Park
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Kyoung-Mee Kim
- Samsung Medical Center, Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Jeeyun Lee
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| |
Collapse
|
58
|
Schina A, Pedersen S, Spenning AL, Laursen OK, Pedersen C, Haslund CA, Schmidt H, Bastholt L, Svane IM, Ellebaek E, Donia M. Sustained improved survival of patients with metastatic melanoma after the introduction of anti-PD-1-based therapies. Eur J Cancer 2023; 195:113392. [PMID: 37924648 DOI: 10.1016/j.ejca.2023.113392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The introduction of modern therapies improved the median survival of patients with metastatic melanoma (MM). Here, we determined the real-world impact of modern treatments on the long-term survival of MM. METHODS In a population-based study, we extracted all cases of MM diagnosed in four non-consecutive years marked by major changes in available 1st line treatments (2012, 2014, 2016, and 2018) from the Danish MM Database. Patients were grouped into "trial-like" and "trial-excluded" based on common trial eligibility criteria. RESULTS We observed a sustained improved survival of "trial-like" patients diagnosed in 2016 or in 2018, compared to 2012 or 2014, but no major differences in 2018 versus 2016. In contrast, while survival of "trial-excluded" patients in 2016 was better compared to 2014 and 2012, survival in 2018 was improved over all previous years. We then developed a prognostic model based on multivariable stratified Cox regression, to predict the survival of newly diagnosed MM patients. Internal validation showed excellent discrimination and calibration, with a time-area-under-the-curve above 0.79 at multiple time horizons, for up to four years after diagnosis. CONCLUSIONS The introduction of modern treatments such as anti-PD-1 has led to a sustained, improved survival of real-world patients with MM, regardless of their eligibility for clinical trials. We provide an updateable prognostic model that can be used to improve patient information. Overall, these data highlight a positive population-based impact of modern treatments and can help health technology assessment agencies worldwide to evaluate the appropriateness of drug pricing based on known cost-benefit data.
Collapse
Affiliation(s)
- Aimilia Schina
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sidsel Pedersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Cecilia Pedersen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Eva Ellebaek
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
59
|
Hahn E, Chavira R, Wollenberg L, Tan W, Reddy MB. Impact of posaconazole and diltiazem on pharmacokinetics of encorafenib, a BRAF V600 kinase inhibitor for melanoma and colorectal cancer with BRAF mutations. Clin Transl Sci 2023; 16:2675-2686. [PMID: 37837178 PMCID: PMC10719479 DOI: 10.1111/cts.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Encorafenib is a potent and selective ATP competitive inhibitor of BRAF V600-mutant kinase approved for patients with BRAF-mutant melanoma and colorectal cancer. Encorafenib is mainly metabolized by cytochrome P450 (CYP) 3A4 in vitro and may be susceptible to drug-drug interactions when co-administered with CYP3A inhibitors or inducers. The primary objective was to assess the impact of the strong CYP3A inhibitor posaconazole (part 1) and the moderate CYP3A and P-gp inhibitor diltiazem (part 2) on encorafenib pharmacokinetics in healthy volunteers following a single 50-mg dose. A total of 32 participants were enrolled (16 each in parts 1 and 2). The area under the curve extrapolated to infinity (AUCinf ) and maximum plasma concentration (Cmax ) geometric mean for encorafenib increased by 183% and 68.4%, respectively, when co-administered with posaconazole. Apparent encorafenib clearance decreased from 26.0 to 9.2 L/h when coadministered with posaconazole, and plasma terminal half-life (t½ ) of encorafenib increased from 4.3 to 7.3 h. The AUCinf and Cmax geometric mean for encorafenib increased by 83.0% and 44.7%, respectively, when co-administered with diltiazem. Similarly, the apparent encorafenib clearance decreased from 29.0 to 16.0 L/h when co-administered with diltiazem, and plasma t½ of encorafenib increased from 6.6 to 7.9 h. There were no deaths, serious adverse events (AEs), or patient discontinuations due to AEs in parts 1 or 2. The most frequently reported treatment-related AEs were erythema (n = 14; 88%) and headache (n = 11; 69%) in part 1 and headache (n = 7; 44%) in part 2. The results of this study indicate that co-administration of encorafenib with strong or moderate CYP3A4 inhibitors should be avoided.
Collapse
Affiliation(s)
- Erik Hahn
- Global Product DevelopmentPfizer Inc.BoulderColoradoUSA
| | - Renae Chavira
- Global Product DevelopmentPfizer Inc.BoulderColoradoUSA
| | | | - Weiwei Tan
- Global Product DevelopmentPfizer Inc.La JollaCaliforniaUSA
| | | |
Collapse
|
60
|
Niessner H, Hüsch A, Kosnopfel C, Meinhardt M, Westphal D, Meier F, Schilling B, Sinnberg T. Exploring the In Vitro and In Vivo Therapeutic Potential of BRAF and MEK Inhibitor Combination in NRAS-Mutated Melanoma. Cancers (Basel) 2023; 15:5521. [PMID: 38067230 PMCID: PMC10705743 DOI: 10.3390/cancers15235521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
INTRODUCTION Patients with NRAS-mutant metastatic melanoma often have an aggressive disease requiring a fast-acting, effective therapy. The MEK inhibitor binimetinib shows an overall response rate of 15% in patients with NRAS-mutant melanoma, providing a backbone for combination strategies. Our previous studies demonstrated that in NRAS-mutant melanoma, the antitumor activity of the MEK inhibitor binimetinib was significantly potentiated by the BRAFV600E/K inhibitor encorafenib through the induction of ER stress, leading to melanoma cell death by apoptotic mechanisms. Encorafenib combined with binimetinib was well tolerated in a phase III trial showing potent antitumor activity in BRAF-mutant melanoma, making a rapid evaluation in NRAS-mutant melanoma imminently feasible. These data provide a mechanistic rationale for the evaluation of binimetinib combined with encorafenib in preclinical and clinical studies on NRAS-mutant metastatic melanoma. METHODS The combination of BRAFi plus MEKi was tested in a monolayer culture of patient-derived cell lines and in corresponding patient-derived tissue slice cultures of NRAS-mutant melanoma. To investigate the treatment in vivo, NSG (NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were subcutaneously injected with three different BRAF wild-type melanoma models harboring oncogenic NRAS mutations and treated orally with encorafenib (6 mg/kg body weight, daily) with or without binimetinib (8 mg/kg body weight, twice daily). In parallel, an individual healing attempt was carried out by treating one patient with an NRAS-mutated tumor. RESULTS Encorafenib was able to enhance the inhibitory effect on cell growth of binimetinib only in the cell line SKMel147 in vitro. It failed to enhance the apoptotic effect found in two other NRAS-mutated cell lines. Encorafenib led to a hyperactivation of ERK which could be reduced with the combinational treatment. In two of the three patient-derived tissue slice culture models of NRAS-mutant melanomas, a slight tendency of a combinatorial effect was seen which was not significant. Encorafenib showed a slight induction of the ER stress genes ATF4, CHOP, and NUPR1. The combinational treatment was able to enhance this effect, but not significantly. In the mouse model, the combination therapy of encorafenib with binimetinib resulted in reduced tumor growth compared to the control and encorafenib groups; however, the best effect in terms of tumor growth inhibition was measured in the binimetinib therapy group. The therapy showed no effect in an individual healing attempt for a patient suffering from metastatic, therapy-refractory NRAS-mutated melanoma. CONCLUSION In in vitro and ex vivo settings, the combination therapy was observed to elicit a response; however, it did not amplify the efficacy observed with binimetinib alone, whereas in a patient, the combinational treatment remained ineffective. The preclinical in vivo data showed no increased combinatorial effect. However, the in vivo effect of binimetinib as monotherapy was unexpectedly high in the tested regimen. Nevertheless, binimetinib proved to be advantageous in the treatment of melanoma in vivo and led to high rates of apoptosis in vitro; hence, it still seems to be a good base for combination with other substances in the treatment of patients with NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Anna Hüsch
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany;
| | - Matthias Meinhardt
- Department of Pathology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
| | - Dana Westphal
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (F.M.)
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, 01307 Dresden, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
61
|
Seth R, Agarwala SS, Messersmith H, Alluri KC, Ascierto PA, Atkins MB, Bollin K, Chacon M, Davis N, Faries MB, Funchain P, Gold JS, Guild S, Gyorki DE, Kaur V, Khushalani NI, Kirkwood JM, McQuade JL, Meyers MO, Provenzano A, Robert C, Santinami M, Sehdev A, Sondak VK, Spurrier G, Swami U, Truong TG, Tsai KK, van Akkooi A, Weber J. Systemic Therapy for Melanoma: ASCO Guideline Update. J Clin Oncol 2023; 41:4794-4820. [PMID: 37579248 DOI: 10.1200/jco.23.01136] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 08/16/2023] Open
Abstract
PURPOSE To provide guidance to clinicians regarding the use of systemic therapy for melanoma. METHODS American Society of Clinical Oncology convened an Expert Panel and conducted an updated systematic review of the literature. RESULTS The updated review identified 21 additional randomized trials. UPDATED RECOMMENDATIONS Neoadjuvant pembrolizumab was newly recommended for patients with resectable stage IIIB to IV cutaneous melanoma. For patients with resected cutaneous melanoma, adjuvant nivolumab or pembrolizumab was newly recommended for stage IIB-C disease and adjuvant nivolumab plus ipilimumab was added as a potential option for stage IV disease. For patients with unresectable or metastatic cutaneous melanoma, nivolumab plus relatlimab was added as a potential option regardless of BRAF mutation status and nivolumab plus ipilimumab followed by nivolumab was preferred over BRAF/MEK inhibitor therapy. Talimogene laherparepvec is no longer recommended as an option for patients with BRAF wild-type disease who have progressed on anti-PD-1 therapy. Ipilimumab- and ipilimumab-containing regimens are no longer recommended for patients with BRAF-mutated disease after progression on other therapies.This full update incorporates the new recommendations for uveal melanoma published in the 2022 Rapid Recommendation Update.Additional information is available at www.asco.org/melanoma-guidelines.
Collapse
Affiliation(s)
- Rahul Seth
- SUNY Upstate Medical University, Syracuse, NY
| | - Sanjiv S Agarwala
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | | | - Matias Chacon
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Nancy Davis
- Vanderbilt University Medical Center, Nashville, TN
| | - Mark B Faries
- The Angeles Clinic and Research Institute and Cedars Sinai Medical Center, Los Angeles, CA
| | | | | | | | | | | | | | - John M Kirkwood
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Institute, Pittsburgh, PA
| | | | - Michael O Meyers
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Caroline Robert
- Gustave Roussy Cancer Centre and Paris-Saclay University, Villejuif, France
| | - Mario Santinami
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Vernon K Sondak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Umang Swami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Katy K Tsai
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Alexander van Akkooi
- Melanoma Institute Australia, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY
| |
Collapse
|
62
|
Sullivan RJ. To Inhibit or Not to Inhibit MEK With BRAF Inhibitors: Is That the Question? J Clin Oncol 2023; 41:4613-4615. [PMID: 37590898 DOI: 10.1200/jco.23.01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
|
63
|
Shalata W, Abu Jama A, Abu Salman A, Golosky M, Solomon A, Abu Saleh O, Michlin R, Shalata S, Agbarya A, Yakobson A. Unexpected and Rare Sites of Metastasis in Oncologic Patients. J Clin Med 2023; 12:6447. [PMID: 37892585 PMCID: PMC10607747 DOI: 10.3390/jcm12206447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Case studies of rare oncologic metastases are an important source of clinical data for health care professionals and researchers. While infrequent, the knowledge base and clinical recommendations derived from such cases aid in advancements in the field. As such, we aim to add five cases to the growing body of literature. The first two male patients, aged 69 and 73, were diagnosed with colon adenocarcinoma, suspected to be a second primary prostate carcinoma, following positron emission tomography-computer tomography (PET-CT). This suspicion was ruled out by prostatectomy and histopathological investigations, which instead found adenocarcinoma of colonic origin. The next two male patients, ages 63 and 68, were diagnosed, respectively, with metastatic pancreatic adenocarcinoma with cardiac metastases and metastatic melanoma with distant metastases to the pancreas. The final patient was a 73-year-old male diagnosed with metastatic breast cancer after a radiological investigation of suspected renal cell carcinoma.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel; (A.A.J.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (A.S.)
| | - Ashraf Abu Jama
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel; (A.A.J.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (A.S.)
| | - Amjad Abu Salman
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (A.S.)
- Cardiology Division, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Mitchell Golosky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (A.S.)
- Medical School for International Health and Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Adam Solomon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (A.S.)
- Medical School for International Health and Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Regina Michlin
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel; (A.A.J.)
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel;
| | - Abed Agbarya
- Department of Oncology, Bnai Zion Medical Center, Haifa 31048, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel; (A.A.J.)
| |
Collapse
|
64
|
Ascierto PA, Dummer R, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion-Sileni V, Dutriaux C, de Groot JWB, Yamazaki N, Loquai C, Robert C, Flaherty KT. Contribution of MEK Inhibition to BRAF/MEK Inhibitor Combination Treatment of BRAF-Mutant Melanoma: Part 2 of the Randomized, Open-Label, Phase III COLUMBUS Trial. J Clin Oncol 2023; 41:4621-4631. [PMID: 37506329 PMCID: PMC10564308 DOI: 10.1200/jco.22.02322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE In COLUMBUS part 1, patients with advanced BRAFV600-mutant melanoma were randomly assigned 1:1:1 to encorafenib 450 mg once daily plus binimetinib 45 mg twice a day (COMBO450), vemurafenib 960 mg twice a day, or encorafenib 300 mg once daily (ENCO300). As previously reported, COMBO450 improved progression-free survival (PFS) versus vemurafenib (part 1 primary end point) and ENCO300 (part 1 key secondary end point; not statistically significant). Part 2, requested by the US Food and Drug Administration, evaluated the contribution of binimetinib by maintaining the same encorafenib dosage in the combination (encorafenib 300 mg once daily plus binimetinib 45 mg twice daily [COMBO300]) and ENCO300 arms. METHODS In part 2, patients were randomly assigned 3:1 to COMBO300 or ENCO300. ENCO300 (parts 1 and 2) data were combined, per protocol, for PFS analysis (key secondary end point) by a blinded independent review committee (BIRC). Other analyses included overall response rate (ORR), overall survival, and safety. RESULTS Two hundred fifty-eight patients received COMBO300, and 86 received ENCO300. Per protocol, ENCO300 arms (parts 1 and 2 combined) were also evaluated (n = 280). The median follow-up for ENCO300 was 40.8 months (part 1) and 57.1 months (part 2). The median PFS (95% CI) was 12.9 months (10.9 to 14.9) for COMBO300 versus 9.2 months (7.4 to 11.1) for ENCO300 (parts 1 and 2) and 7.4 months (5.6 to 9.2) for ENCO300 (part 2). The hazard ratio (95% CI) for COMBO300 was 0.74 (0.60 to 0.92; two-sided P = .003) versus ENCO300 (parts 1 and 2). The ORR by BIRC (95% CI) was 68% (62 to 74) and 51% (45 to 57) for COMBO300 and ENCO300 (parts 1 and 2), respectively. COMBO300 had greater relative dose intensity and fewer grade 3/4 adverse events than ENCO300. CONCLUSION COMBO300 improved PFS, ORR, and tolerability compared with ENCO300, confirming the contribution of binimetinib to efficacy and safety.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- Melanoma Unit, Cancer Immunotherapy and Innovative Therapies, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich Skin Cancer Center, Zürich, Switzerland
| | - Helen J. Gogas
- Department of Internal Medicine, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Ana Arance
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mario Mandala
- Santa Maria Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Gabriella Liszkay
- Department of Dermatology, National Institute of Oncology, Budapest, Hungary
| | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Ivana Krajsova
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Minden, Mühlenkreiskliniken, Ruhr University Bochum, Minden, Germany
| | | | - Caroline Dutriaux
- Department of Oncologic Dermatology, Bordeaux University Hospital Center, Bordeaux Cédex, France
| | | | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Carmen Loquai
- Department of Dermatology, Klinikum Bremen-Ost, Gesundheitnord gGmbH, Bremen, Germany
| | - Caroline Robert
- Department of Medicine, Service of Dermatology, Paris-Saclay University, Cedex, France
| | | |
Collapse
|
65
|
Jasper S, Keim U, Leiter U, Amaral T, Flatz L, Forschner A. Die Prognose des Melanoms im Kopf-Hals-Bereich im Stadium II hängt vom histologischen Subtyp ab. J Dtsch Dermatol Ges 2023; 21:1137-1147. [PMID: 37845056 DOI: 10.1111/ddg.15164_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/28/2023] [Indexed: 10/18/2023]
Abstract
ZusammenfassungHintergrund und ZieleDie Melanom‐Leitlinie basiert hauptsächlich auf dem AJCC‐Stadium. Hierbei wird nicht zwischen den histologischen Subtypen wie dem superfiziell spreitenden Melanom (SSM), dem Lentigo‐maligna‐Melanom (LMM) oder dem nodulären malignen Melanom (NM) unterschieden. Ziel der Studie war es zu untersuchen, ob sich Patienten mit LMM im klinischen Verlauf von Patienten mit SSM/NM unterscheiden. Dies ist aktuell besonders wichtig, da die adjuvante Anti‐PD‐1‐Therapie für Melanome im Stadium IIB und IIC zugelassen wurde.Patienten und MethodikDie Daten wurden aus dem Zentralregister „malignes Melanom“ entnommen. Es wurden nur Patienten mit LMM, SSM oder NM des Kopf‐Hals‐Bereichs und Primärdiagnose zwischen dem 01.01.2000 und dem 31.12.2019 eingeschlossen. Das progressionsfreie Überleben (PFÜ), das melanomspezifische Überleben (MSÜ) und das Metastasierungsmuster wurden für die Gruppe der LMM im Vergleich zur Gruppe der SSM/NM analysiert.ErgebnisseDie LMM‐Kohorte (n = 902) hatte ein signifikant besseres MSÜ als die SSM/NM‐Kohorte (n = 604). Beim PFÜ gab es keinen Unterschied. Das 5‐Jahres‐MSÜ der LMM‐Kohorte im Stadium II betrug 88,5 % (95 % KI 81,4–95,6), im Vergleich dazu das der SSM/NM‐Kohorte im Stadium II 79,7 % (95 % KI 72,8–86,6).SchlussfolgerungEs scheint nicht angebracht zu sein, eine adjuvante Therapie bei LMM‐Patienten im Stadium II im gleichen Umfang durchzuführen, wie bei Patienten mit SSM/NM.
Collapse
Affiliation(s)
- Sophie Jasper
- Abteilung für Dermatologie, Zentrum für Dermatoonkologie, Universitätsklinikum Tübingen
| | - Ulrike Keim
- Abteilung für Dermatologie, Zentrum für Dermatoonkologie, Universitätsklinikum Tübingen
| | - Ulrike Leiter
- Abteilung für Dermatologie, Zentrum für Dermatoonkologie, Universitätsklinikum Tübingen
| | - Teresa Amaral
- Abteilung für Dermatologie, Zentrum für Dermatoonkologie, Universitätsklinikum Tübingen
| | - Lukas Flatz
- Abteilung für Dermatologie, Zentrum für Dermatoonkologie, Universitätsklinikum Tübingen
| | - Andrea Forschner
- Abteilung für Dermatologie, Zentrum für Dermatoonkologie, Universitätsklinikum Tübingen
| |
Collapse
|
66
|
Jasper S, Keim U, Leiter U, Amaral T, Flatz L, Forschner A. Prognosis in stage II melanoma of the head and neck depends on the histological subtype. J Dtsch Dermatol Ges 2023; 21:1137-1146. [PMID: 37485634 DOI: 10.1111/ddg.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/28/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND OBJECTIVES The melanoma guideline is mainly based on the AJCC stage. There is no difference according to histological subtypes such as superficial spreading melanoma (SSM), lentigo maligna melanoma (LMM) or nodular malignant melanoma (NM). We aimed to evaluate whether patients with LMM have a different clinical course from patients with SSM/NM. This is particularly important as adjuvant anti-PD-1 therapy is approved for stage IIB and IIC melanoma. PATIENTS AND METHODS Data were extracted from the Central Registry of Malignant Melanoma. Only patients with LMM, SSM, and NM of the head and neck with primary diagnosis between 01/01/2000 and 12/31/2019 were included. Progression-free survival (PFS), melanoma-specific survival (MSS), and pattern of metastases were analyzed for the LMM group compared to SSM/NM. RESULTS The LMM cohort (n = 902) had significantly better MSS than the SSM/NM cohort (n = 604). There was no difference in PFS. The 5-year MSS of the stage II LMM cohort was 88.5% (95% CI 81.4-95.6) compared to 79.7% (95% CI 72.8-86.6) in the stage II SSM/NM cohort. CONCLUSION It does not appear appropriate to use adjuvant therapy in stage II LMM patients to the same extent as in patients with SSM/NM.
Collapse
Affiliation(s)
- Sophie Jasper
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Keim
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
67
|
Placke JM, Kimmig M, Griewank K, Herbst R, Terheyden P, Utikal J, Pföhler C, Ulrich J, Kreuter A, Mohr P, Gutzmer R, Meier F, Dippel E, Welzel J, Engel DR, Kreft S, Sucker A, Lodde G, Krefting F, Stoffels I, Klode J, Roesch A, Zimmer L, Livingstone E, Hadaschik E, Becker JC, Weichenthal M, Tasdogan A, Schadendorf D, Ugurel S. Correlation of tumor PD-L1 expression in different tissue types and outcome of PD-1-based immunotherapy in metastatic melanoma - analysis of the DeCOG prospective multicenter cohort study ADOREG/TRIM. EBioMedicine 2023; 96:104774. [PMID: 37660535 PMCID: PMC10483509 DOI: 10.1016/j.ebiom.2023.104774] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. METHODS Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28-8; cutoff ≥5%) and stratified by tissue type. FINDINGS Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138-0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311-1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310-0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307-0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467-1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305-0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555-1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698-1.681; P = 0.72). INTERPRETATION For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. FUNDING Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA).
Collapse
Affiliation(s)
- Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Mona Kimmig
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | | | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg/Saar, Germany.
| | - Jens Ulrich
- Skin Cancer Center, Department of Dermatology, Harz Clinics, Quedlinburg, Germany.
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany.
| | - Peter Mohr
- Department of Dermatology, Elbe Kliniken Buxtehude, Buxtehude, Germany.
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Minden, Minden, Germany.
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany.
| | - Julia Welzel
- Department of Dermatology, Augsburg Medical Center, Augsburg, Germany.
| | - Daniel Robert Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Sophia Kreft
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Frederik Krefting
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Ingo Stoffels
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Joachim Klode
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany.
| | - Jürgen C Becker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; Translational Skin Cancer Research, West German Cancer Center, University Medicine Essen, Essen, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Michael Weichenthal
- Department of Dermatology, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany.
| |
Collapse
|
68
|
Augustyn K, Joseph J, Patel AB, Razmandi A, Ali AN, Tawbi HA. Treatment experience with encorafenib plus binimetinib for BRAF V600-mutant metastatic melanoma: management insights for clinical practice. Melanoma Res 2023; 33:406-416. [PMID: 37534686 PMCID: PMC10470431 DOI: 10.1097/cmr.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/24/2023] [Indexed: 08/04/2023]
Abstract
For patients with locally advanced or metastatic melanoma who have BRAF V600 activating mutations, combination therapy with BRAF and MEK inhibitors is now the standard of care. The combination of encorafenib, a highly selective adenosine triphosphate-competitive BRAF inhibitor, plus binimetinib, a potent, selective, allosteric, non-adenosine triphosphate-competitive MEK1/2 inhibitor, was approved by the US Food and Drug Administration for unresectable or metastatic melanoma with BRAF V600E or V600K mutations based on data from the phase III COLUMBUS study (NCT01909453). Clinical data evaluating BRAF and MEK inhibitor combinations in advanced melanoma indicate a specific profile of adverse events that includes serious retinopathy, skin disorders, and cardiovascular toxicities. Here we provide an overview of the rationale for combining BRAF and MEK inhibitors for the treatment of melanoma, long-term safety results from COLUMBUS, and guidance on managing the most common adverse events associated with this combination based on clinical experience. Proactive and appropriate management of adverse events can allow for longer treatment durations and may result in better treatment outcomes.
Collapse
Affiliation(s)
- Kourtney Augustyn
- Department of Melanoma Medical Oncology, Division of Cancer Medicine
| | | | | | - Azadeh Razmandi
- Department of Head and Neck Surgery, Division of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amatul Noor Ali
- Department of Head and Neck Surgery, Division of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, Division of Cancer Medicine
| |
Collapse
|
69
|
Mezi S, Botticelli A, Scagnoli S, Pomati G, Fiscon G, De Galitiis F, Di Pietro FR, Verkhovskaia S, Amirhassankhani S, Pisegna S, Gentile G, Simmaco M, Gohlke B, Preissner R, Marchetti P. The Impact of Drug-Drug Interactions on the Toxicity Profile of Combined Treatment with BRAF and MEK Inhibitors in Patients with BRAF-Mutated Metastatic Melanoma. Cancers (Basel) 2023; 15:4587. [PMID: 37760556 PMCID: PMC10526382 DOI: 10.3390/cancers15184587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND BRAF and MEK inhibition is a successful strategy in managing BRAF-mutant melanoma, even if the treatment-related toxicity is substantial. We analyzed the role of drug-drug interactions (DDI) on the toxicity profile of anti-BRAF/anti-MEK therapy. METHODS In this multicenter, observational, and retrospective study, DDIs were assessed using Drug-PIN software (V 2/23). The association between the Drug-PIN continuous score or the Drug-PIN traffic light and the occurrence of treatment-related toxicities and oncological outcomes was evaluated. RESULTS In total, 177 patients with advanced BRAF-mutated melanoma undergoing BRAF/MEK targeted therapy were included. All grade toxicity was registered in 79% of patients. Cardiovascular toxicities occurred in 31 patients (17.5%). Further, 94 (55.9%) patients had comorbidities requiring specific pharmacological treatments. The median Drug-PIN score significantly increased when the target combination was added to the patient's home therapy (p-value < 0.0001). Cardiovascular toxicity was significantly associated with the Drug-PIN score (p-value = 0.048). The Drug-PIN traffic light (p = 0.00821) and the Drug-PIN score (p = 0.0291) were seen to be significant predictors of cardiotoxicity. Patients with low-grade vs. high-grade interactions showed a better prognosis regarding overall survival (OS) (p = 0.0045) and progression-free survival (PFS) (p = 0.012). The survival analysis of the subgroup of patients with cardiological toxicity demonstrated that patients with low-grade vs. high-grade DDIs had better outcomes in terms of OS (p = 0.0012) and a trend toward significance in PFS (p = 0.068). CONCLUSIONS DDIs emerged as a critical issue for the risk of treatment-related cardiovascular toxicity. Our findings support the utility of DDI assessment in melanoma patients treated with BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Andrea Botticelli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Simone Scagnoli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Federica De Galitiis
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Francesca Romana Di Pietro
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sofia Verkhovskaia
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Via Palagi, 40126 Bologna, Italy;
| | - Simona Pisegna
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Bjoern Gohlke
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Paolo Marchetti
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| |
Collapse
|
70
|
Kerle I, Heining C. [Histology-agnostic tumor treatment - a farewell to tumor entities?]. Dtsch Med Wochenschr 2023; 148:1174-1181. [PMID: 37657455 DOI: 10.1055/a-1933-8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Considerable efforts concerning the molecular characterization and targeted treatment of cancer have significantly improved treatment options and prognosis of tumor patients. Nevertheless, in tumor entities without recurrent genetic alterations the application of molecular testing for potentially targetable lesions remains heterogeneous and, in most cases, the approval of targeted therapies is still restricted to defined tumor entities harboring corresponding predictive biomarkers.The broad genomic analysis of different tumor entities including rare cancers within several genome sequencing initiatives and precision oncology programs has revealed the occurrence of addressable molecular alterations across many tumor entities, although their incidence may differ significantly in the context of the underlying cancer type. The treatment of molecularly defined patient cohorts demonstrated an impressive tumor-agnostic efficacy of certain therapeutics such as NTRK inhibitors, while the outcome of other targeted therapies, such as ERBB or BRAF inhibitors, varied in the context of the underlying disease.In the meantime, a handful targeted therapeutics addressing NRTK and RET fusions, the BRAF V600E mutation or different features of defective DNA mismatch repair and high tumor mutational burden has been approved for histology-agnostic treatment of tumors harboring these target lesions. Ongoing molecularly stratified basket trials will further investigate the tumor-agnostic efficacy of different targeted treatment approaches.
Collapse
|
71
|
Lee S, Bennett AV, Zhou X, Betof Warner A, Trogdon JG, Kent EE, Lund JL. Real-world treatment patterns and outcomes for patients with advanced melanoma treated with immunotherapy or targeted therapy. Pharmacoepidemiol Drug Saf 2023; 32:988-1000. [PMID: 37095605 DOI: 10.1002/pds.5630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE To identify real-world patterns of first line treatment, treatment sequence and outcomes for older adults diagnosed with advanced melanoma who received immunotherapy or targeted therapy. METHODS The study population included older adults (ages 65+) diagnosed with unresectable or metastatic melanoma between 2012 and 2017 and who received first line immunotherapy or targeted therapy. Using the linked surveillance, epidemiology, and end results-medicare data, we described patterns of first line treatment and treatment sequence through 2018. We used descriptive statistics to report patient and provider characteristics by first line treatment receipt and changes in first line therapy use over calendar time. We also described overall survival (OS) and time to treatment failure (TTF) by first line treatment using the Kaplan-Meier method. For patterns of treatment sequence, we reported commonly observed treatment switch patterns by treatment sub-category and calendar year. RESULTS The analyses included 584 patients (mean age = 76.3 years). A majority (n = 502) received first line immunotherapy. There was a sustained increase in immunotherapy uptake, most notably from 2015 to 2016. The estimated median OS and TTF were longer with first line immunotherapy than with targeted therapy. Individuals treated with CTLA-4 + PD-1 inhibitors had the longest median OS (28.4 months). The most common treatment switch pattern was from a first line CTLA-4 inhibitor to a second line PD-1 inhibitor. CONCLUSIONS Our findings inform understanding of treatment patterns of currently used immunotherapies and targeted therapies in older adults with advanced melanoma. Immunotherapy use has increased steadily with PD-1 inhibitors becoming a dominant treatment option since 2015.
Collapse
Affiliation(s)
- Sejin Lee
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Antonia V Bennett
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Justin G Trogdon
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin E Kent
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer L Lund
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
72
|
van Akkooi AC, Hauschild A, Long GV, Mandala M, Kicinski M, Govaerts AS, Klauck I, Ouali M, Lorigan PC, Eggermont AM. COLUMBUS-AD: phase III study of adjuvant encorafenib + binimetinib in resected stage IIB/IIC BRAF V600-mutated melanoma. Future Oncol 2023; 19:2017-2027. [PMID: 37665297 DOI: 10.2217/fon-2023-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Stage IIB/IIC melanoma has a high risk of recurrence after surgical resection. While, for decades, surgery was the only option for high-risk stage II disease in most countries, adjuvant therapies now exist. Anti-programmed cell death protein 1 (PD-1) antibodies significantly improve recurrence-free survival versus placebo in patients with fully resected stage IIB/IIC melanoma. Combined BRAF MEK inhibitor therapy showed benefits in high-risk stage III and advanced disease; however, its role in patients with fully resected stage BRAF-mutated IIB/IIC melanoma is still unknown. Here we describe the rationale and design of the ongoing randomized, placebo-controlled COLUMBUS-AD trial, the first study of a BRAF-MEK inhibitor combination therapy (encorafenib + binimetinib) in patients with BRAF V600-mutated stage IIB/IIC melanoma.
Collapse
Affiliation(s)
- Alexander Cj van Akkooi
- Melanoma Institute Australia, the University of Sydney & Royal Prince Alfred Hospital, 40 Rocklands Road Wollstonecraft, Sydney 2065, NSW, Australia
| | - Axel Hauschild
- Department of Dermatology, University Hospital (UKSH), Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, & Mater & Royal North Shore Hospitals, 40 Rocklands Road Wollstonecraft, Sydney 2065, NSW, Australia
| | - Mario Mandala
- University of Perugia, Ospedale Santa Maria della Misericordia, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Michal Kicinski
- EORTC Headquarters, Avenue Emmanuel Mounier 83/11, 1200, Brussels, Belgium
| | | | - Isabelle Klauck
- Pierre Fabre, Medical & Patient/Consumer Division, 33 avenue Emile Zola, 92100, Boulogne-Billancourt, France
| | - Monia Ouali
- Pierre Fabre, Medical & Patient/Consumer Division, Langlade, France
| | - Paul C Lorigan
- Christie NHS Foundation Trust, Wilmslow Road Manchester M20 4BX, UK
| | - Alexander Mm Eggermont
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Comprehensive Cancer Center Munich, Technical University Munich & Ludwig Maximiliaan University, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
73
|
Yao TH, Wu Z, Bharath K, Li J, Baladandayuthapani V. PROBABILISTIC LEARNING OF TREATMENT TREES IN CANCER. Ann Appl Stat 2023; 17:1884-1908. [PMID: 37711665 PMCID: PMC10501503 DOI: 10.1214/22-aoas1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Accurate identification of synergistic treatment combinations and their underlying biological mechanisms is critical across many disease domains, especially cancer. In translational oncology research, preclinical systems such as patient-derived xenografts (PDX) have emerged as a unique study design evaluating multiple treatments administered to samples from the same human tumor implanted into genetically identical mice. In this paper, we propose a novel Bayesian probabilistic tree-based framework for PDX data to investigate the hierarchical relationships between treatments by inferring treatment cluster trees, referred to as treatment trees (Rx-tree). The framework motivates a new metric of mechanistic similarity between two or more treatments accounting for inherent uncertainty in tree estimation; treatments with a high estimated similarity have potentially high mechanistic synergy. Building upon Dirichlet Diffusion Trees, we derive a closed-form marginal likelihood encoding the tree structure, which facilitates computationally efficient posterior inference via a new two-stage algorithm. Simulation studies demonstrate superior performance of the proposed method in recovering the tree structure and treatment similarities. Our analyses of a recently collated PDX dataset produce treatment similarity estimates that show a high degree of concordance with known biological mechanisms across treatments in five different cancers. More importantly, we uncover new and potentially effective combination therapies that confer synergistic regulation of specific downstream biological pathways for future clinical investigations. Our accompanying code, data, and shiny application for visualization of results are available at: https://github.com/bayesrx/RxTree.
Collapse
Affiliation(s)
- Tsung-Hung Yao
- Department of Biostatistics, University of Michigan at Ann Arbor
| | - Zhenke Wu
- Department of Biostatistics, University of Michigan at Ann Arbor
| | | | - Jinju Li
- Department of Biostatistics, University of Michigan at Ann Arbor
| | | |
Collapse
|
74
|
Saltos AN, Creelan BC, Tanvetyanon T, Chiappori AA, Antonia SJ, Shafique MR, Ugrenovic-Petrovic M, Sansil S, Neuger A, Ozakinci H, Boyle TA, Kim J, Haura EB, Gray JE. A phase I/IB trial of binimetinib in combination with erlotinib in NSCLC harboring activating KRAS or EGFR mutations. Lung Cancer 2023; 183:107313. [PMID: 37499521 DOI: 10.1016/j.lungcan.2023.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Activating mutations in EGFR or KRAS are highly prevalent in NSCLC, share activation of the MAPK pathway and may be amenable to combination therapy to prevent negative feedback activation. METHODS In this phase 1/1B trial, we tested the combination of binimetinib and erlotinib in patients with advanced NSCLC with at least 1 prior line of treatment (unless with activating EGFR mutation which could be treatment-naïve). A subsequent phase 1B expansion accrued patients with either EGFR- or KRAS-mutation using the recommended phase 2 dose (RP2D) from Phase 1. The primary objective was to evaluate the safety of binimetinib plus erlotinib and establish the RP2D. RESULTS 43 patients enrolled (dose-escalation = 23; expansion = 20). 17 harbored EGFR mutation and 22 had KRAS mutation. The RP2D was erlotinib 100 mg daily and binimetinib 15 mg BID × 5 days/week. Common AEs across all doses included diarrhea (69.8%), rash (44.2%), fatigue (32.6%), and nausea (32.6%), and were primarily grade 1/2. Among KRAS mutant patients, 1 (5%) had confirmed partial response and 8 (36%) achieved stable disease as best overall response. Among EGFR mutant patients, 9 were TKI-naïve with 8 (89%) having partial response, and 8 were TKI-pretreated with no partial responses and 1 (13%) stable disease as best overall response. CONCLUSIONS Binimetinib plus erlotinib demonstrated a manageable safety profile and modest efficacy including one confirmed objective response in a KRAS mutant patient. While clinical utility of this specific combination was limited, these results support development of combinations using novel small molecule inhibitors of RAS, selective EGFR- and other MAPK pathway inhibitors, many of which have improved therapeutic indices. CLINICAL TRIAL REGISTRATION NCT01859026.
Collapse
Affiliation(s)
- Andreas N Saltos
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA.
| | - Ben C Creelan
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Tawee Tanvetyanon
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Alberto A Chiappori
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Scott J Antonia
- Center for Cancer Immunotherapy, Duke Cancer Institute, 20 Duke Medicine Cir., Durham, NC 27710, USA
| | - Michael R Shafique
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | | | - Samer Sansil
- Cancer Pharmacokinetics & Pharmacodynamics Core, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Anthony Neuger
- Cancer Pharmacokinetics & Pharmacodynamics Core, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Hilal Ozakinci
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Theresa A Boyle
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
75
|
Buchbinder EI, Giobbie-Hurder A, Haq R, Ott PA. A phase I/II study of LY3022855 with BRAF/MEK inhibition in patients with Melanoma. Invest New Drugs 2023; 41:551-555. [PMID: 37247116 DOI: 10.1007/s10637-023-01374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
BRAF/MEK targeted therapies and immune checkpoint inhibition have dramatically improved disease control and survival of patients with advanced melanoma. However, most patients do not have durable benefit from either of these therapies. BRAF targeted therapy often has a limited duration of efficacy due to the development of resistance. Pre-clinical data suggest that one possible way to overcome resistance to BRAF/MEK targeted therapy may be the addition of CSF1R inhibition. In this phase I/II study we evaluated the safety and efficacy of LY3022855, an anti-colony stimulating factor-1 receptor (CSF-1R) monoclonal antibody in combination with the BRAF inhibitor vemurafenib and the MEK inhibitor cobimetinib in patients with BRAF V600E/K mutant metastatic melanoma. The trial was terminated early due to discontinuation of the development program for LY3022855 by the sponsor. Between August 2017 and May 2018 five pts were enrolled. Three patients experienced grade 3 events that were deemed possibly related to LY3022855. There were no grade 4 or grade 5 events related to LY3022855. One of the 5 patients had a complete response (CR), whereas the other 4 had progressive disease (PD). Median progression free survival was 3.9 months (90% CI: 1.9-37.2 mos). CSF1R inhibition with LY3022855 in combination with BRAF/MEK inhibition with vemurafenib and cobimetinib was difficult to tolerate in a small melanoma population. One response was observed in this small sample of patients suggesting this combination might be worthy of further exploration.
Collapse
Affiliation(s)
- Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- , 450 Brookline Ave, Boston, MA, 02215, USA.
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
76
|
Jiao R, Allen KJH, Malo ME, Yilmaz O, Wilson J, Nelson BJB, Wuest F, Dadachova E. A Theranostic Approach to Imaging and Treating Melanoma with 203Pb/ 212Pb-Labeled Antibody Targeting Melanin. Cancers (Basel) 2023; 15:3856. [PMID: 37568672 PMCID: PMC10416844 DOI: 10.3390/cancers15153856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody is radiolabeled with a 212Pb/212Bi "in vivo generator", which emits cytotoxic alpha particles. Using microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in tumor growth rate in the 5-10 µCi dose range when compared to the untreated and radiolabeled control antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment was observed. However, administration of higher doses resulted in a biphasic tumor dose response, with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies before the clinical utility of such an approach can be assessed.
Collapse
Affiliation(s)
- Rubin Jiao
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - Kevin J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - Mackenzie E. Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - Orhan Yilmaz
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| | - John Wilson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (J.W.); (B.J.B.N.); (F.W.)
| | - Bryce J. B. Nelson
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (J.W.); (B.J.B.N.); (F.W.)
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (J.W.); (B.J.B.N.); (F.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (R.J.); (K.J.H.A.); (M.E.M.); (O.Y.)
| |
Collapse
|
77
|
Priantti JN, Vilbert M, Madeira T, Moraes FCA, Hein ECK, Saeed A, Cavalcante L. Efficacy and Safety of Rechallenge with BRAF/MEK Inhibitors in Advanced Melanoma Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3754. [PMID: 37568570 PMCID: PMC10417341 DOI: 10.3390/cancers15153754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
This systematic review and meta-analysis aims to evaluate the efficacy and safety of rechallenging advanced melanoma patients with BRAFi/MEKi. Seven studies, accounting for 400 patients, were included. Most patients received immunotherapy before the rechallenge, and 79% underwent rechallenge with the combination of BRAFi/MEKi. We found a median progression-free survival of 5 months and overall survival of 9.8 months. The one-year survival rate was 42.63%. Regarding response, ORR was 34% and DCR 65%. There were no new or unexpected safety concerns. Rechallenge with BRAFi/MEKi can improve outcomes in advanced melanoma patients with refractory disease. These findings have significant implications for clinical practice, particularly in the setting of progressive disease in later lines and limited treatment options.
Collapse
Affiliation(s)
- Jonathan N. Priantti
- School of Medicine, Federal University of Amazonas—UFAM, Manaus 69020-160, AM, Brazil
| | - Maysa Vilbert
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thiago Madeira
- School of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, MG, Brazil
| | | | - Erica C. Koch Hein
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ludimila Cavalcante
- Department of Medical Oncology, Novant Health Cancer Institute, Charlotte, NC 28204, USA
| |
Collapse
|
78
|
Riely GJ, Smit EF, Ahn MJ, Felip E, Ramalingam SS, Tsao A, Johnson M, Gelsomino F, Esper R, Nadal E, Offin M, Provencio M, Clarke J, Hussain M, Otterson GA, Dagogo-Jack I, Goldman JW, Morgensztern D, Alcasid A, Usari T, Wissel P, Wilner K, Pathan N, Tonkovyd S, Johnson BE. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients With BRAFV600-Mutant Metastatic Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3700-3711. [PMID: 37270692 DOI: 10.1200/jco.23.00774] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
PURPOSE The combination of encorafenib (BRAF inhibitor) plus binimetinib (MEK inhibitor) has demonstrated clinical efficacy with an acceptable safety profile in patients with BRAFV600E/K-mutant metastatic melanoma. We evaluated the efficacy and safety of encorafenib plus binimetinib in patients with BRAFV600E-mutant metastatic non-small-cell lung cancer (NSCLC). METHODS In this ongoing, open-label, single-arm, phase II study, patients with BRAFV600E-mutant metastatic NSCLC received oral encorafenib 450 mg once daily plus binimetinib 45 mg twice daily in 28-day cycles. The primary end point was confirmed objective response rate (ORR) by independent radiology review (IRR). Secondary end points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), overall survival, time to response, and safety. RESULTS At data cutoff, 98 patients (59 treatment-naïve and 39 previously treated) with BRAFV600E-mutant metastatic NSCLC received encorafenib plus binimetinib. Median duration of treatment was 9.2 months with encorafenib and 8.4 months with binimetinib. ORR by IRR was 75% (95% CI, 62 to 85) in treatment-naïve and 46% (95% CI, 30 to 63) in previously treated patients; median DOR was not estimable (NE; 95% CI, 23.1 to NE) and 16.7 months (95% CI, 7.4 to NE), respectively. DCR after 24 weeks was 64% in treatment-naïve and 41% in previously treated patients. Median PFS was NE (95% CI, 15.7 to NE) in treatment-naïve and 9.3 months (95% CI, 6.2 to NE) in previously treated patients. The most frequent treatment-related adverse events (TRAEs) were nausea (50%), diarrhea (43%), and fatigue (32%). TRAEs led to dose reductions in 24 (24%) and permanent discontinuation of encorafenib plus binimetinib in 15 (15%) patients. One grade 5 TRAE of intracranial hemorrhage was reported. Interactive visualization of the data presented in this article is available at the PHAROS dashboard (https://clinical-trials.dimensions.ai/pharos/). CONCLUSION For patients with treatment-naïve and previously treated BRAFV600E-mutant metastatic NSCLC, encorafenib plus binimetinib showed a meaningful clinical benefit with a safety profile consistent with that observed in the approved indication in melanoma.
Collapse
Affiliation(s)
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Anne Tsao
- MD Anderson Cancer Center, Houston, TX
| | - Melissa Johnson
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN
| | - Francesco Gelsomino
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Patinote C, Raevens S, Baumann A, Pellegrin E, Bonnet PA, Deleuze-Masquéfa C. [1,2,4]triazolo[4,3- a]quinoxaline as Novel Scaffold in the Imiqualines Family: Candidates with Cytotoxic Activities on Melanoma Cell Lines. Molecules 2023; 28:5478. [PMID: 37513350 PMCID: PMC10384284 DOI: 10.3390/molecules28145478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers and is the deadliest form of skin cancer, essentially due to metastases. Novel therapies are always required, since cutaneous melanoma develop resistance to oncogenic pathway inhibition treatment. The Imiqualine family is composed of heterocycles diversely substituted around imidazo[1,2-a]quinoxaline, imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline scaffolds, which display interesting activities on a panel of cancer cell lines, especially melanoma cell lines. We have designed and prepared novel compounds based on the [1,2,4]triazolo[4,3-a]quinoxaline scaffold through a common synthetic route, using 1-chloro-2-hydrazinoquinoxaline and an appropriate aldehyde. Cyclization is ensured by an oxidation-reduction mechanism using chloranil. The substituents on positions 1 and 8 were chosen based on previous structure-activity relationship (SAR) studies conducted within our heterocyclic Imiqualine family. Physicochemical parameters of all compounds have also been predicted. A375 melanoma cell line viability has been evaluated for 16 compounds. Among them, three novel [1,2,4]triazolo[4,3-a]quinoxalines display cytotoxic activities. Compounds 16a and 16b demonstrate relative activities in the micromolar range (respectively, 3158 nM and 3527 nM). Compound 17a shows the best EC50 of the novel series (365 nM), even if EAPB02303 remains the lead of the entire Imiqualine family (3 nM).
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Sandy Raevens
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Amélie Baumann
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Eloise Pellegrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| |
Collapse
|
80
|
Rasco DW, Medina T, Corrie P, Pavlick AC, Middleton MR, Lorigan P, Hebert C, Plummer R, Larkin J, Agarwala SS, Daud AI, Qiu J, Bozon V, Kneissl M, Barry E, Olszanski AJ. Phase 1 study of the pan-RAF inhibitor tovorafenib in patients with advanced solid tumors followed by dose expansion in patients with metastatic melanoma. Cancer Chemother Pharmacol 2023; 92:15-28. [PMID: 37219686 PMCID: PMC10261210 DOI: 10.1007/s00280-023-04544-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Genomic alterations of BRAF and NRAS are oncogenic drivers in malignant melanoma and other solid tumors. Tovorafenib is an investigational, oral, selective, CNS-penetrant, small molecule, type II pan‑RAF inhibitor. This first-in-human phase 1 study explored the safety and antitumor activity of tovorafenib. METHODS This two-part study in adult patients with relapsed or refractory advanced solid tumors included a dose escalation phase and a dose expansion phase including molecularly defined cohorts of patients with melanoma. Primary objectives were to evaluate the safety of tovorafenib administered once every other day (Q2D) or once weekly (QW), and to determine the maximum-tolerated and recommended phase 2 dose (RP2D) on these schedules. Secondary objectives included evaluation of antitumor activity and tovorafenib pharmacokinetics. RESULTS Tovorafenib was administered to 149 patients (Q2D n = 110, QW n = 39). The RP2D of tovorafenib was defined as 200 mg Q2D or 600 mg QW. In the dose expansion phase, 58 (73%) of 80 patients in Q2D cohorts and 9 (47%) of 19 in the QW cohort had grade ≥ 3 adverse events. The most common of these overall were anemia (14 patients, 14%) and maculo-papular rash (8 patients, 8%). Responses were seen in 10 (15%) of 68 evaluable patients in the Q2D expansion phase, including in 8 of 16 (50%) patients with BRAF mutation-positive melanoma naïve to RAF and MEK inhibitors. In the QW dose expansion phase, there were no responses in 17 evaluable patients with NRAS mutation-positive melanoma naïve to RAF and MEK inhibitors; 9 patients (53%) had a best response of stable disease. QW dose administration was associated with minimal accumulation of tovorafenib in systemic circulation in the dose range of 400-800 mg. CONCLUSIONS The safety profile of both schedules was acceptable, with QW dosing at the RP2D of 600 mg QW preferred for future clinical studies. Antitumor activity of tovorafenib in BRAF-mutated melanoma was promising and justifies continued clinical development across multiple settings. CLINICALTRIALS GOV IDENTIFIER NCT01425008.
Collapse
Affiliation(s)
- Drew W Rasco
- South Texas Accelerated Research Therapeutics, LLC, San Antonio, TX, USA
| | | | - Pippa Corrie
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna C Pavlick
- Laura & Isaac Perlmutter Cancer Center at NYU Langone, New York, NY, USA
| | - Mark R Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chris Hebert
- Bristol Haematology and Oncology Centre, Bristol, UK
| | - Ruth Plummer
- The Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Adil I Daud
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA
| | - Viviana Bozon
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Michelle Kneissl
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Elly Barry
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA.
| | | |
Collapse
|
81
|
Kyriazopoulou E, Giamarellos-Bourboulis EJ, Akinosoglou K. Biomarkers to guide immunomodulatory treatment: where do we stand? Expert Rev Mol Diagn 2023; 23:945-958. [PMID: 37691280 DOI: 10.1080/14737159.2023.2258063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION This review summarizes current progress in the development of biomarkers to guide immunotherapy in oncology, rheumatology, and critical illness. AREAS COVERED An extensive literature search was performed about biomarkers classifying patients' immune responses to guide immunotherapy in oncology, rheumatology, and critical illness. Surface markers, such as programmed death-ligand 1 (PD-L1), genetic biomarkers, such as tumor mutation load, and circulating tumor DNA are biomarkers associated with the effectiveness of immunotherapy in oncology. Genomics, metabolomics, and proteomics play a crucial role in selecting the most suitable therapeutic options for rheumatologic patients. Phenotypes and endotypes are a promising approach to detect critically ill patients with hyper- or hypo-inflammation. Sepsis trials using biomarkers such as ferritin, lymphopenia, HLA-DR expression on monocytes and PD-L1 to guide immunotherapy have been already conducted or are currently ongoing. Immunotherapy in COVID-19 pneumonia, guided by C-reactive protein and soluble urokinase plasminogen activator receptor (suPAR) has improved patient outcomes globally. More research is needed into immunotherapy in other critical conditions. EXPERT OPINION Targeted immunotherapy has improved outcomes in oncology and rheumatology, paving the way for precision medicine in the critically ill. Transcriptomics will play a crucial role in detecting the most suitable candidates for immunomodulation.
Collapse
Affiliation(s)
- Evdoxia Kyriazopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | |
Collapse
|
82
|
Kraehenbuehl L, Schneider S, Pawlik L, Mangana J, Cheng P, Dummer R, Meier-Schiesser B. Cutaneous Adverse Events of Systemic Melanoma Treatments: A Retrospective Single-Center Analysis. Pharmaceuticals (Basel) 2023; 16:935. [PMID: 37513847 PMCID: PMC10383648 DOI: 10.3390/ph16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recent progress in the treatment of advanced melanoma has led to the improved survival of affected patients. However, novel treatments also lead to considerable and distinct skin toxicity. To further characterize cutaneous adverse events (AE) of systemic treatments, we conducted a single-center retrospective study of biopsy-proven cutaneous adverse events of melanoma treatment over a period of 10 years at the University Hospital of Zurich, Switzerland. In 102 identified patients, 135 individual skin AEs developed. Immune checkpoint blockade (ICB) was causal for 81 skin AEs, and 54 were related to targeted therapies (TT). Recorded types of skin AEs included lichenoid, maculopapular, acneiform, urticarial, panniculitis, folliculitis, psoriasiform, granulomatous, eczematous, and others. The incidence of skin AEs was higher with TT (18.54%) than with ICB (9.64%, p = 0.0029). Most AEs were low-grade, although 19.21% of AEs were common terminology criteria for adverse events (CTCAE) Grades 3 or 4. A large spectrum of skin AEs was documented during treatment of advanced melanoma, and distinct phenotypes were observed, depending on treatment classes. AEs occurred earlier during treatment with TT than with ICB, and distinct types of skin AEs were associated with respective treatment classes. This study comprehensively describes skin AEs occurring during systemic treatment for melanoma at a single center.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Stephanie Schneider
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
83
|
Plachouri KM, Florou V, Georgiou V, Georgiou S. Cutaneous Side Effects of Modern Targeted Therapy and Immunotherapy in Patients with Dermatological Malignancies. Cancers (Basel) 2023; 15:3126. [PMID: 37370736 DOI: 10.3390/cancers15123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The advent of immunotherapy and targeted therapies in treating dermatological malignancies has dramatically changed the landscape of dermato-oncology in recent years. Their superior efficacy compared to previous therapeutic options, such as chemotherapy, has resulted in their use in treating devastating malignancies, such as melanoma or unresectable/metastatic basal cell and squamous cell carcinoma. Skin toxicity is a critical safety consideration, among other adverse reactions, that can occur under treatment with these agents. This article aims to summarize the cutaneous side effects of immune checkpoint inhibitors and targeted dermato-oncological therapies. Although the skin side effects of these agents are primarily mild, they can occasionally affect the decision for treatment continuation and the quality of life of the affected patients. Therefore, physicians must be acquainted with the specific cutaneous toxicity profile of such treatments to mitigate their impact on the patients and optimize the overall outcome of dermato-oncological therapy.
Collapse
Affiliation(s)
- Kerasia-Maria Plachouri
- Dermatology Department, University General Hospital of Patras, University of Patras, 265 04 Rio, Greece
| | - Vaia Florou
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 841112, USA
| | - Vasileios Georgiou
- School of Medicine, University General Hospital of Patras, University of Patras, 265 04 Rio, Greece
| | - Sophia Georgiou
- Dermatology Department, University General Hospital of Patras, University of Patras, 265 04 Rio, Greece
| |
Collapse
|
84
|
Bauer S, Larkin J, Hodi FS, Stephen F, Kapiteijn EHW, Schwartz GK, Calvo E, Yerramilli-Rao P, Piperno-Neumann S, Carvajal RD. A phase Ib trial of combined PKC and MEK inhibition with sotrastaurin and binimetinib in patients with metastatic uveal melanoma. Front Oncol 2023; 12:975642. [PMID: 37359242 PMCID: PMC10288853 DOI: 10.3389/fonc.2022.975642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/28/2022] [Indexed: 06/28/2023] Open
Abstract
Background Uveal melanoma is a disease characterized by constitutive activation of the G alpha pathway and downstream signaling of protein kinase C (PKC) and the mitogen-activated protein kinase (MAPK) pathway. While limited clinical activity has been observed in patients with metastatic disease with inhibition of PKC or MEK alone, preclinical data has demonstrated synergistic antitumor effects with concurrent inhibition of PKC and MEK. Method We conducted a phase Ib study of the PKC inhibitor sotrastaurin in combination with the MEK inhibitor binimetinib in patients with metastatic uveal melanoma using a Bayesian logistic regression model guided by the escalation with overdose control principle (NCT01801358). Serial blood samples and paired tumor samples were collected for pharmacokinetic (PK) and pharmacodynamic analysis. Results Thirty-eight patients were treated across six dose levels. Eleven patients experienced DLTs across the five highest dose levels tested, most commonly including vomiting (n=3), diarrhea (n=3), nausea (n=2), fatigue (n=2) and rash (n=2). Common treatment related adverse events included diarrhea (94.7%), nausea (78.9%), vomiting (71.1%), fatigue (52.6%), rash (39.5%), and elevated blood creating phosphokinase (36.8%). Two dose combinations satisfying criteria for the maximum tolerated dose (MTD) were identified: (1) sotrastaurin 300 mg and binimetinib 30 mg; and, (2) sotrastaurin 200 mg and binimetinib 45 mg. Exposure to both drugs in combination was consistent with single-agent data for either drug, indicating no PK interaction between sotrastaurin and binimetinib. Stable disease was observed in 60.5% of patients treated. No patient achieved a radiographic response per RECIST v1.1. Conclusions Concurrent administration of sotrastaurin and binimetinib is feasible but associated with substantial gastrointestinal toxicity. Given the limited clinical activity achieved with this regimen, accrual to the phase II portion of the trial was not initiated.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
| | - James Larkin
- Department of Medical Oncology and Hematology, The Royal Marsden Hospital, London, United Kingdom
| | - F. Stephen Hodi
- Melanoma Center and Center for Immuno-Oncology, Dana−Farber Cancer Institute, Boston, MD, United States
| | - Frank Stephen
- Hebrew University Hadassah Medical School, The Sharett Institute of Oncology, Jerusalem, Israel
- Jacob Schachter, Sheba Medical Center at Tel Hashomer, Tel-Aviv University Medical School, Tel Aviv, Israel
| | - Ellen H. W. Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, Netherlands
| | - Gary K. Schwartz
- Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Emilano Calvo
- Early Phase Clinical Drug Development in Oncology, START Madrid-CIOCC, Centro Integral Oncológico Clara Campa, Madrid, Spain
| | - Padmaja Yerramilli-Rao
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Richard D. Carvajal
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
85
|
Lee YJ, Heo JY, Kim DS, Choi YS, Kim S, Nam HS, Lee SH, Cho MK. Curcumin Enhances the Anticancer Effects of Binimetinib on Melanoma Cells by Inducing Mitochondrial Dysfunction and Cell Apoptosis with Necroptosis. Ann Dermatol 2023; 35:217-228. [PMID: 37290955 DOI: 10.5021/ad.22.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Recent studies suggest that MEK1/2 inhibitors, including binimetinib, significantly improve malignant melanoma (MM) patient survival. Growing evidence suggests that phytochemicals, especially curcumin, can overcome drug resistance in cancer cells through a variety of mechanisms. OBJECTIVE This study aims to examine curcumin's efficacy in vitro combined with binimetinib in human MM cells. METHODS We used 2D monolayer and 3D spheroid human epidermal melanocyte culture models, HEMn-MP (human epidermal melanocytes, neonatal, moderately pigmented), and two human MM cell lines, G361 and SK-MEL-2, to evaluate cell viability, proliferation, migration, death, and reactive oxygen species (ROS) production following single therapy treatment, with either curcumin or binimetinib, or a combination of both. RESULTS Compared to MM cells treated with single therapy, those with combination therapy showed significantly decreased cell viability and increased ROS production. We observed apoptosis following both single and combination therapies. However only those who had had combination therapy had necroptosis. CONCLUSION Collectively, our data demonstrates that curcumin exerts significant synergistic anticancer effects on MM cells by inducing ROS and necroptosis when combined with binimetinib. Therefore, a strategy of adding curcumin to conventional anticancer agents holds promise for treating MM.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hae Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Sang Han Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
86
|
Gouda MA, Subbiah V. Expanding the Benefit: Dabrafenib/Trametinib as Tissue-Agnostic Therapy for BRAF V600E-Positive Adult and Pediatric Solid Tumors. Am Soc Clin Oncol Educ Book 2023; 43:e404770. [PMID: 37159870 DOI: 10.1200/edbk_404770] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The recent US Food and Drug Administration (FDA) approval of the dabrafenib/trametinib combination as a tissue-agnostic treatment for solid tumors with BRAF V600E mutation is the result of more than 20 years of extensive research into BRAF mutations in human cancer, the underlying biological mechanisms that drive BRAF-mediated tumor growth, and the clinical testing and refinement of selective RAF and MEK kinase inhibitors. Such approval marks a significant achievement in the field of oncology and represents a major step forward in our ability to treat cancer. Early evidence supported the use of dabrafenib/trametinib combination in melanoma, non-small-cell lung cancer, and anaplastic thyroid cancer. Furthermore, data from basket trials have demonstrated consistently good response rates in various tumors, including biliary tract cancer, low-grade glioma, high-grade glioma, hairy cell leukemia, and multiple other malignancies, which has been the basis for FDA approval of a tissue-agnostic indication in adult and pediatric patients with BRAF V600E-positive solid tumors. From a clinical standpoint, our review delves into the efficacy of the dabrafenib/trametinib combination for BRAF V600E-positive tumors: examining the underlying rationale for its use, evaluating the latest evidence on its potential benefits, and discussing the possible associated adverse effects and strategies to minimize their impact. Additionally, we explore potential resistance mechanisms and future landscape of BRAF-targeted therapies.
Collapse
Affiliation(s)
- Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Egypt
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
87
|
Shah PD, Huang AC, Xu X, Orlowski R, Amaravadi RK, Schuchter LM, Zhang P, Tchou J, Matlawski T, Cervini A, Shea J, Gilmore J, Lledo L, Dengel K, Marshall A, Wherry EJ, Linette GP, Brennan A, Gonzalez V, Kulikovskaya I, Lacey SF, Plesa G, June CH, Vonderheide RH, Mitchell TC. Phase I Trial of Autologous RNA-electroporated cMET-directed CAR T Cells Administered Intravenously in Patients with Melanoma and Breast Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:821-829. [PMID: 37377890 PMCID: PMC10167933 DOI: 10.1158/2767-9764.crc-22-0486] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/29/2023]
Abstract
Purpose Treatments are limited for metastatic melanoma and metastatic triple-negative breast cancer (mTNBC). This pilot phase I trial (NCT03060356) examined the safety and feasibility of intravenous RNA-electroporated chimeric antigen receptor (CAR) T cells targeting the cell-surface antigen cMET. Experimental Design Metastatic melanoma or mTNBC subjects had at least 30% tumor expression of cMET, measurable disease and progression on prior therapy. Patients received up to six infusions (1 × 10e8 T cells/dose) of CAR T cells without lymphodepleting chemotherapy. Forty-eight percent of prescreened subjects met the cMET expression threshold. Seven (3 metastatic melanoma, 4 mTNBC) were treated. Results Mean age was 50 years (35-64); median Eastern Cooperative Oncology Group 0 (0-1); median prior lines of chemotherapy/immunotherapy were 4/0 for TNBC and 1/3 for melanoma subjects. Six patients experienced grade 1 or 2 toxicity. Toxicities in at least 1 patient included anemia, fatigue, and malaise. One subject had grade 1 cytokine release syndrome. No grade 3 or higher toxicity, neurotoxicity, or treatment discontinuation occurred. Best response was stable disease in 4 and disease progression in 3 subjects. mRNA signals corresponding to CAR T cells were detected by RT-PCR in all patients' blood including in 3 subjects on day +1 (no infusion administered on this day). Five subjects underwent postinfusion biopsy with no CAR T-cell signals seen in tumor. Three subjects had paired tumor tissue; IHC showed increases in CD8 and CD3 and decreases in pS6 and Ki67. Conclusions Intravenous administration of RNA-electroporated cMET-directed CAR T cells is safe and feasible. Significance Data evaluating CAR T therapy in patients with solid tumors are limited. This pilot clinical trial demonstrates that intravenous cMET-directed CAR T-cell therapy is safe and feasible in patients with metastatic melanoma and metastatic breast cancer, supporting the continued evaluation of cellular therapy for patients with these malignancies.
Collapse
Affiliation(s)
- Payal D. Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander C. Huang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Orlowski
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K. Amaravadi
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M. Schuchter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Zhang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Tchou
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tina Matlawski
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanda Cervini
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanne Shea
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan Gilmore
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen Dengel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - E. John Wherry
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Institute of Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gerald P. Linette
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Brennan
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vanessa Gonzalez
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irina Kulikovskaya
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon F. Lacey
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriela Plesa
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Vonderheide
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C. Mitchell
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
88
|
Kollipara S, Ahmed T, Praveen S. Physiologically based pharmacokinetic modeling (PBPK) to predict drug-drug interactions for encorafenib. Part II. Prospective predictions in hepatic and renal impaired populations with clinical inhibitors and inducers. Xenobiotica 2023; 53:339-356. [PMID: 37584612 DOI: 10.1080/00498254.2023.2246153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Encorafenib, a potent BRAF kinase inhibitor gets significantly metabolised by CYP3A4 (83%) and CYP2C19 (16%) and is a substrate for P-glycoprotein (P-gp). Due to significant metabolism by CYP3A4, encorafenib exposure can increase in hepatic and renal impairment and may lead to altered magnitude of drug-drug interactions (DDI). Hence, it is necessary to assess the exposures & DDI's in impaired population.Physiologically based pharmacokinetic modelling (PBPK) was utilised to determine the exposures of encorafenib in hepatic and renal impairment along with altered DDI's. Prospective DDI's were predicted with USFDA recommended clinical CYP3A4, CYP2C19, P-gp inhibitors and CYP3A4 inducers.PBPK models for encorafenib, perpetrators simulated PK parameters within 2-folds error. Encorafenib exposures significantly increased in hepatic as compared to renal impairment because of reduced CYP3A4 levels.Hepatic impairment caused changes in inhibition and induction DDI's, when compared to healthy population. Renal impairment did not cause significant changes in DDIs except for itraconazole. P-gp, CYP2C19 inhibitors did not result in altered DDI's. The DDI's were found to have insignificant correlation with relative exposure increase of perpetrators in case of impairment. Overall, this work signifies use of PBPK modelling for DDI's evaluations in hepatic and renal impairment populations.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Sivadasu Praveen
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
89
|
Kollipara S, Ahmed T, Praveen S. Physiologically based pharmacokinetic modelling to predict drug-drug interactions for encorafenib. Part I. Model building, validation, and prospective predictions with enzyme inhibitors, inducers, and transporter inhibitors. Xenobiotica 2023; 53:366-381. [PMID: 37609899 DOI: 10.1080/00498254.2023.2250856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Encorafenib, a potent BRAF kinase inhibitor undergoes significant metabolism by CYP3A4 (83%) and CYP2C19 (16%) and also a substrate of P-glycoprotein (P-gp). Because of this, encorafenib possesses potential for enzyme-transporter related interactions. Clinically, its drug-drug interactions (DDIs) with CYP3A4 inhibitors (posaconazole, diltiazem) were reported and hence there is a necessity to study DDIs with multiple enzyme inhibitors, inducers, and P-gp inhibitors.USFDA recommended clinical CYP3A4, CYP2C19, P-gp inhibitors, CYP3A4 inducers were selected and prospective DDIs were simulated using physiologically based pharmacokinetic modelling (PBPK). Impact of dose (50 mg vs. 300 mg) and staggering of administrations (0-10 h) on the DDIs were predicted.PBPK models for encorafenib, perpetrators simulated PK parameters within twofold prediction error. Clinically reported DDIs with posaconazole and diltiazem were successfully predicted.CYP2C19 inhibitors did not result in significant DDI whereas strong CYP3A4 inhibitors resulted in DDI ratio up to 4.5. Combining CYP3A4, CYP2C19 inhibitors yielded DDI equivalent CYP3A4 alone. Strong CYP3A4 inducers yielded DDI ratio up to 0.3 and no impact of P-gp inhibitors on DDIs was observed. The DDIs were not impacted by dose and staggering of administration. Overall, this work indicated significance of PBPK modelling for evaluating clinical DDIs with enzymes, transporters and interplay.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Sivadasu Praveen
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
90
|
Bhave P, Wong J, McInerney-Leo A, Cust AE, Lawn C, Janda M, Mar VJ. Management of cutaneous melanoma in Australia: a narrative review. Med J Aust 2023; 218:426-431. [PMID: 37120760 DOI: 10.5694/mja2.51910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 05/01/2023]
Affiliation(s)
- Prachi Bhave
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC
- Alfred Hospital, Melbourne, VIC
| | | | - Aideen McInerney-Leo
- Dermatology Research Centre, University of Queensland Diamantina Institute for Cancer Immunology and Metabolic Medicine, Brisbane, QLD
- Australian Centre of Excellence in Melanoma Imaging, Brisbane, QLD
| | - Anne E Cust
- Australian Centre of Excellence in Melanoma Imaging, Brisbane, QLD
- Melanoma Institute Australia, Sydney, NSW
| | - Craig Lawn
- Melanoma Institute Australia, Sydney, NSW
- Centre of Excellence in Melanoma Imaging, Brisbane, QLD
| | - Monika Janda
- Centre for Health Services Research, University of Queensland, Brisbane, QLD
| | - Victoria J Mar
- Alfred Hospital, Melbourne, VIC
- Monash University, Melbourne, VIC
| |
Collapse
|
91
|
Buchbinder EI, Giobbie-Hurder A, Ott PA. A phase I/II study of MCS110 with BRAF/MEK inhibition in patients with melanoma after progression on BRAF/MEK inhibition. Invest New Drugs 2023:10.1007/s10637-023-01364-5. [PMID: 37097370 DOI: 10.1007/s10637-023-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Prognosis for patients with metastatic melanoma has been improved dramatically with the development of BRAF/MEK directed therapy and immune checkpoint inhibition. However, resistance to therapy remains a challenge, particularly with BRAF/MEK targeted therapy which often has a limited duration of efficacy. Pre-clinical data suggest that adding CSF1 inhibition to BRAF/MEK targeted therapy may reduce resistance and increase efficacy. METHODS We performed a phase I/II study to determine the safety and efficacy of CSF1 inhibition with MCS110 in combination with BRAF/MEK inhibition with dabrafenib/trametinib in patients with BRAF V600E/K mutant metastatic melanoma. The trial was terminated early due to a decision by the study sponsor to cease further development of MCS110. RESULTS Between September 2018 to July 2019 six patients were enrolled on the study. Patients were evenly split between female (50%) and male (50%) with a median age of 59.5 yrs. (26-71). Five patients experienced grade 3 toxicities that were possibly related to one of the therapies, there were no grade 4 or grade 5 events. One patient had a partial response (PR) by RECIST 1.1, one patient had stable disease (SD), 3 patients had disease progression (PD). Median progression free survival was 2.3 months (90% CI: 1.3 mos to not reached). CONCLUSION MCS110 in combination with dabrafenib and trametinib was reasonably well tolerated in a small melanoma population. One response was observed in this small sample of patients suggesting this combination might be worthy of further exploration.
Collapse
Affiliation(s)
- Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
92
|
Piscitelli J, Hens B, Tomaszewska I, Wollenberg L, Litwiler K, McAllister M, Reddy M. Effect of Food and a Proton-Pump Inhibitor on the Absorption of Encorafenib: An In Vivo- In Vitro- In Silico Approach. Mol Pharm 2023; 20:2589-2599. [PMID: 37037186 PMCID: PMC10155203 DOI: 10.1021/acs.molpharmaceut.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Encorafenib is a kinase inhibitor indicated for the treatment of patients with BRAF mutant melanoma and BRAF mutant metastatic colorectal cancer. To understand the effect of food and coadministration with a proton-pump inhibitor (PPI), in vitro, in vivo, and in silico data were generated to optimize the clinical dose, evaluate safety, and better understand the oral absorption process under these conditions. Study 1 evaluated the effect of food on the plasma pharmacokinetics, safety, and tolerability after a single oral dose of encorafenib 100 mg. Study 2 evaluated the same end points with coadministration of encorafenib and rabeprazole (PPI perpetrator). The in vitro gastrointestinal TIM-1 model was used to investigate the release of encorafenib and the amount available for absorption under different testing conditions (fasted, fed, and with the use of a PPI). The fasted, fed, and PPI states were predicted for the encorafenib commercial capsule in GastroPlus 9.8. In study 1, both AUCinf and AUClast decreased by 4% with the administration of a high-fat meal. The Cmax was 36% lower than with fasted conditions. All 3 exposure parameters in study 2 (AUCinf, AUClast, and Cmax) had mean changes of <10% when encorafenib was coadministered with a PPI. Using the in vitro gastrointestinal simulator TIM-1, the model demonstrated a similar release of drug, as the bioaccessible fraction, in the 3 conditions was equal (≥80%), predicting no PPI or food effect for this drug formulation. The modeling in GastroPlus 9.8 demonstrated complete absorption of encorafenib when formulated as an amorphous solid dispersion. To obtain these results, it was crucial to integrate the amorphous solubility of the drug that shows a 20-fold higher solubility at pH 6.8 compared with crystalline solubility. The increased amorphous solubility is likely the reason no PPI effect was observed compared with fasted state conditions. The prolongation in gastric emptying in the fed state resulted in delayed plasma Tmax for encorafenib. No dose adjustment is necessary when encorafenib is administered in the fed state or when coadministered with a PPI. Both the TIM-1 and physiologically based pharmacokinetic model results were consistent with the observed clinical data, suggesting that these will be valuable tools for future work.
Collapse
Affiliation(s)
- Joseph Piscitelli
- Pfizer Inc., Global Product Development, La Jolla, California 92121, United States
| | - Bart Hens
- Pfizer Inc., Drug Product Design, Sandwich CT13 9NJ, United Kingdom
| | | | - Lance Wollenberg
- Pfizer Inc., Early Clinical Development, Boulder, Colorado 80301, United States
| | - Kevin Litwiler
- Pfizer Inc., Global Product Development, Boulder, Colorado 80301, United States
| | - Mark McAllister
- Pfizer Inc., Drug Product Design, Sandwich CT13 9NJ, United Kingdom
| | - Micaela Reddy
- Pfizer Inc., Early Clinical Development, Boulder, Colorado 80301, United States
| |
Collapse
|
93
|
Auf der Maur P, Trefny MP, Baumann Z, Vulin M, Correia AL, Diepenbruck M, Kramer N, Volkmann K, Preca BT, Ramos P, Leroy C, Eichlisberger T, Buczak K, Zilli F, Okamoto R, Rad R, Jensen MR, Fritsch C, Zippelius A, Stadler MB, Bentires-Alj M. N-acetylcysteine overcomes NF1 loss-driven resistance to PI3Kα inhibition in breast cancer. Cell Rep Med 2023; 4:101002. [PMID: 37044095 PMCID: PMC10140479 DOI: 10.1016/j.xcrm.2023.101002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CAH1047R-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CAH1047R breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype. Global phospho-proteomics indicates that combination with NAC enhances the inhibitory effect of alpelisib on mTOR signaling. In public datasets of human breast cancer, we find that NF1 is frequently mutated and that such mutations are enriched in metastases, an indication for which use of PI3Kα inhibitors has been approved. Our results raise the attractive possibility of combining PI3Kα inhibition with NAC supplementation, especially in patients with drug-resistant metastases associated with NF1 loss.
Collapse
Affiliation(s)
- Priska Auf der Maur
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Marcel P Trefny
- Cancer Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Zora Baumann
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Milica Vulin
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ana Luisa Correia
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Maren Diepenbruck
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nicolas Kramer
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Volkmann
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bogdan-Tiberius Preca
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pedro Ramos
- Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cedric Leroy
- Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Federica Zilli
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ryoko Okamoto
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, München, Germany; Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, München, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Christine Fritsch
- Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
94
|
Schmitt AM, Larkin J. How have immune checkpoint inhibitors transformed melanoma treatment? TRENDS IN UROLOGY & MEN'S HEALTH 2023. [DOI: 10.1002/tre.910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
95
|
Franklin C, Mohr P, Bluhm L, Meier F, Garzarolli M, Weichenthal M, Kähler K, Grimmelmann I, Gutzmer R, Utikal J, Terheyden P, Herbst R, Haferkamp S, Pfoehler C, Forschner A, Leiter U, Ziller F, Meiss F, Ulrich J, Kreuter A, Gebhardt C, Welzel J, Schilling B, Kaatz M, Scharfetter-Kochanek K, Dippel E, Nashan D, Sachse M, Weishaupt C, Löffler H, Gambichler T, Loquai C, Heinzerling L, Grabbe S, Debus D, Schley G, Hassel JC, Weyandt G, Trommer M, Lodde G, Placke JM, Zimmer L, Livingstone E, Becker JC, Horn S, Schadendorf D, Ugurel S. Brain metastasis and survival outcomes after first-line therapy in metastatic melanoma: a multicenter DeCOG study on 1704 patients from the prospective skin cancer registry ADOREG. J Immunother Cancer 2023; 11:e005828. [PMID: 37028819 PMCID: PMC10083858 DOI: 10.1136/jitc-2022-005828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Despite the availability of effective systemic therapies, a significant number of advanced melanoma patients develops brain metastases. This study investigated differences in incidence and time to diagnosis of brain metastasis and survival outcomes dependent on the type of first-line therapy. METHODS Patients with metastatic, non-resectable melanoma (AJCCv8 stage IIIC-V) without brain metastasis at start of first-line therapy (1L-therapy) were identified from the prospective multicenter real-world skin cancer registry ADOREG. Study endpoints were incidence of brain metastasis, brain metastasis-free survival (BMFS), progression-free survival (PFS), and overall survival (OS). RESULTS Of 1704 patients, 916 were BRAF wild-type (BRAFwt) and 788 were BRAF V600 mutant (BRAFmut). Median follow-up time after start of 1L-therapy was 40.4 months. BRAFwt patients received 1L-therapy with immune checkpoint inhibitors (ICI) against CTLA-4+PD-1 (n=281) or PD-1 (n=544). In BRAFmut patients, 1L-therapy was ICI in 415 patients (CTLA-4+PD-1, n=108; PD-1, n=264), and BRAF+MEK targeted therapy (TT) in 373 patients. After 24 months, 1L-therapy with BRAF+MEK resulted in a higher incidence of brain metastasis compared with PD-1±CTLA-4 (BRAF+MEK, 30.3%; CTLA-4+PD-1, 22.2%; PD-1, 14.0%). In multivariate analysis, BRAFmut patients developed brain metastases earlier on 1L-therapy with BRAF+MEK than with PD-1±CTLA-4 (CTLA-4+PD-1: HR 0.560, 95% CI 0.332 to 0.945, p=0.030; PD-1: HR 0.575, 95% CI 0.372 to 0.888, p=0.013). Type of 1L-therapy, tumor stage, and age were independent prognostic factors for BMFS in BRAFmut patients. In BRAFwt patients, tumor stage was independently associated with longer BMFS; ECOG Performance status (ECOG-PS), lactate dehydrogenase (LDH), and tumor stage with OS. CTLA-4+PD-1 did not result in better BMFS, PFS, or OS than PD-1 in BRAFwt patients. For BRAFmut patients, multivariate Cox regression revealed ECOG-PS, type of 1L-therapy, tumor stage, and LDH as independent prognostic factors for PFS and OS. 1L-therapy with CTLA-4+PD-1 led to longer OS than PD-1 (HR 1.97, 95% CI 1.122 to 3.455, p=0.018) or BRAF+MEK (HR 2.41, 95% CI 1.432 to 4.054, p=0.001), without PD-1 being superior to BRAF+MEK. CONCLUSIONS In BRAFmut patients 1L-therapy with PD-1±CTLA-4 ICI resulted in a delayed and less frequent development of brain metastasis compared with BRAF+MEK TT. 1L-therapy with CTLA-4+PD-1 showed superior OS compared with PD-1 and BRAF+MEK. In BRAFwt patients, no differences in brain metastasis and survival outcomes were detected for CTLA-4+PD-1 compared with PD-1.
Collapse
Affiliation(s)
- Cindy Franklin
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Cologne, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken Buxtehude, Buxtehude, Germany
| | - Leonie Bluhm
- Department of Dermatology, Elbe-Kliniken Buxtehude, Buxtehude, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden and, Skin Cancer Center at the University Cancer Center Dresden and National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Marlene Garzarolli
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden and, Skin Cancer Center at the University Cancer Center Dresden and National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Weichenthal
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Katharina Kähler
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Imke Grimmelmann
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Hanover, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Muehlenkreiskliniken Minden and Ruhr University Bochum, Minden, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patrick Terheyden
- Department of Dermatology, University of Lübeck and Schleswig-Holstein University Hospital, Campus Lübeck, Lübeck, Germany
| | - Rudolf Herbst
- Department of Dermatology, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Pfoehler
- Department of Dermatology, Saarland University Medical School, Homburg, Homburg/Saar, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Fabian Ziller
- Department of Dermatology, DRK Hospital Chemnitz-Rabenstein, Chemnitz, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Ulrich
- Department of Dermatology and Skin Cancer Center, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Schilling
- Department of Dermatology and Venereology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Kaatz
- Department of Dermatology, SRH Wald-Klinikum Gera, Gera, Germany
| | | | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Dorothee Nashan
- Department of Dermatology, Hospital of Dortmund, Dortmund, Germany
| | - Michael Sachse
- Skin Cancer Center, Department of Dermatology, Klinikum Bremerhaven Reinkenheide, Bremerhaven, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital of Muenster, Muenster, Germany
| | - Harald Löffler
- Department of Dermatology, SLK-Kliniken Heilbronn, Heilbronn, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Carmen Loquai
- Department of Dermatology, Klinikum Bremen-Ost, Gesundheit Nord gGmbH, Bremen, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Debus
- Department of Dermatology, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Gaston Schley
- Department of Dermatology and Venereology, Helios Klinikum Schwerin, Schwerin, Germany
| | - Jessica C Hassel
- National Center for Tumor Diseases (NCT), Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Weyandt
- Department of Dermatology and Allergology, Hospital Bayreuth, Bayreuth, Germany
| | - Maike Trommer
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Georg Lodde
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Jürgen Christian Becker
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Susanne Horn
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
- Rudolf-Schönheimer-Institute of Biochemistry, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen and German Cancer Consortium (DKTK) Partner Site Essen, Essen, Germany
| |
Collapse
|
96
|
Carbonnel F, Routier E, Lazure T, Mussini C, Bellanger C, Merklen C, Bejou B, Buisson A, Amiot A, Meyer A, Dong C, Robert C. Severe colitis in patients with melanoma treated with BRAF/MEK inhibitors. Aliment Pharmacol Ther 2023; 57:792-799. [PMID: 36578099 DOI: 10.1111/apt.17352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Dual blockade of BRAF and MEK kinases is a standard of care for metastatic V600E/K BRAF mutant melanoma. This study reports the first systematic description of colitis due to BRAF and MEK inhibitors. METHODS We studied consecutive patients with melanoma, treated with BRAF and MEK inhibitors, who had colitis requiring hospitalisation. Electronic files were studied; endoscopic biopsies and colectomy specimens were read centrally. RESULTS Between January 2021 and March 2022, nine women and one man, aged 50-90 years, were studied. Nine patients received encorafenib and binimetinib; one patient received dabrafenib and trametinib. The main symptoms were diarrhoea, haematochezia, abdominal pain and intestinal obstruction. Blood tests showed anaemia, increased CRP and low serum albumin levels in most patients. All patients had ulcerations of the right colon with (2/10) or without (8/10) stenosis of the ileocecal valve, and 4/10 patients also had ulcerations distal to the right colon. Histopathological findings were suggestive of ischaemia and mild inflammation. Nine of the 10 patients discontinued BRAF/MEK inhibitors. Drugs were reintroduced in four patients, three of whom had a severe relapse of diarrhoea. Two patients required surgery and underwent intestinal resection. One patient died of enterocolitis. CONCLUSION BRAF/MEK inhibitors can induce severe colitis characterised by ulcerations of the right colon.
Collapse
Affiliation(s)
- Franck Carbonnel
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Emilie Routier
- Dermatology Unit, Department of Medicine, Institute Gustave Roussy, Villejuif, France
| | - Thierry Lazure
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Charlotte Mussini
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Christophe Bellanger
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Carine Merklen
- Service de Dermatologie, Hôpitaux Civils de Colmar, Colmar, France
| | - Bakhtiar Bejou
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Anthony Buisson
- Service des maladies de l'appareil digestif, CHU Estaing et Inserm U1071, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aurélien Amiot
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Antoine Meyer
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Catherine Dong
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Caroline Robert
- Université Paris Saclay, Le Kremlin Bicêtre, France.,Dermatology Unit, Department of Medicine, Institute Gustave Roussy, Villejuif, France
| |
Collapse
|
97
|
Clinical response under MEK inhibitor alone in metastatic melanoma with a novel fusion involving the RAF1 gene. Melanoma Res 2023; 33:247-251. [PMID: 36866640 DOI: 10.1097/cmr.0000000000000882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Currently, in the absence of BRAFV600 mutation, the management of advanced melanomas is based on immunotherapies, but only half of the patients are responders. RAF1 (also named CRAF) fusions occur in 1-2.1% of wild-type melanomas. Preclinical data suggest that the presence of RAF fusion may be sensitive to MEK inhibitors. We report the case of a patient with an advanced melanoma harboring an EFCC1-RAF1 fusion who showed a clinical benefit from and a partial response to a MEK inhibitor.
Collapse
|
98
|
Gouda M, Subbiah V. Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: from melanoma to tissue-agnostic therapy. ESMO Open 2023; 8:100788. [PMID: 36842301 PMCID: PMC9984800 DOI: 10.1016/j.esmoop.2023.100788] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 02/26/2023] Open
Abstract
BRAF activation occurs as part of the mitogen-activated protein kinase (MAPK) cellular signaling pathway which leads to increased cellular proliferation and survival. Mutations in BRAF can result in unbridled activation of downstream kinases with subsequent uncontrolled cellular growth that formulate the basis for oncogenesis in multiple tumor types. Targeting BRAF by selective inhibitors has been one of the early successes in precision oncology. Agents have been explored either as monotherapy or in combination with MEK inhibition in BRAF V600-mutant pan-cancers and with EGFR inhibition in colorectal cancer. Spectrum of BRAF inhibition has evolved from being melanoma-specific to being a pan-cancer target. In this article, we review BRAF and MEK inhibitor drug development journey from tissue-specific melanoma, non-small-cell lung cancer, and anaplastic thyroid cancer to tissue-agnostic approvals.
Collapse
Affiliation(s)
- M.A. Gouda
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA,Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - V. Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston,MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, USA,Correspondence to: Prof. Vivek Subbiah, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Unit 455, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel: +1-713-563-1930 @VivekSubbiah
| |
Collapse
|
99
|
Tolerability of BRAF and MEK Inhibitors for Metastasized Melanoma after Intra-Class Switch: A Multicenter, Retrospective Study. Cancers (Basel) 2023; 15:cancers15051426. [PMID: 36900217 PMCID: PMC10001327 DOI: 10.3390/cancers15051426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Targeted therapy with BRAF and MEK inhibitors (BRAFi, MEKi) is one of the mainstays of melanoma treatment. When dose-limiting toxicity (DLT) is observed, an option represents the intra-class switch to a different BRAFi+MEKi combination. Currently, there is scarce evidence for this procedure. This is a multicenter, retrospective analysis from six German skin cancer centers of patients who received two different combinations of BRAFi and MEKi. In total, 94 patients were included: 38 patients (40%) were re-exposed with a different combination because of previous unacceptable toxicity, 51 (54%) were re-exposed after progression, and 5 (5%) were included for other reasons. Of the 44 patients with a DLT during their first BRAFi+MEKi combination, only five (11%) experienced the same DLT during their second combination. A new DLT was experienced by 13 patients (30%). Six patients (14%) had to discontinue the second BRAFi treatment due to its toxicity. Compound-specific adverse events were avoided in the majority of patients by switching to a different combination. Efficacy data were similar to historical cohorts of BRAFi+MEKi rechallenge, with an overall response rate of 31% for patients who had previously progressed to treatment. We conclude that switching to a different BRAFi+MEKi combination if dose-limiting toxicity occurs is a feasible and rational approach in patients with metastatic melanoma.
Collapse
|
100
|
Mizuno S, Ikegami M, Koyama T, Sunami K, Ogata D, Kage H, Yanagaki M, Ikeuchi H, Ueno T, Tanikawa M, Oda K, Osuga Y, Mano H, Kohsaka S. High-Throughput Functional Evaluation of MAP2K1 Variants in Cancer. Mol Cancer Ther 2023; 22:227-239. [PMID: 36442478 PMCID: PMC9890140 DOI: 10.1158/1535-7163.mct-22-0302] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
Activating mutations in mitogen-activated protein kinase kinase 1 (MAP2K1) are involved in a variety of cancers and may be classified according to their RAF dependence. Sensitivity to combined BRAF and MEK treatments is associated with co-mutations of MAP2K1 and BRAF; however, the significance of less frequent MAP2K1 mutations is largely unknown. The transforming potential and drug sensitivity of 100 MAP2K1 variants were evaluated using individual assays and the mixed-all-nominated-in-one method. In addition, A375, a melanoma cell line harboring the BRAF V600E mutation, was used to evaluate the function of the MAP2K1 variants in combination with active RAF signaling. Among a total of 67 variants of unknown significance, 16 were evaluated as oncogenic or likely oncogenic. The drug sensitivity of the individual variants did not vary with respect to BRAF inhibitors, MEK inhibitors (MEKi), or their combination. Sensitivity to BRAF inhibitors was associated with the RAF dependency of the MAP2K1 variants, whereas resistance was higher in RAF-regulated or independent variants compared with RAF-dependent variants. Thus, the synergistic effect of BRAF and MEKis may be observed in RAF-regulated and RAF-dependent variants. MAP2K1 variants exhibit differential sensitivity to BRAF and MEKis, suggesting the importance of individual functional analysis for the selection of optimal treatments for each patient. This comprehensive evaluation reveals precise functional information and provides optimal combination treatment for individual MAP2K1 variants.
Collapse
Affiliation(s)
- Sho Mizuno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hidenori Kage
- Department of Next Generation Precision Medicine Development Laboratory, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Surgery, The Jikei University School of Medicine, Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of General Thoracic Surgery, Juntendo University School of Medicine, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Corresponding Author: Shinji Kohsaka, Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Phone: 81-3-3547-5201; Fax: 81-3-5565-0727; E-mail:
| |
Collapse
|