51
|
Wu S, Sheng Q, Liu P, Jiao Z, Lv J, Qiao R, Xie D, Wang Z, Ge J, Li P, Wei T, Lei J, Fan J, Wang L. M1 macrophage-related gene model for NSCLC immunotherapy response prediction. Acta Biochim Biophys Sin (Shanghai) 2024; 56:379-392. [PMID: 38379417 PMCID: PMC10984861 DOI: 10.3724/abbs.2023262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 02/22/2024] Open
Abstract
Patients diagnosed with non-small cell lung cancer (NSCLC) have a limited lifespan and exhibit poor immunotherapy outcomes. M1 macrophages have been found to be essential for antitumor immunity. This study aims to develop an immunotherapy response evaluation model for NSCLC patients based on transcription. RNA sequencing profiles of 254 advanced-stage NSCLC patients treated with immunotherapy are downloaded from the POPLAR and OAK projects. Immune cell infiltration in NSCLC patients is examined, and thereafter, different coexpressed genes are identified. Next, the impact of M1 macrophage-related genes on the prognosis of NSCLC patients is investigated. Six M1 macrophage coexpressed genes, namely, NKX2-1, CD8A , SFTA3, IL2RB, IDO1, and CXCL9, exhibit a strong association with the prognosis of NSCLC and serve as effective predictors for immunotherapy response. A response model is constructed using a Cox regression model and Lasso Cox regression analysis. The M1 genes are validated in our TD-FOREKNOW NSCLC clinical trial by RT-qPCR. The response model shows excellent immunotherapy response prediction and prognosis evaluation value in advanced-stage NSCLC. This model can effectively predict advanced NSCLC prognosis and aid in identifying patients who could benefit from customized immunotherapy as well as sensitive drugs.
Collapse
Affiliation(s)
- Sifan Wu
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Qiqi Sheng
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
- Department of Thoracic Surgerythe Second Affiliated Hospital of Air Force Medical UniversityXi’an710038China
| | - Pengjun Liu
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Zhe Jiao
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
- Department of Thoracic Surgerythe Second Affiliated Hospital of Air Force Medical UniversityXi’an710038China
| | - Jinru Lv
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
- Department of Thoracic Surgerythe Second Affiliated Hospital of Air Force Medical UniversityXi’an710038China
| | - Rong Qiao
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Dongkun Xie
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Zanhan Wang
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Jiamei Ge
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Penghui Li
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Tiaoxia Wei
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| | - Jie Lei
- Department of Thoracic Surgerythe Second Affiliated Hospital of Air Force Medical UniversityXi’an710038China
| | - Jieyi Fan
- Department of Aerospace MedicineFourth Military Medical UniversityXi’an710032China
| | - Liang Wang
- State Key Laboratory of Cancer BiologyDepartment of Medical Genetics and Developmental BiologyFourth Military Medical UniversityXi’an710032China
| |
Collapse
|
52
|
Huang D, Lin C, Jiang Y, Xin E, Xu F, Gan Y, Xu R, Wang F, Zhang H, Lou K, Shi L, Hu H. Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy. Front Oncol 2024; 14:1348678. [PMID: 38585004 PMCID: PMC10996281 DOI: 10.3389/fonc.2024.1348678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To establish a radiomics model based on intratumoral and peritumoral features extracted from pre-treatment CT to predict the major pathological response (MPR) in patients with non-small cell lung cancer (NSCLC) receiving neoadjuvant immunochemotherapy. Methods A total of 148 NSCLC patients who underwent neoadjuvant immunochemotherapy from two centers (SRRSH and ZCH) were retrospectively included. The SRRSH dataset (n=105) was used as the training and internal validation cohort. Radiomics features of intratumoral (T) and peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were extracted from pre-treatment CT. Intra- and inter- class correlation coefficients and least absolute shrinkage and selection operator were used to feature selection. Four single ROI models mentioned above and a combined radiomics (CR: T+P1+P2+P3) model were established by using machine learning algorithms. Clinical factors were selected to construct the combined radiomics-clinical (CRC) model, which was validated in the external center ZCH (n=43). The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. Results Histopathological type was the only independent clinical risk factor. The model CR with eight selected radiomics features demonstrated a good predictive performance in the internal validation (AUC=0.810) and significantly improved than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best predictive capability (AUC=0.814) and obtained satisfactory performance in the independent external test set (AUC=0.768, 95% CI: 0.62-0.91). Conclusion We established a CRC model that incorporates intratumoral and peritumoral features and histopathological type, providing an effective approach for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.
Collapse
Affiliation(s)
- Dingpin Huang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Medical Imaging International Scientific and Technological Cooperation Base of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Lin
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yangyang Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Enhui Xin
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Fangyi Xu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Gan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Xu
- DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China
- DUT-RU Co-Research Center of Advanced Information Computing Technology (ICT) for Active Life, Dalian University of Technology, Dalian, Liaoning, China
| | - Fang Wang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiping Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaihua Lou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Shi
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Medical Imaging International Scientific and Technological Cooperation Base of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
53
|
Yuan Z, Yang M, Zhong X. Perioperative immunotherapy: the main clinical treatment for resectable non-small cell lung cancer. MedComm (Beijing) 2024; 5:e498. [PMID: 38420164 PMCID: PMC10901278 DOI: 10.1002/mco2.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Phase 3 clinical trials of perioperative immunotherapy for resectable non-small cell lung cancer (NSCLC): In recent years, immunotherapy for NSCLC is not only limited to advanced disease, but also has shown gratifying efficacy for early resectable NSCLC. With the publication of the results of several phase 3 clinical trials, perioperative immunotherapy will become one of the main treatment modalities for resectable NSCLC.
Collapse
Affiliation(s)
- Zhijun Yuan
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Mengyuan Yang
- Department of Medical Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for CANCERHangzhouZhejiangChina
| | - Xian Zhong
- Department of Medical Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for CANCERHangzhouZhejiangChina
| |
Collapse
|
54
|
Kim F, Borgeaud M, Addeo A, Friedlaender A. Management of stage III non-small-cell lung cancer: rays of hope. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:85-95. [PMID: 38464384 PMCID: PMC10924713 DOI: 10.37349/etat.2024.00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 03/12/2024] Open
Abstract
Lung cancer remains the most common cause of cancer death across the world. Non-small-cell lung cancer (NSCLC) represents the most frequent type of lung cancer and is frequently diagnosed at an advanced stage. Stage III NSCLC, which encompasses 30% of cases, refers to a state between localized and metastatic disease, and is associated with poor prognosis. As highlighted in this review, stage III represents a heterogenous group, whose complex management includes multimodal treatment, discussed below, and requires discussion in multidisciplinary teams. The goal of this approach is a maximalist attitude in these patients with locally advanced and non-metastatic disease. However, many issues remain under debate including the optimal sequences of treatment between different treatment modalities, patient selection particularly for surgery, the duration of perioperative treatments and the identification of biomarkers to determine which patients might benefit of specific treatment like immunotherapy and targeted therapies. This review describes the current landscape of management of stage III NSCLC, discussing the critical issue of resectability, and highlighting the recent advancements in the field, particularly the incorporation of immune-checkpoint inhibitors (ICIs) and targeted therapies in this setting.
Collapse
Affiliation(s)
- Floryane Kim
- Oncology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Maxime Borgeaud
- Oncology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Alfredo Addeo
- Oncology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Alex Friedlaender
- Oncology Department, Clinique Générale Beaulieu, 1206 Geneva, Switzerland
| |
Collapse
|
55
|
Yang X, Yin D, Chen SQ. Effect of nursing on postoperative respiratory function and mental health of lung cancer patients. World J Clin Cases 2024; 12:922-930. [PMID: 38414608 PMCID: PMC10895621 DOI: 10.12998/wjcc.v12.i5.922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Both pulmonary rehabilitation training and psychological care have been shown to have a positive effect on the postoperative recovery of patients with lung cancer. However, few studies have combined the two to explore their combined effect. Therefore, this study aimed to investigate the effects of pulmonary rehabilitation training combined with psychological care on postoperative respiratory function and mental health in lung cancer patients. AIM To investigate effect of nursing on postoperative respiratory function and mental health of lung cancer patients. METHODS 122 cases of lung cancer patients who underwent surgical treatment in our hospital and were treated in our department from January 2022 to April 2023 were selected and randomly divided into the control group and observation group. The control group performed the routine care intervention. The observation group was given pulmonary rehabilitation training and psychological care based on conventional nursing interventions. Forced expiratory volume, forced vital capacity. Maximum ventilatory volume (MVV) in one second was measured, and the patient's 6-min walking distance and dyspnoea index scale were used to assess the patient's respiratory condition. The Connor-Davidson resilience scale (CD-RISC), self-rating anxiety scale (SAS), and self-rating depression scale (SDS) were used to evaluate the mental health of the patients. RESULTS There was no difference between the two groups regarding age, gender, education level, surgical procedure, type of pathology, and treatment (P > 0.05). After treatment, MVV, 6-min walking distance, toughness, strength, optimism, and total CD-RISC scores were significantly higher in the observation group (P < 0.05), dyspnoea scores, SAS, and SDS scores were substantially lower in the control group compared to the observation group (P < 0.05). CONCLUSION Pulmonary rehabilitation training combined with psychological care for patients after lung cancer resection could improve lung function, enhance daily activities, effectively relieve negative emotions such as anxiety and depression, and reduce complications.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Rehabilitation, The First People's Hospital of Jiangxia District, Wuhan (Union Jiangnan Hospital Huazhong University of Science and Technology), Wuhan 430200, Hubei Province, China
| | - Dan Yin
- Department of Intensive Care, The First People's Hospital of Jiangxia District, Wuhan (Union Jiangnan Hospital Huazhong University of Science and Technology), Wuhan 430200, Hubei Province, China
| | - Shi-Qing Chen
- Department of Neurology, The First People's Hospital of Jiangxia District, Wuhan (Union Jiangnan Hospital Huazhong University of Science and Technology), Wuhan 430200, Hubei Province, China
| |
Collapse
|
56
|
Remon J, Saw SPL, Cortiula F, Singh PK, Menis J, Mountzios G, Hendriks LEL. Perioperative Treatment Strategies in EGFR-Mutant Early-Stage NSCLC: Current Evidence and Future Challenges. J Thorac Oncol 2024; 19:199-215. [PMID: 37783386 DOI: 10.1016/j.jtho.2023.09.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Treatment with 3 years of adjuvant osimertinib is considered a new standard in patients with completely resected stage I to IIIA NSCLC harboring a common sensitizing EGFR mutation. This therapeutic approach significantly prolonged the disease-free survival and the overall survival versus placebo and revealed a significant role in preventing the occurrence of brain metastases. However, many unanswered questions remain, including the optimal duration of this therapy, whether all patients benefit from adjuvant osimertinib, and the role of adjuvant chemotherapy in this population. Indeed, there is a renewed interest in neoadjuvant strategies with targeted therapies in resectable NSCLC harboring oncogenic drivers. In light of these considerations, we discuss the past and current treatment options, and the clinical challenges that should be addressed to optimize the treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| | - Stephanie P L Saw
- Department of Medical Oncology, National Cancer Centre Singapore, Duke-National University of Singapore Oncology Academic Clinical Programme, Singapore
| | | | - Pawan Kumar Singh
- Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Science, Rothak, India
| | - Jessica Menis
- Medical Oncology Department, University and Hospital Trust of Verona, Verona, Italy
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| |
Collapse
|
57
|
Dai M, Wang N, Xia Q, Liao Y, Cao W, Fan J, Zhou D, Wang S, Nie X. Neoadjuvant chemoimmunotherapy achieved a pathologic complete response in stage IIIA lung adenocarcinoma harboring RET fusion: a case report. Front Immunol 2024; 14:1258762. [PMID: 38235141 PMCID: PMC10791793 DOI: 10.3389/fimmu.2023.1258762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Neoadjuvant chemoimmunotherapy has demonstrated significant benefit for resectable non-small-cell lung cancer (NSCLC) excluding known EGFR/ALK genetic alterations. Recent evidence has shown that neoadjuvant chemoimmunotherapy could be clinically valuable in resectable localized driver gene-mutant NSCLC, though the data still lack robust support, especially for rare oncogenic mutations. Here, we report a patient with stage IIIA lung adenocarcinoma with a RET fusion gene and high expression of PD-L1 who underwent neoadjuvant chemoimmunotherapy and successfully attained a pathologic complete response. The patient has survived for 12 months with no recurrence or metastases after surgery. Our case suggests that this treatment strategy may be an alternative therapeutic option for resectable RET fusion-positive NSCLC patients.
Collapse
Affiliation(s)
- Minqian Dai
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Xia
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Cao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Diwei Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
58
|
Zhang M, Wang Y, Lv M, Sang L, Wang X, Yu Z, Yang Z, Wang Z, Sang L. Trends and Hotspots in Global Radiomics Research: A Bibliometric Analysis. Technol Cancer Res Treat 2024; 23:15330338241235769. [PMID: 38465611 DOI: 10.1177/15330338241235769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Objectives: The purpose of this research is to summarize the structure of radiomics-based knowledge and to explore potential trends and priorities by using bibliometric analysis. Methods: Select radiomics-related publications from 2012 to October 2022 from the Science Core Collection Web site. Use VOSviewer (version 1.6.18), CiteSpace (version 6.1.3), Tableau (version 2022), Microsoft Excel and Rstudio's free online platforms (http://bibliometric.com) for co-writing, co-citing, and co-occurrence analysis of countries, institutions, authors, references, and keywords in the field. The visual analysis is also carried out on it. Results: The study included 6428 articles. Since 2012, there has been an increase in research papers based on radiomics. Judging by publications, China has made the largest contribution in this area. We identify the most productive institutions and authors as Fudan University and Tianjie. The top three magazines with the most publications are《FRONTIERS IN ONCOLOGY》, 《EUROPEAN RADIOLOGY》, and 《CANCERS》. According to the results of reference and keyword analysis, "deep learning, nomogram, ultrasound, f-18-fdg, machine learning, covid-19, radiogenomics" has been determined as the main research direction in the future. Conclusion: Radiomics is in a phase of vigorous development with broad prospects. Cross-border cooperation between countries and institutions should be strengthened in the future. It can be predicted that the development of deep learning-based models and multimodal fusion models will be the focus of future research. Advances in knowledge: This study explores the current state of research and hot spots in the field of radiomics from multiple perspectives, comprehensively, and objectively reflecting the evolving trends in imaging-related research and providing a reference for future research.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yan Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Mutian Lv
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Li Sang
- Department of Acupuncture and Massage, Shouguang Hospital of Traditional Chinese Medicine, Weifang, P. R. China
| | - Xuemei Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zijun Yu
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Ziyi Yang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
59
|
Mi K, Zeng L, Chen Y, Ning J, Zhang S, Zhao P, Yang S. DHX38 enhances proliferation, metastasis, and EMT progression in NSCLC through the G3BP1-mediated MAPK pathway. Cell Signal 2024; 113:110962. [PMID: 37931691 DOI: 10.1016/j.cellsig.2023.110962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy with limited therapeutic options. Despite advances in treatment, NSCLC remains a major cause of cancer-related death worldwide. Tumor heterogeneity and therapy resistance present challenges in achieving remission. Research is needed to provide molecular insights, identify new targets, and develop personalized therapies to improve outcomes. METHODS The protein expression level and prognostic value of DHX38 in NSCLC were explored in public databases and NSCLC tissue microarrays. DHX38 knockdown and overexpression cell lines were established to evaluate the role of DHX38 in NSCLC. In vitro and in vivo functional experiments were conducted to assess proliferation and metastasis. To determine the underlying molecular mechanism of DHX38 in human NSCLC, proteins that interact with DHX38 were isolated by IP and identified by LC-MS. KEGG analysis of DHX38-interacting proteins revealed the molecular pathway of DHX38 in human NSCLC. Abnormal pathway activation was verified by Western blot analysis and immunohistochemical (IHC) staining. A molecule-specific inhibitor was further used to explore potential therapeutic targets for NSCLC. The pathway-related target that interacted with DHX38 was verified by co-immunoprecipitation(co-IP) experiments. In cell lines with stable DHX38 overexpression, the target protein was knocked down to explore its complementary effect on DHX38 overexpression-induced tumor promotion. RESULTS The protein expression of DHX38 was increased in NSCLC, and patients with high DHX38 expression levels had a poor prognosis. In vitro and in vivo experiments showed that DHX38 promoted the proliferation, migration and invasion of human NSCLC cells. DHX38 overexpression caused abnormal activation of the MAPK pathway and promoted epithelial-mesenchymal transition (EMT) in tumours. SCH772984, a novel specific ERK1/2 inhibitor, significantly reduced the increases in cell proliferation, migration and invasion caused by DHX38 overexpression. The co-IP experiments confirmed that DHX38 interacted with the Ras GTPase-activating protein-binding protein G3BP1. DHX38 regulated the expression of G3BP1. Knocking down G3BP1 in cells with stable DHX38 overexpression prevented DHX38-induced tumor cell proliferation, migration and invasion. Silencing G3BP1 reversed the MAPK pathway activation and EMT induced by DHX38 overexpression. CONCLUSION In NSCLC, DHX38 functions as a tumor promoter. DHX38 modulates G3BP1 expression, leading to the activation of the MAPK signaling pathway, thus promoting tumor cell proliferation, metastasis, and the progression of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peilin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
60
|
Wang Q, Qi C, Luo J, Xu N, Xu MT, Qiang Y, Zhang C, Shen Y. Evaluation of the efficacy and surgical-related safety of neoadjuvant immunochemotherapy in advanced resectable none small cell lung cancer (NSCLC). Front Oncol 2023; 13:1239451. [PMID: 38205138 PMCID: PMC10777837 DOI: 10.3389/fonc.2023.1239451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Background The emergence of immune checkpoint inhibitors (ICIs) has brought about a paradigm shift in the treatment landscape of non-small cell lung cancer (NSCLC). Despite the promising long-term survival outcomes and optimization of pathological complete response (cPR) demonstrated by various studies such as Impower010 and Checkmate-816, the effectiveness of neoadjuvant immunotherapy in advanced resectable NSCLC remains a subject of debate. Although previous research has explored the connection between the efficacy of neoadjuvant therapy and surgical-related safety, limited studies have specifically investigated the surgical-related safety of neoadjuvant immunotherapy. Therefore, our study aims to assess the efficacy and surgical-related safety of neoadjuvant immunotherapy in advanced resectable non-small cell lung cancer. Method We conducted a retrospective study on a cohort of 93 patients with stage IIIA-IIIC NSCLC who underwent neoadjuvant therapy and surgical resection. Among them, 53 patients received neoadjuvant immunotherapy, 18 patients underwent neoadjuvant chemotherapy while the remaining 22 underwent neoadjuvant targeted therapy. The patients were separated into further groups according to their pathological type. Data analyses were performed using Mann-Whitney U test, chi-square test. Results All patients were categorized into six distinct groups. Notably, the neoadjuvant immunotherapy squamous carcinoma group exhibited a favorable edge over the neoadjuvant targeted squamous carcinoma group concerning the duration of drainage tube indwelling and the extent of lymph node dissection. Furthermore, the neoadjuvant immunotherapy adenocarcinoma group outperformed neoadjuvant targeted therapy adenocarcinoma counterpart in terms of achieving complete pathological response (cPR). Simultaneously, the neoadjuvant immunotherapy adenocarcinoma group surpassed the neoadjuvant chemotherapy adenocarcinoma group in the incidence of hydrothorax. Nevertheless, no statistically significant disparities were noted between the neoadjuvant immunotherapy squamous carcinoma group and the neoadjuvant chemotherapy carcinoma group. Conclusion Regarding surgical outcomes, neoadjuvant immunotherapy conferred notable advantages compared to conventional neoadjuvant chemotherapy and neoadjuvant targeted therapy for patients diagnosed with adenocarcinoma. In the case of squamous carcinoma, neoadjuvant immunotherapy exhibited superiority over neoadjuvant targeted therapy, although additional evidence is required to conclusively establish its precedence over neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Qin Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Nan Xu
- Department of Ultrasound, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mao-tian Xu
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Qiang
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chi Zhang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
61
|
Liu SY, Dong S, Yang XN, Liao RQ, Jiang BY, Wang Q, Ben XS, Qiao GB, Lin JT, Yan HH, Yan LX, Nie Q, Tu HY, Wang BC, Yang JJ, Zhou Q, Li HR, Liu K, Wu W, Liu SYM, Zhong WZ, Wu YL. Neoadjuvant nivolumab with or without platinum-doublet chemotherapy based on PD-L1 expression in resectable NSCLC (CTONG1804): a multicenter open-label phase II study. Signal Transduct Target Ther 2023; 8:442. [PMID: 38057314 PMCID: PMC10700550 DOI: 10.1038/s41392-023-01700-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
This prospective multicenter phase II study evaluated the clinical efficacy of neoadjuvant nivolumab-exclusive (N) and nivolumab-chemotherapy (N/C) combinations based on PD-L1 expression. Eligible patients exhibited resectable clinical stage IIA-IIIB (AJCC 8th edition) NSCLC without EGFR/ALK alterations. Patients received either mono-nivolumab (N) or nivolumab + nab-paclitaxel+ carboplatin (N/C) for three cycles based on PD-L1 expression. The primary endpoint was the major pathological response (MPR). Key secondary endpoints included the pathologic complete response (pCR), objective response rate (ORR), and event-free survival (EFS). Baseline PD-L1 expression and perioperative circulating tumor DNA (ctDNA) status were correlated with pCR and EFS. Fifty-two patients were enrolled, with 46 undergoing surgeries. The MPR was 50.0% (26/52), with 25.0% (13/52) achieving pCR, and 16.7% and 66.7% for patients with PD-L1 ≥ 50% in N and N/C groups, respectively. Thirteen (25.0%) patients experienced grade 3 or higher immune-related adverse events during neoadjuvant treatment. Patients with post-neoadjuvant ctDNA negativity was more likely to have pCR (39.1%) compared with those remained positive (6.7%, odds ratio = 6.14, 95% CI 0.84-Inf, p = 0.077). With a median follow-up of 25.1 months, the 18-month EFS rate was 64.8% (95% CI 51.9-81.0%). For patients with ctDNA- vs. ctDNA + , the 18m-EFS rate was 93.8% vs 47.3% (HR, 0.15; 95% CI 0.04, 0.94; p = 0.005). Immunochemotherapy may serve as an optimal neoadjuvant treatment even for patients with PD-L1 expression ≥ 50%. ctDNA negativity following neoadjuvant treatment and surgery could help identify superior pathological and survival benefits, which requires further confirmation in a prospective clinical trial (NCT04015778).
Collapse
Affiliation(s)
- Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ri-Qiang Liao
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Song Ben
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Gui-Bin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiang Nie
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong-Rui Li
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- Berry Oncology Corporation, Fuzhou, China
| | - Ke Liu
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- Berry Oncology Corporation, Fuzhou, China
| | - Wendy Wu
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- Berry Oncology Corporation, Fuzhou, China
| | - Si-Yang Maggie Liu
- Chinese Thoracic Oncology Group (CTONG), Guangzhou, China
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
62
|
Zheng Y, Feng B, Chen J, You L. Efficacy, safety, and survival of neoadjuvant immunochemotherapy in operable non-small cell lung cancer: a systematic review and meta-analysis. Front Immunol 2023; 14:1273220. [PMID: 38106421 PMCID: PMC10722296 DOI: 10.3389/fimmu.2023.1273220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Background Neoadjuvant immunochemotherapy may benefit patients with non-small cell lung cancer (NSCLC), but its impact requires further investigation. Methods A meta-analysis was conducted. PubMed, Embase, Web of Science, and the Cochrane Library were searched. The study was registered in PROSPERO (registration no. CRD42022360893). Results 60 studies of 3,632 patients were included. Comparing with neoadjuvant chemotherapy, neoadjuvant immunochemotherapy showed higher pCR (RR: 4.71, 95% CI: 3.69, 6.02), MPR (RR, 3.20, 95% CI: 2.75, 3.74), and ORR (RR, 1.46, 95% CI: 1.21, 1.77), fewer surgical complications (RR: 0.67, 95%CI: 0.48, 0.94), higher R0 resection rate (RR: 1.06, 95%CI: 1.03, 1.10, I2 = 52%), and longer 1-year and 2-year OS, without affecting TRAEs. For neoadjuvant immunochemotherapy in NSCLC, the pooled pCR rate was 0.35 (95% CI: 0.31, 0.39), MPR was 0.59 (95% CI: 0.54, 0.63), and ORR was 0.71 (95% CI: 0.66, 0.76). The pooled incidence of all grade TRAEs was 0.70 (95% CI: 0.60, 0.81), and that of >= grade 3 TRAEs was 0.24 (95% CI: 0.16, 0.32). The surgical complications rate was 0.13 (95% CI: 0.07, 0.18) and R0 resection rate was 0.98 (95% CI: 0.96, 0.99). The pooled 1-year OS was 0.97 (95%CI: 0.96, 0.99), and 2-year OS was 0.89 (95%CI: 0.83, 0.94). Patients with squamous cell carcinoma, stage III or higher PD-L1 performed better. Notably, no significant differences were observed in pCR, MPR, and ORR between 2 or more treatment cycles. Pembrolizumab-, or toripalimab-based neoadjuvant immunochemotherapy demonstrated superior efficacy and tolerable toxicity. Conclusion According to our analysis, reliable efficacy, safety, and survival of neoadjuvant immunochemotherapy for operable NSCLC were demonstrated. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022360893, identifier CRD42022360893.
Collapse
Affiliation(s)
- Yue Zheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Baijie Feng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jingyao Chen
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
63
|
Pan Y, Cheng Y. Splicing factor proline- and glutamine-rich regulates cytotoxic T lymphocytes-mediated cytotoxicity on non-small cell lung cancer by directly binding to PD-L1 3'UTR. Medicine (Baltimore) 2023; 102:e35837. [PMID: 37960731 PMCID: PMC10637510 DOI: 10.1097/md.0000000000035837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Splicing factor proline- and glutamine-rich (SFPQ) can interact with RNAs to regulate gene expression. The function of SFPQ in the immunotherapy of non-small cell lung cancer (NSCLC) is investigated in this study. H1299 and A549 cells were transfected with shSFPQ plasmid. Cell counting kit-8 (CCK-8) and cell clone formation were utilized to detect survival and proliferation. Programmed death-ligand 1 (PD-L1) and SFPQ were detected in NSCLC patients treated with anti-PD-L1 antibody. Dual-luciferase assays, RNA immunoblotting, RNA pull-down, and mRNA stability assay were applied to verify the regulation of PD-L1 with SFPQ. Human peripheral blood mononuclear cells (PBMC)-derived dendritic cells were loaded with irradiated A549 and H1299 cells, which were cultured with autologous CD8+T cells and tumor cells to perform in vitro tumor-specific cytotoxic T lymphocytes (CTL) cytotoxicity analysis. SFPQ silencing inhibited the survival and proliferation of H1299 and A549 cells with down-regulated PD-L1 expression. PD-L1 and SFPQ expression were markedly higher in anti-PD-L1 antibody treatment responders compared to non-responders, which showed a positive Pearson correlation (R = 0.76, P < .001). SFPQ up-regulated the relative mRNA and protein expression of PD-L1 by binding to the PD-L1 3'UTR to slow the decay of PD-L1 mRNA. SFPQ silencing promoted the killing effect of CTL on A549 and H1299 cells. SFPQ up-regulates PD-L1 expression by binding with PD-L1 3'UTR to slow the decay of PD-L1 mRNA, and SFPQ silencing promotes CTL-mediated cytotoxicity on NSCLC cells.
Collapse
Affiliation(s)
- Yanming Pan
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yongxia Cheng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
64
|
Ge F, Liu X, Zhang H, Yuan T, Zhu H, Yang B, He Q. Deubiquitinating enzyme JOSD2 affects susceptibility of non-small cell lung carcinoma cells to anti-cancer drugs through DNA damage repair. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:533-543. [PMID: 37899394 PMCID: PMC10630050 DOI: 10.3724/zdxbyxb-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate the effects and mechanisms of deubiquitinating enzyme Josephin domain containing 2 (JOSD2) on susceptibility of non-small cell lung carcinoma (NSCLC) cells to anti-cancer drugs. METHODS The transcriptome expression and clinical data of NSCLC were downloaded from the Gene Expression Omnibus. Principal component analysis and limma analysis were used to investigate the deubiquitinating enzymes up-regulated in NSCLC tissues. Kaplan-Meier analysis was used to investigate the relationship between the expression of deubiquitinating enzymes and overall survival of NSCLC patients. Gene ontology enrichment and gene set enrichment analysis (GSEA) were used to analyze the activation of signaling pathways in NSCLC patients with high expression of JOSD2. Gene set variation analysis and Pearson correlation were used to investigate the correlation between JOSD2 expression levels and DNA damage response (DDR) pathway. Western blotting was performed to examine the expression levels of JOSD2 and proteins associated with the DDR pathway. Immunofluorescence was used to detect the localization of JOSD2. Sulforhodamine B staining was used to examine the sensitivity of JOSD2-knock-down NSCLC cells to DNA damaging drugs. RESULTS Compared with adjacent tissues, the expression level of JOSD2 was significantly up-regulated in NSCLC tissues (P<0.05), and was significantly correlated with the prognosis in NSCLC patients (P<0.05). Compared with the tissues with low expression of JOSD2, the DDR-related pathways were significantly upregulated in NSCLC tissues with high expression of JOSD2 (all P<0.05). In addition, the expression of JOSD2 was positively correlated with the activation of DDR-related pathways (all P<0.01). Compared with the control group, overexpression of JOSD2 significantly promoted the DDR in NSCLC cells. In addition, DNA damaging agents significantly increase the nuclear localization of JOSD2, whereas depletion of JOSD2 significantly enhanced the sensitivity of NSCLC cells to DNA damaging agents (all P<0.05). CONCLUSIONS Deubiquitinating enzyme JOSD2 may regulate the malignant progression of NSCLC by promoting DNA damage repair pathway, and depletion of JOSD2 significantly enhances the sensitivity of NSCLC cells to DNA damaging agents.
Collapse
Affiliation(s)
- Fujing Ge
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiangning Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
65
|
Shi J, Peng B, Wang C, Zhou X, Lu T, Xu R, Chang X, Shen Z, Wang K, Xu C, Zhang L. Development and validation of a nomogram for predicting overall survival of resected N2 non-small cell lung cancer patients undergoing neoadjuvant radiotherapy. J Cancer Res Clin Oncol 2023; 149:11779-11790. [PMID: 37407846 DOI: 10.1007/s00432-023-05073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Currently, the prognosis of resected N2 non-small cell lung cancer patients undergoing neoadjuvant radiotherapy is poor. The goal of this research was to develop and validate a novel nomogram for exactly predicting the overall survival (OS) of resected N2 NSCLC patients undergoing neoadjuvant radiotherapy. METHODS The data applied in our research were downloaded from the Surveillance, Epidemiology, and End Results (SEER) database. We divided selected data into a training cohort and a validation cohort using R software, with a ratio of 7:3. Univariate Cox regression and multivariate Cox regression were utilized to select significant variables to build the nomogram. To validate our nomogram, calibration curves, receiver operating characteristic curves (ROC), decision curve analysis (DCA), and Kaplan-Meier survival curves were employed. The nomogram model was also compared with the tumor-node-metastasis (TNM) staging system by utilizing net reclassification index (NRI) and integrated discrimination improvement (IDI). RESULTS Eight variables-age, sex, operative type, LN removed number, chemotherapy, AJCC stage, M stage, histology-were statistically significant in the multivariate Cox regression analysis and were selected to develop our nomogram. Based on ROC curves, calibration curves, and DCA analysis, our novel nomogram demonstrated good predictive accuracy and clinical utility. Using Kaplan-Meier (KM) survival curves and log-rank tests, the risk stratification system was able to stratify patients based on their estimated mortality risk. The nomogram performed better than the TNM staging system based on the NRI and IDI indexes. CONCLUSIONS We developed and validated a nomogram to predict prognosis of resected N2 NSCLC patients undergoing neoadjuvant radiotherapy. Using this nomogram, clinicians may find this nomogram useful in predicting OS of targeted patients and making more appropriate treatment decisions.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Zhiping Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Chengyu Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
66
|
Lei J, Zhao J, Gong L, Ni Y, Zhou Y, Tian F, Liu H, Gu Z, Huang L, Lu Q, Wang X, Sun J, Yang E, Wang T, Zhong D, Wang J, Zhao Z, Liu Z, Wang C, Wang X, Lei G, Yan X, Jiang T. Neoadjuvant Camrelizumab Plus Platinum-Based Chemotherapy vs Chemotherapy Alone for Chinese Patients With Resectable Stage IIIA or IIIB (T3N2) Non-Small Cell Lung Cancer: The TD-FOREKNOW Randomized Clinical Trial. JAMA Oncol 2023; 9:1348-1355. [PMID: 37535377 PMCID: PMC10401395 DOI: 10.1001/jamaoncol.2023.2751] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023]
Abstract
Importance The benefit of neoadjuvant camrelizumab plus chemotherapy for resectable stage IIIA or IIIB non-small cell lung cancer (NSCLC) remains unknown. Objective To assess the efficacy and safety of neoadjuvant camrelizumab plus chemotherapy vs chemotherapy alone for patients with resectable stage IIIA or IIIB NSCLC. Design, Setting, and Participants In this randomized phase 2 clinical trial conducted at 2 hospitals in China, patients aged 18 to 70 years with resectable stage IIIA or IIIB (T3N2) NSCLC were enrolled between April 7, 2020, and January 12, 2022. Interventions Patients were randomly assigned to receive 3 cycles of camrelizumab (200 mg) plus chemotherapy (nab-paclitaxel, 130 mg/m2, and platinum [cisplatin, 75 mg/m2; carboplatin, area under the curve, 5; or nedaplatin, 100 mg/m2]) or chemotherapy alone, followed by surgery after 4 to 6 weeks. Main Outcomes and Measures The primary end point was the pathologic complete response (pCR) rate. Secondary end points included the major pathologic response (MPR) rate, objective response rate (ORR), event-free survival (EFS), and safety. Disease-free survival (DFS, defined as the time from surgery to disease recurrence or death from any cause) was analyzed post hoc. Efficacy was assessed on a modified intention-to-treat basis. Results Ninety-four Chinese patients were randomized, and 88 (93.6%; median age, 61 years [IQR, 54-65 years]; 74 men [84.1%]) received allocated neoadjuvant treatment (43 received camrelizumab plus chemotherapy, and 45 received chemotherapy alone). Among these 88 patients, the pCR rate was 32.6% (14 of 43; 95% CI, 19.1%-48.5%) with camrelizumab plus chemotherapy vs 8.9% (4 of 45; 95% CI, 2.5%-21.2%) with chemotherapy alone (odds ratio, 4.95; 95% CI, 1.35-22.37; P = .008). The MPR rates were 65.1% (95% CI, 49.1%-79.0%) with camrelizumab plus chemotherapy and 15.6% (95% CI, 6.5%-29.5%) with chemotherapy alone. The radiographic ORRs were 72.1% (95% CI, 56.3%-84.7%) with camrelizumab plus chemotherapy and 53.3% (95% CI, 37.9%-68.3%) with chemotherapy alone. With a median follow-up of 14.1 months (IQR, 9.2-20.9 months), the median EFS and DFS were not reached in either group. The most common neoadjuvant treatment-related adverse events of grade 3 or higher were decreased white blood cell count (6 of 43 [14.0%] in the camrelizumab plus chemotherapy group vs 2 of 45 [4.4%] in the chemotherapy group) and decreased neutrophil count (3 of 43 [7.0%] in the camrelizumab plus chemotherapy group vs 5 of 45 [11.1%] in the chemotherapy group). No treatment-related deaths were reported. Conclusions and Relevance This randomized clinical trial found that among patients with resectable stage IIIA or IIIB (T3N2) NSCLC, camrelizumab plus chemotherapy, compared with chemotherapy alone, significantly improved the pCR rate with manageable toxic effects. Trial Registration ClinicalTrials.gov Identifier: NCT04338620.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Li Gong
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yongan Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Feng Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Honggang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Lijun Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Qiang Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Jianyong Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Ende Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Tao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Daixing Zhong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Jian Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Zhengwei Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Xiaojing Wang
- Department of Oncology Business, Jiangsu Hengrui Pharmaceuticals Co Ltd, Shanghai, China
| | - Guangyan Lei
- Department of Thoracic Surgery, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
67
|
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W, Wei S. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int 2023; 23:222. [PMID: 37775731 PMCID: PMC10543265 DOI: 10.1186/s12935-023-03082-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
68
|
Ohtani-Kim SJY, Taki T, Tane K, Miyoshi T, Samejima J, Aokage K, Nagasaki Y, Kojima M, Sakashita S, Watanabe R, Sakamoto N, Goto K, Tsuboi M, Ishii G. Efficacy of Preoperative Biopsy in Predicting the Newly Proposed Histologic Grade of Resected Lung Adenocarcinoma. Mod Pathol 2023; 36:100209. [PMID: 37149221 DOI: 10.1016/j.modpat.2023.100209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
A novel histologic grading system for invasive lung adenocarcinomas (LUAD) has been newly proposed and adopted by the World Health Organization (WHO) classification. We aimed to evaluate the concordance of newly established grades between preoperative biopsy and surgically resected LUAD samples. Additionally, factors affecting the concordance rate and its prognostic impact were also analyzed. In this study, surgically resected specimens of 222 patients with invasive LUAD and their preoperative biopsies collected between January 2013 and December 2020 were used. We determined the histologic subtypes of preoperative biopsy and surgically resected specimens and classified them separately according to the novel WHO grading system. The overall concordance rate of the novel WHO grades between preoperative biopsy and surgically resected samples was 81.5%, which was higher than that of the predominant subtype. When stratified by grades, the concordance rate of grades 1 (well-differentiated, 84.2%) and 3 (poorly differentiated, 89.1%) was found to be superior compared to grade 2 (moderately differentiated, 66.2%). Overall, the concordance rate was not significantly different from biopsy characteristics, including the number of biopsy samples, biopsy sample size, and tumor area size. On the other hand, the concordance rate of grades 1 and 2 was significantly higher in tumors with smaller invasive diameters, and that of grade 3 was significantly higher in tumors with larger invasive diameters. Preoperative biopsy specimens can predict the novel WHO grades, especially grades 1 and 3 of surgically resected specimens, more accurately than the former grading system, regardless of preoperative biopsy or clinicopathologic characteristics.
Collapse
Affiliation(s)
- Seiyu Jeong-Yoo Ohtani-Kim
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yusuke Nagasaki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Sakashita
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Reiko Watanabe
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; Course of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
69
|
Kidane B, Bott M, Spicer J, Backhus L, Chaft J, Chudgar N, Colson Y, D'Amico TA, David E, Lee J, Najmeh S, Sepesi B, Shu C, Yang J, Swanson S, Stiles B. The American Association for Thoracic Surgery (AATS) 2023 Expert Consensus Document: Staging and multidisciplinary management of patients with early-stage non-small cell lung cancer. J Thorac Cardiovasc Surg 2023; 166:637-654. [PMID: 37306641 DOI: 10.1016/j.jtcvs.2023.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023]
Abstract
Novel targeted therapy and immunotherapy drugs have recently been approved for use in patients with surgically resectable lung cancer. Accurate staging, early molecular testing, and knowledge of recent trials are critical to optimize oncologic outcomes in these patients.
Collapse
Affiliation(s)
| | - Matthew Bott
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | - Jamie Chaft
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | | | | | - Jay Lee
- University of California, Los Angeles, Los Angeles, Calif
| | | | | | | | | | | | | |
Collapse
|
70
|
Zhu Y, Shen L, Xia Q, Tao H, Liu Z, Wang M, Zhang X, Zhang J, Lv J. Extracellular vesicle-derived circHIPK3: Novel diagnostic biomarker for lung cancer. Adv Med Sci 2023; 68:426-432. [PMID: 37866205 DOI: 10.1016/j.advms.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE Lung cancer (LC) is a common malignancy worldwide. A great number of circular RNAs (circRNAs) have been identified that serve crucial roles in cancer development. Extracellular vesicles (EVs) and their contents have been shown to be biomarkers for the diagnosis and prognosis of LC. Thus, we intended to clarify the functional role of EVs-derived circRNA homology domain interacting protein kinase 3 (EVs-circHIPK3) and its underlying mechanism of action. MATERIAL AND METHODS Bioinformatics analysis was performed to validate the potential of partially circulating HIPK3 in LC diagnosis. EVs were isolated by polyethylene glycol (PEG) precipitation from plasma of 52 LC patients and 30 healthy controls. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to evaluate the expressions of candidate circRNAs (circHIPK3) and microRNA-637 (miR-637, a target of circHIPK3). RESULTS CircHIPK3 is significantly up-regulated in LC, while miR-637 expression is significantly reduced (p < 0.05). Receiver operating characteristic (ROC) curve analysis, based on the expression of EVs-circHIPK3, allowed us to distinguish LC from healthy controls (area under the curve, AUC 0.897). CONCLUSIONS Taken together, our study shows that EV-derived circHIPK3 can serve as a promising biomarker for LC patient diagnosis. However, the downstream mRNA of the circHIPK3/miR-637 axis requires further exploration to enrich our understanding of circHIPK3's mechanism in LC.
Collapse
Affiliation(s)
- Yingying Zhu
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Li Shen
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Qiuyan Xia
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Heyun Tao
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Zhanguo Liu
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Mengdie Wang
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Xiaomin Zhang
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China
| | - Jun Zhang
- Department of Oncology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu, China.
| | - Jian Lv
- Department of Thoracic Surgery, Affiliated Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
71
|
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165:115071. [PMID: 37390710 DOI: 10.1016/j.biopha.2023.115071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
SIRT5 is a mitochondrial NAD+ -dependent lysine deacylase. Downregulation of SIRT5 has been linked to several primary cancers and DNA damage. In clinical therapy for non-small cell lung cancer (NSCLC), the Feiyiliu Mixture (FYLM) is an experience and effective Chinese herb prescription. And we found that quercetin is an important ingredient in the FYLM. However, whether quercetin regulates DNA damage repair (DDR) and induces apoptosis through SIRT5 in NSCLC remains unknown. The present study revealed that quercetin directly binds to SIRT5 and inhibits the phosphorylation of PI3K/AKT through the interaction between SIRT5 and PI3K, thus inhibiting the repair process of homologous recombination (HR) and non-homologous end-joining (NHEJ) in NSCLC, which raise mitotic catastrophe and apoptosis. Our study provided a novel mechanism of action of quercetin in the treatment of NSCLC.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Ye Yang
- Qingdao Central Hospital, Qingdao 266042, China
| | - Xuemeng Pang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingjing Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Jiang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China.
| |
Collapse
|
72
|
Liu Y, Lu J. Mechanism and clinical application of thymosin in the treatment of lung cancer. Front Immunol 2023; 14:1237978. [PMID: 37701432 PMCID: PMC10493777 DOI: 10.3389/fimmu.2023.1237978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The burden of cancer on public health is becoming more widely acknowledged. Lung cancer has one of the highest incidence and mortality rates of all cancers. The prevalence of early screening, the emergence of targeted therapy, and the development of immunotherapy have all significantly improved the overall prognosis of lung cancer patients. The current state of affairs, however, is not encouraging, and there are issues like poor treatment outcomes for some patients and extremely poor prognoses for those with advanced lung cancer. Because of their potent immunomodulatory capabilities, thymosin drugs are frequently used in the treatment of tumors. The effectiveness of thymosin drugs in the treatment of lung cancer has been demonstrated in numerous studies, which amply demonstrates the potential and future of thymosin drugs for the treatment of lung cancer. The clinical research on thymosin peptide drugs in lung cancer and the basic research on the mechanism of thymosin drugs in anti-lung cancer are both systematically summarized and analyzed in this paper, along with future research directions.
Collapse
Affiliation(s)
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
73
|
Bottet B, Piton N, Selim J, Sarsam M, Guisier F, Baste JM. Beyond the Frontline: A Triple-Line Approach of Thoracic Surgeons in Lung Cancer Management-State of the Art. Cancers (Basel) 2023; 15:4039. [PMID: 37627067 PMCID: PMC10452134 DOI: 10.3390/cancers15164039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is now described as an extremely heterogeneous disease in its clinical presentation, histology, molecular characteristics, and patient conditions. Over the past 20 years, the management of lung cancer has evolved with positive results. Immune checkpoint inhibitors have revolutionized the treatment landscape for NSCLC in both metastatic and locally advanced stages. The identification of molecular alterations in NSCLC has also allowed the development of targeted therapies, which provide better outcomes than chemotherapy in selected patients. However, patients usually develop acquired resistance to these treatments. On the other hand, thoracic surgery has progressed thanks to minimally invasive procedures, pre-habilitation and enhanced recovery after surgery. Moreover, within thoracic surgery, precision surgery considers the patient and his/her disease in their entirety to offer the best oncologic strategy. Surgeons support patients from pre-operative rehabilitation to surgery and beyond. They are involved in post-treatment follow-up and lung cancer recurrence. When conventional therapies are no longer effective, salvage surgery can be performed on selected patients.
Collapse
Affiliation(s)
- Benjamin Bottet
- Department of General and Thoracic Surgery, Hospital Center University De Rouen, 1 Rue de Germont, F-76000 Rouen, France; (B.B.); (M.S.)
| | - Nicolas Piton
- Department of Pathology, UNIROUEN, INSERM U1245, CHU Rouen, Normandy University, F-76000 Rouen, France;
| | - Jean Selim
- Department of Anaesthesiology and Critical Care, CHU Rouen, F-76000 Rouen, France;
- INSERM EnVI UMR 1096, University of Rouen Normandy, F-76000 Rouen, France
| | - Matthieu Sarsam
- Department of General and Thoracic Surgery, Hospital Center University De Rouen, 1 Rue de Germont, F-76000 Rouen, France; (B.B.); (M.S.)
| | - Florian Guisier
- Department of Pneumology, CHU Rouen, 1 Rue de Germont, F-76000 Rouen, France;
- Clinical Investigation Center, Rouen University Hospital, CIC INSERM 1404, 1 Rue de Germont, F-76000 Rouen, France
| | - Jean-Marc Baste
- Department of General and Thoracic Surgery, Hospital Center University De Rouen, 1 Rue de Germont, F-76000 Rouen, France; (B.B.); (M.S.)
| |
Collapse
|
74
|
Huang Y, Sun J, Li J, Zhu D, Dong M, Dou S, Tang Y, Shi W, Sun Q, Zhao T, Zhou Z, Zhou X, Liu Y, Li J, Zhu G, Zhang D, Chen Y, Zhu Q, Ju W, Zhong L. Neoadjuvant immunochemotherapy for locally advanced resectable oral squamous cell carcinoma: a prospective single-arm trial (Illuminate Trial). Int J Surg 2023; 109:2220-2227. [PMID: 37288582 PMCID: PMC10442116 DOI: 10.1097/js9.0000000000000489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Locally advanced oral squamous cell carcinoma (LAOSCC) is associated with a high rate of recurrence and poor survival. Given the recent successes of neoadjuvant immunochemotherapy (NAICT) in solid tumors, it is promising to use this treatment modality to achieve a better pathological response and improve the survival of LAOSCC, and clinical evidence is needed to assess its safety and efficacy. PATIENTS AND METHODS A prospective trial of NAICT with toripalimab (PD-1 inhibitor) and albumin paclitaxel/cisplatin (TTP) was conducted in patients with clinical stage III and IVA OSCC. Intravenous albumin paclitaxel (260 mg/m 2 ), cisplatin (75 mg/m 2 ), and toripalimab (240 mg) were given in sequence on day 1 of each 21 day cycle for two cycles, followed by radical surgery and risk-adapted adjuvant (chemo)radiotherapy. The primary endpoints were safety and major pathological response (MPR). Targeted next generation sequencing and multiplex immunofluorescence were performed to assess clinical molecular characteristics and the tumor immune microenvironment in the pre-NAICT and post-NAICT tumor samples. RESULTS Twenty patients were enrolled. NAICT was well-tolerated with a low incidence of grades 3-4 adverse events in three patients. The completion rates of NAICT and subsequent R0 resection were 100%. The MPR rate was 60%, including a 30% pathological complete response. MPR was achieved in all four patients with a combined positive score of PD-L1>10. The density of tertiary lymphatic structure in post-NAICT tumor samples predicted the pathological response to NAICT. During the median 23-month follow-up, the disease-free survival was 90%, and the overall survival was 95%. CONCLUSIONS NAICT with the TTP protocol in LAOSCC is feasible and well tolerated, with a promising MPR and no obstruction on subsequent surgery. This trial is supportive of further randomized trials using NAICT in LAOSCC.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Jingjing Sun
- Department of Oral Pathology, Ninth People’s Hospital, College of Stomatology
| | - Jun Li
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Dongwang Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | | | - Shengjin Dou
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | | | - Wentao Shi
- Department of Biostatistics in Clinical Research Unit, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | | | - Tongchao Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Zhihang Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Xinyu Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Ying Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Jiang Li
- Department of Oral Pathology, Ninth People’s Hospital, College of Stomatology
| | - Guopei Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc
| | - Yanan Chen
- The Medical Department, 3D Medicines Inc
| | - Qi Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology
- Huangpu Branch
| | - Wutong Ju
- Department of Oral and Maxillofacial-Head and Neck Oncology
| | - Laiping Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology
- Huangpu Branch
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic China
| |
Collapse
|
75
|
Akinboro O, Drezner N, Amatya A, Runyan J, Fourie-Zirkelbach J, Zhao M, Bi Y, Korsah K, Mixter B, Tang S, Larkins E, Pazdur R, Beaver JA, Singh H. US Food and Drug Administration Approval Summary: Nivolumab Plus Platinum-Doublet Chemotherapy for the Neoadjuvant Treatment of Patients With Resectable Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3249-3259. [PMID: 37141544 PMCID: PMC10256356 DOI: 10.1200/jco.22.02509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 05/06/2023] Open
Abstract
PURPOSE On March 4, 2022, the US Food and Drug Administration (FDA) approved nivolumab plus platinum-doublet chemotherapy for the neoadjuvant treatment of patients with resectable non-small-cell lung cancer (NSCLC). We discuss the FDA's review of the key data and regulatory considerations supporting this approval. PATIENTS AND METHODS The approval was based on the results of CheckMate 816, an international, multiregional, active-controlled trial that randomly assigned 358 patients with resectable NSCLC, stage IB (≥4 cm) to IIIA (N2) per the American Joint Committee on Cancer seventh staging edition to receive either nivolumab plus platinum-doublet or platinum-doublet chemotherapy alone for three cycles before planned surgical resection. The major efficacy end point that supported this approval was event-free survival (EFS). RESULTS At the first planned interim analysis (IA), the hazard ratio (HR) for EFS was 0.63 (95% CI, 0.45 to 0.87; P = .0052; statistical significance boundary = .0262) favoring the nivolumab plus chemotherapy arm; the median EFS was 31.6 months (95% CI, 30.2 to not reached) in the nivolumab plus chemotherapy arm versus 20.8 months (95% CI, 14.0 to 26.7) in the chemotherapy-only arm. At the time of a prespecified IA for overall survival (OS), 26% of patients had died, and the HR for OS was 0.57 (95% CI, 0.38 to 0.87; P = .0079; statistical significance boundary = .0033). Eighty-three percent of patients in the nivolumab-containing arm versus 75% in the chemotherapy-only arm received definitive surgery. CONCLUSION This approval, the first for any regimen for the neoadjuvant treatment of NSCLC in the United States, was supported by a statistically significant and clinically meaningful improvement in EFS with no evidence of detriment in OS or negative impact on patients' receipt and timing of surgery or surgical outcomes.
Collapse
Affiliation(s)
- Oladimeji Akinboro
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Nicole Drezner
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Anup Amatya
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Jin Runyan
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Jeanne Fourie-Zirkelbach
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Miao Zhao
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Youwei Bi
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Kwadwo Korsah
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Bronwyn Mixter
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Shenghui Tang
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Erin Larkins
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
| | - Richard Pazdur
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Julia A. Beaver
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| | - Harpreet Singh
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
76
|
Sui Q, Hu Z, Jin X, Bian Y, Liang J, Zhang H, Yang H, Lin Z, Wang Q, Zhan C, Chen Z. The genomic signature of resistance to platinum-containing neoadjuvant therapy based on single-cell data. Cell Biosci 2023; 13:103. [PMID: 37291676 PMCID: PMC10249226 DOI: 10.1186/s13578-023-01061-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) becomes the first-line option for advanced tumors, while patients who are not sensitive to it may not benefit. Therefore, it is important to screen patients suitable for NACT. METHODS Single-cell data of lung adenocarcinoma (LUAD) and esophageal squamous carcinoma (ESCC) before and after cisplatin-containing (CDDP) NACT and cisplatin IC50 data of tumor cell lines were analyzed to establish a CDDP neoadjuvant chemotherapy score (NCS). Differential analysis, GO, KEGG, GSVA and logistic regression models were performed by R. Survival analysis were applied to public databases. siRNA knockdown in A549, PC9, TE1 cell lines, qRT-PCR, western-blot, cck8 and EdU experiments were used for further verification in vitro. RESULTS 485 genes were expressed differentially in tumor cells before and after neoadjuvant treatment for LUAD and ESCC. After combining the CDDP-associated genes, 12 genes, CAV2, PHLDA1, DUSP23, VDAC3, DSG2, SPINT2, SPATS2L, IGFBP3, CD9, ALCAM, PRSS23, PERP, were obtained and formed the NCS score. The higher the score, the more sensitive the patients were to CDDP-NACT. The NCS divided LUAD and ESCC into two groups. Based on differentially expressed genes, a model was constructed to predict the high and low NCS. CAV2, PHLDA1, ALCAM, CD9, IGBP3 and VDAC3 were significantly associated with prognosis. Finally, we demonstrated that the knockdown of CAV2, PHLDA1 and VDAC3 in A549, PC9 and TE1 significantly increased the sensitivity to cisplatin. CONCLUSIONS NCS scores and related predictive models for CDDP-NACT were developed and validated to assist in selecting patients who might benefit from it.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
77
|
Zou Y, Gao S, Yu X, Zhou T, Xie Y, Guo X, An R, Wang X, Zhao T, Chang A, Gao C, Yu J, Hao J. Survival outcomes of neoadjuvant therapy followed by radical resection versus upfront surgery for stage I-III pancreatic ductal adenocarcinoma: a retrospective cohort study. Int J Surg 2023; 109:1573-1583. [PMID: 37132194 PMCID: PMC10389558 DOI: 10.1097/js9.0000000000000425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Neoadjuvant therapy remains controversial in treating resectable pancreatic ductal adenocarcinoma (PDAC) patients. This study aims to assess the impact of neoadjuvant therapy on survival in patients with PDAC according to their clinical stage. METHODS Patients with resected clinical Stage I-III PDAC from 2010 to 2019 were identified in the surveillance, epidemiology, and end results database. A propensity score matching method was utilized within each stage to reduce potential selection bias between patients who underwent neoadjuvant chemotherapy followed by surgery and patients who underwent upfront surgery. An overall survival (OS) analysis was performed using the Kaplan-Meier method and a multivariate Cox proportional hazards model. RESULTS A total of 13 674 patients were included in the study. The majority of the patients ( N =10 715, 78.4%) underwent upfront surgery. Patients receiving neoadjuvant therapy followed by surgery had significantly longer OS than those with upfront surgery. Subgroup analysis revealed that the neoadjuvant chemoradiotherapy group's OS is comparable to neoadjuvant chemotherapy. In clinical Stage IA PDAC, there was no difference in survival between the neoadjuvant treatment and upfront surgery groups before or after matching. In stage IB-III patients, neoadjuvant therapy followed by surgery improved OS before and after matching compared to upfront surgery. The results revealed the same OS benefits using the multivariate Cox proportional hazards model. CONCLUSION Neoadjuvant therapy followed by surgery could improve OS over upfront surgery in Stage IB-III PDAC but did not provide a significant survival advantage in Stage IA PDAC.
Collapse
Affiliation(s)
- Yiping Zou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Xin Yu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Xiaofan Guo
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Ran An
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Chuntao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| | - Jun Yu
- Departments of Medicine
- Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic China
| |
Collapse
|
78
|
Wang Y, Huang S, Feng X, Xu W, Luo R, Zhu Z, Zeng Q, He Z. Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer. Front Oncol 2023; 13:1145128. [PMID: 37265800 PMCID: PMC10229830 DOI: 10.3389/fonc.2023.1145128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has become mainstream in the treatment of non-small cell lung cancer (NSCLC). The idea of harnessing the immune system to fight cancer is fast developing. Neoadjuvant treatment in NSCLC is undergoing unprecedented change. Chemo-immunotherapy combinations not only seem to achieve population-wide treating coverage irrespective of PD-L1 expression but also enable achieving a pathological complete response (pCR). Despite these recent advancements in neoadjuvant chemo-immunotherapy, not all patients respond favorably to treatment with ICIs plus chemo and may even suffer from severe immune-related adverse effects (irAEs). Similar to selection for target therapy, identifying patients most likely to benefit from chemo-immunotherapy may be valuable. Recently, several prognostic and predictive factors associated with the efficacy of neoadjuvant immunotherapy in NSCLC, such as tumor-intrinsic biomarkers, tumor microenvironment biomarkers, liquid biopsies, microbiota, metabolic profiles, and clinical characteristics, have been described. However, a specific and sensitive biomarker remains to be identified. Recently, the construction of prediction models for ICI therapy using novel tools, such as multi-omics factors, proteomic tests, host immune classifiers, and machine learning algorithms, has gained attention. In this review, we provide a comprehensive overview of the different positive prognostic and predictive factors in treating preoperative patients with ICIs, highlight the recent advances made in the efficacy prediction of neoadjuvant immunotherapy, and provide an outlook for joint predictors.
Collapse
Affiliation(s)
- Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Huang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Feng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangjue Xu
- Department of Thoracic Surgery, Longyou County People’s Hospital, Longyou, China
| | - Raojun Luo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingxin Zeng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
79
|
Tricard J, Filaire M, Vergé R, Pages PB, Brichon PY, Loundou A, Boyer L, Thomas PA. Multimodality therapy for lung cancer invading the chest wall: A study of the French EPITHOR database. Lung Cancer 2023; 181:107224. [PMID: 37156211 DOI: 10.1016/j.lungcan.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES According to a nation-based study, we intend to report the data of the patients operated on for lung cancer invading the chest wall, taking into consideration the completion of induction chemotherapy (Ind_CT), induction radiochemotherapy (Ind_RCT) or no induction therapy (0_Ind). MATERIALS AND METHODS All patients with a primary lung cancer invading the chest wall who underwent radical resection from 2004 to 2019 were included. Superior sulcus tumors were excluded. RESULTS Overall, 688 patients were included: 522 operated without induction therapy, 101 with Ind_CT and 65 with Ind_RCT. Postoperative 90-day mortality was 10.7% in the 0_Ind group, 5.0% in the Ind_CT group, 7.7% in the Ind_RCT group (p = 0.17). Incomplete resection rate was 14.0% in the 0_Ind group, 6.9% in the Ind_CT group, 6.2% in the Ind_RCT group (p = 0.04). In the 0_Ind group, 70% of the patients received adjuvant therapies. Overall survival (OS) analysis disclosed the best long-term outcomes in the Ind_RCT group (5-year OS probability: 56.5% versus 40.0% and 40.5% for 0_Ind and Ind_CT groups, respectively; p = 0.035). At multivariable analysis, Ind_RCT (HR = 0.571; p = 0.008), age > 60 years old (HR = 1,373; p = 0.005), male sex (HR = 1.710; p < 0.001), pneumonectomy (HR = 1.368; p = 0.025), pN2 status (HR = 1.981; p < 0.001), ≥3 resected ribs (HR = 1.329; p = 0.019), incomplete resection (HR = 2.284; p < 0.001) and lack of adjuvant therapy (HR = 1.959; p < 0.001) were associated with OS. Ind_CT was not associated with survival (HR = 0.848; p = 0.257). CONCLUSION Induction chemoradiation therapy seems to improve survival. Therefore, the present results should be confirmed by a prospective randomized trial testing the benefit of induction radiochemotherapy for NSCLC invading the chest wall.
Collapse
Affiliation(s)
- Jérémy Tricard
- EPITHOR Group, French Society of Thoracic and Cardiovascular Surgery, 56 Bd Vincent Auriol, 75013 Paris, France; Department of Cardio-Thoracic Surgery, University Hospital of Limoges, 16 Rue Bernard Descottes, 87042 Limoges, France.
| | - Marc Filaire
- EPITHOR Group, French Society of Thoracic and Cardiovascular Surgery, 56 Bd Vincent Auriol, 75013 Paris, France; Department of Thoracic and Endocrinological Surgery, Center Jean Perrin, 58 Rue Montalembert, 63011 Clermont-Ferrand, France.
| | - Romain Vergé
- EPITHOR Group, French Society of Thoracic and Cardiovascular Surgery, 56 Bd Vincent Auriol, 75013 Paris, France; Department of Thoracic Surgery, University Hospital of Toulouse, 24 Chem. de Pouvourville, 31400 Toulouse, France
| | - Pierre-Benoit Pages
- EPITHOR Group, French Society of Thoracic and Cardiovascular Surgery, 56 Bd Vincent Auriol, 75013 Paris, France; Department of Thoracic and Cardiovascular Surgery, University Hospital of Dijon, 14 Rue Paul Gaffarel, 21000 Dijon, France.
| | - Pierre-Yves Brichon
- EPITHOR Group, French Society of Thoracic and Cardiovascular Surgery, 56 Bd Vincent Auriol, 75013 Paris, France; Department of Thoracic Surgery, University Hospital of Grenoble, Av. des Maquis du Grésivaudan, 38700 La Tronche, France.
| | - Anderson Loundou
- Department of Medical Information, Assistance Publique - Hôpitaux Marseille & Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie, CEReSS/EA 3279, 27 Bd Jean Moulin, 13385 Marseille, France.
| | - Laurent Boyer
- Department of Medical Information, Assistance Publique - Hôpitaux Marseille & Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie, CEReSS/EA 3279, 27 Bd Jean Moulin, 13385 Marseille, France.
| | - Pascal Alexandre Thomas
- EPITHOR Group, French Society of Thoracic and Cardiovascular Surgery, 56 Bd Vincent Auriol, 75013 Paris, France; Department of Thoracic Surgery, North Hospital, Assistance Publique - Hôpitaux Marseille, & Predictive Oncology Laboratory, CRCM, Inserm UMR 1068, CNRS, UMR 7258, Aix-Marseille University UM105, Chem. des Bourrely, 13015 Marseille, France.
| |
Collapse
|
80
|
Liu SYM, Zheng MM, Pan Y, Liu SY, Li Y, Wu YL. Emerging evidence and treatment paradigm of non-small cell lung cancer. J Hematol Oncol 2023; 16:40. [PMID: 37069698 PMCID: PMC10108547 DOI: 10.1186/s13045-023-01436-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Research on biomarker-driven therapy and immune check-point blockade in non-small cell lung cancer (NSCLC) is rapidly evolving. The width and depth of clinical trials have also dramatically improved in an unprecedented speed. The personalized treatment paradigm evolved every year. In this review, we summarize the promising agents that have shifted the treatment paradigm for NSCLC patients across all stages, including targeted therapy and immunotherapy using checkpoint inhibitors. Based on recent evidence, we propose treatment algorithms for NSCLC and propose several unsolved clinical issues, which are being explored in ongoing clinical trials. The results of these trials are likely to impact future clinical practice.
Collapse
Affiliation(s)
- Si-Yang Maggie Liu
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yangqiu Li
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
81
|
Xia L, Guo J, E H, Zhang W, Huang Y, Zhang L, Zhao D, Xie D, Wu C, Hou L. Major pathological response exhibited distinct prognostic significance for lung adenocarcinoma post different modalities of neoadjuvant therapy. Histopathology 2023; 82:691-703. [PMID: 36579364 DOI: 10.1111/his.14855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
AIMS For non-small-cell lung cancer (NSCLC) patients receiving neoadjuvant therapy, the major pathological response (MPR) is defined as the percentage of residual viable tumour cells (%RVT) in the tumour bed of no more than 10%. It has been proposed as a predictor of survival in neoadjuvant therapy-treated cohorts. Nonetheless, the significance of %RVT in the pathological assessment of lung adenocarcinoma cohorts remains undetermined. METHODS AND RESULTS Overall, 152 lung adenocarcinoma patients were included in this retrospective study, among whom 67 received neoadjuvant targeted therapy and 85 received neoadjuvant chemotherapy. Clinicopathological characteristics, neoadjuvant treatment response and survival status were investigated. The routinely adopted standard for MPR (%RVT ≤ 10%) failed to differentiate prognosis in the lung adenocarcinoma population. For the neoadjuvant chemotherapy cohort, the optimal %RVT cut-off value of RFS was 60%. However, this cut-off value was clinically insignificant in the neoadjuvant targeted-therapy cohort. Hence, for these patients, we built a nomogram model including high-grade patterns and ypN stage to predict disease recurrence, demonstrating high efficacy (a bootstrap-corrected C-index of 0.731). CONCLUSIONS %RVT served as a strong indicator of the prognosis of lung adenocarcinoma in patients receiving neoadjuvant chemotherapy but not neoadjuvant targeted therapy. Residual high-grade pathological patterns might substitute MPR in prognostic evaluation of lung adenocarcinoma post-targeted therapy.
Collapse
Affiliation(s)
- Lang Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoran E
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
82
|
Lazzari C, Spagnolo CC, Ciappina G, Di Pietro M, Squeri A, Passalacqua MI, Marchesi S, Gregorc V, Santarpia M. Immunotherapy in Early-Stage Non-Small Cell Lung Cancer (NSCLC): Current Evidence and Perspectives. Curr Oncol 2023; 30:3684-3696. [PMID: 37185393 PMCID: PMC10136903 DOI: 10.3390/curroncol30040280] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the world. Surgery is the most potentially curative therapeutic option for patients with early-stage non-small cell lung cancer (NSCLC). The five-year survival for these patients remains poor and variable, depending on the stage of disease at diagnosis, and the risk of recurrence following tumor resection is high. During the last 20 years, there has been a modest improvement in the therapeutic strategies for resectable NSCLC. Immune checkpoint inhibitors (ICIs), alone or in combination with chemotherapy, have become the cornerstone for the treatment of metastatic NSCLC patients. Recently, their clinical development has been shifted in the neoadjuvant and adjuvant settings where they have demonstrated remarkable efficacy, leading to improved clinical outcomes. Based on the positive results from phase III trials, ICIs have become a therapeutic option in neoadjuvant and adjuvant settings. On October 2021 the Food and Drug Administration (FDA) approved atezolizumab as an adjuvant treatment following surgery and platinum-based chemotherapy for patients with NSCLC whose tumors express PD-L1 ≥ 1%. In March 2022, nivolumab in combination with platinum-doublet chemotherapy was approved for adult patients with resectable NSCLC in the neoadjuvant setting. The current review provides an updated overview of the clinical trials exploring the role of immunotherapy in patients with early-stage NSCLC, focusing on the biological rationale for their use in the perioperative setting. We will also discuss the role of potential predictive biomarkers to personalize therapy and optimize the incorporation of immunotherapy into the multimodality management of stage I-III NSCLC.
Collapse
|
83
|
Blakely CM, Weder W, Bubendorf L, He J, Majem M, Shyr Y, Chaft JE. Primary endpoints to assess the efficacy of novel therapeutic approaches in epidermal growth factor receptor-mutated, surgically resectable non-small cell lung cancer: A review. Lung Cancer 2023; 177:59-72. [PMID: 36736076 DOI: 10.1016/j.lungcan.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
While the discovery of oncogenic driver mutations has personalized the metastatic non-small cell lung cancer (NSCLC) treatment landscape with effective targeted therapies, implementation of new treatments in resectable NSCLC has been limited due to the long follow-up needed for overall survival (OS). Until recently, treatment for patients with early-stage resectable NSCLC has been limited to perioperative chemotherapy, which provides modest benefits. However, the regulatory acceptance of two surrogate endpoints for OS has allowed recent approval of both adjuvant osimertinib and atezolizumab, providing patients with new treatment options to improve outcomes. In phase 3 oncology trials, OS has historically been viewed as the gold-standard efficacy measure, but disease-free survival and event-free survival (EFS) are now validated surrogate endpoints for OS in clinical trials and should be considered when mature OS data is unavailable. Another potential surrogate endpoint in the adjuvant NSCLC setting is circulating tumor DNA (ctDNA)-based minimal residual disease (MRD), although prospective validation is needed. For neoadjuvant targeted therapies, EFS, major pathologic response and ctDNA-based MRD are potential surrogate endpoints. To fully translate the success of the personalized treatment advances in the metastatic setting to earlier-stage disease, prospective validation studies of these potential surrogate endpoints that can accelerate the evaluation of drug efficacy are needed. A collaborative effort is also needed from all clinical and regulatory parties to collate surrogate endpoint data for large-scale validation. In this review we discuss the trends in surrogate endpoints used in oncology trials, with a focus on considerations for selecting appropriate primary endpoints in early-stage resectable EGFR-mutant NSCLC, an area of unmet need for novel treatment options.
Collapse
Affiliation(s)
- Collin M Blakely
- Department of Medicine and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Walter Weder
- Department of Thoracic Surgery, University of Zurich (director Emeritus), Thoraxchirurgie, Klinik Bethanien, Zürich, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | - Jianxing He
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie E Chaft
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
84
|
New Approaches in Early-Stage NSCL Management: Potential Use of PARP Inhibitors and Immunotherapy Combination. Int J Mol Sci 2023; 24:ijms24044044. [PMID: 36835456 PMCID: PMC9961654 DOI: 10.3390/ijms24044044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world, being the first cause of cancer-related mortality. Surgery remains the only potentially curative treatment for Non-Small Cell Lung Cancer (NSCLC), but the recurrence risk remains high (30-55%) and Overall Survival (OS) is still lower than desirable (63% at 5 years), even with adjuvant treatment. Neoadjuvant treatment can be helpful and new therapies and pharmacologic associations are being studied. Immune Checkpoint Inhibitors (ICI) and PARP inhibitors (PARPi) are two pharmacological classes already in use to treat several cancers. Some pre-clinical studies have shown that its association can be synergic and this is being studied in different settings. Here, we review the PARPi and ICI strategies in cancer management and the information will be used to develop a clinical trial to evaluate the potential of PARPi association with ICI in early-stage neoadjuvant setting NSCLC.
Collapse
|
85
|
Liu Y, Ouyang Y, Feng Z, Jiang Z, Ma J, Zhou X, Cai C, Han Y, Zeng S, Liu S, Shen H. RASGRP2 is a potential immune-related biomarker and regulates mitochondrial-dependent apoptosis in lung adenocarcinoma. Front Immunol 2023; 14:1100231. [PMID: 36817422 PMCID: PMC9936229 DOI: 10.3389/fimmu.2023.1100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ras guanine nucleotide-releasing protein 2 (RASGRP2), one of the guanine nucleotide exchange factors (GEFs), has attracted much attention in recent years. However, the correlation between RASGRP2 and immune infiltration and malignant features in lung adenocarcinoma (LUAD) has rarely been mentioned. METHODS The Limma package and the LASSO regression model were performed to screen for differentially expressed genes. Data from the TCGA and 5 GEO databases were used to explore the expression level of RASGRP2 in LUAD patients. A weighted co-expression network and LinkFinder module were established to find the related genes of RASGRP2. The ESTIMATE algorithm was used to analyze the correlation between RASGRP2 and immune infiltration in LUAD. Tumor-infiltrating immune cells were sorted and sequenced at the single-cell level to analyze differences in RASGRP2. Real-time PCR and immunohistochemistry were performed in the real-world cohort to verify the expression of RASGRP2 and its correlation with immune-related genes. Clone formation and EdU assays were used to verify the proliferation ability. The proportion of apoptotic cells was analyzed by flow cytometry. Observation of mitochondrial membrane potential (MMP) changes by fluorescence microscopy. RESULTS Our results suggested that decreased RASGRP2 was associated with worse clinical parameters and prognosis in LUAD patients. And we constructed a FLI1-HSA-miR-1976-RASGRP2 transcriptional network to support the role of RASGRP2. Enrichment analysis revealed that RASGRP2 was involved in lymphocyte activation and leukocyte adhesion. RASGRP2 was found to be positively correlated with the infiltration of most immune cells, immunoregulators, and chemokines in a subsequent study. Meanwhile, the real-world cohort confirmed that the expression levels of PDCD1, CTLA4, CD40LG, CCL14, CXCR5, and CCR7 were higher in the high-RASGRP2 expression group. Cytological experiments proved that RASGRP2 inhibited cell proliferation in LUAD by regulating mitochondrial-dependent apoptosis. CONCLUSION RASGRP2 was a potential immune-related biomarker of LUAD. In addition, RASGRP2 was involved in the malignant progression of LUAD through the regulation of mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Ouyang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Liu
- Department of Radiotherapy, Tianjin First Central Hospital, Tianjin, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
86
|
Zhuang F, Haoran E, Huang J, Wu J, Xu L, Zhang L, Li Q, Li C, Zhao Y, Yang M, Ma M, She Y, Chen H, Luo Q, Zhao D, Chen C. Utility of 18F-FDG PET/CT uptake values in predicting response to neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer. Lung Cancer 2023; 178:20-27. [PMID: 36764154 DOI: 10.1016/j.lungcan.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Reliable predictive markers are lacking for resectable non-small cell lung cancer (NSCLC) patients treated with neoadjuvant chemoimmunotherapy. The present study investigated the utility of SUVmax values acquired from PET/CT to predict the response to neoadjuvant chemoimmunotherapy for resectable NSCLC. MATERAL AND METHODS SUVmax, clinical and pathological outcomes, were collected from patients in 5 hospitals. Patients who received dynamic PET/CT surveillance were divided into cohorts A (chemoimmunotherapy) and B (chemotherapy), respectively, while cohort C (chemoimmunotherapy) comprised patients undergoing post-therapy PET/CT. Associations between SUVmax and major pathologic response (MPR) were evaluated through receiver operating characteristic (ROC) curves. RESULTS A total of 129 cases with an MPR rate of 46.5 % was identified. In neoadjuvant chemoimmunotherapy, ΔSUVmax% (AUC: 0.890, 95 % CI: 0.761-0.949) and post-therapy SUVmax (AUC: 0.933, 95 % CI: 0.802-0.959) could accurately predict MPR. On the contrary, the baseline SUVmax was not associated with MPR (p = 0.184). Furthermore, an independent cohort C proved that post-therapy SUVmax could serve as an independent predictor (AUC: 0.928, 95 % CI: 0.823-0.958). In addition, robust predictive performance could be observed when we use the optimal cut-off point of both ΔSUVmax% (54.4 %, AUC: 0.912, 95 % CI: 0.824-0.994) and post-therapy SUVmax (3.565, AUC: 0.912, 95 % CI: 0.824-0.994) in neoadjuvant chemoimmunotherapy. The RNA data revealed that the expression of PFKFB4, a key enzyme in glycolysis, was positively correlated with SUVmax value and tumor cell proliferation after neoadjuvant chemoimmunotherapy. CONCLUSION These findings highlighted that the ΔSUVmax% and remained SUVmax were accurate and non-invasive tests for the prediction of MPR after neoadjuvant chemoimmunotherapy.
Collapse
Affiliation(s)
- Fenghui Zhuang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - E Haoran
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qiang Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chongwu Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yue Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Chinese Academy of Sciences, Zhejiang, People's Republic of China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Gansu, People's Republic of China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Department of Thoracic Surgery, The First Hospital of Lanzhou University, Gansu, People's Republic of China; Linhai First People's Hospital, Taizhou, Zhejiang Province, China.
| |
Collapse
|
87
|
Jia W, Guo H, Wang M, Li J, Yu J, Zhu H, Wu G. High post-chemotherapy TIL and increased CD4+TIL are independent prognostic factors of surgically resected NSCLC following neoadjuvant chemotherapy. MedComm (Beijing) 2023; 4:e213. [PMID: 36789099 PMCID: PMC9911612 DOI: 10.1002/mco2.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Neoadjuvant chemotherapy (NCT) has significantly improved the overall survival of patients with operable non-small cell lung cancer (NSCLC). Chemotherapy can remodel the tumor immune microenvironment (TIME) and has an important influence on antitumor immunity. For patients who underwent surgery for resected NSCLC following NCT (NCT-NSCLC), a prognostic value comparison between naïve and post-chemotherapy TIME is absent. We enrolled 89 patients with NCT-NSCLC in this study; the tumor-infiltrating lymphocyte (TIL), CD4+TIL, and CD8+TIL levels in naïve and post-chemotherapy tumor tissues were detected using immunohistochemistry staining and divided into high and low groups. Kaplan-Meier analysis revealed that major pathology response, pathological tumor, node, and metastasis stage post-NCT (ypTNM), high post-chemotherapy TIL, high post-chemotherapy CD8+TIL, low naïve CD4+TIL, low naïve CD4+/CD8+TIL ratio, and increased CD4+TIL levels post-chemotherapy were favorable prognostic factors in patients with NCT-NSCLC. Multivariate Cox analysis found that ypTNM, high post-chemotherapy TIL, and increased CD4+TIL levels post-chemotherapy were independent prognostic factors in patients with NCT-NSCLC. These results indicate that a TIME remodeled by chemotherapy plays an important role in antitumor immunity and has a better prognostic value than the naïve TIME.
Collapse
Affiliation(s)
- Wenxiao Jia
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical UniversityShandong Academy of Medical SciencesJinanShandongChina
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
88
|
Peng Y, Li Z, Fu Y, Pan Y, Zeng Y, Liu J, Xiao C, Zhang Y, Su Y, Li G, Wu F. Progress and perspectives of perioperative immunotherapy in non-small cell lung cancer. Front Oncol 2023; 13:1011810. [PMID: 36761954 PMCID: PMC9905802 DOI: 10.3389/fonc.2023.1011810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death. Lung cancer mortality has decreased over the past decade, which is partly attributed to improved treatments. Curative surgery for patients with early-stage lung cancer is the standard of care, but not all surgical treatments have a good prognosis. Adjuvant and neoadjuvant chemotherapy are used to improve the prognosis of patients with resectable lung cancer. Immunotherapy, an epoch-defining treatment, has improved curative effects, prognosis, and tolerability compared with traditional and ordinary cytotoxic chemotherapy, providing new hope for patients with non-small cell lung cancer (NSCLC). Immunotherapy-related clinical trials have reported encouraging clinical outcomes in their exploration of different types of perioperative immunotherapy, from neoadjuvant immune checkpoint inhibitor (ICI) monotherapy, neoadjuvant immune-combination therapy (chemoimmunotherapy, immunotherapy plus antiangiogenic therapy, immunotherapy plus radiotherapy, or concurrent chemoradiotherapy), adjuvant immunotherapy, and neoadjuvant combined adjuvant immunotherapy. Phase 3 studies such as IMpower 010 and CheckMate 816 reported survival benefits of perioperative immunotherapy for operable patients. This review summarizes up-to-date clinical studies and analyzes the efficiency and feasibility of different neoadjuvant therapies and biomarkers to identify optimal types of perioperative immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Yurong Peng
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- The Ophthalmologic Center of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yucheng Fu
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Pan
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Zeng
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junqi Liu
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chaoyue Xiao
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzhe Zhang
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yahui Su
- XiangYa School of Public Health, Central South University, Changsha, Hunan, China
| | - Guoqing Li
- XiangYa School of Public Health, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
89
|
E H, Wu J, Ren Y, Xia L, Xu L, Li S, Zhao Y, Li C, She Y, Su C, Wu C, Hou L, Zhao D, Chen C. The IASLC grading system for invasive pulmonary adenocarcinoma: a potential prognosticator for patients receiving neoadjuvant therapy. Ther Adv Med Oncol 2023; 15:17588359221148028. [PMID: 36643658 PMCID: PMC9837269 DOI: 10.1177/17588359221148028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Background Grading system for resected invasive pulmonary adenocarcinoma proposed by the International Association for the Study of Lung Cancer (IASLC) was validated as a strong prognostic indicator. Nonetheless, the efficacy of utilizing such grading system in prognostic assessment of patients receiving neoadjuvant therapy still needs elucidating. Methods A retrospective study was conducted including patients with resected adenocarcinoma following neoadjuvant chemotherapy or targeted therapy from August 2012 to December 2020 in Shanghai Pulmonary Hospital. All the surgical specimens were re-evaluated and graded. The prognostic value of the grading system was further validated. Results Ultimately, a total of 198 patients were enrolled in this study, and subdivided into three cohorts according to the grading system. There were 13 (6.6%), 37 (18.7%), and 148 (74.7%) patients belonging to Grades 1, 2, and 3, respectively. IASLC grading system demonstrated significant power in prognosis differentiation of the entire cohort [recurrence-free survival (RFS), p < 0.001; overall survival (OS), p < 0.001] and the neoadjuvant chemotherapy and targeted therapy cohorts separately, and was further verified as a significant prognostic indicator for RFS and OS in multivariable Cox analysis. Since the majority of the patients (84.8%) did not achieve major pathologic response (MPR), representing a wide spectrum of survival, the prognostic value of grading system in non-MPR cohort was further evaluated. Similar results were also obtained that IASLC grading system was assessed significant in univariable analysis of RFS (p < 0.001) and univariable analysis of OS (p = 0.001). Conclusions The prognostic efficacy of pathological evaluation of the residual proportion of pulmonary adenocarcinoma post-neoadjuvant therapy using IASLC grading system was preliminarily verified. Such grading system might assist prognostic evaluation of neoadjuvant cohort other than traditional pathological parameters.
Collapse
Affiliation(s)
| | | | | | - Lang Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chongwu Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | | |
Collapse
|
90
|
Zeng J, Yi B, Chang R, Chen Y, Yu Z, Gao Y. Safety and feasibility of robotic-assisted thoracic surgery after neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Front Oncol 2023; 13:1134713. [PMID: 36910671 PMCID: PMC9996108 DOI: 10.3389/fonc.2023.1134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives This study aimed to evaluate the safety and feasibility of robotic-assisted thoracic surgery (RATS) after neoadjuvant chemoimmunotherapy in NSCLC. Methods We retrospectively collected data for NSCLC patients who received thoracic surgery after neoadjuvant chemoimmunotherapy from May 2020 to August 2022. Surgery details, pathological response, and perioperative outcome were compared between video-assisted thoracic surgery (VATS) group and RATS group. Inverse probability of treatment weighting (IPTW) was used to equal the baseline characteristics. Results A total of 220 patients were divided into 78 VATS patients and 142 RATS patients. There was no 90-day mortality in either group. RATS patients demonstrated better results in conversion rate to thoracotomy (VATS vs. RATS: 28.2% vs. 7.5%, P < 0.001), number of lymph node stations harvested (5.63 ± 1.75 vs. 8.09 ± 5.73, P < 0.001), number of lymph nodes harvested (13.49 ± 9.325 vs. 20.35 ± 10.322, P < 0.001), yield pathologic-N (yp-N) assessment (yp-N0, 88.5% vs. 67.6%; yp-N1, 7.6% vs. 12.6%; yp-N2, 3.8% vs. 19.7%; P < 0.001), and visual analog scale pain score after surgery (4.41 ± 0.93 vs. 3.77 ± 1.21, P=0.002). However, there were no significant differences in pathological response evaluation for neoadjuvant chemoimmunotherapy (P = 0.493) and complication rate (P = 0.803). After IPTW-adjustment, these results remained constant. Conclusions RATS reduced the risk of conversion to thoracotomy, provided a better yp-N stage evaluation, and improved pain score; this suggests that RATS is safe and feasible for NSCLC patients after neoadjuvant chemoimmunotherapy.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yufan Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongjie Yu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
91
|
Chen LN, Wei AZ, Shu CA. Neoadjuvant immunotherapy in resectable non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231163798. [PMID: 37007633 PMCID: PMC10052589 DOI: 10.1177/17588359231163798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
The advent of immune checkpoint inhibition has pushed the treatment paradigm for resectable non-small-cell lung cancer (NSCLC) toward neoadjuvant therapy. A growing number of promising trials have examined the utility of neoadjuvant immunotherapy, both alone and in combination with other modalities such as radiation therapy (RT) and chemotherapy. The phase II LCMC3 and NEOSTAR trials demonstrated a role for neoadjuvant immunotherapy in inducing meaningful pathologic responses, and another phase II trial established the feasibility of combining neoadjuvant durvalumab with RT. Significant interest in neoadjuvant chemoimmunotherapy resulted in the conduct of multiple successful phase II trials including the Columbia trial, NADIM, SAKK 16/14, and NADIM II. Across these trials, neoadjuvant chemoimmunotherapy led to high rates of pathologic response and improved surgical outcomes without compromising surgical timing or feasibility. CheckMate-816, which was a randomized phase III trial studying neoadjuvant nivolumab in addition to chemotherapy, definitively established a benefit for neoadjuvant chemoimmunotherapy compared to chemotherapy alone for resectable NSCLC. Despite the growing literature and success of these trials, several outstanding questions remain, including the relationship between pathologic response and patient survival, the role of biomarkers such as programmed death ligand 1 and circulating tumor DNA in determining patient selection and treatment course, and the utility of additional adjuvant therapies. Longer follow-up of CheckMate-816 and other ongoing phase III trials may help address these questions. Ultimately, the complexity of managing resectable NSCLC highlights the importance of a multidisciplinary approach to patient care.
Collapse
|
92
|
Rosell R, González-Cao M, Ito M, Santarpia M, Aguilar A, Codony-Servat J. The role of biomarkers in stage III non-small cell lung cancer. Expert Rev Respir Med 2023; 17:469-480. [PMID: 37317885 DOI: 10.1080/17476348.2023.2223985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Stage III non-small cell lung cancer (NSCLC) is a composite of the regional spread of lung cancer with different levels of potential lymph node involvement and tumor size that often deem the stage at time of diagnosis to be unresectable and suitable for chemoradiation plus consolidation immunotherapy with durvalumab for 12 months. Chemoradiation plus durvalumab consolidation yielded a landmark 49.2% 5-year overall survival in unresectable NSCLC. AREAS COVERED Sub-optimal results lead us to focus on the mechanisms of resistance responsible for intractability in a significant proportion of cases that fail with chemoradiation and immunotherapy. In stage III NSCLC it is opportune to explore the accumulated evidence on ferroptosis resistance that can lead to cancer progression and metastasis. Strong data shows that three anti-ferroptosis pathways are principally involved in resistance to chemotherapy, radiation, and immunotherapy. EXPERT OPINION Because a large part of stage III NSCLCs is resistant to chemoradiation and durvalumab consolidation, a ferroptosis-based therapeutic approach, combined with standard-of-care therapy, can lead to improved clinical outcomes in patients diagnosed with stage III and possibly stage IV NSCLCs.
Collapse
Affiliation(s)
- Rafael Rosell
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
- Laboratory of Molecular Biology of Cancer, Germans Trias I Pujol Health Sciences Institute and Hospital (IGTP), Badalona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Spain
| | - María González-Cao
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Andrés Aguilar
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Dexeus University Hospital, Barcelona, Spain
| | - Jordi Codony-Servat
- Laboratory of Oncology, Pangaea Oncology, Quirón Dexeus University Hospital, Barcelona, Spain
| |
Collapse
|
93
|
Chen YH, Lue KH, Chu SC, Chang BS, Lin CB. The combined tumor-nodal glycolytic entropy improves survival stratification in nonsmall cell lung cancer with locoregional disease. Nucl Med Commun 2023; 44:100-107. [PMID: 36437543 DOI: 10.1097/mnm.0000000000001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate whether combining primary tumor and metastatic nodal glycolytic heterogeneity on 18 F-fluorodeoxyglucose PET ( 18 F-FDG PET) improves prognostic prediction in nonsmall cell lung cancer (NSCLC) with locoregional disease. METHODS We retrospectively analyzed 18 F-FDG PET-derived features from 94 patients who had undergone curative treatments for regional nodal metastatic NSCLC. Overall survival (OS) and progression-free survival (PFS) were analyzed using univariate and multivariate Cox regression models. We used the independent prognosticators to construct models to predict survival. RESULTS Combined entropy (entropy derived from the combination of the primary tumor and metastatic nodes) and age independently predicted OS (both P = 0.008) and PFS ( P = 0.007 and 0.050, respectively). At the same time, the Eastern Cooperative Oncology Group status was another independent risk factor for unfavorable OS ( P = 0.026). Our combined entropy-based models outperformed the traditional staging system (c-index = 0.725 vs. 0.540, P < 0.001 for OS; c-index = 0.638 vs. 0.511, P = 0.003 for PFS) and still showed prognostic value in subgroups according to sex, histopathology, and different initial curative treatment strategies. CONCLUSION Combined primary tumor-nodal glycolytic heterogeneity independently predicted survival outcomes. In combination with clinical risk factors, our models provide better survival predictions and may enable tailored treatment strategies for NSCLC with locoregional disease.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- School of Medicine, College of Medicine, Tzu Chi University
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology
| | - Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University
- Departments of Hematology and Oncology
| | | | - Chih-Bin Lin
- Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
94
|
Tian L, Dong T, Hu S, Zhao C, Yu G, Hu H, Yang W. Radiomic and clinical nomogram for cognitive impairment prediction in Wilson's disease. Front Neurol 2023; 14:1131968. [PMID: 37188313 PMCID: PMC10177658 DOI: 10.3389/fneur.2023.1131968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To investigate potential biomarkers for the early detection of cognitive impairment in patients with Wilson's disease (WD), we developed a computer-assisted radiomics model to distinguish between WD and WD cognitive impairment. Methods Overall, 136 T1-weighted MR images were retrieved from the First Affiliated Hospital of Anhui University of Chinese Medicine, including 77 from patients with WD and 59 from patients with WD cognitive impairment. The images were divided into training and test groups at a ratio of 70:30. The radiomic features of each T1-weighted image were extracted using 3D Slicer software. R software was used to establish clinical and radiomic models based on clinical characteristics and radiomic features, respectively. The receiver operating characteristic profiles of the three models were evaluated to assess their diagnostic accuracy and reliability in distinguishing between WD and WD cognitive impairment. We combined relevant neuropsychological test scores of prospective memory to construct an integrated predictive model and visual nomogram to effectively assess the risk of cognitive decline in patients with WD. Results The area under the curve values for distinguishing WD and WD cognitive impairment for the clinical, radiomic, and integrated models were 0.863, 0.922, and 0.935 respectively, indicative of excellent performance. The nomogram based on the integrated model successfully differentiated between WD and WD cognitive impairment. Conclusion The nomogram developed in the current study may assist clinicians in the early identification of cognitive impairment in patients with WD. Early intervention following such identification may help improve long-term prognosis and quality of life of these patients.
Collapse
Affiliation(s)
- Liwei Tian
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
- *Correspondence: Ting Dong,
| | - Sheng Hu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Chenling Zhao
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Guofang Yu
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Huibing Hu
- Qimen People's Hospital, Huangshan, Anhui, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
95
|
Saw SPL, Chua KLM, Ong BH, Lim DWT, Lai GGY, Tan DSW, Ang MK. Multidisciplinary lung cancer clinic: An emerging model of care. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2022. [DOI: 10.47102/annals-acadmedsg.2022295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
96
|
Saw SP, Ang MK, Tan DS. Adjuvant Immunotherapy in Patients with Early-Stage Non-small Cell Lung Cancer and Future Directions. Curr Treat Options Oncol 2022; 23:1721-1731. [PMID: 36451063 DOI: 10.1007/s11864-022-01034-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
OPINION STATEMENT While cisplatin-based adjuvant chemotherapy has been the standard of care for the past two decades, the recent introduction of immunotherapy has heralded an important milestone in the adjuvant landscape of early-stage non-small cell lung cancer (NSCLC). The landmark approval of adjuvant atezolizumab based on disease-free survival (DFS) benefit in IMpower010 was swiftly followed by the recent data for use of adjuvant pembrolizumab in PEARLS/KEYNOTE-091, and similar trials involving other immune checkpoint inhibitors are eagerly anticipated. Although both atezolizumab and pembrolizumab demonstrated a significant DFS benefit in the intention-to-treat population, key subgroup analyses have raised questions about the role of predictive biomarkers such as PD-L1 expression and EGFR-mutation status. In this review, we examine the data from the two important trials (IMpower010 and PEARLS/KEYNOTE-091), discuss the controversies surrounding adjuvant immunotherapy including appropriate endpoints, biomarker selection and highlight key considerations in oncogene-driven NSCLC. Finally, we propose future directions including the impact of neoadjuvant therapy on developments in the adjuvant immunotherapy paradigm and role of minimal residual disease (MRD).
Collapse
Affiliation(s)
- Stephanie Pl Saw
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610, Singapore
| | - Mei-Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610, Singapore
| | - Daniel Sw Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore, 169610, Singapore. .,SingHealth Duke-NUS Oncology Academic Clinical Programme, 11 Hospital Crescent, Singapore, 169610, Singapore.
| |
Collapse
|
97
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
98
|
Wang L, Ge L, Fu N, Ren Y. Would the width of a metal rib spreader affect postoperative pain in patients who undergo video-assisted mini-thoracotomy (VAMT)? Front Oncol 2022; 12:1039737. [PMID: 36387252 PMCID: PMC9643404 DOI: 10.3389/fonc.2022.1039737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hitherto, no study has evaluated postoperative pain in patients with non-small cell lung cancer (NSCLC) treated with video-assisted mini-thoracotomy (VAMT). In this study, we aimed to assess postoperative pain related to the width of the metal rib spreader in patients who underwent lobectomy using VAMT. Methods We retrospectively analysed the data of 94 consecutive patients with NSCLC who underwent lobectomy using VAMT at our institution between March 2019 and May 2022. We divided the patients into groups according to the width ratio of the rib spreader to that of a single intercostal space. Patients with width ratios ≤ 2.5 times were assigned to group A, and those with width ratios > 2.5 times were assigned to group B. Pre-, intra-, and postoperative data were collected and reviewed. Results We successfully performed VAMT in 94 patients with NSCLC. Forty-five patients were in group A, and 49 were in group B. There were no intraoperative mortalities, although one patient, due to respiratory failure, experienced 30-day mortality. There were no significant differences between the two groups in terms of the blood loss volume, operative time, drainage time, postoperative complications, length of hospital stay, or number of lymph node stations explored and retrieved. The drainage volumes (Day 1–Day 3) were higher in group B than in group A (P < 0.05). The postoperative visual analogue scale (VAS) pain scores were significantly lower in Group A than in Group B at 12, 24, and 48 h (P < 0.05), although there was no significant difference in the VAS scores between the two groups at 72 h and 1 week postoperatively (P > 0.05). Conclusion The smaller the width of the metal rib spreader used in surgery, the less pain experienced by the patient and the faster the recovery. Multicentre, randomised, controlled trials should be conducted in the future.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Lihui Ge
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ninghua Fu
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Ren
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
- *Correspondence: Yi Ren,
| |
Collapse
|
99
|
Intraoperative challenges after induction therapy for non-small cell lung cancer: Effect of nodal disease on technical complexity. JTCVS OPEN 2022; 12:372-384. [PMID: 36590745 PMCID: PMC9801337 DOI: 10.1016/j.xjon.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
Objectives Neoadjuvant therapy has been theorized to increase complexity of non-small cell lung cancer resections; however, specific factors that contribute to intraoperative challenges after induction therapy have not been well described. We aimed to characterize the effect of nodal involvement and nodal treatment response on surgical complexity after neoadjuvant therapy. Methods We identified patients treated with neoadjuvant therapy followed by anatomic lung resection for cN + non-small cell lung cancer between 2010 and 2020. Patients were categorized according to clinical N1 versus N2 disease. To evaluate the effect of nodal response to therapy, thoracic radiologists measured clinically suspected and pathologically involved lymph nodes before and after induction therapy. Operative reports were reviewed to identify technical challenges specifically related to nodal disease. Categorical outcomes were compared using Fisher exact test. Results One hundred twenty-four patients met inclusion criteria, among whom 107 (86.3%) were treated with neoadjuvant chemotherapy, whereas chemoradiation (n = 8) and targeted therapy (n = 9) were less common. In cases with N1 disease, 8/38 (21.0%) required proximal pulmonary arterial control, whereas this was necessary in only 2/88 (2.3%) of N2 cases (P = .001). Likewise, sleeve resection and arterioplasty were needed more frequently during resection of N1 disease (7/38, 18.4%) versus N2 disease (0/88, P < .001). Increased nodal response to therapy was associated with greater likelihood of requiring change in vascular approach (P = .011). Conclusions After induction therapy, N1 disease was associated with greater need for complex surgical maneuvers than N2 disease. Likewise, substantial treatment response was associated with increased intraoperative technical challenges. Recognizing such factors enables surgical teams to engage in appropriate operative planning to ensure patient safety.
Collapse
|
100
|
Application of Cytochrome C-Related Genes in Prognosis and Treatment Prediction of Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:8809956. [PMID: 36225197 PMCID: PMC9550516 DOI: 10.1155/2022/8809956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of nonsmall cell lung cancer. Cytochrome c (Cyt c), which is produced from mitochondria, interacts with a protein called Apaf-1 to form the heptameric apoptosome. This heptameric apoptosome then activates the caspase cascade, which ultimately results in the execution of apoptosis. The purpose of our research was to discover a new prognostic model that is based on cytochrome c-related genes (CCRGs) for LUAD patients. Through LASSO regression analysis conducted on the LUAD datasets included in the TCGA datasets, a CCRGs signature was created. The diagnostic accuracy of the multigene signature was verified by an independent source using the GSE31210 and GSE72094 datasets. The GO and KEGG enrichment analysis were performed. In this study, there were 159 differentially expressed CCRGs in the TCGA dataset, while there were 68 differentially expressed CCRGs in the GSE31210 dataset. Additionally, there were 57 genes that overlapped across the two datasets. Using LASSO and Cox regression analysis, a signature consisting of 12 differentially expressed CCRGs was developed from the total of 57 such genes. On the basis of their risk ratings, patients were categorized into high-risk and low-risk categories, with low-risk patients having lower risk scores and a greater likelihood of surviving the disease. Univariate and multivariate analyses both concluded that this signature is an independent risk factor for LUAD. ROC curves demonstrated that this risk signature is capable of accurately predicting the 1-year, 2-year, 3-year, and 5-year survival rates of patients who have LUAD. The infiltration of antigen-presenting cells was higher in the low-risk group, such as aDCs, DCs, pDCs, and iDCs. The expression of multiple immune checkpoints was significantly higher in the low-risk group, such as BTLA, CD28, and CD86. Finally, we showed that the signature can be used to predict the drug sensitivity of already available or under investigational drugs. Overall, patient classification and individualized therapy options may benefit from this study’s development of a powerful gene signature with high value for prognostic prediction in LUAD.
Collapse
|