51
|
Serotonergic Modulation Enables Pathway-Specific Plasticity in a Developing Sensory Circuit in Drosophila. Neuron 2017; 95:623-638.e4. [PMID: 28712652 DOI: 10.1016/j.neuron.2017.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/06/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
Abstract
How experiences during development cause long-lasting changes in sensory circuits and affect behavior in mature animals are poorly understood. Here we establish a novel system for mechanistic analysis of the plasticity of developing neural circuits by showing that sensory experience during development alters nociceptive behavior and circuit physiology in Drosophila larvae. Despite the convergence of nociceptive and mechanosensory inputs on common second-order neurons (SONs), developmental noxious input modifies transmission from nociceptors to their SONs, but not from mechanosensors to the same SONs, which suggests striking sensory pathway specificity. These SONs activate serotonergic neurons to inhibit nociceptor-to-SON transmission; stimulation of nociceptors during development sensitizes nociceptor presynapses to this feedback inhibition. Our results demonstrate that, unlike associative learning, which involves inputs from two sensory pathways, sensory pathway-specific plasticity in the Drosophila nociceptive circuit is in part established through feedback modulation. This study elucidates a novel mechanism that enables pathway-specific plasticity in sensory systems. VIDEO ABSTRACT.
Collapse
|
52
|
Presenilin-1 Delta E9 Mutant Induces STIM1-Driven Store-Operated Calcium Channel Hyperactivation in Hippocampal Neurons. Mol Neurobiol 2017; 55:4667-4680. [DOI: 10.1007/s12035-017-0674-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
|
53
|
Ghaemi R, Rezai P, Nejad FR, Selvaganapathy PR. Characterization of microfluidic clamps for immobilizing and imaging of Drosophila melanogaster larva's central nervous system. BIOMICROFLUIDICS 2017; 11:034113. [PMID: 28580046 PMCID: PMC5446281 DOI: 10.1063/1.4984767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/18/2017] [Indexed: 05/16/2023]
Abstract
Drosophila melanogaster is a well-established model organism to understand biological processes and study human diseases at the molecular-genetic level. The central nervous system (CNS) of Drosophila larvae is widely used as a model to study neuron development and network formation. This has been achieved by using various genetic manipulation tools such as microinjection to knock down certain genes or over-express proteins for visualizing the cellular activities. However, visualization of an intact-live neuronal response in larva's Central Nervous System (CNS) is challenging due to robust digging/burrowing behaviour that impedes neuroimaging. To address this problem, dissection is used to isolate and immobilize the CNS from the rest of the body. In order to obtain a true physiological response from the Drosophila CNS, it is important to avoid dissection, while the larva should be kept immobilized. In this paper, a series of microfluidic clamps were investigated for intact immobilization of the larva. As a result, an optimized structure for rapid mechanical immobilization of Drosophila larvae for CNS imaging was determined. The clamping and immobilization processes were characterized by imaging and movement measurement of the CNS through the expression of genetically encoded Calcium sensor GCaMP5 in all sensory and cholinergic interneurons. The optimal structure that included two 3D constrictions inside a narrowed channel considerably reduced the internal CNS capsule movements. It restricts the CNS movement to 10% of the motion from a glued larva and allows motion of only 10 ± 30 μm over 350 s immobilization which was sufficient for CNS imaging. These larva-on-a-chip platforms can be useful for studying CNS responses to sensory cues such as sound, light, chemosensory, tactile, and electric/magnetic fields.
Collapse
Affiliation(s)
- Reza Ghaemi
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Fatemeh Rafiei Nejad
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | | |
Collapse
|
54
|
Tabuena DR, Solis A, Geraldi K, Moffatt CA, Fuse M. Central neural alterations predominate in an insect model of nociceptive sensitization. J Comp Neurol 2017; 525:1176-1191. [PMID: 27650422 PMCID: PMC5258852 DOI: 10.1002/cne.24124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/20/2016] [Accepted: 09/11/2016] [Indexed: 12/12/2022]
Abstract
Many organisms respond to noxious stimuli with defensive maneuvers. This is noted in the hornworm, Manduca sexta, as a defensive strike response. After tissue damage, organisms typically display sensitized responses to both noxious or normally innocuous stimuli. To further understand this phenomenon, we used novel in situ and in vitro preparations based on paired extracellular nerve recordings and videography to identify central and peripheral nerves responsible for nociception and sensitization of the defensive behavior in M. sexta. In addition, we used the in vivo defensive strike response threshold assayed with von Frey filaments to examine the roles that N-methyl-D-aspartate receptor (NMDAR) and hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels play in this nociceptive sensitization using the inhibitors MK-801 and AP5 (NMDAR), and ivabradine and ZD7288 (HCN). Using our new preparations, we found that afferent activity evoked by noxious pinch in these preparations was conveyed to central ganglia by axons in the anterior- and lateral-dorsal nerve branches, and that sensitization induced by tissue damage was mediated centrally. Furthermore, sensitization was blocked by all inhibitors tested except the inactive isomer L-AP5, and reversed by ivabradine both in vivo and in vitro. Our findings suggest that M. sexta's sensitization occurs through central signal amplification. Due to the relatively natural sensitization method and conserved molecular actions, we suggest that M. sexta may be a valuable model for studying the electrophysiological properties of nociceptive sensitization and potentially related conditions such as allodynia and hyperalgesia in a comparative setting that offers unique experimental advantages. J. Comp. Neurol. 525:1176-1191, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dennis R Tabuena
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| | - Allan Solis
- City College of San Francisco, 50 Phelan Ave, San Francisco, CA 94112
| | - Ken Geraldi
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| | - Christopher A Moffatt
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| | - Megumi Fuse
- San Francisco State University, Dept. Biology. 1600 Holloway Avenue, San Francisco, CA 94132
| |
Collapse
|
55
|
Immunolocalization of the vesicular acetylcholine transporter in larval and adult Drosophila neurons. Neurosci Lett 2017; 643:76-83. [PMID: 28188850 DOI: 10.1016/j.neulet.2017.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/20/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022]
Abstract
Vesicular acetylcholine transporter (VAChT) function is essential for organismal survival, mediating the packaging of acetylcholine (ACh) for exocytotic release. However, its expression pattern in the Drosophila brain has not been fully elucidated. To investigate the localization of VAChT, we developed an antibody against the C terminal region of the protein and we show that this antibody recognizes a 65KDa protein corresponding to VAChT on an immunoblot in both Drosophila head homogenates and in Schneider 2 cells. Further, we report for the first time the expression of VAChT in the antennal lobe and ventral nerve cord of Drosophila larva; and we independently confirm the expression of the protein in mushroom bodies and optic lobes of adult Drosophila. Importantly, we show that VAChT co-localizes with a synaptic vesicle marker in vivo, confirming previous reports of the localization of VAChT to synaptic terminals. Together, these findings help establish the vesicular localization of VAChT in cholinergic neurons in Drosophila and present an important molecular tool with which to dissect the function of the transporter in vivo.
Collapse
|
56
|
Mohammad F, Stewart JC, Ott S, Chlebikova K, Chua JY, Koh TW, Ho J, Claridge-Chang A. Optogenetic inhibition of behavior with anion channelrhodopsins. Nat Methods 2017; 14:271-274. [PMID: 28114289 DOI: 10.1038/nmeth.4148] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/20/2016] [Indexed: 01/20/2023]
Abstract
Optogenetics uses light exposure to manipulate physiology in genetically modified organisms. Abundant tools for optogenetic excitation are available, but the limitations of current optogenetic inhibitors present an obstacle to demonstrating the necessity of neuronal circuits. Here we show that anion channelrhodopsins can be used to specifically and rapidly inhibit neural systems involved in Drosophila locomotion, wing expansion, memory retrieval and gustation, thus demonstrating their broad utility in the circuit analysis of behavior.
Collapse
Affiliation(s)
- Farhan Mohammad
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - James C Stewart
- Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Stanislav Ott
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Katarina Chlebikova
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Jia Yi Chua
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | | | - Joses Ho
- Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore.,Institute for Molecular and Cell Biology, Agency for Science Technology and Research, Singapore.,Department of Physiology, National University of Singapore, Singapore
| |
Collapse
|
57
|
Lin WH, Giachello CNG, Baines RA. Seizure control through genetic and pharmacological manipulation of Pumilio in Drosophila: a key component of neuronal homeostasis. Dis Model Mech 2016; 10:141-150. [PMID: 28067623 PMCID: PMC5312004 DOI: 10.1242/dmm.027045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is a significant disorder for which approximately one-third of patients do not respond to drug treatments. Next-generation drugs, which interact with novel targets, are required to provide a better clinical outcome for these individuals. To identify potential novel targets for antiepileptic drug (AED) design, we used RNA sequencing to identify changes in gene transcription in two seizure models of the fruit fly Drosophila melanogaster The first model compared gene transcription between wild type (WT) and bangsenseless1 (parabss), a gain-of-function mutant in the sole fly voltage-gated sodium channel (paralytic). The second model compared WT with WT fed the proconvulsant picrotoxin (PTX). We identified 743 genes (FDR≤1%) with significant altered expression levels that are common to both seizure models. Of these, 339 are consistently upregulated and 397 downregulated. We identify pumilio (pum) to be downregulated in both seizure models. Pum is a known homeostatic regulator of action potential firing in both flies and mammals, achieving control of neuronal firing through binding to, and regulating translation of, the mRNA transcripts of voltage-gated sodium channels (Nav). We show that maintaining expression of pum in the CNS of parabss flies is potently anticonvulsive, whereas its reduction through RNAi-mediated knockdown is proconvulsive. Using a cell-based luciferase reporter screen, we screened a repurposed chemical library and identified 12 compounds sufficient to increase activity of pum Of these compounds, we focus on avobenzone, which significantly rescues seizure behaviour in parabss flies. The mode of action of avobenzone includes potentiation of pum expression and mirrors the ability of this homeostatic regulator to reduce the persistent voltage-gated Na+ current (INaP) in an identified neuron. This study reports a novel approach to suppress seizure and highlights the mechanisms of neuronal homeostasis as potential targets for next-generation AEDs.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Carlo N G Giachello
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
58
|
Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ. Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife 2016; 5:16799. [PMID: 27845623 PMCID: PMC5182061 DOI: 10.7554/elife.16799] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level. DOI:http://dx.doi.org/10.7554/eLife.16799.001
Collapse
Affiliation(s)
- Philipp Schlegel
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Peters
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
59
|
Abstract
The ability to image and manipulate specific cell populations in Drosophila enables the investigation of how neural circuits develop and coordinate appropriate motor behaviors. Gal4 lines give genetic access to many types of neurons, but the expression patterns of these reagents are often complex. Here, we present the generation and expression patterns of LexA lines based on the vesicular neurotransmitter transporters and Hox transcription factors. Intersections between these LexA lines and existing Gal4 collections provide a strategy for rationally subdividing complex expression patterns based on neurotransmitter or segmental identity.
Collapse
Affiliation(s)
- J H Simpson
- a Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , VA , USA.,b Molecular, Cellular and Developmental Biology Department , University of California, Santa Barbara , Santa Barbara , CA , USA
| |
Collapse
|
60
|
Interallelic Transcriptional Enhancement as an in Vivo Measure of Transvection in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:3139-3148. [PMID: 27489208 PMCID: PMC5068936 DOI: 10.1534/g3.116.032300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transvection—pairing-dependent interallelic regulation resulting from enhancer action in trans—occurs throughout the Drosophila melanogaster genome, likely as a result of the extensive somatic homolog pairing seen in Dipteran species. Recent studies of transvection in Drosophila have demonstrated important qualitative differences between enhancer action in cisvs.in trans, as well as a modest synergistic effect of cis- and trans-acting enhancers on total tissue transcript levels at a given locus. In the present study, we identify a system in which cis- and trans-acting GAL4-UAS enhancer synergism has an unexpectedly large quantitative influence on gene expression, boosting total tissue transcript levels at least fourfold relative to those seen in the absence of transvection. We exploit this strong quantitative effect by using publicly available UAS-shRNA constructs from the TRiP library to assay candidate genes for transvection activity in vivo. The results of the present study, which demonstrate that in trans activation by simple UAS enhancers can have large quantitative effects on gene expression in Drosophila, have important new implications for experimental design utilizing the GAL4-UAS system.
Collapse
|
61
|
Rybak J, Talarico G, Ruiz S, Arnold C, Cantera R, Hansson BS. Synaptic circuitry of identified neurons in the antennal lobe of Drosophila melanogaster. J Comp Neurol 2016; 524:1920-56. [PMID: 26780543 PMCID: PMC6680330 DOI: 10.1002/cne.23966] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 11/09/2022]
Abstract
In Drosophila melanogaster olfactory sensory neurons (OSNs) establish synapses with projection neurons (PNs) and local interneurons within antennal lobe (AL) glomeruli. Substantial knowledge regarding this circuitry has been obtained by functional studies, whereas ultrastructural evidence of synaptic contacts is scarce. To fill this gap, we studied serial sections of three glomeruli using electron microscopy. Ectopic expression of a membrane-bound peroxidase allowed us to map synaptic sites along PN dendrites. Our data prove for the first time that each of the three major types of AL neurons is both pre- and postsynaptic to the other two types, as previously indicated by functional studies. PN dendrites carry a large proportion of output synapses, with approximately one output per every three input synapses. Detailed reconstructions of PN dendrites showed that these synapses are distributed unevenly, with input and output sites partially segregated along a proximal-distal gradient and the thinnest branches carrying solely input synapses. Moreover, our data indicate synapse clustering, as we found evidence of dendritic tiling of PN dendrites. PN output synapses exhibited T-shaped presynaptic densities, mostly arranged as tetrads. In contrast, output synapses from putative OSNs showed elongated presynaptic densities in which the T-bar platform was supported by several pedestals and contacted as many as 20 postsynaptic profiles. We also discovered synaptic contacts between the putative OSNs. The average synaptic density in the glomerular neuropil was about two synapses/µm(3) . These results are discussed with regard to current models of olfactory glomerular microcircuits across species.
Collapse
Affiliation(s)
- Jürgen Rybak
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Giovanni Talarico
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Santiago Ruiz
- Clemente Estable Institute of Biological Research11600 MontevideoUruguay
| | - Christopher Arnold
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Rafael Cantera
- Clemente Estable Institute of Biological Research11600 MontevideoUruguay
- Zoology DepartmentStockholm University10691StockholmSweden
| | - Bill S. Hansson
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical Ecology07745JenaGermany
| |
Collapse
|
62
|
Hsu CT, Bhandawat V. Organization of descending neurons in Drosophila melanogaster. Sci Rep 2016; 6:20259. [PMID: 26837716 PMCID: PMC4738306 DOI: 10.1038/srep20259] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved.
Collapse
Affiliation(s)
- Cynthia T Hsu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Deparment of Neurobiology, Duke University, Durham, North Carolina 27708, USA
| | - Vikas Bhandawat
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Deparment of Neurobiology, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
63
|
Cash F, Vernon SW, Phelan P, Goodchild J, Baines RA. Central cholinergic synaptic vesicle loading obeys the set-point model in Drosophila. J Neurophysiol 2016; 115:843-50. [PMID: 26655826 DOI: 10.1152/jn.01053.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Experimental evidence shows that neurotransmitter release, from presynaptic terminals, can be regulated by altering transmitter load per synaptic vesicle (SV) and/or through change in the probability of vesicle release. The vesicular acetylcholine transporter (VAChT) loads acetylcholine into SVs at cholinergic synapses. We investigated how the VAChT affects SV content and release frequency at central synapses in Drosophila melanogaster by using an insecticidal compound, 5Cl-CASPP, to block VAChT and by transgenic overexpression of VAChT in cholinergic interneurons. Decreasing VAChT activity produces a decrease in spontaneous SV release with no change to quantal size and no decrease in the number of vesicles at the active zone. This suggests that many vesicles are lacking in neurotransmitter. Overexpression of VAChT leads to increased frequency of SV release, but again with no change in quantal size or vesicle number. This indicates that loading of central cholinergic SVs obeys the "set-point" model, rather than the "steady-state" model that better describes loading at the vertebrate neuromuscular junction. However, we show that expression of a VAChT polymorphism lacking one glutamine residue in a COOH-terminal polyQ domain leads to increased spontaneous SV release and increased quantal size. This effect spotlights the poly-glutamine domain as potentially being important for sensing the level of neurotransmitter in cholinergic SVs.
Collapse
Affiliation(s)
- Francesca Cash
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Samuel W Vernon
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pauline Phelan
- School of Biosciences, University of Kent, Kent, United Kingdom; and
| | - Jim Goodchild
- Syngenta Crop Protection Research, Bracknell, Berkshire, United Kingdom
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
64
|
Picao-Osorio J, Johnston J, Landgraf M, Berni J, Alonso CR. MicroRNA-encoded behavior in Drosophila. Science 2015; 350:815-20. [PMID: 26494171 PMCID: PMC4902127 DOI: 10.1126/science.aad0217] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
The relationship between microRNA (miRNA) regulation and the specification of behavior is only beginning to be explored. We found that mutation of a single miRNA locus (miR-iab4/iab8) in Drosophila larvae affects the animal's capacity to correct its orientation if turned upside down (self-righting). One of the miRNA targets involved in this behavior is the Hox gene Ultrabithorax, whose derepression in two metameric neurons leads to self-righting defects. In vivo neural activity analysis reveals that these neurons, the self-righting node (SRN), have different activity patterns in wild type and miRNA mutants, whereas thermogenetic manipulation of SRN activity results in changes in self-righting behavior. Our work thus reveals a miRNA-encoded behavior and suggests that other miRNAs might also be involved in behavioral control in Drosophila and other species.
Collapse
Affiliation(s)
- Joao Picao-Osorio
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton BN1 9QG, UK
| | - Jamie Johnston
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton BN1 9QG, UK
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Jimena Berni
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
65
|
Bai L, Sehgal A. Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to Negatively Regulate Sleep. PLoS Genet 2015; 11:e1005611. [PMID: 26536237 PMCID: PMC4633181 DOI: 10.1371/journal.pgen.1005611] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
Though evidence is mounting that a major function of sleep is to maintain brain plasticity and consolidate memory, little is known about the molecular pathways by which learning and sleep processes intercept. Anaplastic lymphoma kinase (Alk), the gene encoding a tyrosine receptor kinase whose inadvertent activation is the cause of many cancers, is implicated in synapse formation and cognitive functions. In particular, Alk genetically interacts with Neurofibromatosis 1 (Nf1) to regulate growth and associative learning in flies. We show that Alk mutants have increased sleep. Using a targeted RNAi screen we localized the negative effects of Alk on sleep to the mushroom body, a structure important for both sleep and memory. We also report that mutations in Nf1 produce a sexually dimorphic short sleep phenotype, and suppress the long sleep phenotype of Alk. Thus Alk and Nf1 interact in both learning and sleep regulation, highlighting a common pathway in these two processes.
Collapse
Affiliation(s)
- Lei Bai
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
66
|
Hampel S, Franconville R, Simpson JH, Seeds AM. A neural command circuit for grooming movement control. eLife 2015; 4:e08758. [PMID: 26344548 PMCID: PMC4599031 DOI: 10.7554/elife.08758] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022] Open
Abstract
Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.
Collapse
Affiliation(s)
- Stefanie Hampel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie H Simpson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Andrew M Seeds
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
67
|
Abstract
Chemotaxis is important for the survival of most animals. How the brain translates sensory input into motor output beyond higher olfactory processing centers is largely unknown. We describe a group of excitatory neurons, termed Odd neurons, which are important for Drosophila larval chemotaxis. Odd neurons receive synaptic input from projection neurons in the calyx of the mushroom body and project axons to the central brain. Functional imaging shows that some of the Odd neurons respond to odor. Larvae in which Odd neurons are silenced are less efficient at odor tracking than controls and sample the odor space more frequently. Larvae in which the excitability of Odd neurons is increased are better at odor intensity discrimination and odor tracking. Thus, the Odd neurons represent a distinct pathway that regulates the sensitivity of the olfactory system to odor concentrations, demonstrating that efficient chemotaxis depends on processing of odor strength downstream of higher olfactory centers.
Collapse
|
68
|
Banzai K, Adachi T, Izumi S. Comparative analyses of the cholinergic locus of ChAT and VAChT and its expression in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2015; 185:1-9. [PMID: 25770047 DOI: 10.1016/j.cbpb.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
The cholinergic locus, which encodes choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), is specifically expressed in cholinergic neurons, maintaining the cholinergic phenotype. The organization of the locus is conserved in Bilateria. Here we examined the structure of cholinergic locus and cDNA coding for ChAT and VAChT in the silkworm, Bombyx mori. The B. mori ChAT (BmChAT) cDNA encodes a deduced polypeptide including a putative choline/carnitine O-acyltransferase domain and a conserved His residue required for catalysis. The B. mori VAChT (BmVAChT) cDNA encodes a polypeptide including a putative major facilitator superfamily domain and 10 putative transmembrane domains. BmChAT and BmVAChT cDNAs share the 5'-region corresponding to the first and second exon of cholinergic locus. Polymerase chain reaction analyses revealed that BmChAT and BmVAChT mRNAs were specifically expressed in the brain and segmental ganglia. The expression of BmChAT was detected 3 days after oviposition. The expression level was almost constant during the larval stage, decreased in the early pupal stage, and increased toward eclosion. The average ratios of BmChAT mRNA to BmVAChT mRNA in brain-subesophageal ganglion complexes were 0.54±0.10 in the larvae and 1.92±0.11 in adults. In addition, we examined promoter activity of the cholinergic locus and localization of cholinergic neurons, using a baculovirus-mediated gene transfer system. The promoter sequence, located 2kb upstream from the start of transcription, was essential for cholinergic neuron-specific gene õexpression. Cholinergic neurons were found in several regions of the brain and segmental ganglia in the larvae and pharate adults.
Collapse
Affiliation(s)
- Kota Banzai
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Takeshi Adachi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Susumu Izumi
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
69
|
Diao F, Ironfield H, Luan H, Diao F, Shropshire WC, Ewer J, Marr E, Potter CJ, Landgraf M, White BH. Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 2015; 10:1410-21. [PMID: 25732830 PMCID: PMC4373654 DOI: 10.1016/j.celrep.2015.01.059] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/06/2015] [Accepted: 01/27/2015] [Indexed: 12/27/2022] Open
Abstract
Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of "coding introns" (i.e., introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted "plug-and-play" cassettes (called "Trojan exons") that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC (Minos-mediated integration cassette) transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system.
Collapse
Affiliation(s)
- Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Holly Ironfield
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Feici Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - William C Shropshire
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia, Universidad de Valparaiso, Pasaje Harrington 287, Playa Ancha, Valparaiso, Chile
| | - Elizabeth Marr
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
70
|
Ghaemi R, Rezai P, Iyengar BG, Selvaganapathy PR. Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus. LAB ON A CHIP 2015; 15:1116-22. [PMID: 25536889 DOI: 10.1039/c4lc01245c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two microfluidic devices (pneumatic chip and FlexiChip) have been developed for immobilization and live-intact fluorescence functional imaging of Drosophila larva's Central Nervous System (CNS) in response to controlled acoustic stimulation. The pneumatic chip is suited for automated loading/unloading and potentially allows high throughput operation for studies with a large number of larvae while the FlexiChip provides a simple and quick manual option for animal loading and is suited for smaller studies. Both chips were capable of significantly reducing the endogenous CNS movement while still allowing the study of sound-stimulated CNS activities of Drosophila 3rd instar larvae using genetically encoded calcium indicator GCaMP5. Temporal effects of sound frequency (50-5000 Hz) and intensity (95-115 dB) on CNS activities were investigated and a peak neuronal response of 200 Hz was identified. Our lab-on-chip devices can not only aid further studies of Drosophila larva's auditory responses but can be also adopted for functional imaging of CNS activities in response to other sensory cues. Auditory stimuli and the corresponding response of the CNS can potentially be used as a tool to study the effect of chemicals on the neurophysiology of this model organism.
Collapse
Affiliation(s)
- Reza Ghaemi
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| | | | | | | |
Collapse
|
71
|
Shiraishi R, Tamura T, Sone M, Okazawa H. Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. PLoS One 2014; 9:e116567. [PMID: 25551764 PMCID: PMC4281079 DOI: 10.1371/journal.pone.0116567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is a commonly used model organism for neurodegenerative diseases. Its major advantages include a short lifespan and its susceptibility to manipulation using sophisticated genetic techniques. Here, we report the systematic comparison of fly models of two polyglutamine (polyQ) diseases. We induced expression of the normal and mutant forms of full-length Ataxin-1 and Huntingtin exon 1 in cholinergic, dopaminergic, and motor neurons, and glial cells using cell type-specific drivers. We systematically analyzed their effects based on multiple phenotypes: eclosion rate, lifespan, motor performance, and circadian rhythms of spontaneous activity. This systematic assay system enabled us to quantitatively evaluate and compare the functional disabilities of different genotypes. The results suggest different effects of Ataxin-1 and Huntingtin on specific types of neural cells during development and in adulthood. In addition, we confirmed the therapeutic effects of LiCl and butyrate using representative models. These results support the usefulness of this assay system for screening candidate chemical compounds that modify the pathologies of polyQ diseases.
Collapse
Affiliation(s)
- Risa Shiraishi
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
72
|
Pool AH, Kvello P, Mann K, Cheung SK, Gordon MD, Wang L, Scott K. Four GABAergic interneurons impose feeding restraint in Drosophila. Neuron 2014; 83:164-77. [PMID: 24991960 DOI: 10.1016/j.neuron.2014.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
Feeding is dynamically regulated by the palatability of the food source and the physiological needs of the animal. How consumption is controlled by external sensory cues and internal metabolic state remains under intense investigation. Here, we identify four GABAergic interneurons in the Drosophila brain that establish a central feeding threshold which is required to inhibit consumption. Inactivation of these cells results in indiscriminate and excessive intake of all compounds, independent of taste quality or nutritional state. Conversely, acute activation of these neurons suppresses consumption of water and nutrients. The output from these neurons is required to gate activity in motor neurons that control meal initiation and consumption. Thus, our study reveals a layer of inhibitory control in feeding circuits that is required to suppress a latent state of unrestricted and nonselective consumption.
Collapse
Affiliation(s)
- Allan-Hermann Pool
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Pal Kvello
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Kevin Mann
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Samantha K Cheung
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Michael D Gordon
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Liming Wang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
73
|
Cassar M, Issa AR, Riemensperger T, Petitgas C, Rival T, Coulom H, Iché-Torres M, Han KA, Birman S. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Hum Mol Genet 2014; 24:197-212. [PMID: 25158689 DOI: 10.1093/hmg/ddu430] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca(2+), also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Marlène Cassar
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Riemensperger
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Céline Petitgas
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Rival
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Hélène Coulom
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Magali Iché-Torres
- Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| | - Kyung-An Han
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathologies, Brain Plasticity Unit, CNRS, PSL Research University, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France Genetics and Physiopathology of Neurotransmission, Developmental Biology Institute of Marseille-Luminy, CNRS, Université de la Méditerranée, 13009 Marseille, France and
| |
Collapse
|
74
|
Levy P, Larsen C. Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain. J Comp Neurol 2014; 521:3716-40. [PMID: 23749685 PMCID: PMC3957007 DOI: 10.1002/cne.23375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/22/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023]
Abstract
Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.
Collapse
Affiliation(s)
- Peter Levy
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | | |
Collapse
|
75
|
Toward large-scale connectome reconstructions. Curr Opin Neurobiol 2014; 25:201-10. [DOI: 10.1016/j.conb.2014.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/19/2022]
|
76
|
Murali A, Maue RA, Dolph PJ. Reversible symptoms and clearance of mutant prion protein in an inducible model of a genetic prion disease in Drosophila melanogaster. Neurobiol Dis 2014; 67:71-8. [PMID: 24686303 DOI: 10.1016/j.nbd.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/18/2014] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are progressive disorders that affect the central nervous system leading to memory loss, personality changes, ataxia and neurodegeneration. In humans, these disorders include Creutzfeldt-Jakob disease, kuru and Gerstmann-Straüssler-Scheinker (GSS) syndrome, the latter being a dominantly inherited prion disease associated with missense mutations in the gene that codes for the prion protein. The exact mechanism by which mutant prion proteins affect the central nervous system and cause neurological disease is not well understood. We have generated an inducible model of GSS disease in Drosophila melanogaster by temporally expressing a misfolded form of the murine prion protein in cholinergic neurons. Flies accumulating this mutant protein develop motor abnormalities which are associated with electrophysiological defects in cholinergic neurons. We find that, upon blocking the expression of the mutant protein, both behavioral and electrophysiological defects can be reversed. This represents the first case of reversibility reported in a model of genetic prion disease. Additionally, we observe that endogenous mechanisms exist within Drosophila that are capable of clearing the accumulated prion protein.
Collapse
Affiliation(s)
- A Murali
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - R A Maue
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - P J Dolph
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
77
|
Martín-Peña A, Acebes A, Rodríguez JR, Chevalier V, Casas-Tinto S, Triphan T, Strauss R, Ferrús A. Cell types and coincident synapses in the ellipsoid body ofDrosophila. Eur J Neurosci 2014; 39:1586-601. [DOI: 10.1111/ejn.12537] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Alfonso Martín-Peña
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
- Department of Neurology; McKnight Brain Institute; College of Medicine; University of Florida; Gainesville FL USA
| | - Angel Acebes
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
- Center for Biomedical Research of the Canary Islands; Institute of Biomedical Technologies; University of La Laguna; Tenerife Spain
| | - José-Rodrigo Rodríguez
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| | - Valerie Chevalier
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| | - Sergio Casas-Tinto
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| | - Tilman Triphan
- Biozentrum der Universitaet Wuerzburg; Lehrstuhl für Genetik und Neurobiologie; Wuerzburg Germany
- HHMI Janelia Farm Research Campus; Ashburn VA USA
| | - Roland Strauss
- Biozentrum der Universitaet Wuerzburg; Lehrstuhl für Genetik und Neurobiologie; Wuerzburg Germany
- Department of Zoologie III-Neurobiologie; Johannes Gutenberg-Universitaet Mainz; Mainz Germany
| | - Alberto Ferrús
- Department of Cellular, Molecular and Developmental Neurobiology; Cajal Institute; C.S.I.C.; Ave. Dr. Arce 37 E-28002 Madrid Spain
| |
Collapse
|
78
|
The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity. J Neurosci 2013; 33:11916-31. [PMID: 23864680 DOI: 10.1523/jneurosci.1760-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Memory deficits in Drosophila nalyot mutants suggest that the Myb family transcription factor Adf-1 is an important regulator of developmental plasticity in the brain. However, the cellular functions for this transcription factor in neurons or molecular mechanisms by which it regulates plasticity remain unknown. Here, we use in vivo 3D reconstruction of identifiable larval motor neuron dendrites to show that Adf-1 is required cell autonomously for dendritic development and activity-dependent plasticity of motor neurons downstream of CaMKII. Adf-1 inhibition reduces dendrite growth and neuronal excitability, and results in motor deficits and altered transcriptional profiles. Surprisingly, analysis by comparative chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of Adf-1, RNA Polymerase II (Pol II), and histone modifications in Kc cells shows that Adf-1 binding correlates positively with high Pol II-pausing indices and negatively with active chromatin marks such as H3K4me3 and H3K27ac. Consistently, the expression of Adf-1 targets Staufen and Fasciclin II (FasII), identified through larval brain ChIP-Seq for Adf-1, is negatively regulated by Adf-1, and manipulations of these genes predictably modify dendrite growth. Our results imply mechanistic interactions between transcriptional and local translational machinery in neurons as well as conserved neuronal growth mechanisms mediated by cell adhesion molecules, and suggest that CaMKII, Adf-1, FasII, and Staufen influence crucial aspects of dendrite development and plasticity with potential implications for memory formation. Further, our experiments reveal molecular details underlying transcriptional regulation by Adf-1, and indicate active interaction between Adf-1 and epigenetic regulators of gene expression during activity-dependent neuronal plasticity.
Collapse
|
79
|
Thran J, Poeck B, Strauss R. Serum Response Factor-Mediated Gene Regulation in a Drosophila Visual Working Memory. Curr Biol 2013; 23:1756-63. [DOI: 10.1016/j.cub.2013.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022]
|
80
|
Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. Proc Natl Acad Sci U S A 2013; 110:E1321-9. [PMID: 23509267 DOI: 10.1073/pnas.1215680110] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals across various phyla exhibit odor-evoked innate attraction behavior that is developmentally programmed. The mechanism underlying such behavior remains unclear because the odorants that elicit robust attraction responses and the neuronal circuits that mediate this behavior have not been identified. Here, we describe a functionally segregated population of olfactory sensory neurons (OSNs) and projection neurons (PNs) in Drosophila melanogaster that are highly specific to ammonia and amines, which act as potent attractants. The OSNs express IR92a, a member of the chemosensory ionotropic receptor (IR) family and project to a pair of glomeruli in the antennal lobe, termed VM1. In vivo calcium-imaging experiments showed that the OSNs and PNs innervating VM1 were activated by ammonia and amines but not by nonamine odorants. Flies in which the IR92a(+) neurons or IR92a gene was inactivated had impaired amine-evoked physiological and behavioral responses. Tracing neuronal pathways to higher brain centers showed that VM1-PN axonal projections within the lateral horn are topographically segregated from those of V-PN and DC4-PN, which mediate innate avoidance behavior to carbon dioxide and acidity, respectively, suggesting that these sensory stimuli of opposing valence are represented in spatially distinct neuroanatomic loci within the lateral horn. These experiments identified the neurons and their cognate receptor for amine detection, and mapped amine attractive olfactory inputs to higher brain centers. This labeled-line mode of amine coding appears to be hardwired to attraction behavior.
Collapse
|
81
|
Ghezzi A, Al-Hasan YM, Krishnan HR, Wang Y, Atkinson NS. Functional mapping of the neuronal substrates for drug tolerance in Drosophila. Behav Genet 2013; 43:227-40. [PMID: 23371357 DOI: 10.1007/s10519-013-9583-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022]
Abstract
Physical dependence on alcohol and anesthetics stems from neuroadaptive changes that act to counter the effects of sedation in the brain. In Drosophila, exposure to either alcohol or solvent anesthetics have been shown to induce changes in expression of the BK-type Ca(2+)-activated K(+) channel gene slo. An increase in slo expression produces an adaptive modulation of neural activity that generates resistance to sedation and promotes drug tolerance and dependence. Increased BK channel activity counteracts the sedative effects of these drugs by reducing the neuronal refractory period and enhancing the capacity of neurons for repetitive firing. However, the brain regions or neuronal populations capable of producing inducible resistance or tolerance remain unknown. Here we map the neuronal substrates relevant for the slo-dependent modulation of drug sensitivity. Using spatially-controlled induction of slo expression we identify the mushroom bodies, the ellipsoid body and a subset of the circadian clock neurons as pivotal regions for the control of recovery from sedation.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station C0920, Austin, TX 78712-0248, USA
| | | | | | | | | |
Collapse
|
82
|
SMN is required for sensory-motor circuit function in Drosophila. Cell 2012; 151:427-39. [PMID: 23063130 DOI: 10.1016/j.cell.2012.09.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/15/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
Abstract
Spinal muscular atrophy (SMA) is a lethal human disease characterized by motor neuron dysfunction and muscle deterioration due to depletion of the ubiquitous survival motor neuron (SMN) protein. Drosophila SMN mutants have reduced muscle size and defective locomotion, motor rhythm, and motor neuron neurotransmission. Unexpectedly, restoration of SMN in either muscles or motor neurons did not alter these phenotypes. Instead, SMN must be expressed in proprioceptive neurons and interneurons in the motor circuit to nonautonomously correct defects in motor neurons and muscles. SMN depletion disrupts the motor system subsequent to circuit development and can be mimicked by the inhibition of motor network function. Furthermore, increasing motor circuit excitability by genetic or pharmacological inhibition of K(+) channels can correct SMN-dependent phenotypes. These results establish sensory-motor circuit dysfunction as the origin of motor system deficits in this SMA model and suggest that enhancement of motor neural network activity could ameliorate the disease.
Collapse
|
83
|
Lotti F, Imlach WL, Saieva L, Beck ES, Hao LT, Li DK, Jiao W, Mentis GZ, Beattie CE, McCabe BD, Pellizzoni L. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012; 151:440-54. [PMID: 23063131 DOI: 10.1016/j.cell.2012.09.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/16/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023]
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA.
Collapse
Affiliation(s)
- Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhou Y, Cameron S, Chang WT, Rao Y. Control of directional change after mechanical stimulation in Drosophila. Mol Brain 2012; 5:39. [PMID: 23107101 PMCID: PMC3514245 DOI: 10.1186/1756-6606-5-39] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/23/2012] [Indexed: 11/11/2022] Open
Abstract
Background Proper adjustment of moving direction after external mechanical stimulation is essential for animals to avoid danger (e.g. predators), and thus is vital for survival. This process involves sensory inputs, central processing and motor outputs. Recent studies have made considerable progress in identifying mechanosensitive neurons and mechanosensation receptor proteins. Our understandings of molecular and cellular mechanisms that link mechanosensation with the changes in moving direction, however, remain limited. Results In this study, we investigate the control of movement adjustment in Drosophila. In response to gentle touch at the anterior segments, Drosophila larvae reorient and select a new direction for forward movement. The extent of change in moving direction is correlated with the intensity of tactile stimuli. Sensation of gentle touch requires chordotonal organs and class IV da neurons. Genetic analysis indicates an important role for the evolutionarily conserved immunoglobulin (Ig) superfamily protein Turtle (Tutl) to regulate touch-initiated directional change. Tutl is required specifically in post-mitotic neurons at larval stage after the completion of embryonic development. Circuit breaking analysis identified a small subset of Tutl-positive neurons that are involved in the adjustment of moving direction. Conclusion We identify Tutl and a small subset of CNS neurons in modulating directional change in response to gentle touch. This study presents an excellent starting point for further dissection of molecular and cellular mechanisms controlling directional adjustment after mechanical stimulation.
Collapse
Affiliation(s)
- Yating Zhou
- McGill Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
85
|
Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster. Brain Res 2012; 1489:66-80. [PMID: 23103409 DOI: 10.1016/j.brainres.2012.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022]
Abstract
Severe reduction in Survival Motor Neuron 1 (SMN1) protein in humans causes Spinal Muscular Atrophy (SMA), a debilitating childhood disease that leads to progressive impairment of the neuro-muscular system. Although previous studies have attempted to identify the tissue(s) in which SMN1 loss most critically leads to disease, tissue-specific functions for this widely expressed protein still remain unclear. Here, we have leveraged RNA interference methods to manipulate SMN function selectively in Drosophila neurons or muscles followed by behavioral and electrophysiological analysis. High resolution measurement of motor performance shows profound alterations in locomotor patterns following pan-neuronal knockdown of SMN. Further, locomotor phenotypes can be elicited by SMN knockdown in motor neurons, supporting previous demonstrations of motor neuron-specific SMN function in mice. Electrophysiologically, SMN modulation in muscles reveals largely normal synaptic transmission, quantal release and trans-synaptic homeostatic compensation at the larval neuro-muscular junction. Neuronal SMN knockdown does not alter baseline synaptic transmission, the dynamics of synaptic depletion or acute homeostatic compensation. However, chronic glutamate receptor-dependent developmental homeostasis at the neuro-muscular junction is strongly attenuated following reduction of SMN in neurons. Together, these results support a distributed model of SMN function with distinct neuron-specific roles that are likely to be compromised following global loss of SMN in patients. While complementary to, and in broad agreement with, recent mouse studies that suggest a strong necessity for SMN in neurons, our results uncover a hitherto under-appreciated role for SMN in homeostatic regulatory mechanisms at motor synapses.
Collapse
|
86
|
Melnattur KV, Berdnik D, Rusan Z, Ferreira CJ, Nambu JR. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit. Dev Neurobiol 2012; 73:107-26. [PMID: 22648855 DOI: 10.1002/dneu.22038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 05/16/2012] [Indexed: 11/07/2022]
Abstract
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
87
|
Rezával C, Pavlou HJ, Dornan AJ, Chan YB, Kravitz EA, Goodwin SF. Neural circuitry underlying Drosophila female postmating behavioral responses. Curr Biol 2012; 22:1155-65. [PMID: 22658598 PMCID: PMC3396843 DOI: 10.1016/j.cub.2012.04.062] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
Background After mating, Drosophila females undergo a remarkable phenotypic switch resulting in decreased sexual receptivity and increased egg laying. Transfer of male sex peptide (SP) during copulation mediates these postmating responses via sensory neurons that coexpress the sex-determination gene fruitless (fru) and the proprioceptive neuronal marker pickpocket (ppk) in the female reproductive system. Little is known about the neuronal pathways involved in relaying SP-sensory information to central circuits and how these inputs are processed to direct female-specific changes that occur in response to mating. Results We demonstrate an essential role played by neurons expressing the sex-determination gene doublesex (dsx) in regulating the female postmating response. We uncovered shared circuitry between dsx and a subset of the previously described SP-responsive fru+/ppk+-expressing neurons in the reproductive system. In addition, we identified sexually dimorphic dsx circuitry within the abdominal ganglion (Abg) critical for mediating postmating responses. Some of these dsx neurons target posterior regions of the brain while others project onto the uterus. Conclusions We propose that dsx-specified circuitry is required to induce female postmating behavioral responses, from sensing SP to conveying this signal to higher-order circuits for processing and through to the generation of postmating behavioral and physiological outputs.
Collapse
Affiliation(s)
- Carolina Rezával
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
88
|
Sadananda A, Hamid R, Doodhi H, Ghosal D, Girotra M, Jana SC, Ray K. Interaction with a kinesin-2 tail propels choline acetyltransferase flow towards synapse. Traffic 2012; 13:979-91. [PMID: 22486887 DOI: 10.1111/j.1600-0854.2012.01361.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/28/2022]
Abstract
Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.
Collapse
Affiliation(s)
- Aparna Sadananda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
89
|
Yao Z, Macara AM, Lelito KR, Minosyan TY, Shafer OT. Analysis of functional neuronal connectivity in the Drosophila brain. J Neurophysiol 2012; 108:684-96. [PMID: 22539819 DOI: 10.1152/jn.00110.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophila melanogaster is a valuable model system for the neural basis of complex behavior, but an inability to routinely interrogate physiologic connections within central neural networks of the fly brain remains a fundamental barrier to progress in the field. To address this problem, we have introduced a simple method of measuring functional connectivity based on the independent expression of the mammalian P2X2 purinoreceptor and genetically encoded Ca(2+) and cAMP sensors within separate genetically defined subsets of neurons in the adult brain. We show that such independent expression is capable of specifically rendering defined sets of neurons excitable by pulses of bath-applied ATP in a manner compatible with high-resolution Ca(2+) and cAMP imaging in putative follower neurons. Furthermore, we establish that this approach is sufficiently sensitive for the detection of excitatory and modulatory connections deep within larval and adult brains. This technically facile approach can now be used in wild-type and mutant genetic backgrounds to address functional connectivity within neuronal networks governing a wide range of complex behaviors in the fly. Furthermore, the effectiveness of this approach in the fly brain suggests that similar methods using appropriate heterologous receptors might be adopted for other widely used model systems.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
90
|
Humphrey DM, Parsons RB, Ludlow ZN, Riemensperger T, Esposito G, Verstreken P, Jacobs HT, Birman S, Hirth F. Alternative oxidase rescues mitochondria-mediated dopaminergic cell loss in Drosophila. Hum Mol Genet 2012; 21:2698-712. [PMID: 22398207 DOI: 10.1093/hmg/dds096] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is commonly observed in degenerative disorders, including Alzheimer's and Parkinson's disease that are characterized by the progressive and selective loss of neuronal subpopulations. It is currently unclear, however, whether mitochondrial dysfunction is primary or secondary to other pathogenic processes that eventually lead to age-related neurodegeneration. Here we establish an in vivo Drosophila model of mitochondrial dysfunction by downregulating the catalytic subunit of mitochondrial DNA (mtDNA) polymerase in cholinergic, serotonergic and dopaminergic neurons. The resulting flies are characterized by lowered respiratory chain activity, premature aging, age-related motor deficits as well as adult onset, progressive and cell-type-specific, dopaminergic neurodegeneration. Using this model, we find that associated lethality can be partially rescued by targeting PINK1/parkin signaling or Drp1, both of which have been implicated in mitochondrial dynamics and Parkinson's disease. Bypassing mitochondrial complex III/IV deficiencies with Alternative oxidase (AOX), however, fully restores ATP levels and prevents dopaminergic neurodegeneration. In contrast, ATP levels and neurodegeneration are not rescued when mitochondrial complex I deficiencies are bypassed with NADH-Q oxidoreductase. Our results demonstrate that mtDNA-mediated mitochondrial dysfunction can cause age-related and cell-type-specific neurodegeneration which AOX is able to alleviate and indicate that AOX or its surrogates may prove useful as a therapeutic tool for limiting respiratory chain deficiencies caused by mtDNA decline in healthy aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Dickon M Humphrey
- MRC Centre for Neurodegeneration Research, King’s College London, Institute of Psychiatry, Department of Neuroscience, King’s College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Constitutive activation of Ca2+/calmodulin-dependent protein kinase II during development impairs central cholinergic transmission in a circuit underlying escape behavior in Drosophila. J Neurosci 2012; 32:170-82. [PMID: 22219280 DOI: 10.1523/jneurosci.6583-10.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of neural circuitry relies on precise matching between correct synaptic partners and appropriate synaptic strength tuning. Adaptive developmental adjustments may emerge from activity and calcium-dependent mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been associated with developmental synaptic plasticity, but its varied roles in different synapses and developmental stages make mechanistic generalizations difficult. In contrast, we focused on synaptic development roles of CaMKII in a defined sensory-motor circuit. Thus, different forms of CaMKII were expressed with UAS-Gal4 in distinct components of the giant fiber system, the escape circuit of Drosophila, consisting of photoreceptors, interneurons, motoneurons, and muscles. The results demonstrate that the constitutively active CaMKII-T287D impairs development of cholinergic synapses in giant fiber dendrites and thoracic motoneurons, preventing light-induced escape behavior. The locus of the defects is postsynaptic as demonstrated by selective expression of transgenes in distinct components of the circuit. Furthermore, defects among these cholinergic synapses varied in severity, while the glutamatergic neuromuscular junctions appeared unaffected, demonstrating differential effects of CaMKII misregulation on distinct synapses of the same circuit. Limiting transgene expression to adult circuits had no effects, supporting the role of misregulated kinase activity in the development of the system rather than in acutely mediating escape responses. Overexpression of wild-type transgenes did not affect circuit development and function, suggesting but not proving that the CaMKII-T287D effects are not due to ectopic expression. Therefore, regulated CaMKII autophosphorylation appears essential in central synapse development, and particular cholinergic synapses are affected differentially, although they operate via the same nicotinic receptor.
Collapse
|
92
|
Abstract
Aggressive behavior is widely present throughout the animal kingdom and is crucial to ensure survival and reproduction. Aggressive actions serve to acquire territory, food, or mates and in defense against predators or rivals; while in some species these behaviors are involved in establishing a social hierarchy. Aggression is a complex behavior, influenced by a broad range of genetic and environmental factors. Recent studies in Drosophila provide insight into the genetic basis and control of aggression. The state of the art on aggression in Drosophila and the many opportunities provided by this model organism to unravel the genetic and neurobiological basis of aggression are reviewed.
Collapse
Affiliation(s)
- Liesbeth Zwarts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven Center for Human Genetics, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | |
Collapse
|
93
|
Meinertzhagen IA, Lee CH. The genetic analysis of functional connectomics in Drosophila. ADVANCES IN GENETICS 2012; 80:99-151. [PMID: 23084874 DOI: 10.1016/b978-0-12-404742-6.00003-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|
94
|
Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A. Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS One 2011; 6:e29019. [PMID: 22216159 PMCID: PMC3247229 DOI: 10.1371/journal.pone.0029019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/18/2011] [Indexed: 01/13/2023] Open
Abstract
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds.
Collapse
Affiliation(s)
- Kengo Inada
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Hiroshi Kohsaka
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Etsuko Takasu
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Teruyuki Matsunaga
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
95
|
Pulver SR, Cognigni P, Denholm B, Fabre C, Gu WXW, Linneweber G, Prieto-Godino L, Urbancic V, Zwart M, Miguel-Aliaga I. Why flies? Inexpensive public engagement exercises to explain the value of basic biomedical research on Drosophila melanogaster. ADVANCES IN PHYSIOLOGY EDUCATION 2011; 35:384-392. [PMID: 22139775 DOI: 10.1152/advan.00045.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Invertebrate model organisms are powerful systems for uncovering conserved principles of animal biology. Despite widespread use in scientific communities, invertebrate research is often severely undervalued by laypeople. Here, we present a set of simple, inexpensive public outreach exercises aimed at explaining to the public why basic research on one particular invertebrate, the insect Drosophila melanogaster, is valuable. First, we designed seven teaching modules that highlight cutting-edge research in Drosophila genetics, metabolism, physiology, and behavior. We then implemented these exercises in a public outreach event that included both children and adults. Quantitative evaluation of participant feedback suggests that these exercises 1) teach principles of animal biology, 2) help laypeople better understand why researchers study fruit flies, and 3) are effective over a wide range of age groups. Overall, this work provides a blueprint for how to use Drosophila as a vehicle for increasing public awareness and appreciation of basic research on genetically tractable insects in particular and invertebrates in general.
Collapse
Affiliation(s)
- Stefan R Pulver
- Department of Zoology, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Schnakenberg SL, Matias WR, Siegal ML. Sperm-storage defects and live birth in Drosophila females lacking spermathecal secretory cells. PLoS Biol 2011; 9:e1001192. [PMID: 22087073 PMCID: PMC3210755 DOI: 10.1371/journal.pbio.1001192] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
Male Drosophila flies secrete seminal-fluid proteins that mediate proper sperm storage and fertilization, and that induce changes in female behavior. Females also produce reproductive-tract secretions, yet their contributions to postmating physiology are poorly understood. Large secretory cells line the female's spermathecae, a pair of sperm-storage organs. We identified the regulatory regions controlling transcription of two genes exclusively expressed in these spermathecal secretory cells (SSC): Spermathecal endopeptidase 1 (Send1), which is expressed in both unmated and mated females, and Spermathecal endopeptidase 2 (Send2), which is induced by mating. We used these regulatory sequences to perform precise genetic ablations of the SSC at distinct time points relative to mating. We show that the SSC are required for recruiting sperm to the spermathecae, but not for retaining sperm there. The SSC also act at a distance in the reproductive tract, in that their ablation: (1) reduces sperm motility in the female's other sperm-storage organ, the seminal receptacle; and (2) causes ovoviviparity--the retention and internal development of fertilized eggs. These results establish the reproductive functions of the SSC, shed light on the evolution of live birth, and open new avenues for studying and manipulating female fertility in insects.
Collapse
Affiliation(s)
- Sandra L. Schnakenberg
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Wilfredo R. Matias
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
97
|
Iyengar BG, Chou CJ, Vandamme KM, Klose MK, Zhao X, Akhtar-Danesh N, Campos AR, Atwood HL. Silencing synaptic communication between random interneurons duringDrosophilalarval locomotion. GENES BRAIN AND BEHAVIOR 2011; 10:883-900. [DOI: 10.1111/j.1601-183x.2011.00729.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
98
|
Keegan LP, McGurk L, Palavicini JP, Brindle J, Paro S, Li X, Rosenthal JJC, O'Connell MA. Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic Acids Res 2011; 39:7249-62. [PMID: 21622951 PMCID: PMC3167634 DOI: 10.1093/nar/gkr423] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/03/2011] [Accepted: 05/07/2011] [Indexed: 11/26/2022] Open
Abstract
Flies with mutations in the single Drosophila Adar gene encoding an RNA editing enzyme involved in editing 4% of all transcripts have severe locomotion defects and develop age-dependent neurodegeneration. Vertebrates have two ADAR-editing enzymes that are catalytically active; ADAR1 and ADAR2. We show that human ADAR2 rescues Drosophila Adar mutant phenotypes. Neither the short nuclear ADAR1p110 isoform nor the longer interferon-inducible cytoplasmic ADAR1p150 isoform rescue walking defects efficiently, nor do they correctly edit specific sites in Drosophila transcripts. Surprisingly, human ADAR1p110 does suppress age-dependent neurodegeneration in Drosophila Adar mutants whereas ADAR1p150 does not. The single Drosophila Adar gene was previously assumed to represent an evolutionary ancestor of the multiple vertebrate ADARs. The strong functional similarity of human ADAR2 and Drosophila Adar suggests rather that these are true orthologs. By a combination of direct cloning and searching new invertebrate genome sequences we show that distinct ADAR1 and ADAR2 genes were present very early in the Metazoan lineage, both occurring before the split between the Bilateria and Cnidarians. The ADAR1 gene has been lost several times, including during the evolution of insects and crustacea. These data complement our rescue results, supporting the idea that ADAR1 and ADAR2 have evolved highly conserved, distinct functions.
Collapse
Affiliation(s)
- Liam P. Keegan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - Leeane McGurk
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - Juan Pablo Palavicini
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - James Brindle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - Simona Paro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - Xianghua Li
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - Joshua J. C. Rosenthal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| | - Mary A. O'Connell
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK and Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901, USA
| |
Collapse
|
99
|
Meissner GW, Manoli DS, Chavez JF, Knapp JM, Lin TL, Stevens RJ, Mellert DJ, Tran DH, Baker BS. Functional dissection of the neural substrates for sexual behaviors in Drosophila melanogaster. Genetics 2011; 189:195-211. [PMID: 21705753 PMCID: PMC3176112 DOI: 10.1534/genetics.111.129940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/13/2011] [Indexed: 11/18/2022] Open
Abstract
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male-male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male-male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation.
Collapse
Affiliation(s)
- Geoffrey W. Meissner
- Neurosciences Program, and
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | | | - Jose F. Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| | - Jon-Michael Knapp
- Neurosciences Program, and
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Tasha L. Lin
- Department of Biology, Stanford University, Stanford, California 94305
| | - Robin J. Stevens
- Department of Biology, Stanford University, Stanford, California 94305
| | - David J. Mellert
- Department of Biology, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - David H. Tran
- Department of Biology, Stanford University, Stanford, California 94305
| | - Bruce S. Baker
- Neurosciences Program, and
- Department of Biology, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| |
Collapse
|
100
|
Coe genes are expressed in differentiating neurons in the central nervous system of protostomes. PLoS One 2011; 6:e21213. [PMID: 21695052 PMCID: PMC3117877 DOI: 10.1371/journal.pone.0021213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022] Open
Abstract
Genes of the coe (collier/olfactory/early B-cell factor) family encode Helix-Loop-Helix transcription factors that are widely conserved in metazoans and involved in many developmental processes, neurogenesis in particular. Whereas their functions during vertebrate neural tube formation have been well documented, very little is known about their expression and role during central nervous system (CNS) development in protostomes. Here we characterized the CNS expression of coe genes in the insect Drosophila melanogaster and the polychaete annelid Platynereis dumerilii, which belong to different subgroups of protostomes and show strikingly different modes of development. In the Drosophila ventral nerve cord, we found that the Collier-expressing cells form a subpopulation of interneurons with diverse molecular identities and neurotransmitter phenotypes. We also demonstrate that collier is required for the proper differentiation of some interneurons belonging to the Eve-Lateral cluster. In Platynereis dumerilii, we cloned a single coe gene, Pdu-coe, and found that it is exclusively expressed in post mitotic neural cells. Using an original technique of in silico 3D registration, we show that Pdu-coe is co-expressed with many different neuronal markers and therefore that, like in Drosophila, its expression defines a heterogeneous population of neurons with diverse molecular identities. Our detailed characterization and comparison of coe gene expression in the CNS of two distantly-related protostomes suggest conserved roles of coe genes in neuronal differentiation in this clade. As similar roles have also been observed in vertebrates, this function was probably already established in the last common ancestor of all bilaterians.
Collapse
|