51
|
Sharma A, Chhabra M. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode. BIORESOURCE TECHNOLOGY 2021; 338:125499. [PMID: 34260967 DOI: 10.1016/j.biortech.2021.125499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study reports the use of Chlamydomonas reinhardtiiat the cathode in a photosynthetic microbial fuel cell (PMFC). The PMFC produced power and current density of 15.21 W m-3 and 39 A m-3, respectively. The specific growth rate of algae culture at the cathode was 0.284 day-1. The system achieved COD removal at 73.30% with a Coulombic efficiency of 9.068%. The usability of algae biomass was assessed in terms of its total phenol content (157.69 mg GAE/g algae DW), antioxidant activity (IC50 = 67.07 µg/ml), total Chlorophyll (18.95 mg/g), total Carotenoids (2.40 mg/g), and antibacterial properties against known pathogens. Overall, the study's findings suggested thatC. reinhardtiisupports high power output from a PMFC and is highly resourceful in terms of value-added products.
Collapse
Affiliation(s)
- Arti Sharma
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342037, India
| | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
52
|
Integrative Network Pharmacology of Moringa oleifera Combined with Gemcitabine against Pancreatic Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gemcitabine (GEM) is the first-line chemotherapy drug for patients with advanced pancreatic cancer. Moringa oleifera (MO) exhibited various biological activities, including anticancer effects. Nevertheless, the effectiveness of their combination against pancreatic cancer has not yet been explored. This study evaluates the effect of MO and GEM against pancreatic cancer through network pharmacology. TCMSP, TCMID, and PubMed were used to identify and screen MO bioactive compounds. MO and GEM genes were predicted through DGIdb, CTD, and DrugBank. Pancreatic cancer genes were retrieved from OMIM and MalaCards. Protein–protein interaction (PPI) and compound-target-pathway network were established via STRING and Cytoscape. Gene ontology (GO) and pathway enrichment analysis were conducted using DAVID Bioinformatic Tools. Catechin, kaempferol, quercetin, and epicatechin that met the drug screening requirements, and three additional compounds, glucomoringin, glucoraphanin, and moringinine, were identified as bioactive compounds in MO. Catechin was found to be the main hub compound in MO. TP53, AKT1, VEGFA, and CCND1 from PPI network were discovered as hub genes to have biological importance in pancreatic cancer. GO and pathway analysis revealed that MO and GEM combination was mainly associated with cancer, including pancreatic cancer, through regulation of apoptosis. Combination therapy between MO and GEM might provide insight in pancreatic cancer treatment.
Collapse
|
53
|
Arora S, Arora S. Nutritional significance and therapeutic potential of Moringa oleifera: The wonder plant. J Food Biochem 2021; 45:e13933. [PMID: 34533234 DOI: 10.1111/jfbc.13933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Moringa oleifera is a multi-purpose plant and a comprehensive source of dietary components such as proteins, essential amino acids, vitamins, antioxidants, etc. The plant is also a rich source of other bioactive components, including flavonoids, glucosinolates, isothiocyanates, alkaloids, terpenoids, phenolics, etc. Incorporating M. oleifera in diet can improve the nutritional status of pregnant and nursing mothers and helps to combat malnutrition and iron deficiency anemia (IDA) among children. The phytochemicals and secondary metabolites, especially the polyphenolic compounds from Moringa, have a significant free-radical scavenging effect attributed to this plant's therapeutic potential. Investigations targeting to explore M. oleifera for its nutritional makeup, novel bioactive components, and analysis of their health-promoting attributes have received much attention. This review demonstrates an overview of recent (past ten years) advancements and patenting activity in discovering different parts of M. oleifera plant for providing adequate nutritive and bioactive components. The pharmacological potential and action mechanisms of M. oleifera in many diseases like diabetes mellitus, cancer, hypertension, ulcer, etc., are also discussed. PRACTICAL APPLICATIONS: Moringa oleifera is a vital plant that has a varied set of nutritional and therapeutic properties. The indigenous components of Moringa can treat humankind of its diseases and contribute to overall health. The qualitative and functional characteristics of its components indicate possible commercial exploitation of this high-value plant by utilizing its plant parts in many proprietary medicines and nutraceuticals. In conclusion, the Moringa plant needs to be used commercially. It can lead to tremendous economic development if the industries and researchers exploit its potential for highly nutritional super food and therapeutic application by undertaking further research to corroborate earlier studies.
Collapse
Affiliation(s)
- Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Saurabh Arora
- Biomedical Instruments and Devices HUB, A Centre for Innovation, Design and Clinical Validation, Post Graduate Institute of Medical Education and Research, Chandigarh, Haryana, India
| |
Collapse
|
54
|
Jiménez-Monreal AM, Guardiola FA, Esteban MÁ, Murcia Tomás MA, Martínez-Tomé M. Antioxidant Activity in Gilthead Seabream ( Sparus aurata L.) Fed with Diet Supplemented with Moringa. Antioxidants (Basel) 2021; 10:antiox10091423. [PMID: 34573055 PMCID: PMC8467088 DOI: 10.3390/antiox10091423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Gilthead seabream is bred mainly in fish farms in the Mediterranean Sea. One important factor responsible for the deterioration of fish quality is lipid oxidation. Moringa oleifera leaves have been described as having high antioxidant content. This work investigates the effect of dietary supplementation with Moringa leaves on the antioxidant activity of seabream. Gilthead seabream specimens were divided into four groups, the control group (fed a commercial diet) and three other groups fed diets enriched with Moringa (5%, 10% and 15%). The antioxidant capacity was measured by assays of free radical scavenging (OH·, H2O2, lipoperoxyl and ABTS), Rancimat test and linoleic acid system in muscle and skin of gilthead seabream, commercial diet, enriched diet and Moringa. Finally, the polyphenol content of Moringa and the fatty acid composition of seabream fed diets with and without Moringa were determined. Results showed an increase in antioxidant activity in gilthead seabream fed with diets enriched with a higher percentage of Moringa; therefore, Moringa could be considered a functional ingredient in diets for fish bred in fish farms and. The antioxidant potential of Moringa leaves could be mainly attributed to the presence of polyphenolic compounds.
Collapse
Affiliation(s)
- Antonia M. Jiménez-Monreal
- Department of Food Science, Faculty of Veterinary, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.A.M.T.); (M.M.-T.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-868-887-985; Fax: +34-868-884-147
| | - Francisco A. Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (F.A.G.); (M.Á.E.)
| | - M. Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (F.A.G.); (M.Á.E.)
| | - M. Antonia Murcia Tomás
- Department of Food Science, Faculty of Veterinary, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.A.M.T.); (M.M.-T.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Magdalena Martínez-Tomé
- Department of Food Science, Faculty of Veterinary, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.A.M.T.); (M.M.-T.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
55
|
Nigella sativa callus treated with sodium azide exhibit augmented antioxidant activity and DNA damage inhibition. Sci Rep 2021; 11:13954. [PMID: 34230566 PMCID: PMC8260798 DOI: 10.1038/s41598-021-93370-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Nigella sativa L. (NS) is an herbaceous plant, possessing phytochemicals of therapeutic importance. Thymoquinone is one of the active phytochemicals of NS that confers noteworthy antioxidant properties. Sodium azide, an agent of abiotic stress, can modulates antioxidant system in plants. In the present investigation, sodium azide (0, 5 µM, 10 µM, 20 µM, 50 µM, 100 µM and 200 µM) doses administered to the in vitro NS callus cultures for production/modification of secondary metabolites with augmented activity. 200 µM sodium azide treated NS callus exhibited maximum peroxidase activity (1.286 ± 0.101 nanokatal mg-1 protein) and polyphenol oxidase activity (1.590 ± 0.110 nanokatal mg-1 protein), while 100 µM sodium azide treated NS callus for optimum catalase activity (1.250 ± 0.105 nanokatal mg-1 protein). Further, 200 µM sodium azide treated NS callus obtained significantly the highest phenolics (3.666 ± 0.475 mg g-1 callus fresh weight), 20 µM sodium azide treated NS callus, the highest flavonoids (1.308 ± 0.082 mg g-1 callus fresh weight) and 100 µM sodium azide treated NS callus, the highest carotenes (1.273 ± 0.066 mg g-1 callus fresh weight). However, NS callus exhibited a decrease in thymoquinone yield/content vis-à-vis possible emergence of its analog with 5.3 min retention time and an increase in antioxidant property. Treatment with 200 µM sodium azide registered significantly the lowest percent yield of callus extract (4.6 ± 0.36 mg g-1 callus fresh weight) and thymoquinone yield (16.65 ± 2.52 µg g-1 callus fresh weight) and content (0.36 ± 0.07 mg g-1 callus dry weight) and the highest antioxidant activity (3.873 ± 0.402%), signifying a negative correlation of the former with the latter. DNA damage inhibition (24.3 ± 1.7%) was recorded significantly maximum at 200 µM sodium azide treatment. Sodium azide treated callus also recorded emergence of a new peak at 5.3 min retention time (possibly an analog of thymoquinone with augmented antioxidant activity) whose area exhibits significantly negative correlation with callus extract yield and thymoquinone yield/content and positive correlation with antioxidant activity and in vitro DNA damage inhibition. Thus, sodium azide treatment to NS callus confers possible production of secondary metabolites or thymoquinone analog (s) responsible for elevated antioxidant property and inhibition to DNA damage. The formation of potent antioxidants through sodium azide treatment to NS could be worthy for nutraceutical and pharmaceutical industries.
Collapse
|
56
|
Pulivarthi V, P J, Naidu CV. Ameliorative effect of Annona reticulata L. leaf extract on antihyperglycemic activity and its hepato-renal protective potential in streptozotocin induced diabetic rats. J Ayurveda Integr Med 2021; 12:415-426. [PMID: 34147340 PMCID: PMC8377183 DOI: 10.1016/j.jaim.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Annona reticulata L. is a traditionally important plant due to its versatile source of medicine and industrial products. It is used to treat cardiac problems, wound healing, diabetes, ulcers and bacterial infections. As it is a commercial fruit bearing plant, wide range studies on this plant reaches the mankind efficiently. OBJECTIVE(S) The present study was focussed on antihyperglycemic potential of A. reticulata leaves under in vitro and in vivo. MATERIAL AND METHODS The in vitro phytochemical analysis, total phenolic, flavonoid content, inhibition activity on alpha amylase and alpha glucosidase enzymes were determined for various solvent extracts, followed by in vivo oral toxicity, short term, dose dependant antihyperglycemic studies, oral glucose tolerance tests were performed. The activity of methanolic extract of A.reticulata (MeEAR)-500 mg/kg b.wt was studied for 28 days in diabetic rat model. Histopathological examinations and serum biochemical assays were performed. Gas chromatography-Mass spectrometry (GC-MS) analysis was performed to identify the compounds present in MeEAR. RESULTS Among the various extracts, MeEAR possesses higher amount of phenols and flavonoids with effective inhibition on carbohydrate hydrolysing enzymes (P < 0.05) and also exhibited higher glycemic control in vivo, with simultaneous improvement in the hepatic and renal activities in diabetic rats. GC-MS analysis revealed the presence of 63 bioactive compounds including carboxylic-acids, alcoholic groups, fattyacid esters, amino acid derivatives. CONCLUSION Altogether, our study demonstrated that leaves of A.reticulata possess better antihyperglycemic activity and could be developed in to a potential antidiabetic drug with further studies.
Collapse
Affiliation(s)
- Vineela Pulivarthi
- Department of Biotechnology, Dravidian University, Kuppam, 517 426, A.P, India
| | - Josthna P
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalam, Tirupati, 517502, A.P, India
| | - C V Naidu
- Department of Biotechnology, Dravidian University, Kuppam, 517 426, A.P, India.
| |
Collapse
|
57
|
Sharma T, Gamit R, Acharya R, Shukla VJ. Quantitative estimation of total tannin, alkaloid, phenolic, and flavonoid content of the root, leaf, and whole plant of Byttneria herbacea Roxb. Ayu 2021; 42:143-147. [PMID: 37303859 PMCID: PMC10251283 DOI: 10.4103/ayu.ayu_25_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/10/2019] [Accepted: 02/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Byttneria herbacea Roxb., family Sterculiaceae, commonly called as 'Samarakhai' in local Odia language, is one of the reputed folklore medicinal herb. Its roots, leaves, and whole plant parts are reported for traditional use in the management of dysentery, sores, cuts, wounds, cholera, leucorrhoea, fractures, and sprains. Aim The aim of the present work was to assess the total tannin content, total alkaloid content (TAC), total phenolic content (TPC), and total flavonoid content (TFC) in root, leaf, and whole plant of B. herbacea. Materials and methods The amount of total tannins was analyzed using titrimetric method and total alkaloids by gravimetrical method. TPC was measured using Folin-Ciocalteu's method and calculated as gallic acid equivalents and the amount of total flavonoids by aluminum chloride colorimetric method and calculated as chrysin equivalents. Results Tannin content was found maximum in the leaf (8.148% w/w) followed by whole plant (3.886% w/w) and root (1.553% w/w); similarly, TAC in the leaf (2.306% w/w) was more than those in root (0.814% w/w) and whole plant (1.319% w/w). The TPC of the methanolic extract of root (372.33 ± 14.29 mg/g) was more than whole plant (267.33 ± 7.63 mg/g); The TFC of the methanolic extract of leaf (620 ± 50 mg/g) was found maximum followed by root (553.33 ± 28.86 mg/g) and whole plant (536.66 ± 28.86 mg/g). Conclusion The result of study emphasized presence of tannin, alkaloid, phenol, and flavonoid contents in the root, leaf, and whole plant of B. herbacea where the leaf was found to be richest source.
Collapse
Affiliation(s)
- Tarun Sharma
- Department of Dravyaguna Vigyana, National Institute of Ayurveda, Deemed to be University, Jaipur, India
| | - Rakesh Gamit
- Department of Chemistry, Shri C.N.P.F. Arts and D.N. Science College, Dabhoi, Vadodara, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - V. J. Shukla
- Pharmaceutical Chemistry Laboratory, Institute for Teaching and Research in Ayurveda, Jamnagar, Gujarat, India
| |
Collapse
|
58
|
Kadir DH. Statistical evaluation of main extraction parameters in twenty plant extracts for obtaining their optimum total phenolic content and its relation to antioxidant and antibacterial activities. Food Sci Nutr 2021; 9:3491-3499. [PMID: 34262709 PMCID: PMC8269642 DOI: 10.1002/fsn3.2288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
The main extraction parameters were statistically evaluated for 20 medicinal plants to obtain the optimum conditions for maximum extraction of total phenolic content (TPC) in each plant. Among various extraction parameters, pH, temperature, and concentration at different levels were studied. The results were analyzed using the analysis of variance to achieve the optimum conditions of phenolic extraction for all plants. Also, investigation of the optimum antioxidant (AnOX) activities using DPPH (2,2-diphenyl-1-picrylhydrazyl) method and antibacterial potential against common pathogenic bacteria of Staphylococcus aureus, Escherichia coli, Pseudomonas spp., and Candida spp. through disk diffusion method for the extract of all plants under the optimum total phenolic concentration of each plant extract confirmed a direct relation among bioactivity and TPC.
Collapse
Affiliation(s)
- Dler H. Kadir
- Department of StatisticsCollege of Administration and EconomicsSalahaddin University‐ErbilKurdistan RegionIraq
| |
Collapse
|
59
|
Alkhudhayri DA, Osman MA, Alshammari GM, Al Maiman SA, Yahya MA. Moringa peregrina leaf extracts produce anti-obesity, hypoglycemic, anti-hyperlipidemic, and hepatoprotective effects on high-fat diet fed rats. Saudi J Biol Sci 2021; 28:3333-3342. [PMID: 34121870 PMCID: PMC8176035 DOI: 10.1016/j.sjbs.2021.02.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
This present research investigated the anti-obesity and hepatoprotective effects of ethanolic Moringa peregrina leaf (MPLE) and bark extracts (MPBE), in the rats fed with a high-fat diet (HFD). Healthy male rats (n = 48) were randomly distributed to six groups (n = 8): control AIN-93 diet; HFD; HFD + MPBE bark extracts ((300 mg/kg); HFD + MPBE (600 mg/kg); HFD + MPLE (300 mg/kg); HFD + MPLE (600 mg/kg). HFD-fed rats in the Moringa peregrina (MP) treatment groups received orally administered MP leaf or bark extract daily for eight weeks. The results revealed that both doses of MP leaf extract significantly reduced HFD-induced increases in their food intake and the gained body weight, fat pad weights (visceral, subcutaneous, and epididymal), glucose and insulin plasma levels, and leptin and resistin serum levels in HFD-fed rats. Concomitantly, MP leaf extract improved glucose levels after oral or intraperitoneal glucose tolerance tests, reduced serum cholesterol, triglycerides, and the low-density lipoprotein LDL concentration, reduced hepatic triglycerides and cholesterol levels, and increased serum high-density lipoproteins HDL levels and triglycerides and cholesterol levels in fecal. Moreover, the administration of MPLE to HFD-fed rats improved liver architecture, reduced fat accumulation, reduced hepatic malondialdehyde, tumor necrosis factor-α, and interleukin-6 levels. Hepatic glutathione peroxidase, superoxide dismutase, and catalase activities were significantly increased. All observed effects were more pronounced in HFD-fed rats treated with a 600 mg/kg MP dose. However, neither dose of MPBE altered the measured markers in the HFD-fed rats. In conclusion, MPLE showed potential anti-obesity and hepatoprotective activity in HFD-induced obese rats, mediated by reduced lipid absorption, anti-hyperlipidemic effects, and hepatic antioxidant effects.
Collapse
Affiliation(s)
- Dalal A. Alkhudhayri
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Magdi A. Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Salah A. Al Maiman
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
60
|
Al Kiyumi EH, Al Rashdi BS, Al Alawi AR, Al Balushi AA, Al Hooti SN, Al Hosni SI, Dhanalekshmi U, Khan SA. Quantification of bioactive components and evaluation of antioxidative potential of different floral origin honey from arid regions of Oman. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Patil DN, Patil PJ, Rane MR, Yadav SR, Bapat VA, Vyavahare GD, Jadhav JP. Response surface methodology-based optimization of Pancratium parvum Dalzell-mediated synthesis of gold nanoparticles with potential biomedical applications. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Zhang C, Guo J, Zhang Z, Tian S, Liu Z, Shen C. Biochemical components and fungal community dynamics during the flowering process of Moringa-Fu brick tea, a novel microbially fermented blended tea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Abstract
Edible flowers have been widely consumed for ages until now. The attractive colors and shapes, exotic aroma, and delightful taste make edible flowers very easy to attain. Moreover, they also provide health benefits for consumers due to the unique composition and concentration of antioxidant compounds in the matrices. Knowing the bioactive compounds and their functional properties from edible flowers is necessary to diversify the usage and reach broader consumers. Therefore, this reported review could be useful for functional product development, engaging the discussed edible flowers. We present a comprehensive review of edible flower composition and the functional properties of their antioxidant compounds, mainly phenolics.
Collapse
|
64
|
Polysaccharides-Based Complex Particles' Protective Role on the Stability and Bioactivity of Immobilized Curcumin. Int J Mol Sci 2021; 22:ijms22063075. [PMID: 33802882 PMCID: PMC8002829 DOI: 10.3390/ijms22063075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/30/2022] Open
Abstract
The curcumin degradation represents a significant limitation for its applications. The stability of free curcumin (FC) and immobilized curcumin in complex particles (ComPs) based on different polysaccharides was studied under the action of several factors. Ultraviolet-visible (UV-VIS) and Fourier-transform infrared (FTIR) spectroscopy proved the FC photodegradation and its role as a metal chelator: 82% of FC and between 26% and 39.79% of curcumin within the ComPs degraded after exposure for 28 days to natural light. The degradation half-life (t1/2) decreases for FC when the pH increases, from 6.8 h at pH = 3 to 2.1 h at pH = 9. For curcumin extracted from ComPs, t1/2 was constant (between 10 and 13 h) and depended on the sample’s composition. The total phenol (TPC) and total flavonoids (TFC) content values increased by 16% and 13%, respectively, for FC exposed to ultraviolet light at λ = 365 nm (UVA), whereas no significant change was observed for immobilized curcumin. Antioxidant activity expressed by IC50 (µmoles/mL) for FC exposed to UVA decreased by 29%, but curcumin within ComPs was not affected by the UVA. The bovine serum albumin (BSA) adsorption efficiency on the ComPs surface depends on the pH value and the cross-linking degree. ComPs have a protective role for the immobilized curcumin.
Collapse
|
65
|
Roy M, Dutta TK. Evaluation of Phytochemicals and Bioactive Properties in Mangrove Associate Suaeda monoica Forssk. ex J.F.Gmel. of Indian Sundarbans. Front Pharmacol 2021; 12:584019. [PMID: 33790782 PMCID: PMC8006309 DOI: 10.3389/fphar.2021.584019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/26/2021] [Indexed: 01/24/2023] Open
Abstract
Suaeda monoica Forssk. ex J.F.Gmel. (Amaranthaceae), a mangrove associate and ethno-medicinal herb of Indian Sundarbans, was investigated as a promising source of bioactive compounds. Various polar and nonpolar solvent extracts of the leaf and root-shoot parts of the plant exhibited antioxidant, antibacterial, antifungal, allelopathic, mosquitocidal, antihaemolytic and antidiuretic potential. Moreover, to meet pharmacological requirements, the antioxidant ability of the plant was validated by both chemical and biological analyses. Extraction yield and presence of different phytochemicals like phenolics, flavonoids, tannins and saponins were compared in various solvent-extracted fractions. Principle component analysis revealed that the antioxidant property present in different extracts maintained a positive correlation with the occurrence of polyphenols (phenolics, tannins and flavonoids). Biochemical evaluation, HPLC examination and GC–MS analysis showed a differential level of the presence of various phytochemicals in different solvent extracts. In contrast to mosquitocidal, antioxidant, antihaemolytic and phytotoxic properties which were observed to be dominant in polar solvent extracts, maximum antibacterial potency was detected in nonpolar n-hexane fractions. Overall, the plant extract is nontoxic in nature and a dose amounting to 3,000 mg/kg was well tolerated by Swiss albino mice. A combination of HPLC and GC–MS analyses showed the presence of a large number of structurally diverse phytochemicals, many of which had already been reported as insecticidal, mosquitocidal, antibacterial, herbicidal, antidiuretic, antioxidant and anti-haemolytic compounds. All these findings support that the least explored traditional edible medicinal mangrove associate S.monoica is enriched with multiple bioactive molecules and may be considered as one of the richest sources of various lead molecules of pharmaceutical importance.
Collapse
Affiliation(s)
- Madhumita Roy
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, India
| |
Collapse
|
66
|
Mabasa R, Malemela K, Serala K, Kgakishe M, Matsebatlela T, Mokgotho M, Mbazima V. Ricinus communis Butanol Fraction Inhibits MCF-7 Breast Cancer Cell Migration, Adhesion, and Invasiveness. Integr Cancer Ther 2021; 20:1534735420977684. [PMID: 33565349 PMCID: PMC7878952 DOI: 10.1177/1534735420977684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, the potential of an n-butanol fraction from Ricinus communis to prevent metastasis in MCF-7 breast cancer cells was investigated. The effect of the fraction on BUD-8 and MCF-7 cell viability was assessed using the MTT assay. Apoptotic cell death was analyzed by Hoechst staining assay. The antimetastatic effect of the fraction on MCF-7 cell was evaluated using the wound healing, adhesion and Boyden chamber invasion assays. Gelatin-zymography was used to assess the effect of the fraction on MMP-2 and MMP-9 activity. The expression profile of proteins implicated in metastasis and angiogenesis was determined using the human angiogenesis antibody array kit, following treatment with the fraction. BUD-8 cell viability was significantly reduced at concentrations between 300 and 500 µg/ml of the extract. In contrast, a significant reduction in cell viability was seen in MCF-7 cells treated with 400 to 500 µg/ml of the fraction. At sub-lethal concentrations (100 and 200 µg/ml) of the fraction, no nuclei morphological changes associated with apoptotic cell death were observed in MCF-7 cells. In addition, the fraction showed to have an inhibitory effect on MCF-7 cell migration, adhesion, invasiveness, and MMP-2 activity. Moreover, the fraction was seen to modulate the expression of several proteins, such as MMP-9, uPA, VEGF, and TGF-β1, playing a role in the metastasis process. This study demonstrates that the n-butanol fraction of R. communis can inhibit major steps of the metastatic cascade and modulate metastasis regulatory proteins. Thus, the fraction can be considered a potential source of antimetastatic agents that could be useful in the treatment of malignant cancers.
Collapse
|
67
|
Wang F, Bao Y, Zhang C, Zhan L, Khan W, Siddiqua S, Ahmad S, Capanoglu E, Skalicka-Woźniak K, Zou L, Simal-Gandara J, Cao H, Weng Z, Shen X, Xiao J. Bioactive components and anti-diabetic properties of Moringa oleifera Lam. Crit Rev Food Sci Nutr 2021; 62:3873-3897. [PMID: 33401950 DOI: 10.1080/10408398.2020.1870099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Moringa oleifera Lam. is a perennial tropical deciduous tree with high economic and pharmaceutical value. As an edible plant, M. oleifera Lam. is rich in nutrients, such as proteins, amino acids, mineral elements and vitamins. Besides, it also contains an important number of bioactive phytochemicals, such as polysaccharides, flavonoids, alkaloids, glucosinolates and isothiocyanates. M. oleifera for long has been used as a natural anti-diabetic herb in India and other Asian countries. Thus, the anti-diabetic properties of Moringa plant have evolved highly attention to the researchers. In the last twenty years, a huge number of new chemical structures and their pharmacological activities have been reported in particularly the anti-diabetic properties. The current review highlighted the bioactive phytochemicals from M. Oleifera. Moreover, evidence regarding the therapeutic potential of M. oleifera for diabetes including experimental and clinical data was presented and the underlying mechanisms were revealed in order to provide insights for the development of novel drugs.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Chen Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Washim Khan
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Sahifa Siddiqua
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research, Bioactive Natural Product Laboratory, New Delhi, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zebin Weng
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
68
|
Ahmad S, Khan A, Zahiruddin S, Ibrahim M, Basist P, Gaurav, Parveen R, Umar S. Thin layer chromatography-mass spectrometry bioautographic identification of free radical scavenging compounds and metabolomic profile of Carica papaya linn. fruit and seeds using high-performance thin-layer chromatography, gas chromatography-mass spectrometry and ultra-performance liquid chromatography-mass spectrometry. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_326_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
69
|
Ahmadu T, Ahmad K, Ismail SI, Rashed O, Asib N, Omar D. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.). BRAZ J BIOL 2020; 81:1007-1022. [PMID: 33175006 DOI: 10.1590/1519-6984.233173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
Drawbacks associated with the use of chemical fungicides to control plant pathogenic fungi such as Botrytis cinerea stimulate the need for alternatives. Therefore, the present study was carried out to determine the antifungal potentials of Moringa oleifera extracts against B. cinerea. Phytochemical analysis using qualitative chemical tests revealed the presence of huge amount of crucial phytochemicals compounds like phenolic compounds, alkaloids and saponins in the M. oleifera leaf extract. Antifungal bioassay of the crude extracts indicated better mycelial growth inhibition by methanol leaf extract (99%). The minimum inhibitory concentration (MIC) was 5 mg/ml with 100% spore germination inhibition and minimum fungicidal concentration (MFC) was 10 mg/ml with 98.10% mycelial growth inhibition using broth micro dilution and poisoned food techniques. Gas chromatography-mass spectrometry (GC-MS) analysis led to the identification of 67 volatile chemical compounds in the leaf extract with 6-decenoic acid (Z)- (19.87%) was the predominant compound. Further chemical elucidation of the crude extracts performed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) showed the presence of non-volatile chemical compounds, mostly flavones, flavonoids and phenolic acids (i.e. quercetin and kaempferol). Scanning electron microscopy and transmission electron microscopy analysis showed positive effect of M. oleifera leaf extract on the treated conidia and mycelium of B. cinerea. Findings revealed that irreversible surface and ultra-structural changes with severe detrimental effects on conidia and mycelium morphology compared to control treatment. Overall findings suggested that M. oleifera leaf extract is a promising candidate for biological control of fungal pathogens, thus limiting overdependence on chemical fungicides.
Collapse
Affiliation(s)
- T Ahmadu
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - K Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Plantation Studies - IKP, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Tropical Agriculture and Food Security - ITAFoS, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - S I Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - O Rashed
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - N Asib
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - D Omar
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
70
|
Kekana T, Marume U, Muya M, Nherera-Chokuda F. Periparturient antioxidant enzymes, haematological profile and milk production of dairy cows supplemented with Moringa oleifera leaf meal. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Fernandes Â, Bancessi A, Pinela J, Dias MI, Liberal Â, Calhelha RC, Ćirić A, Soković M, Catarino L, Ferreira ICFR, Barros L. Nutritional and phytochemical profiles and biological activities of Moringa oleifera Lam. edible parts from Guinea-Bissau (West Africa). Food Chem 2020; 341:128229. [PMID: 33038772 DOI: 10.1016/j.foodchem.2020.128229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Moringa oleifera is an edible medicinal plant used to fight malnutrition in Africa. In this study, M. oleifera flowers, fruits and seeds from Guinea-Bissau were characterized for their nutritional composition and hydroethanolic and aqueous extracts were prepared to investigate the phenolic profiles and bioactivities. Seeds presented higher levels of proteins (~31 g/100 g dw), fat (~26 g/100 g dw) and flavan-3-ol derivatives, while carbohydrates, proteins, citric acid, and glycosylated flavonoids were abundant in fruits and flowers, these last samples also being rich in α-tocopherol (~18 mg/100 g dw). Some of the identified polyphenols had never been described in M. oleifera. In general, hydroethanolic extracts contained more polyphenols and were more active against lipid peroxidation, NO production, and tumour cells growth. Significant antimicrobial effects against the tested bacteria and fungi strains were displayed by both hydroethanolic and aqueous extracts. The M. oleifera potential to fight malnutrition and health issues was highlighted.
Collapse
Affiliation(s)
- Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Aducabe Bancessi
- Nova School of Business and Economics, NOVA University of Lisbon, Campus de Carcavelos, Rua da Holanda, n. 1, 2775-405 Carcavelos, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Ćirić
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Luís Catarino
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
72
|
Phytochemical Test, Determination of Total Phenol, Total Flavonoids and Antioxidant Activity of Ethanol Extract of Moringa Leaves (Moringa oleifera Lam). JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.8.290-294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
73
|
Nakano S, Oguro M, Itagaki T, Sakai S. Florivory defence: are phenolic compounds distributed non-randomly within perianths? Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Plants might allocate chemical defences unequally within attractive units of flowers including petals, sepals, and bracts because of variations in the probability of florivory. Based on optimal defence theory, which predicts that plants allocate higher chemical defences to tissues with higher probabilities of herbivore attack, we predicted that distal parts and sepals would have higher chemical defence allocations than proximal parts and petals. To test this prediction, we compared total phenolics and condensed tannins concentrations as well as presence of florivory within attractive units of ten angiosperm species. In agreement with the prediction, the overall results showed that the distal parts had higher total phenolics and condensed tannins than the proximal parts. On the other hand, contrary to the prediction, petals and sepals showed no tissue-specific variations. Florivory was more severe on the distal parts than the proximal parts, although statistical support for the variation was slightly weak, while the variations in presence of florivory between petals and sepals differed between the distal and proximal parts. These results may support the prediction of the optimal defence theory because distal parts of attractive units had higher presence of florivory and concentration of chemical defences.
Collapse
Affiliation(s)
- Saya Nakano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Michio Oguro
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Tomoyuki Itagaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoki Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
74
|
High-performance thin-layer chromatographic investigation of rutin in the leaves of Phoenix sylvestris in sequence with pharmacognostical and phytochemical evaluation. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00016-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
75
|
Evaluation of in vivo anti-inflammatory and anti-angiogenic attributes of methanolic extract of Launaea spinosa. Inflammopharmacology 2020; 28:993-1008. [PMID: 32172496 DOI: 10.1007/s10787-020-00687-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
Launaea spinosa is used as an anti-inflammatory agent traditionally. This study was conducted to evaluate anti-inflammatory and anti-angiogenic activities of methanol extract of Launaea spinosa. Extraction was performed by maceration and the resultant green coloured extract was labelled as Ls.Me. Solubility analysis showed that Ls.Me was miscible with distilled water, normal saline, ethanol and methanol. Metal analysis following acid digestion method exhibited the presence of copper, magnesium, manganese, iron, zinc and calcium. Phytochemical analysis confirmed the presence of different classes of secondary metabolites in Ls.Me. HPLC analysis showed the presence of quercetin, gallic acid, caffeic acid, benzoic acid and sinapic acid in Ls.Me. Data of in vitro antioxidant assays showed moderate antioxidant potential of Ls.Me which was also confirmed by data of in vivo enzymes (SOD, CAT, and TSP) assays. Antimicrobial assays data showed that Ls.Me was active against S.aureus and S.epidermidis (bacterial) as well as C.albicans and A.niger (fungal) strains. Data of acute physio-pathological studies showed no abnormalities in Albino rats up to the dose of 2000 mg/kg of Ls.Me. Acute and chronic inflammatory models were used to evaluate anti-inflammatory effects of Ls.Me. Data of acute studies showed that Ls.Me has the potential to arrest inflammation produced by different mediators in a dose-dependent manner. 200 mg/kg of Ls.Me was found to produce significantly (p < 0.05) better anti-inflammatory effects than 100 mg/kg of Ls.Me. Ls.Me also significantly (p < 0.05) inhibited ear edema induced by xylene. Ls.Me showed profound anti-inflammatory responses in paw edema induced by formalin and also inhibited granuloma development in cotton pellet-induced granuloma model. Histopathological and biochemical investigations showed marked reduction in the number of inflammatory cells. TNF-α and IL-6 ELSIA kits were used to study effects of Ls.Me treatment on serum levels of TNF-α and IL-6. Data obtained showed significant (p < 0.05) reduction in TNF-α and IL-6 levels in serum of animals treated with Ls.Me. Data of in vivo angiogenesis assay showed that 200 µg/ml of Ls.Me significantly halted vasculature development indicating its potent anti-angiogenic potential. On the basis of findings of the current study, it is concluded that multiple phytochemicals present in Ls.Me act synergistically to produce anti-inflammatory and anti-angiogenic effects. Further studies are required to standardize the plant extract and explore its safety profile.
Collapse
|
76
|
Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci Rep 2020; 10:4456. [PMID: 32157137 PMCID: PMC7064537 DOI: 10.1038/s41598-020-61358-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Edible nanoparticles (ENPs) are nano-sized vesicles derived from edible plants. These ENPs are loaded with plant derived microRNAs, protein, lipids and phytochemicals. Recently, ginger derived ENPs was shown to prevent inflammatory bowel diseases and colon cancer, in vivo, highlighting their therapeutic potential. Conventionally, differential centrifugation with an ultra-centrifugation step is employed to purify these ENPs which imposes limitation on the cost-effectiveness of their purification. Herein, we developed polyethylene glycol-6000 (PEG6000) based ginger ENP purification (PEG-ENPs) method, which eliminates the need for expensive ultracentrifugation. Using different PEG6000 concentrations, we could recover between 60% to 90% of ENPs compared to ultracentrifugation method. PEG-ENPs exhibit near identical size and zeta potential similar to ultra-ENPs. The biochemical composition of PEG-ENPs, such as proteins, lipids, small RNAs and bioactive content is comparable to that of ultra-ENPs. In addition, similar to ultra-ENPs, PEG-ENPs are efficiently taken up by the murine macrophages and protects cells from hydrogen peroxide induced oxidative stress. Since PEG has been approved as food additive, the PEG method described here will provide a cost-effective alternative to purify ENPs, which can be directly used as a dietary supplement in therapeutic formulations.
Collapse
Affiliation(s)
- Sreeram Peringattu Kalarikkal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka, India
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, India
| | - Durga Prasad
- Department of Spice & Flavor Science, CSIR-CFTRI, Mysuru, Karnataka, India
| | - Ravi Kasiappan
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, India
| | - Sachin R Chaudhari
- Department of Spice & Flavor Science, CSIR-CFTRI, Mysuru, Karnataka, India
| | - Gopinath M Sundaram
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka, India.
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, India.
| |
Collapse
|
77
|
Mir MA, Ganai SA, Mansoor S, Jan S, Mani P, Masoodi KZ, Amin H, Rehman MU, Ahmad P. Isolation, purification and characterization of naturally derived Crocetin beta-d-glucosyl ester from Crocus sativus L. against breast cancer and its binding chemistry with ER-alpha/HDAC2. Saudi J Biol Sci 2020; 27:975-984. [PMID: 32127777 PMCID: PMC7042633 DOI: 10.1016/j.sjbs.2020.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/03/2023] Open
Abstract
Saffron plant (Crocus sativus L.) is being used as a source of saffron spice and medicine to cure or prevent different types of diseases including cancers. We report the isolation, characterization of bioactive small molecule ([crocetin (β-d-glucosyl) ester] from the leaf biowastes of saffron plant of Kashmir, India. MTTC assay and Bio-autography aided approach were used to assess anti-oxidant activity and anti-cancer properties of crocin (s) against DPPH free radical and breast cancer cell line respectively. Crocetin beta-d-glucosyl ester restrained proliferation of human breast adeno-carcinoma cell model (MCF-7) without significantly affecting normal cell line (L-6). Further studies involving molecular mechanics generalized born surface area and molecular docking showed that crocetin beta-d-glucosyl ester exhibits strong affinity for estrogen receptor alpha and histone deacetylase 2 (crucial receptors involved in breast cancer signalling) as evidenced by the negative docking score and binding free energy (BFE) values. Therefore, crocetin beta-d-glucosyl ester from Crocus sativus biowastes showed antiproliferative effect possibly by inhibiting estrogen receptor alpha and HDAC2 mediated signalling cascade.
Collapse
Key Words
- Antioxidant
- Breast cancer
- Crocetin beta-d-glucosyl ester
- DMEM, Dulbecco’s Modified Eagle’s Medium
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- FBS, Fetal Bovine serum
- FTIR, Fourier-transform infrared spectroscopy
- Floral biowastes
- LC-MS/MS, Liquid chromatography–mass spectrometry
- MTT, 3-(4,5–dimethyl thiazol–2–yl)–5–diphenyltetrazolium bromide
- Molecular docking
- NMR, Nuclear magneticresonance
- Saffron
- TLC, Thin layer chromatography
- UV, Ultra violet
Collapse
Affiliation(s)
- Mudasir A Mir
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Shabir Ahmad Ganai
- Division of Basic Sciences and Humanities, Faculty of Agriculture, SKUAST-Kashmir, Wadura, Sopore 193201, Jammu & Kashmir, India
| | - Sheikh Mansoor
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, J&K, India
| | - Sumira Jan
- Division of Basic Science and Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - P Mani
- Department of Biotechnology, Annai College of Arts & Science, Kumbakonam, Tamil Nadu 612503, India
| | - Khalid Z Masoodi
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Henna Amin
- Department of Pharmaceutical Sciences, Faculty of Applied Science and Technology, University of Kashmir, Srinagar, J&K 190006, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saudi University, P. O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
78
|
Patil DN, Yadav SR, Patil S, Bapat VA, Jadhav JP. Multidimensional Studies of Pancratium parvum Dalzell Against Acetylcholinesterase: A Potential Enzyme for Alzheimer's Management. J Am Coll Nutr 2020; 39:601-618. [PMID: 31951787 DOI: 10.1080/07315724.2019.1709914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Pancratium L. (Amaryllidaceae J.St. Hil.) is a monocot genus with bulbous habitat and about 20 species worldwide have significant medicinal properties. The present envision aims to investigate the potential ability of Pancratium species for acetylcholinesterase (AChE) inhibition as a remedy for Alzheimer disease (AD). Different Pancratium species were screened for the inhibition of AChE enzyme from various localities across India. Prominent species was further studied for anti-inflammatory, antioxidant, metal chelating and UHPLC-QTOF-MS analysis.Methods: Nine different species collected across India were examined for AChE inhibition and for binding affinity studies using Surface Plasmon Resonance (SPR). Highest inhibition species was subjected to Response Surface Methodology (RSM) to accomplish the effective conditions for maximum extraction of phytomolecules in accordance with the inhibition of the AChE. Further, extract under optimized conditions were used to study anti-inflammatory, antioxidant, metal chelating and UHPLC-QTOF-MS analysis for tentative identification of phytomolecules.Results: Amongst different species collected, P. parvum Dalzell exhibited maximum inhibition 93.30 ± 1.71% with promising IC50 20 ± 0.22 µg/ml value. In addition, binding affinity toward AChE and β plaques using SPR technique showed a higher binding response toward the enzyme. RSM study resulted that water extracts at 50 °C and 5.46 hours heating executed maximum inhibition. Other studies showed prominent anti-inflammatory and metal chelating ability with low antioxidant property.Conclusion: By using UHPLC-QTOF-MS compounds were tentatively identified for the concerned activities mentioned above. This work reports for accounting the detailed study of P. parvum and which can be further entailed for the treatment of various neurological disorders.
Collapse
Affiliation(s)
| | | | - Sushama Patil
- Department of Biotechnology, Shivaji University, Kolhapur, India
| | - Vishwas A Bapat
- Department of Biotechnology, Shivaji University, Kolhapur, India
| | - Jyoti P Jadhav
- Department of Biotechnology, Shivaji University, Kolhapur, India.,Department of Biochemistry, Shivaji University, Kolhapur, India
| |
Collapse
|
79
|
Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies. Nutrients 2019; 11:nu11122907. [PMID: 31810205 PMCID: PMC6950081 DOI: 10.3390/nu11122907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes and related neurological complications are serious worldwide public health problems. The increasing number of affected individuals make it necessary to implement novel nutritional and therapeutic interventions. The tree Moringa oleifera (MO) has been used as a food source and for traditional medicine purposes due to possible antihyperglycemic, antioxidant, anti-inflammatory, and lipid regulating properties. These properties may be explained by the presence of numerous phytochemicals in the leaves, fruits, roots and, oil of the tree. The evidence for acute antihyperglycemic effects of MO extract on diabetic animal models seems to be robust, but more chronic and long-term studies are needed. In contrast, the hypoglycemic effects of MO on humans are not as clear. The scarce number of human studies, together with a diverse range of methodologies and MO doses, may explain this. In addition, evidence regarding changes in insulin levels due to MO intervention is ambiguous, both in animal and human studies. Therefore, more structured studies are needed to clarify if MO has an effect on insulin levels or activity.
Collapse
|
80
|
Antioxidant, cytotoxic and apoptotic potentials of seeds of Momordica subangulata subsp. renigera inhibit the growth of Ehrlich ascites carcinoma in mice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00227-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
81
|
Fejér J, Kron I, Pellizzeri V, Pľuchtová M, Eliašová A, Campone L, Gervasi T, Bartolomeo G, Cicero N, Babejová A, Konečná M, Sedlák V, Poráčová J, Gruľová D. First Report on Evaluation of Basic Nutritional and Antioxidant Properties of Moringa Oleifera Lam. from Caribbean Island of Saint Lucia. PLANTS (BASEL, SWITZERLAND) 2019; 8:E537. [PMID: 31771207 PMCID: PMC6963501 DOI: 10.3390/plants8120537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Moringa oleifera Lam. has been considered as a multipurpose tree. The studies on it focus on its variable nutritional benefits. It is growing in many regions, but information about nutritional properties of those growing in the Caribbean is missing. The present study focused on biochemical analysis of main nutritional and antioxidant properties in plant material-dried leaves and seeds-of Moringa oleifera. The composition of lipids, proteins, and vitamin E was evaluated in powdered dried leaves and seeds. Fatty acids were evaluated in oil extracted from the moringa seeds. Potential antioxidant properties of the moringa were evaluated in extract from crushed and powdered leaves, as well as from the powdered seeds. The total amounts of lipids, proteins, and vitamin E were higher in powdered seeds (31.85%, 35.13%, and 220.61 mg/kg) than in powdered leaves (12.48%, 20.54%, and 178.10 mg/kg). The main compound of fatty acids presented oleic acid (76.78%) in seeds' oil and oleic (25.01%), palmitic (24.84%), and linolenic (24.71%) acids in leaves. Neohesperidin (126.8 mg/kg), followed by chlorogenic acid (99.96 mg/kg) and quercetin (43.44 and 21.44 mg/kg) were main phenolic compounds identified. Total phenols in powdered leaves' extract (635.6 mg GAE/L) was higher than in powdered seeds' extract (229.5 mg GAE/L). The activity against superoxide radical and hydroxyl radical was 92.4% and 73.1% by leaves' powder extract and 83.6% and 60.7% by crushed-leaf extract; seed-powder extract exhibited a pro-oxidation activity (-68.4%) against superoxide radical and the lowest antioxidant effect against the hydroxyl radical (55.0%).
Collapse
Affiliation(s)
- Jozef Fejér
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (J.F.); (M.P.); (A.E.)
| | | | - Vito Pellizzeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (V.P.); (T.G.); (G.B.); (N.C.)
| | - Mária Pľuchtová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (J.F.); (M.P.); (A.E.)
| | - Adriana Eliašová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (J.F.); (M.P.); (A.E.)
| | - Luca Campone
- Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic. A. Tec.), University of Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (V.P.); (T.G.); (G.B.); (N.C.)
| | - Giovanni Bartolomeo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (V.P.); (T.G.); (G.B.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy; (V.P.); (T.G.); (G.B.); (N.C.)
| | - Andrea Babejová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (M.K.); (J.P.)
| | - Mária Konečná
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (M.K.); (J.P.)
| | - Vincent Sedlák
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (M.K.); (J.P.)
| | - Janka Poráčová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (M.K.); (J.P.)
| | - Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08116 Prešov, Slovakia; (J.F.); (M.P.); (A.E.)
| |
Collapse
|
82
|
Pinakin DJ, Kumar V, Suri S, Sharma R, Kaushal M. Nutraceutical potential of tree flowers: A comprehensive review on biochemical profile, health benefits, and utilization. Food Res Int 2019; 127:108724. [PMID: 31882088 DOI: 10.1016/j.foodres.2019.108724] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022]
Abstract
A numerous types of tree flowers are present in nature and few of them such as Rhdodendron, Bauhinia, Mahua, Gulmohar, Palash, Sesbania, Woodfordia, Simbal, etc. are being utilized traditionally as food and medicine by the localities of India. These flowers are rich in phytochemical (flavonoids, anthocyanins, phenolic acids, carotenoids, tannins, saponins) and possessing numerous health benefits (antioxidant activity, anti-inflammation, anti-cancer activity, anti-diabetic activity, hepatoprotective activity). However, because of the low availability (i.e. short blooming period and at limited places) and poor post-harvest life, these flowers are commonly utilized by the local people as food and medicines during their respective flowering times only. A few attempts have been made toward the utilization of some tree flowers (Mahduca longifolia, Rhododendron arboretum), but others are still unexplored and need to be exploited to achieve food and nutritional security as well increase the opportunity of employment and improvement in the socio-economic status of the local tribes. Therefore, to achieve this, the present review was aimed to review and document the status of common edible tree flowers, their phytochemicals potential and, health benefits as well as their utilization as food and medicines.
Collapse
Affiliation(s)
- Dave Jaydeep Pinakin
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vikas Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sheenam Suri
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rakesh Sharma
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India
| | - Manisha Kaushal
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India
| |
Collapse
|
83
|
Hypoglycemic and antioxidant activities of Clerodendrum inerme leaf extract on streptozotocin-induced diabetic models in mice. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
84
|
Thapa M, Singh M, Ghosh CK, Biswas PK, Mukherjee A. Zinc sulphide nanoparticle (nZnS): A novel nano-modulator for plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:73-83. [PMID: 31277044 DOI: 10.1016/j.plaphy.2019.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 05/24/2023]
Abstract
In spite of extraordinary properties of zinc sulphide nanoparticle (nZnS), its role on plant system is not well understood, yet. Therefore, this study was aimed to assess the uptake, translocation and effects of nZnS in mung bean (Vigna radiata) plant at 0, 0.1, 0.5 and 1 mg L-1 concentrations. In this study, nZnS was synthesized by modified reflux method and physicochemical characterizations were conducted. The effects of nZnS on mung bean plant were determined by seed germination, growth parameters, membrane integrity and ROS-antioxidant defense assays. Our results showed that nZnS treatment has significantly increased seed germination, root-shoot length, pigment content and decreased lipid peroxidation. There were increased total antioxidant activity (TAA), DPPH and flavonoid contents found in treated plants. Also, nZnS treatment did not activate oxidative stress determined by SOD, CAT, CPX, APOX and GR activities. The uptake and translocation of nZnS in mung bean plants were determined by Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM), revelling that nZnS localized primarily in the vacuoles and chloroplasts. Besides, electron micrographs showed no alteration in cell structures between treated and control plants, further confirming that nZnS treatment has no phytotoxic effects. In vitro and in vivo studies on Zn release from nZnS were also determined using Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Energy Dispersive X-ray (EDX), which showed that the Zn release and particles uptake were concentration dependent. Overall, results of this study demonstrated the positive role of nZnS on growth and antioxidant defense responses in V. radiata at the experimental concentrations.
Collapse
Affiliation(s)
- Mala Thapa
- Biological Sciences Division, Indian Statistical Institute, Rose Villa, Giridih, 815 301, Jharkhand, India; Food Technology and Biochemical Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, 700032, India; Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Prasanta Kumar Biswas
- Food Technology and Biochemical Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Abhishek Mukherjee
- Biological Sciences Division, Indian Statistical Institute, Rose Villa, Giridih, 815 301, Jharkhand, India.
| |
Collapse
|
85
|
Fouad EA, Abu Elnaga ASM, Kandil MM. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel ( Camelus dromedarius) abscess. Vet World 2019; 12:802-808. [PMID: 31439997 PMCID: PMC6661477 DOI: 10.14202/vetworld.2019.802-808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 02/04/2023] Open
Abstract
Background: Abscess in camel is one of the most important bacterial infections. It causes anemia and emaciation, resulting in an economic loss due to carcass condemnation and a decrease in reproductive and production efficiency. Aim: This investigation aimed to isolate the bacteria from abscesses in camels and evaluate the antibacterial activity of Moringa oleifera extracts. Materials and Methods: Disk diffusion method and minimum inhibitory concentration were used for the evaluation of the antibacterial activity of M. oleifera extracts against isolated bacteria from camel abscesses. Results: The isolated bacteria were displayed relatively as follows: Corynebacteriumpseudotuberculosis (30.4%), Staphylococcus aureus (25.8%), Escherichiacoli (17.8%), Corynebacteriumulcerans (10.5%), Klebsiellapneumoniae (8.5%), Pseudomonas aeruginosa (8.5%), Micrococcus spp. (6.7%), Proteus vulgaris (5.2%), Citrobacter spp. (4.2%), and Staphylococcus epidermidis (1.7%). The drugs of choice for Corynebacterium isolates were ciprofloxacin and trimethoprim/sulfamethoxazole, whereas amikacin, ciprofloxacin, gentamicin, neomycin, novobiocin, streptomycin, and vancomycin were for Staphylococcus isolates. Moreover, the ethanol extracts of M. oleifera showed higher antibacterial efficacy than the cold aqueous extracts. Conclusion: M. oleifera is considered one of the new infection-fighting strategies in controlling pyogenic bacteria responsible for camel abscesses.
Collapse
Affiliation(s)
- Ehab Ali Fouad
- Department of Microbiology and Immunology, National Research Centre, Egypt
| | | | - Mai M Kandil
- Department of Microbiology and Immunology, National Research Centre, Egypt
| |
Collapse
|
86
|
Drumstick ( Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets. Foods 2019; 8:foods8080307. [PMID: 31374943 PMCID: PMC6722610 DOI: 10.3390/foods8080307] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
The present work investigated the efficacy of Moringa flower (MF) extract to develop a functional chicken product. Three groups of cooked chicken nuggets—control (C), T1 (with 1% MF) and T2 (2% MF)—were elaborated and their physicochemical, nutritional, storage stability and sensory attributes were assessed during refrigerated storage at 4 °C up to 20 days. In addition, MF extracts were characterised in terms of chemical composition, total phenolic content and its components using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), dietary fibre and antioxidant capacity. MF contained high protein (17.87 ± 0.28 dry matter), dietary fibre (36.14 ± 0.77 dry matter) and total phenolics (18.34 ± 1.16 to 19.49 ± 1.35 mg gallic acid equivalent (GAE)/g dry matter) content. The treated nuggets (T1 and T2) had significantly enhanced cooking yield, emulsion stability, ash, protein, total phenolics and dietary fibre compared to control. Incorporation of MF extract at 2% not only significantly reduced the redness/increased the lightness, but also decreased the hardness, gumminess and chewiness of the product compared to control. Moreover, the addition of MF extract significantly improved the oxidative stability and odour scores by reducing lipid oxidation during storage time. Sensory attributes of nuggets were not affected by the addition of MF extract and the products remained stable and acceptable even on 15th day of storage. These results showed that MF extract could be considered as an effective natural functional ingredient for quality improvement and reducing lipid oxidation in cooked chicken nuggets.
Collapse
|
87
|
Parathodi Illam S, Hussain A, Elizabeth A, Narayanankutty A, Raghavamenon AC. Natural combination of phenolic glycosides from fruits resists pro-oxidant insults to colon cells and enhances intrinsic antioxidant status in mice. Toxicol Rep 2019; 6:703-711. [PMID: 31372348 PMCID: PMC6661281 DOI: 10.1016/j.toxrep.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/30/2019] [Accepted: 07/14/2019] [Indexed: 01/24/2023] Open
Abstract
A combination of fresh fruits adequately supplying required nutrients is likely to have better health benefits by virtue of the synergistic/additive effect of its natural constituents. With this view and aiming to obtain phenolic glycosides in combination, fresh apple, grape, orange, pomegranate, and sapota fruit juices were combined and lyophilized. An aqueous extract of this fruit combination (AEFC) had polyphenols as a major constituent (47.36 μg GAE/mL) and LC–MS analysis documented the presence of cyanidin and pallidol 3-O-glucosides, phloridzin, delphinidin-3-O-rutinoside, kaempferol-3-O-pentoside, quercetin-3-O-rutinoside, trans-caffeic acid. Corroborating this, AEFC exhibited significant DPPH and superoxide radical scavenging activities (IC50values 43.63 and 49.01 μg/mL) and protected colon epithelial cells (HCT-15) against H2O2 and AAPH induced cell death by 40 and 72.62% and buthionine sulfoximine (BSO) induced GSH depletion by 52.43%. In normal Swiss albino mice, administration of AEFC for over 30 days improved hepatic and renal GPx, SOD, and catalase activities and GSH levels. The study thus suggests the combinatorial effects of natural phenolic glycosides from fruits in resisting oxidative insults and associated disease pathology.
Collapse
Affiliation(s)
| | - Ashif Hussain
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680 555 Kerala, India
| | - Anu Elizabeth
- Amala Cancer Research Centre, Amala Nagar, Thrissur, 680 555 Kerala, India
| | | | | |
Collapse
|
88
|
Shi Y, Prabakusuma AS, Zhao Q, Wang X, Huang A. Proteomic analysis of Moringa oleifera Lam. leaf extract provides insights into milk-clotting proteases. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
89
|
Haida Z, Hakiman M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci Nutr 2019; 7:1555-1563. [PMID: 31139368 PMCID: PMC6526636 DOI: 10.1002/fsn3.1012] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
This review article presents a comprehensive review pertaining to antioxidants and various assays that determined enzymatic and nonenzymatic antioxidants. Antioxidants have gained attention at the global scale on its prominent beneficial roles that can fight against many chronic infirmities, including cancer and cardiovascular diseases. Many studies have investigated different types of samples, such as medicinal plants, fruits, and vegetables, by using various antioxidant assays. Antioxidants can be grouped into enzymatic and nonenzymatic antioxidants. To date, most studies had looked into nonenzymatic antioxidants due to lack of references on enzymatic antioxidant assays. Therefore, this review article depicts on seven assays of enzymatic antioxidants (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, ascorbate oxidase, guaiacol peroxidase, and glutathione reductase) and fifteen activities of nonenzymatic antioxidants (total polyphenol, total phenolic acids, total flavonoids, total ascorbic acid, anthocyanin content, DPPH scavenging activity, FRAP assay, hydrogen peroxide scavenging activity, nitric oxide scavenging activity, superoxide radical scavenging activity, hydroxyl radical scavenging activity, phosphomolybdate assay, reducing power, metal ion chelating activity, and β-carotene), which are described in detail to ease further investigations on antioxidants in future.
Collapse
Affiliation(s)
- Zainol Haida
- Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Mansor Hakiman
- Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| |
Collapse
|
90
|
Barut B, Barut EN, Engin S, Özel A, Sezen FS. Investigation of the Antioxidant, α-Glucosidase Inhibitory, Anti-inflammatory, and DNA Protective Properties of Vaccinium arctostaphylos L. Turk J Pharm Sci 2019; 16:175-183. [PMID: 32454711 DOI: 10.4274/tjps.galenos.2018.28247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
Objectives The scope of this study was to investigate the total phenolic, anthocyanin, and flavonoid contents and the biological properties of ethanol extract (EE), methanol extract (ME), and aqueous extract (AE) from Vaccinium arctostaphylos L. Materials and Methods EE, ME, and AE of V. arctostaphylos were prepared. Various biological activities such as total phenolic, anthocyanin, and flavonoid contents, and antioxidant (2,2'-diphenyl-1-picrylhydrazyl ferrous ion-chelating, and ferric reducing antioxidant power assays), α-glucosidase inhibitory, anti-inflammatory, and DNA protective properties of these extracts were studied. Results EE exhibited the highest total phenolic, anthocyanin, and flavonoid contents with 44.42±1.22 mg gallic acid equivalents/g dry weight, 8.46±0.49 mg/Cyaniding-3-glucoside equivalents/g dry weight, and 9.22±0.92 mg quercetin equivalents/g dry weight, respectively. The antioxidant activities of the extracts followed the order: EE>ME>AE. EE and ME inhibited α-glucosidase enzyme and their IC50 values were 0.301±0.002 mg/mL and 0.477±0.003 mg/mL, respectively. In addition, EE and ME were determined as noncompetitive inhibitors with inhibitory constant (Ki ) values of 0.48±0.02 mg/mL and 0.46±0.01 mg/mL, respectively. EE in 100 and 300 mg/kg doses caused a significant reduction in formalin-induced edema in mice, demonstrating the anti-inflammatory effect of EE. In DNA protective studies, all of the extracts protected supercoiled plasmid pBR322 DNA against damage caused by Fenton's reagents due to their radical scavenging activities. Conclusion Our results demonstrated that EE of V. arctostaphylos L. had strong antioxidant, anti-inflammatory, α-glucosidase inhibitory, and DNA protective effects, suggesting that it might be an effective medical plant to prevent or treat diseases associated with oxidative damage and inflammation.
Collapse
Affiliation(s)
- Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkey
| | - Elif Nur Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology Trabzon, Turkey
| | - Seçkin Engin
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology Trabzon, Turkey
| | - Arzu Özel
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkey
| | - Feride Sena Sezen
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology Trabzon, Turkey
| |
Collapse
|
91
|
Chemical and biological behaviours of hydrogels based on oxidized carboxymethylcellulose coupled to chitosan. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02712-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
92
|
Basera P, Lavania M, Agnihotri A, Lal B. Analytical Investigation of Cymbopogon citratus and Exploiting the Potential of Developed Silver Nanoparticle Against the Dominating Species of Pathogenic Bacteria. Front Microbiol 2019; 10:282. [PMID: 30873133 PMCID: PMC6400849 DOI: 10.3389/fmicb.2019.00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Indian biodiversity is a hub for medicinal plants. Extensive research has been carried out to select plants with numerous properties which can be used for human welfare. Present research is about Cymbopogon citratus, an economically valuable medicinal plant. In this study Cymbopogon citratus was elected as a subject plant over the five selected plants (Azadirachta indica, Plumeria obtuse, Sapindus mukorossi, Capsicum annuum and Phyllanthus emblica) on the basis of antibacterial effect against dominating pathogenic species of gram positive (Bacillus cereus, Bacillus licheniformis) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. Further, bioactive agents behind antibacterial potential of Cymbopogon citratus was analyzed using analytical method (Phyto-chemical, FTIR, NMR and GC-MS). Due to the broad antimicrobial spectrum, silver nanoparticles have turned into a noteworthy decision for the improvement of new medication. Therefore, this investigation further elaborated in the development of Cymbopogon citratus silver nano-particles (CNPs). Antibacterial potential of CNPs examine in a range of C25–C150 (μg/ml) through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) where, C25 (μg/ml) concentration of CNPs were recorded as the MIC for all bacterial species and C25 (μg/ml) and C50 (μg/ml) noted as the MBC for Pseudomonas aeruginosa, Escherichia coli and Bacillus cereus, Bacillus licheniformis, respectively. In agar disk diffusion assay of CNPs, maximum diameter of zone of inhibition was observed for C150 (μg/ml) concentration Bacillus cereus (20.12 ± 0.42), Bacillus licheniformis (22.34 ± 0.4), Pseudomonas aeruginosa (35.23 ± 0.46) and Escherichia coli (31.87 ± 0.24). Involvement of bioactive component as a reducing and capping agent can be confirmed through FTIR spectrum of CNPs. Moreover XRD, EDXRF and SEM showed crystalline and cuboidal nature of CNPs with ∼35 nm sizes. Prominently, cytotoxic analysis was conducted to understand the toxic effect of CNPs. This research highlights the potential of CNPs due to the bioactive components present in Cymbopogon citratus extract: Polyphenols (phenol; 1584.56 ± 16.32 mg/L, Flavanoids) and mixture of terpenoids (Citral, Myrcene, Farnesol, β-myrcene and β –Pinene)
Collapse
Affiliation(s)
| | - Meeta Lavania
- The Energy and Resources Institute, New Delhi, India
| | | | - Banwari Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
93
|
Jain PK, Jain S, Sharma S, Paliwal S. Pharmacognostical specification and validated high-performance thin-layer chromatographic method for the estimation of quercetin in Phoenix sylvestris root. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.1.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Pankaj Kumar Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| |
Collapse
|
94
|
Prabha SP, Karthik C, Chandrika SH. Phytol – A biosurfactant from the aquatic weed Hydrilla verticillata. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
95
|
Liu Y, Wang XY, Wei XM, Gao ZT, Han JP. Values, properties and utility of different parts of Moringa oleifera: An overview. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
96
|
Proteomic analysis and food-grade enzymes of Moringa oleifer Lam. a Lam. flower. Int J Biol Macromol 2018; 115:883-890. [DOI: 10.1016/j.ijbiomac.2018.04.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/28/2018] [Accepted: 04/21/2018] [Indexed: 01/28/2023]
|
97
|
In Vitro Anti-Cholinesterase and Antioxidant Activity of Extracts of Moringa oleifera Plants from Rivers State, Niger Delta, Nigeria. MEDICINES 2018; 5:medicines5030071. [PMID: 29976887 PMCID: PMC6164601 DOI: 10.3390/medicines5030071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
This study evaluated Moringa oleifera extracts from two locations in Niger Delta for in vitro anti-cholinesterase and antioxidant activities. Methanolic, aqueous and ethanolic extracts of Moringa oleifera were evaluated for inhibition of acetylcholinesterase (AChE) activity, antioxidant properties, and total phenolic and flavonoid contents using standard procedures. M. oleifera extracts possessed significant and concentration dependent AChE inhibitory activity for methanolic, aqueous, and ethanolic extracts. For the most potent extracts, the percentage AChE inhibition/IC50 (µg/mL) values were Moringa oleifera root methanolic extracts (MORME): ~80%/0.00845; Moringa oleifera root ethanolic extract 1 (MOREE1): ~90%/0.0563; Moringa oleifera root ethanolic extract 2 (MOREE2): ~70%/0.00175; and Moringa oleifera bark ethanolic extract (MOBEE): ~70%/0.0173. The descending order of AChE inhibitory potency of plant parts were: root > bark > leaf > flowers > seed. All M. oleifera methanolic extracts at a concentration of 1000 µg/mL displayed significant (p < 0.05–0.001) DPPH radical scavenging activity, with values of ~20–50% of that of ascorbic acid. The total phenolic content and total flavonoid content (TPC/TFC) of MORME, Moringa Oju bark methanolic extract (MOBME), MOREE1, MOREE2 and Moringa leaf ethanolic leaf extract (MLEE) were (287/254), (212/113), (223/185), (203/343) and (201/102) mg gallic acid equivalents/g and quercetin equivalents/g, respectively. There was an inverse correlation between plant extract AChE inhibition and total phenolic (p < 0.0001) and total flavonoid contents (p < 0.0012). In summary, this study revealed 5 of 19 extracts of M. oleifera that have potent in vitro anti-cholinesterase and antioxidant activities.
Collapse
|
98
|
Mozaniel SDO, Wanessa ADC, Fernanda WFB, Marilena EA, Gracialda CF, Raul NDCJ. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2017.16374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
99
|
Singh RP, Gangadharappa HV, Mruthunjaya K. Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: In vitro and in vivo evaluation. Eur J Pharm Sci 2018; 122:214-229. [PMID: 29966737 DOI: 10.1016/j.ejps.2018.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/16/2023]
Abstract
Respiratory infection is a viral spreading disease and a common issue, particularly in kids. The treatments are available but have so many limitations because the drawback of this disease is more morbidity and mortality in the severely immune compromised. Even, the phyto-constituent antibacterial drug Gingerol was selected to treat respiratory infection but it exhibits low bioavailability profile, less aqueous-solubility issue and most important is rapidly eliminated from the body. To overcome these problems, novel drug delivery (nanoparticle) based phytosome complexed with chitosan approach was implemented. In this research work, the phytosome (GP) was prepared by blending of gingerol with soya lecithin in organic solvent using anti-solvent precipitation technique and it was further loaded in the aqueous solution of chitosan to formulate the phytosome complexed with chitosan (GLPC). To optimize the formulations of gingerol, it was characterized for percentage yield, percentage entrapment efficiency, drug loading and particle size, physical compatibility studies etc. which demonstrated the confirmation of complex of GLPC with soya lecithin and chitosan. The % entrapment efficiency and % drug loading of GLPC was found (86.02 ± 0.18%, 08.26 ± 0.72%) and of GP (84.36 ± 0.42%, 08.05 ± 0.03%), respectively. The average particle size and zeta potential of GLPC and GP were 254.01 ± 0.05 nm (-13.11 mV), and 431.21 ± 0.90 nm (-17.53 mV), respectively which confirm the inhibition of particle aggregation by using chitosan in complex. The in vitro release rate of GP (86.03 ± 0.06%) was slower than GLPC (88.93 ± 0.33%) in pH 7.4 phosphate buffer up to 24 h by diffusion process (Korsmeyer Peppas model). The optimized GLPC and GP were shown irregular particle shapes & spherical and oval structures with smooth surface by SEM analysis. Furthermore, GLPC has shown the potent in vitro antioxidant activity, susceptible antibacterial activity and effective anti-inflammatory activity as compared to GP against stress, microbial infection and inflammation which were causable reason for the respiratory infections. GLPC has improved the significant bioavailability and also correlated the hematological values on rabbit blood against the incubation of microorganisms. Thus, the prepared nanoparticle based approach to deliver the gingerol, has the combined effect of chitosan and phytosome which shown better sustained-release profile and also prolonging the oral absorption rate of gingerol with effective antibacterial activity to treat respiratory infection.
Collapse
Affiliation(s)
- Rudra Pratap Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
100
|
Ingawale AS, Sadiq MB, Nguyen LT, Ngan TB. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|