51
|
Prentice BM, Caprioli RM. The Need for Speed in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2016; 4:3-13. [PMID: 27570788 PMCID: PMC4996283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ ionization (MALDI) represents one of the most broadly applicable IMS technologies. In recent years, advances in solid state laser technology, mass spectrometry instrumentation, computer technology, and experimental methodology have produced IMS systems capable of unprecedented data acquisition speeds (>50 pixels/second). In applications of this technology, throughput is an important consideration when designing an IMS experiment. As IMS becomes more widely adopted, continual improvements in experimental setups will be important to address biologically and clinically relevant time scales.
Collapse
Affiliation(s)
- Boone M. Prentice
- Department of Biochemistry Vanderbilt University, Nashville, TN 37232
- Department of Mass Spectrometry Research Center Vanderbilt University, Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Biochemistry Vanderbilt University, Nashville, TN 37232
- Department of Chemistry Vanderbilt University, Nashville, TN 37232
- Department of Pharmacology and Medicine Vanderbilt University, Nashville, TN 37232
- Department of Mass Spectrometry Research Center Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
52
|
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA 99352
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
53
|
Bergman HM, Lundin E, Andersson M, Lanekoff I. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. Analyst 2016; 141:3686-95. [DOI: 10.1039/c5an02620b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nano-DESI mass spectrometry imaging enables quantitative imaging of small-molecule neurotransmitters which are essential to the function of the nervous system.
Collapse
Affiliation(s)
| | - Erik Lundin
- Department of Chemistry-BMC
- Uppsala University
- Uppsala
- Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences
- Uppsala University
- Uppsala
- Sweden
| | | |
Collapse
|
54
|
Cardoso-Palacios C, Lanekoff I. Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:3591908. [PMID: 27766177 PMCID: PMC5059531 DOI: 10.1155/2016/3591908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/04/2016] [Indexed: 05/13/2023]
Abstract
Counterfeit pharmaceutical drugs imply an increasing threat to the global public health. It is necessary to have systems to control the products that reach the market and to detect falsified medicines. In this work, molecules in several pharmaceutical tablets were directly analyzed using nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS). Nano-DESI is an ambient surface sampling technique which enables sampling of molecules directly from the surface of the tablets without any sample pretreatment. Both the active pharmaceutical ingredients (APIs) and some excipients were detected in all analyzed tablets. Principal component analysis was used to analyze mass spectral features from different tablets showing strong clustering between tablets with different APIs. The obtained results suggest nano-DESI MS as future tool for forensic analysis to discern APIs present in unknown tablet samples.
Collapse
Affiliation(s)
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
- *Ingela Lanekoff:
| |
Collapse
|
55
|
Rao W, Pan N, Tian X, Yang Z. High-Resolution Ambient MS Imaging of Negative Ions in Positive Ion Mode: Using Dicationic Reagents with the Single-Probe. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:124-134. [PMID: 26489411 PMCID: PMC4924531 DOI: 10.1007/s13361-015-1287-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 05/30/2023]
Abstract
We have used the Single-probe, a miniaturized sampling device utilizing in-situ surface microextraction for ambient mass spectrometry (MS) analysis, for the high resolution MS imaging (MSI) of negatively charged species in the positive ionization mode. Two dicationic compounds, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride [C5(bpyr)2F2] and 1,3-propanediyl-bis(tripropylphosphonium) difluoride [C3(triprp)2F2], were added into the sampling solvent to form 1+ charged adducts with the negatively charged species extracted from tissues. We were able to detect 526 and 322 negatively charged species this way using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, including oleic acid, arachidonic acid, and several species of phosphatidic acid, phosphoethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and others. In conjunction with the identification of the non-adduct cations, we have tentatively identified a total number of 1200 and 828 metabolites from mouse brain sections using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, through high mass accuracy measurements (mass error <5 ppm); MS/MS analyses were also performed to verify the identity of selected species. In addition to the high mass accuracy measurement, we were able to generate high spatial resolution (~17 μm) MS images of mouse brain sections. Our study demonstrated that utilization of dicationic compounds in the surface microextraction with the Single-probe device can perform high mass and spatial resolution ambient MSI measurements of broader types of compounds in tissues. Other reagents can be potentially used with the Single-probe device for a variety of reactive MSI studies to enable the analysis of species that are previously intractable.
Collapse
|
56
|
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2015; 15:445-488. [PMID: 27340381 PMCID: PMC4870303 DOI: 10.1007/s11101-015-9440-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/25/2015] [Indexed: 05/09/2023]
Abstract
Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research.
Collapse
Affiliation(s)
- Berin A. Boughton
- />Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Dinaiz Thinagaran
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Daniel Sarabia
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Antony Bacic
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
- />ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC 3010 Australia
- />Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ute Roessner
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
57
|
Abstract
Ambient ionization MS has become very popular in analytical science and has now evolved as an effective analytical tool in metabolomics, biological tissue imaging, protein and small molecule drug analysis, where biological samples are probed in a rapid and direct fashion with minimal sample preparation at ambient conditions. However, certain inherent challenges continue to hinder the vibrant prospects of these methods for in situ analyses or to replace conventional methods in bioanalysis. This review provides an introduction to the field and its application in bioanalysis, with an emphasis on the most recent developments and applications. Furthermore, ongoing challenges or limitations related to quantitation, sensitivity, selectivity, instrumentation and mass range of these ambient methods will also be discussed.
Collapse
|
58
|
Rao W, Pan N, Yang Z. High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:986-993. [PMID: 25804891 DOI: 10.1007/s13361-015-1091-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/25/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
Collapse
Affiliation(s)
- Wei Rao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | | | | |
Collapse
|
59
|
Addie RD, Balluff B, Bovée JVMG, Morreau H, McDonnell LA. Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research. Anal Chem 2015; 87:6426-33. [DOI: 10.1021/acs.analchem.5b00416] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruben D. Addie
- Center for Proteomics
and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Balluff
- Center for Proteomics
and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A. McDonnell
- Center for Proteomics
and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| |
Collapse
|
60
|
Prentice BM, Chumbley CW, Caprioli RM. High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:703-10. [PMID: 26149115 PMCID: PMC4498415 DOI: 10.1002/jms.3579] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 05/03/2023]
Abstract
A matrix-assisted laser desorption/ionization time of flight/time of flight tandem mass spectrometer (MALDI TOF/TOF) has been used for high-speed precursor/fragment ion transition image acquisition. High-throughput analysis is facilitated by an Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz, a high digitizer acquisition rate (up to 50 pixels/s), and continuous laser raster sampling. MS/MS experiments are enabled through the use of a precision timed ion selector, second source acceleration, and a dedicated collision cell. Continuous raster sampling is shown here to facilitate rapid MS/MS ion image acquisition from thin tissue sections for the drug rifampicin and for a common kidney lipid, SM4s(d18:1/24:1). The ability to confirm the structural identity of an analyte as part of the MS/MS imaging experiment is an essential part of the analysis. Additionally, the increase in sensitivity and specificity afforded by an MS/MS approach is highly advantageous, especially when interrogating complex chemical environments such as those in biological tissues. Herein, we report continuous laser raster sampling TOF/TOF imaging methodologies which demonstrate 8 to 14-fold increases in throughput compared with existing MS/MS instrumentation, an important advantage when imaging large areas on tissues.
Collapse
Affiliation(s)
- Boone M. Prentice
- Department of Biochemistry, Nashville, TN 37232
- Mass Spectrometry Research Center, Nashville, TN 37232
| | - Chad W. Chumbley
- Department of Chemistry, Nashville, TN 37232
- Mass Spectrometry Research Center, Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Biochemistry, Nashville, TN 37232
- Department of Chemistry, Nashville, TN 37232
- Departments of Pharmacology and Medicine, Nashville, TN 37232
- Mass Spectrometry Research Center, Nashville, TN 37232
| |
Collapse
|
61
|
Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba AD, Muddiman DC. Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2038-47. [PMID: 24744212 PMCID: PMC4201889 DOI: 10.1007/s13361-014-0884-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 05/09/2023]
Abstract
This work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV drugs in cervical tissues that had been incubated in either a low or high concentration. Serial sections of those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS to quantify the amount of each drug present in the tissue. By comparing the two techniques, an agreement between the average intensities from the imaging experiment and the absolute quantities for each drug was observed. This correlation between these two techniques serves as a prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS(2) imaging experiment was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added selectivity that can be obtained with SRM or MRM imaging experiments.
Collapse
Affiliation(s)
- Jeremy A. Barry
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Guillaume Robichaud
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Mark T. Bokhart
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Corbin Thompson
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Craig Sykes
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina
| | - David C. Muddiman
- W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina
- Author for Correspondence: David C. Muddiman, Ph.D., W.M. Keck FT Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, Phone: 919-513-0084, Fax: 919-513-7993,
| |
Collapse
|
62
|
Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2014; 407:2063-71. [PMID: 25395201 DOI: 10.1007/s00216-014-8174-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 μm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.
Collapse
|
63
|
Hsu CC, Dorrestein PC. Visualizing life with ambient mass spectrometry. Curr Opin Biotechnol 2014; 31:24-34. [PMID: 25146170 DOI: 10.1016/j.copbio.2014.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 01/13/2023]
Abstract
Since the development of desorption electrospray ionization (DESI), many other ionization methods for ambient and atmospheric pressure mass spectrometry have been developed. Ambient ionization mass spectrometry has now been used for a wide variety of biological applications, including plant science, microbiology, neuroscience, and cancer pathology. Multimodal integration of atmospheric ionization sources with the other biotechnologies, as well as high performance computational methods for mass spectrometry data processing is one of the major emerging area's for ambient mass spectrometry. In this opinion article, we will highlight some of the most influential technological advances of ambient mass spectrometry in recent years and their applications to the life sciences.
Collapse
Affiliation(s)
- Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Pieter C Dorrestein
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
64
|
Emerging mass spectrometry techniques for the direct analysis of microbial colonies. Curr Opin Microbiol 2014; 19:120-129. [PMID: 25064218 DOI: 10.1016/j.mib.2014.06.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three-dimensional visualization of the distribution of metabolites, often with minimal sample pretreatment. The speed in which molecules are captured using these methods requires the development of new molecular visualization tools such as molecular networking. Together, these tools are beginning to provide unprecedented insight into the chemical world that microbes experience.
Collapse
|
65
|
Lanekoff I, Stevens SL, Stenzel-Poore MP, Laskin J. Matrix effects in biological mass spectrometry imaging: identification and compensation. Analyst 2014; 139:3528-32. [PMID: 24802717 PMCID: PMC4078919 DOI: 10.1039/c4an00504j] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model to examine matrix effects in nanospray desorption electrospray ionization MSI (nano-DESI MSI). This is achieved by normalizing the intensity of the sodium and potassium adducts of endogenous phosphatidylcholine (PC) species to the intensity of the corresponding adduct of the PC standard supplied at a constant rate with the nano-DESI solvent. The use of MCAO model with an ischemic region localized to one hemisphere of the brain enables immediate comparison of matrix effects within one ion image. Furthermore, significant differences in sodium and potassium concentrations in the ischemic region in comparison with the healthy tissue allowed us to distinguish between two types of matrix effects. Specifically, we discuss matrix effects originating from variations in alkali metal concentrations and matrix effects originating from variations in the molecular composition of the tissue. Compensation for both types of matrix effects was achieved by normalizing the signals corresponding to endogenous PC to the signals of the standards. This approach, which does not introduce any complexity in sample preparation, efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Physical Sciences Division, Pacific Northwest National Laboratory, PO Box 999, K8-88, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
66
|
Lanekoff I, Thomas M, Laskin J. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2014; 86:1872-80. [DOI: 10.1021/ac403931r] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ingela Lanekoff
- Physical
Sciences Division, Pacific Northwest National Laboratory, PO Box 999, K8-88, Richland, Washington 99352, United States
| | - Mathew Thomas
- Computational
Science and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Julia Laskin
- Physical
Sciences Division, Pacific Northwest National Laboratory, PO Box 999, K8-88, Richland, Washington 99352, United States
| |
Collapse
|