51
|
Samsonov SA, Zsila F, Maszota-Zieleniak M. Acute phase α 1-acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. J Mol Graph Model 2021; 105:107861. [PMID: 33640788 DOI: 10.1016/j.jmgm.2021.107861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Siderophores are ferric ion-specific organic compounds that are used by bacteria and fungi to secure their iron supply when infecting target organisms. There are a few proteins in the human body, named siderocalins, which bind these important virulence factors and so starve microorganisms of iron. In this study, we analyzed in silico if serum α1-acid glycoprotein (AAG), the major acute phase lipocalin component of the human plasma, could functionally belong to this group. The real biological function of AAG is elusive and its concentration substantially increases in response to pathological stimuli, including bacterial infections. We computationally evaluated the potential binding of nine microbial siderophores into the β-barrel cavity of AAG and compared the results with the corresponding experimental data reported for siderophore-neutrophil gelatinase-associated lipocalin complexes. According to the results, petrobactin and Fe-BisHaCam are putative candidates to be recognized by this protein. It is proposed that AAG may function as a siderophore capturing component of the innate immune system being able to neutralize bacterial iron chelators not recognized by other siderocalins.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | | |
Collapse
|
52
|
Gama S, Hermenau R, Frontauria M, Milea D, Sammartano S, Hertweck C, Plass W. Iron Coordination Properties of Gramibactin as Model for the New Class of Diazeniumdiolate Based Siderophores. Chemistry 2021; 27:2724-2733. [PMID: 33006390 PMCID: PMC7898861 DOI: 10.1002/chem.202003842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/10/2022]
Abstract
Gramibactin (GBT) is an archetype for the new class of diazeniumdiolate siderophores, produced by Paraburkholderia graminis, a cereal-associated rhizosphere bacterium, for which a detailed solution thermodynamic study exploring the iron coordination properties is reported. The acid-base behavior of gramibactin as well as its complexing ability toward Fe3+ was studied over a wide range of pH values (2≤pH≤11). For the latter the ligand-competition method employing EDTA was used. Only two species are formed: [Fe(GBT)]- (pH 2 to 9) and [Fe(GBT)(OH)2 ]3- (pH≥9). The formation of [Fe(GBT)]- and its occurrence in real systems was confirmed by LC-HRESIMS analysis of the bacteria culture broth extract. The sequestering ability of gramibactin was also evaluated in terms of the parameters pFe and pL0.5 . Gramibactin exhibits a higher sequestering ability toward Fe3+ than EDTA and of the same order of magnitude as hydroxamate-type microbial siderophores, but smaller than most of the catecholate-type siderophores and much higher than the most known phytosiderophores.
Collapse
Affiliation(s)
- Sofia Gama
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaHumboldtstr 807743JenaGermany
- New address: Department of Analytical ChemistryFaculty of ChemistryUniversity of BialystokCiolkowskiego 1K, 15–245BialystokPoland
| | - Ron Hermenau
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr 11a07745JenaGermany
| | - Mariachiara Frontauria
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaHumboldtstr 807743JenaGermany
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di MessinaV.le F. Stagno d'Alcontres, 3198166MessinaItaly
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di MessinaV.le F. Stagno d'Alcontres, 3198166MessinaItaly
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität JenaHumboldtstr 807743JenaGermany
| |
Collapse
|
53
|
Wei W, Li H, Yin C, Tang F. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv 2020; 27:460-468. [PMID: 32166987 PMCID: PMC7144265 DOI: 10.1080/10717544.2020.1739171] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 01/30/2023] Open
Abstract
The in situ hydrogel drug delivery system is a hot research topic in recent years. Combining both properties of hydrogel and solution, in situ hydrogels can provide many advantages for drug delivery application, including easy application, high local drug concentration, prolonged drug retention time, reduced drug dose in vivo, good biocompatibility and improved patient compliance, thus has potential in tumor treatment. In this paper, the related literature reports in recent years were reviewed to summarize and discuss the research progress and development prospects in the application of in situ hydrogels in tumor treatment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hongfang Li
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Chengchen Yin
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fushan Tang
- Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
54
|
Moulis JM. Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Biomolecules 2020; 10:E1584. [PMID: 33233467 PMCID: PMC7700505 DOI: 10.3390/biom10111584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Transition metals interact with a large proportion of the proteome in all forms of life, and they play mandatory and irreplaceable roles. The dynamics of ligand binding to ions of transition metals falls within the realm of Coordination Chemistry, and it provides the basic principles controlling traffic, regulation, and use of metals in cells. Yet, the cellular environment stands out against the conditions prevailing in the test tube when studying metal ions and their interactions with various ligands. Indeed, the complex and often changing cellular environment stimulates fast metal-ligand exchange that mostly escapes presently available probing methods. Reducing the complexity of the problem with purified proteins or in model organisms, although useful, is not free from pitfalls and misleading results. These problems arise mainly from the absence of the biosynthetic machinery and accessory proteins or chaperones dealing with metal / metal groups in cells. Even cells struggle with metal selectivity, as they do not have a metal-directed quality control system for metalloproteins, and serendipitous metal binding is probably not exceptional. The issue of metal exchange in biology is reviewed with particular reference to iron and illustrating examples in patho-physiology, regulation, nutrition, and toxicity.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- Alternative Energies and Atomic Energy Commission—Fundamental Research Division—Interdisciplinary Research Institute of Grenoble (CEA-IRIG), University of Grenoble Alpes, F-38000 Grenoble, France;
- National Institute of Health and Medical Research, University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
| |
Collapse
|
55
|
Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020; 49:8315-8334. [PMID: 33057507 DOI: 10.1039/d0cs00653j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanides and actinides are elements of ever-increasing technological importance in the modern world. However, the similar chemical and physical properties within these groups make purification of individual elements a challenge. Current industrial standards for the extraction, separation, and purification of these metals from natural sources, recycled materials, and industrial waste are inefficient, relying upon harsh conditions, repetitive steps, and ligands with only modest selectivity. Biological, biomolecular, and bio-inspired strategies towards improving these separations and making them more environmentally sustainable have been researched for many years; however, these methods often have insufficient selectivity for practical application. Recent developments in the understanding of how lanthanides are selectively acquired and used by certain bacteria offer the opportunity for a newer, more efficient take on these designs, as well as the possibility for fundamentally new designs and strategies. Herein, we review current cell-based and biomolecular (primarily small-molecule and protein-based) methods for detection, extraction, and separations of f-block elements. We discuss how the increasing knowledge regarding the selective recognition, uptake, trafficking, and storage of these elements in biological systems has informed and will continue to promote development of novel approaches to achieve these ends.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
56
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
57
|
Mumtaz A, Mahmud T, Khalid M, Khan H, Sadia A, Samra MM, Basra MAR. Biological Evaluation of Synthesized Schiff Base-Metal Complexes Derived from Sulfisomidine. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Keth J, Johann T, Frey H. Hydroxamic Acid: An Underrated Moiety? Marrying Bioinorganic Chemistry and Polymer Science. Biomacromolecules 2020; 21:2546-2556. [PMID: 32525665 DOI: 10.1021/acs.biomac.0c00449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Even 150 years after their discovery, hydroxamic acids are mainly known as the starting material for the Lossen rearrangement in textbooks. However, hydroxamic acids feature a plethora of existing and potential applications ranging from medical purposes to materials science, based on their excellent complexation properties. This underrated functional moiety can undergo a broad variety of organic transformations and possesses unique coordination properties for a large variety of metal ions, for example, Fe(III), Zn(II), Mn(II), and Cr(III). This renders it ideal for biomedical applications in the field of metal-associated diseases or the inhibition of metalloenzymes, as well as for the separation of metals. Considering their chemical stability and reactivity, their biological origin and both medical and industrial applications, this Perspective aims at highlighting hydroxamic acids as highly promising chelators in the fields of both medical and materials science. Furthermore, the state of the art in combining hydroxamic acids with a variety of polymer structures is discussed and a perspective regarding their vast potential at the interface of bioinorganic and polymer chemistry is given.
Collapse
Affiliation(s)
- Jennifer Keth
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55124 Mainz, Germany
| | - Tobias Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55124 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55124 Mainz, Germany
| |
Collapse
|
59
|
Gallo AD, Franz KJ. Grab 'n Go: Siderophore-Binding Proteins Provide Pathogens a Quick Fix to Satisfy Their Hunger for Iron. ACS CENTRAL SCIENCE 2020; 6:456-458. [PMID: 32341992 PMCID: PMC7181309 DOI: 10.1021/acscentsci.0c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Annastassia D. Gallo
- Department of Chemistry, Duke
University, Durham, North Carolina 27708-0346, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke
University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
60
|
D'Amato A, Ghosh P, Costabile C, Della Sala G, Izzo I, Maayan G, De Riccardis F. Peptoid-based siderophore mimics as dinuclear Fe 3+ chelators. Dalton Trans 2020; 49:6020-6029. [PMID: 32319496 DOI: 10.1039/d0dt00689k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A practical synthesis of preorganized tripodal enterobactin/corynebactin-type ligands (consisting of a C3-symmetric macrocyclic peptoid core, three catecholamide coordinating units, and C2, C4, and C6 spacers) is reported. The formation of complexes with Fe3+ was investigated by spectrophotometric (UV-Vis) and spectrometric (ESI, negative ionization mode) methods and corroborated by theoretical (DFT) calculations. Preliminary studies revealed the intricate interplay between the conformational chirality of cyclic trimeric peptoids and metal coordination geometry of mononuclear species similar to that of natural catechol-based siderophores. Experimental results demonstrated the unexpected formation of unique dinuclear Fe3+ complexes.
Collapse
Affiliation(s)
- Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy.
| | | | | | | | | | | | | |
Collapse
|
61
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
62
|
Krasnoff SB, Howe KJ, Heck ML, Donzelli BGG. Siderophores from the Entomopathogenic Fungus Beauveria bassiana. JOURNAL OF NATURAL PRODUCTS 2020; 83:296-304. [PMID: 32058711 DOI: 10.1021/acs.jnatprod.9b00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report NMR- and MS-based structural characterizations of siderophores and related compounds from Beauveria bassiana (Balsamo-Crivelli) Vuillemin, including ten new chemical entities (2-4, 6-9, 11-12, and 15) and five known compounds, (1, 5, 10, 13, and 14). The siderophore mixture from ARSEF strain #2680 included two compounds in which N5-mevalonyl-N5-hydroxyornithine replaces both (2) or one (3) of the N5-anhydromevalonyl-N5-hydroxyornithine units of dimerumic acid (1). Mevalonolactone (14) was present as a degradation product of 2 and 3. ARSEF #2860 also produced compounds that have mannopyranose (5, 6) or 4-O-methyl-mannopyranose units (4, 7), two compounds (8, 9) that can be rationalized as 4-O-methyl-mannopyranosyl analogues of the esterifying acid moieties of metachelins A and B, respectively, and two probable decomposition products of 1, a nitro compound (11) and a formate (12). Beauverichelin A (15), a coprogen-type siderophore that represents the di-4-O-methyl-mannopyranosyl analogue of metachelin A, was detected in crude extracts of ARSEF #2860, but only in trace amounts. ARSEF strains #252 and #1955 yielded beauverichelin A in quantities that were sufficient for NMR analysis. Only the di- (1-7) and trihydroxamate (15) siderophores showed iron-binding activity in the CAS assay and, when ferrated, showed strong ESIMS signals consistent with 1:1 ligand/iron complexes.
Collapse
Affiliation(s)
- Stuart B Krasnoff
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| | - Kevin J Howe
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| | - Michelle L Heck
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
- Department of Plant Pathology and Plant-Microbe Biology , Cornell University , Ithaca , New York 14853 , United States
- Boyce Thompson Institute , Ithaca , New York 14853 , United States
| | - Bruno G G Donzelli
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| |
Collapse
|
63
|
Lee H, Park J, Han SY, Han S, Youn W, Choi H, Yun G, Choi IS. Ascorbic acid-mediated reductive disassembly of Fe3+-tannic acid shells in degradable single-cell nanoencapsulation. Chem Commun (Camb) 2020; 56:13748-13751. [DOI: 10.1039/d0cc05856d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The simple use of vitamin C leads to the reductive disassembly of the Fe3+-TA complex and in situ artificial shell degradation in single-cell nanoencapsulation.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Sol Han
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Gyeongwon Yun
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research
- Department of Chemistry, KAIST
- Daejeon 34141
- Korea
| |
Collapse
|
64
|
Sano S, Nakao M, Adachi A, Kitaike S. Synthesis of Three Stereoisomers of Erythrochelin, a Hydroxamate-Type Tetrapeptide Siderophore from Saccharopolyspora erythraea. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Muguruza AR, de Luis RF, Iglesias N, Bazán B, Urtiaga MK, Larrea ES, Fidalgo-Marijuan A, Barandika G. Encapsulation of β-alanine model amino-acid in zirconium(IV) metal organic frameworks: Defect engineering to improve host guest interactions. J Inorg Biochem 2019; 205:110977. [PMID: 31926376 DOI: 10.1016/j.jinorgbio.2019.110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022]
Abstract
Metal-Organic Frameworks (MOFs) are porous coordination networks assembled through metal complexes with organic linkers. Due to their chemical versatility, these materials are being investigated for various applications including gas storage and separation, biomedicine and catalysis. The aim of this work is the encapsulation of the model β-alanine amino-acid in the nanostructured zirconium-based MOF (UiO-66) which contains the ligand H2BDC (1,4-benzenedicaboxylic acid). Additionally, ligand functionalization (by using H2doBDC (2,5-dihydroxy-1,4-benzenedicarboxylic acid) and defect engineering have been carried out to produce UiO-66 derivatives, in order to modify the host-guest interactions, and hence study their influence on the β-alanine loading capacity and release kinetics. The as-obtained materials have been characterized by X-ray diffraction (XRD), X-ray thermo diffraction (TDX), infrared (IR) spectroscopy, thermogravimetric analysis-differential scanning calorimetry (TG-DSC) and elemental analysis (EA). Morphology of nanoscale MOFs has been explored by transition electron microscopy (TEM). Adsorption isotherms have been constructed, and the concentration of β-alanine in the post-adsorption solution (supernatant) has been quantified by high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS) and EA. Adsorption capacity values indicate that the presence of hydroxyl groups at the organic linker H2doBDC enhances the host-guess affinity between the framework and the adsorbate β-alanine. The influence of defect engineering, on the adsorption however, is not that obvious. On the other hand, desorption experiments show similar behaviour for H2doBDC-based derivatives. An adsorption mechanism has been proposed consisting of a combination of host-guest interaction at low concentrations, and covalent anchoring/ligand displacement by β-alanine at the inorganic clusters.
Collapse
Affiliation(s)
- Asier R Muguruza
- Dept. of Inorganic Chemistry, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; BCMaterials, Ed. Martiana Casiano, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | | | - Naroa Iglesias
- BCMaterials, Ed. Martiana Casiano, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Begoña Bazán
- BCMaterials, Ed. Martiana Casiano, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Dept. of Mineralogy and Petrology, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Miren-Karmele Urtiaga
- Dept. of Mineralogy and Petrology, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Edurne S Larrea
- Dept. of Mineralogy and Petrology, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | | | - Gotzone Barandika
- Dept. of Inorganic Chemistry, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; BCMaterials, Ed. Martiana Casiano, Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.
| |
Collapse
|
66
|
Page MGP. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin Infect Dis 2019; 69:S529-S537. [PMID: 31724044 PMCID: PMC6853763 DOI: 10.1093/cid/ciz825] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential nutrient for bacterial growth, replication, and metabolism. Humans store iron bound to various proteins such as hemoglobin, haptoglobin, transferrin, ferritin, and lactoferrin, limiting the availability of free iron for pathogenic bacteria. However, bacteria have developed various mechanisms to sequester or scavenge iron from the host environment. Iron can be taken up by means of active transport systems that consist of bacterial small molecule siderophores, outer membrane siderophore receptors, the TonB-ExbBD energy-transducing proteins coupling the outer and the inner membranes, and inner membrane transporters. Some bacteria also express outer membrane receptors for iron-binding proteins of the host and extract iron directly from these for uptake. Ultimately, iron is acquired and transported into the bacterial cytoplasm. The siderophores are small molecules produced and released by nearly all bacterial species and are classified according to the chemical nature of their iron-chelating group (ie, catechol, hydroxamate, α-hydroxyl-carboxylate, or mixed types). Siderophore-conjugated antibiotics that exploit such iron-transport systems are under development for the treatment of infections caused by gram-negative bacteria. Despite demonstrating high in vitro potency against pathogenic multidrug-resistant bacteria, further development of several candidates had stopped due to apparent adaptive resistance during exposure, lack of consistent in vivo efficacy, or emergence of side effects in the host. However, cefiderocol, with an optimized structure, has advanced and has been investigated in phase 1 to 3 clinical trials. This article discusses the mechanisms implicated in iron uptake and the challenges associated with the design and utilization of siderophore-mimicking antibiotics.
Collapse
Affiliation(s)
- Malcom G P Page
- Life Sciences and Chemistry, Jacobs University, Bremen gGmbh, Bremen, Germany
| |
Collapse
|
67
|
Xiao S, Paukstelis PJ, Ash RD, Zavalij PY, Davis JT. Drawing with Iron on a Gel Containing a Supramolecular Siderophore. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Songjun Xiao
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Paul J. Paukstelis
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Richard D. Ash
- Department of Geology University of Maryland College Park MD 20742 USA
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Jeffery T. Davis
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
68
|
Xiao S, Paukstelis PJ, Ash RD, Zavalij PY, Davis JT. Drawing with Iron on a Gel Containing a Supramolecular Siderophore. Angew Chem Int Ed Engl 2019; 58:18434-18437. [DOI: 10.1002/anie.201910872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Songjun Xiao
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Paul J. Paukstelis
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Richard D. Ash
- Department of Geology University of Maryland College Park MD 20742 USA
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Jeffery T. Davis
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
69
|
Ko S, Park JY, Oh YK. A Microbial Siderophore-Inspired Self-Gelling Hydrogel for Noninvasive Anticancer Phototherapy. Cancer Res 2019; 79:6178-6189. [PMID: 31672840 DOI: 10.1158/0008-5472.can-19-0975] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Microbial carboxyl and catechol siderophores have been shown to have natural iron-chelating abilities, suggesting that hyaluronic acid (HA) and the catechol compound, gallic acid (GA), may have iron-coordinating activities. Here, a photoresponsive self-gelling hydrogel that was both injectable and could be applied to the skin was developed on the basis of the abilities of HA and GA to form coordination bonds with ferric ions (Fe3+). The conjugate of HA and GA (HA-GA) instantly formed hydrogels in the presence of ferric ions and showed near-infrared (NIR)-responsive photothermal properties. Following their subcutaneous injection into mice, HA-GA and ferric ion formed a hydrogel, which remained at the injection site for at least 8 days. Intratumoral injection of HA-GA/Fe hydrogel into mice allowed repeated exposure of the tumor to NIR irradiation. This repeated NIR irradiation resulted in complete tumor ablation in KB carcinoma cell-xenografted mice and suppressed lung metastasis of 4T1-Luc orthotopic breast tumors. Application of HA-GA/Fe hydrogel to the skin of A375 melanoma-xenografted tumor sites, followed by NIR irradiation, also resulted in complete tumor ablation. These findings demonstrate that single applications of HA-GA/Fe hydrogel have photothermal anticancer effects against both solid tumors and skin cancers. SIGNIFICANCE: These findings provide new insights into noninvasive anticancer phototherapy using self-gelling hydrogels. Application of these hydrogels in preclinical models reduces the sizes of solid tumors and skin cancers without surgery, radiation, or chemotherapy.
Collapse
Affiliation(s)
- Seungbeom Ko
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joo Yeon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
70
|
Buchwalder C, Jaraquemada-Peláez MDG, Rousseau J, Merkens H, Rodríguez-Rodríguez C, Orvig C, Bénard F, Schaffer P, Saatchi K, Häfeli UO. Evaluation of the Tetrakis(3-Hydroxy-4-Pyridinone) Ligand THPN with Zirconium(IV): Thermodynamic Solution Studies, Bifunctionalization, and in Vivo Assessment of Macromolecular 89Zr-THPN-Conjugates. Inorg Chem 2019; 58:14667-14681. [DOI: 10.1021/acs.inorgchem.9b02350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Buchwalder
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | | - Julie Rousseau
- BC Cancer Agency, Department of Functional Imaging, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Helen Merkens
- BC Cancer Agency, Department of Functional Imaging, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Cristina Rodríguez-Rodríguez
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
- University of British Columbia, Department of Physics & Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- BC Cancer Agency, Department of Functional Imaging, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Paul Schaffer
- TRIUMF, Life Sciences Division, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Katayoun Saatchi
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Urs O. Häfeli
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
71
|
Pandey A, Savino C, Ahn SH, Yang Z, Van Lanen SG, Boros E. Theranostic Gallium Siderophore Ciprofloxacin Conjugate with Broad Spectrum Antibiotic Potency. J Med Chem 2019; 62:9947-9960. [PMID: 31580658 DOI: 10.1021/acs.jmedchem.9b01388] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathogenic bacteria scavenge ferric iron from the host for survival and proliferation using small-molecular chelators, siderophores. Here, we introduce and assess the gallium(III) complex of ciprofloxacin-functionalized desferrichrome (D2) as a potential therapeutic for bacterial infection using an in vitro assay and radiochemical, tracer-based approach. Ga-D2 exhibits a minimum inhibitory concentration of 0.23 μM in Escherichia coli, in line with the parent fluoroquinolone antibiotic. Competitive and mutant strain assays show that Ga-D2 relies on FhuA-mediated transport for internalization. Ga-D2 is potent against Pseudomonas aeruginosa (3.8 μM), Staphylococcus aureus (0.94 μM), and Klebsiella pneumoniae (12.5 μM), while Fe-D2 is inactive in these strains. Radiochemical experiments with E. coli reveal that 67Ga-D2 is taken up more efficiently than 67Ga-citrate. In naive mice, 67Ga-D2 clears renally and is excreted 13% intact in the urine. These pharmacokinetic and bacterial growth inhibitory properties qualify Ga-D2 for future investigations as a diagnosis and treatment tool for infection.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Chloé Savino
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Shin Hye Ahn
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington 40536 , Kentucky , United States
| | - Eszter Boros
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook 11790 , New York , United States
| |
Collapse
|
72
|
Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. An overview of recent progress in siderophore-antibiotic conjugates. Eur J Med Chem 2019; 182:111615. [PMID: 31434038 DOI: 10.1016/j.ejmech.2019.111615] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
Multi-drug resistant infections caused by Gram-negative bacteria have become one of the most important reasons for the failure of clinical anti-infective treatment. Siderophore-antibiotic conjugates, which were designed based on a "Trojan horse" strategy wherein features enabled active uptake to bypass the Gram-negative cell wall, have been expected to be a weapon for anti-infective treatment in the clinic. Herein, we review antibiotic drug design strategies based on mimics of nature siderophores reported in recent years, we also focus our attention on the relationship between the type of linker and the corresponding antibacterial activity.
Collapse
Affiliation(s)
- Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
73
|
Daumann LJ. Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. Angew Chem Int Ed Engl 2019; 58:12795-12802. [DOI: 10.1002/anie.201904090] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lena J. Daumann
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| |
Collapse
|
74
|
Affiliation(s)
- Lena J. Daumann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
75
|
Johann T, Kemmer‐Jonas U, Barent RD, Frey H. Multifunctional Fe(III)‐Binding Polyethers from Hydroxamic Acid‐Based Epoxide Monomers. Macromol Rapid Commun 2019; 41:e1900282. [DOI: 10.1002/marc.201900282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Tobias Johann
- Institute of Organic Chemistry, Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Ulrike Kemmer‐Jonas
- Institute of Organic Chemistry, Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Ramona D. Barent
- Institute of Organic Chemistry, Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
76
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
77
|
Distribution of dissolved iron and bacteria producing the photoactive siderophore, vibrioferrin, in waters off Southern California and Northern Baja. Biometals 2019; 32:139-154. [PMID: 30623317 DOI: 10.1007/s10534-018-00163-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
Phytoplankton blooms can cause acute effects on marine ecosystems due either to their production of endogenous toxins or to their enormous biomass leading to major impacts on local economies and public health. Despite years of effort, the causes of these Harmful Algal Blooms are still not fully understood. Our hypothesis is that bacteria that produce photoactive siderophores may provide a bioavailable source of iron for phytoplankton which could in turn stimulate algal growth and support bloom dynamics. Here we correlate iron concentrations, phytoplankton cell counts, bacterial cell abundance, and copy numbers for a photoactive siderophore vibrioferrin biosynthesis gene in water samples taken from 2017 cruises in the Gulf of California, and the Pacific Ocean off the coast of northern Baja California as well as during a multiyear sampling at Scripps Pier in San Diego, CA. We find that bacteria producing the photoactive siderophore vibrioferrin, make up a surprisingly high percentage of total bacteria in Pacific/Gulf of California coastal waters (up to 9%). Vibroferrin's unique properties and the widespread prevalence of its bacterial producers suggest that it may contribute significantly to generating bioavailability of iron via photoredox reactions.
Collapse
|
78
|
Liu Z, Chai Z, Wang D. The folding equilibria of enterobactin enantiomers and their interaction with actinides. Phys Chem Chem Phys 2019; 21:16017-16031. [DOI: 10.1039/c9cp01656b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The helicity preference of Ent enantiomers was enhanced when binding with Fe3+ while disrupted when binding with actinides.
Collapse
Affiliation(s)
- Ziyi Liu
- Multidisciplinary Initiative Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Zhifang Chai
- Multidisciplinary Initiative Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| | - Dongqi Wang
- Multidisciplinary Initiative Center
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
79
|
Zhu QY, Zhou LP, Sun QF. Strongly luminescent 5d/4f heterometal–organic macrocycles with open metal sites: post-assembly modification and sensing. Dalton Trans 2019; 48:4479-4483. [DOI: 10.1039/c9dt00710e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strongly luminescent 5d/4f heterometal–organic macrocycles featuring open metal sites have been constructed, along with their post-assembly modification and sensing properties.
Collapse
Affiliation(s)
- Qiang-Yu Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| |
Collapse
|
80
|
Deng W, Yu ZS, Liu XH, Yu SY. Self-Assembly and C−H⋅⋅⋅Anion Hydrogen Bonding of Palladium(II)-based Metallacalixarenes Using Pyridyl- or Phenyl-Bridged Di-Naphthoimidazoles. Chem Asian J 2018; 13:3173-3179. [DOI: 10.1002/asia.201801345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Deng
- Department of Chemistry; Renmin University of China; Beijing 100872 P. R. China
| | - Zheng-Su Yu
- Beijing Key Laboratory for Green Catalysis and Separation; Laboratory for Self-Assembly Chemistry; Department of Chemistry and Chemical Industry; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing 100124 China
| | - Xue-Hui Liu
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Shu-Yan Yu
- Department of Chemistry; Renmin University of China; Beijing 100872 P. R. China
- Beijing Key Laboratory for Green Catalysis and Separation; Laboratory for Self-Assembly Chemistry; Department of Chemistry and Chemical Industry; College of Environmental and Energy Engineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
81
|
Bhat IA, Devaraj A, Zangrando E, Mukherjee PS. A Discrete Self-Assembled Pd12
Triangular Orthobicupola Cage and its Use for Intramolecular Cycloaddition. Chemistry 2018; 24:13938-13946. [DOI: 10.1002/chem.201803039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Imtiyaz Ahmad Bhat
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| | - Anthonisamy Devaraj
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences; via, Giorgieri 1 34127 Trieste Italy
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| |
Collapse
|
82
|
Manuguri S, Webster K, Yewdall NA, An Y, Venugopal H, Bhugra V, Turner A, Domigan LJ, Gerrard JA, Williams DE, Malmström J. Assembly of Protein Stacks With in Situ Synthesized Nanoparticle Cargo. NANO LETTERS 2018; 18:5138-5145. [PMID: 30047268 DOI: 10.1021/acs.nanolett.8b02055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of proteins to form hierarchical structures through self-assembly provides an opportunity to synthesize and organize nanoparticles. Ordered nanoparticle assemblies are a subject of widespread interest due to the potential to harness their emergent functions. In this work, the toroidal-shaped form of the protein peroxiredoxin, which has a pore size of 7 nm, was used to organize iron oxyhydroxide nanoparticles. Iron in the form of Fe2+ was sequestered into the central cavity of the toroid ring using metal-binding sites engineered there and then hydrolyzed to form iron oxyhydroxide particles bound into the protein pore. By precise manipulation of the pH, the mineralized toroids were organized into stacks confining one-dimensional nanoparticle assemblies. We report the formation and the procedures leading to the formation of such nanostructures and their characterization by chromatography and microscopy. Electrostatic force microscopy clearly revealed the formation of iron-containing nanorods as a result of the self-assembly of the iron-loaded protein. This research bodes well for the use of peroxiredoxin as a template with which to form nanowires and structures for electronic and magnetic applications.
Collapse
Affiliation(s)
- Sesha Manuguri
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | | | - N Amy Yewdall
- Biomolecular Interaction Centre and School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | | | | | - Vaibhav Bhugra
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | | | - Laura J Domigan
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - Juliet A Gerrard
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - David E Williams
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| |
Collapse
|
83
|
A reevaluation of iron binding by Mycobactin J. J Biol Inorg Chem 2018; 23:995-1007. [DOI: 10.1007/s00775-018-1592-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
|
84
|
Herbst-Gervasoni CJ, Gau MR, Zdilla MJ, Valentine AM. Crystal structures of sodium-, lithium-, and ammonium 4,5-di-hydroxy-benzene-1,3-di-sulfonate (tiron) hydrates. Acta Crystallogr E Crystallogr Commun 2018; 74:918-925. [PMID: 30002886 PMCID: PMC6038641 DOI: 10.1107/s2056989018008009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022]
Abstract
The solid-state structures of the Na+, Li+, and NH4+ salts of the 4,5-di-hydroxy-benzene-1,3-di-sulfonate (tiron) dianion are reported, namely disodium 4,5-di-hydroxy-benzene-1,3-di-sulfonate, 2Na+·C6H4O8S22-, μ-4,5-di-hydroxy-benzene-1,3-di-sulfonato-bis-[aqua-lithium(I)] hemihydrate, [Li2(C6H4O8S2)(H2O)2]·0.5H2O, and di-ammonium 4,5-di-hydroxy-benzene-1,3-di-sulfonate monohydrate, 2NH4+·C6H4O8S22-·H2O. Inter-molecular inter-actions vary with the size of the cation, and the asymmetric unit cell, and the macromolecular features are also affected. The sodium in Na2(tiron) is coordinated in a distorted octa-hedral environment through the sulfonate oxygen and hydroxyl oxygen donors on tiron, as well as an inter-stitial water mol-ecule. Lithium, with its smaller ionic radius, is coordinated in a distorted tetra-hedral environment by sulfonic and phenolic O atoms, as well as water in Li2(tiron). The surrounding tiron anions coordinating to sodium or lithium in Na2(tiron) and Li2(tiron), respectively, result in a three-dimensional network held together by the coordinate bonds to the alkali metal cations. The formation of such a three-dimensional network for tiron salts is relatively rare and has not been observed with monovalent cations. Finally, (NH4)2(tiron) exhibits extensive hydrogen-bonding arrays between NH4+ and the surrounding tiron anions and inter-stitial water mol-ecules. This series of structures may be valuable for understanding charge transfer in a putative solid-state fuel cell utilizing tiron.
Collapse
Affiliation(s)
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104, USA
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA
| | - Ann M. Valentine
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA
| |
Collapse
|
85
|
Abstract
Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.
Collapse
Affiliation(s)
- Grace E Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
86
|
Rivera GSM, Beamish CR, Wencewicz TA. Immobilized FhuD2 Siderophore-Binding Protein Enables Purification of Salmycin Sideromycins from Streptomyces violaceus DSM 8286. ACS Infect Dis 2018; 4:845-859. [PMID: 29460625 DOI: 10.1021/acsinfecdis.8b00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Siderophores are a structurally diverse class of natural products common to most bacteria and fungi as iron(III)-chelating ligands. Siderophores, including trihydroxamate ferrioxamines, are used clinically to treat iron overload diseases and show promising activity against many other iron-related human diseases. Here, we present a new method for the isolation of ferrioxamine siderophores from complex mixtures using affinity chromatography based on resin-immobilized FhuD2, a siderophore-binding protein (SBP) from Staphylococcus aureus. The SBP-resin enabled purification of charge positive, charge negative, and neutral ferrioxamine siderophores. Treatment of culture supernatants from Streptomyces violaceus DSM 8286 with SBP-resin provided an analytically pure sample of the salmycins, a mixture of structurally complex glycosylated sideromycins (siderophore-antibiotic conjugates) with potent antibacterial activity toward human pathogenic Staphylococcus aureus (minimum inhibitory concentration (MIC) = 7 nM). Siderophore affinity chromatography could enable the rapid discovery of new siderophore and sideromycin natural products from complex mixtures to aid drug discovery and metabolite identification efforts in a broad range of therapeutic areas.
Collapse
Affiliation(s)
- Gerry Sann M. Rivera
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Catherine R. Beamish
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
87
|
Kobayashi Y, Hoshino M, Kameda T, Kobayashi K, Akaji K, Inuki S, Ohno H, Oishi S. Use of a Compact Tripodal Tris(bipyridine) Ligand to Stabilize a Single-Metal-Centered Chirality: Stereoselective Coordination of Iron(II) and Ruthenium(II) on a Semirigid Hexapeptide Macrocycle. Inorg Chem 2018; 57:5475-5485. [PMID: 29634246 DOI: 10.1021/acs.inorgchem.8b00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe(II)-coordinating hexapeptides containing three 2,2'-bipyridine moieties as side chains were designed and synthesized. A cyclic hexapeptide having three [(2,2'-bipyridin)-5-yl]-d-alanine (d-Bpa5) residues, in which d-Bpa5 and Gly are alternately arranged with 3-fold rotational symmetry, coordinated with Fe(II) to form a 1:1 octahedral Fe(II)-peptide complex with a single facial-Λ configuration of the metal-centered chirality. NMR spectroscopy and molecular dynamics simulations revealed that the Fe(II)-peptide complex has an apparent C3-symmetric conformations on the NMR time scale, while the peptide backbone is subject to dynamic conformational exchange between three asymmetric β/γ conformations and one C3-symmetric γ/γ/γ conformation. The semirigid cyclic hexapeptide preferentially arranged these conformations of the small octahedral Fe(II)-bipyridine complex, as well as the Ru(II) congener, to underpin the single configuration of the metal-centered chirality.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center , National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi , Koutou-ku, Tokyo 135-0064 , Japan
| | - Kazuya Kobayashi
- Kyoto Pharmaceutical University , Yamashina-ku , Kyoto 607-8412 , Japan
| | - Kenichi Akaji
- Kyoto Pharmaceutical University , Yamashina-ku , Kyoto 607-8412 , Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo-ku , Kyoto 606-8501 , Japan
| |
Collapse
|
88
|
Facile Arsenazo III-Based Assay for Monitoring Rare Earth Element Depletion from Cultivation Media for Methanotrophic and Methylotrophic Bacteria. Appl Environ Microbiol 2018; 84:AEM.02887-17. [PMID: 29453257 PMCID: PMC5881054 DOI: 10.1128/aem.02887-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/07/2018] [Indexed: 01/31/2023] Open
Abstract
Recently, methanotrophic and methylotrophic bacteria were found to utilize rare earth elements (REEs). To monitor the REE content in culture media of these bacteria, we have developed a rapid screening method using the Arsenazo III (AS III) dye for spectrophotometric REE detection in the low μM (0.1 to 10 μM) range. We designed this assay to follow LaIII and EuIII depletion from the culture medium by the acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum strain SolV. The assay can also be modified to screen the uptake of other REEs, such as PrIII, or to monitor the depletion of LaIII from growth media in neutrophilic methylotrophs such as Methylobacterium extorquens strain AM1. The AS III assay presents a convenient and fast detection method for REE levels in culture media and is a sensitive alternative to inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption spectroscopy (AAS). IMPORTANCE REE-dependent bacterial metabolism is a quickly emerging field, and while the importance of REEs for both methanotrophic and methylotrophic bacteria is now firmly established, many important questions, such as how these insoluble elements are taken up into cells, are still unanswered. Here, an Arsenazo III dye-based assay has been developed for fast, specific, and sensitive determination of REE content in different culture media. This assay presents a useful tool for optimizing cultivation protocols, as well as for routine REE monitoring during bacterial growth without the need for specialized analytical instrumentation. Furthermore, this assay has the potential to promote the discovery of other REE-dependent microorganisms and can help to elucidate the mechanisms for acquisition of REEs by methanotrophic and methylotrophic bacteria.
Collapse
|
89
|
Rahim MA, Björnmalm M, Bertleff-Zieschang N, Ju Y, Mettu S, Leeming MG, Caruso F. Multiligand Metal-Phenolic Assembly from Green Tea Infusions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7632-7639. [PMID: 28722393 DOI: 10.1021/acsami.7b09237] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The synthesis of hybrid functional materials using the coordination-driven assembly of metal-phenolic networks (MPNs) is of interest in diverse areas of materials science. To date, MPN assembly has been explored as monoligand systems (i.e., containing a single type of phenolic ligand) where the phenolic components are primarily obtained from natural sources via extraction, isolation, and purification processes. Herein, we demonstrate the fabrication of MPNs from a readily available, crude phenolic source-green tea (GT) infusions. We employ our recently introduced rust-mediated continuous assembly strategy to prepare these GT MPN systems. The resulting hollow MPN capsules contain multiple phenolic ligands and have a shell thickness that can be controlled through the reaction time. These multiligand MPN systems have different properties compared to the analogous MPN systems reported previously. For example, the Young's modulus (as determined using colloidal-probe atomic force microscopy) of the GT MPN system presented herein is less than half that of MPN systems prepared using tannic acid and iron salt solutions, and the disassembly kinetics are faster (∼50%) than other, comparable MPN systems under identical disassembly conditions. Additionally, the use of rust-mediated assembly enables the formation of stable capsules under conditions where the conventional approach (i.e., using iron salt solutions) results in colloidally unstable dispersions. These differences highlight how the choice of phenolic ligand and its source, as well as the assembly protocol (e.g., using solution-based or solid-state iron sources), can be used to tune the properties of MPNs. The strategy presented herein expands the toolbox of MPN assembly while also providing new insights into the nature and robustness of metal-phenolic interfacial assembly when using solution-based or solid-state metal sources.
Collapse
|
90
|
Codd R, Richardson-Sanchez T, Telfer TJ, Gotsbacher MP. Advances in the Chemical Biology of Desferrioxamine B. ACS Chem Biol 2018; 13:11-25. [PMID: 29182270 DOI: 10.1021/acschembio.7b00851] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Desferrioxamine B (DFOB) was discovered in the late 1950s as a hydroxamic acid metabolite of the soil bacterium Streptomyces pilosus. The exquisite affinity of DFOB for Fe(III) identified its potential for removing excess iron from patients with transfusion-dependent hemoglobin disorders. Many studies have used semisynthetic chemistry to produce DFOB adducts with new properties and broad-ranging functions. More recent approaches in chemical biology have revealed some nuances of DFOB biosynthesis and discovered new DFOB-derived drugs and radiometal imaging agents. The current and potential applications of DFOB continue to inspire a rich body of chemical biology research focused on this bacterial metabolite.
Collapse
Affiliation(s)
- Rachel Codd
- School of Medical Sciences
(Pharmacology), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tomas Richardson-Sanchez
- School of Medical Sciences
(Pharmacology), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas J. Telfer
- School of Medical Sciences
(Pharmacology), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael P. Gotsbacher
- School of Medical Sciences
(Pharmacology), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
91
|
Maier GP, Bernt CM, Butler A. Catechol oxidation: considerations in the design of wet adhesive materials. Biomater Sci 2018; 6:332-339. [DOI: 10.1039/c7bm00884h] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-withdrawing substituents slow the rate of oxidation of substituted catechols by O2: a Hammett analysis.
Collapse
Affiliation(s)
- Greg P. Maier
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Christopher M. Bernt
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Alison Butler
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| |
Collapse
|
92
|
Nakao M. Development of Novel Functional Molecules Based on the Molecular Structure Characteristics of Diketopiperazines. YAKUGAKU ZASSHI 2017; 137:1505-1516. [DOI: 10.1248/yakushi.17-00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Michiyasu Nakao
- Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
93
|
Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 2017; 7:381. [PMID: 29109926 PMCID: PMC5658296 DOI: 10.1007/s13205-017-1008-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, siderophore production by various bacteria amongst the plant-growth-promoting rhizobacteria was quantified by a rapid and efficient method. In total, 23 siderophore-producing bacterial isolates/strains were taken to estimate their siderophore-producing ability by the standard method (chrome azurol sulphonate assay) as well as 96 well microplate method. Production of siderophore was estimated in percent siderophore unit by both the methods. It was observed that data obtained by both methods correlated positively with each other proving the correctness of microplate method. By the modified microplate method, siderophore production by several bacterial strains can be estimated both qualitatively and quantitatively at one go, saving time, chemicals, making it very less tedious, and also being cheaper in comparison with the method currently in use. The modified microtiter plate method as proposed here makes it far easier to screen the plant-growth-promoting character of plant-associated bacteria.
Collapse
|
94
|
Bouvier B, Cézard C. Impact of iron coordination isomerism on pyoverdine recognition by the FpvA membrane transporter of Pseudomonas aeruginosa. Phys Chem Chem Phys 2017; 19:29498-29507. [PMID: 29082401 DOI: 10.1039/c7cp04529h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pyoverdines, the primary siderophores of Pseudomonas bacteria, scavenge the iron essential to bacterial life in the outside medium and transport it back into the periplasm. Despite their relative simplicity, pyoverdines feature remarkably flexible recognition characteristics whose origins at the atomistic level remain only partially understood: the ability to bind other metals than ferric iron, the capacity of outer membrane transporters to recognize and internalize noncognate pyoverdines from other pseudomonads… One of the less examined factors behind this polymorphic recognition lies in the ability for pyoverdines to bind iron with two distinct chiralities, at the cost of a conformational switch. Herein, we use free energy simulations to study how the stereochemistry of the iron chelating groups influences the structure and dynamics of two common pyoverdines and impacts their recognition by the FpvA membrane transporter of P. aeruginosa. We show that conformational preferences for one metal binding chirality over the other, observed in solution depending on the nature of the pyoverdine, are canceled out by the FpvA transporter, which recognizes both chiralities equally well for both pyoverdines under study. However, FpvA discriminates between pyoverdines by altering the kinetics of stereoisomer interconversion. We present structural causes of this intriguing recognition mechanism and discuss its possible significance in the context of the competitive scavenging of iron.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS UMR7378/Université de Picardie Jules Verne, 10 rue Baudelocque, 80039 Amiens Cedex, France.
| | | |
Collapse
|
95
|
Johnstone TC, Nolan EM. Determination of the Molecular Structures of Ferric Enterobactin and Ferric Enantioenterobactin Using Racemic Crystallography. J Am Chem Soc 2017; 139:15245-15250. [PMID: 28956921 PMCID: PMC5748154 DOI: 10.1021/jacs.7b09375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.
Collapse
Affiliation(s)
- Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
96
|
Buglyó P, Parajdi-Losonczi PL, Bényei AC, Lihi N, Bíró L, Farkas E. Versatility of Coordination Modes in Complexes of Monohydroxamic Acids with Half-Sandwich Type Ruthenium, Rhodium, Osmium and Iridium Cations. ChemistrySelect 2017. [DOI: 10.1002/slct.201701858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Péter Buglyó
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Péter L. Parajdi-Losonczi
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Attila C. Bényei
- Department of Physical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Norbert Lihi
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Linda Bíró
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| | - Etelka Farkas
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen, Egyetem tér 1 Hungary
| |
Collapse
|
97
|
Besserglick J, Olshvang E, Szebesczyk A, Englander J, Levinson D, Hadar Y, Gumienna-Kontecka E, Shanzer A. Ferrichrome Has Found Its Match: Biomimetic Analogues with Diversified Activity Map Discrete Microbial Targets. Chemistry 2017; 23:13181-13191. [DOI: 10.1002/chem.201702647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jenny Besserglick
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Evgenia Olshvang
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Agnieszka Szebesczyk
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joseph Englander
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Dana Levinson
- Department of Plant Pathology and Microbiology; The R.H. Smith Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology; The R.H. Smith Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot 7610001 Israel
| | | | - Abraham Shanzer
- Department of Organic Chemistry; The Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
98
|
Li J, Liu S, Jiang Z, Sun C. Catechol amide iron chelators produced by a mangrove-derived Bacillus subtilis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
99
|
Vaccaro BJ, Clarkson SM, Holden JF, Lee DW, Wu CH, Poole Ii FL, Cotelesage JJH, Hackett MJ, Mohebbi S, Sun J, Li H, Johnson MK, George GN, Adams MWW. Biological iron-sulfur storage in a thioferrate-protein nanoparticle. Nat Commun 2017; 8:16110. [PMID: 28726794 PMCID: PMC5524996 DOI: 10.1038/ncomms16110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Iron–sulfur clusters are ubiquitous in biology and function in electron transfer and catalysis. They are assembled from iron and cysteine sulfur on protein scaffolds. Iron is typically stored as iron oxyhydroxide, ferrihydrite, encapsulated in 12 nm shells of ferritin, which buffers cellular iron availability. Here we have characterized IssA, a protein that stores iron and sulfur as thioferrate, an inorganic anionic polymer previously unknown in biology. IssA forms nanoparticles reaching 300 nm in diameter and is the largest natural metalloprotein complex known. It is a member of a widely distributed protein family that includes nitrogenase maturation factors, NifB and NifX. IssA nanoparticles are visible by electron microscopy as electron-dense bodies in the cytoplasm. Purified nanoparticles appear to be generated from 20 nm units containing ∼6,400 Fe atoms and ∼170 IssA monomers. In support of roles in both iron–sulfur storage and cluster biosynthesis, IssA reconstitutes the [4Fe-4S] cluster in ferredoxin in vitro. The biosynthesis of iron-sulfur clusters in anaerobic organisms has not been extensively investigated. Here, the authors identify and characterize a multi-subunit protein that stores iron and sulfur in thioferrate for the assembly of the clusters in Pyrococcus furiosus.
Collapse
Affiliation(s)
- Brian J Vaccaro
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Sonya M Clarkson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - James F Holden
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Dong-Woo Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Farris L Poole Ii
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Julien J H Cotelesage
- Department of Geological Sciences and Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C5, Canada
| | - Mark J Hackett
- Department of Geological Sciences and Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C5, Canada
| | - Sahel Mohebbi
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Michael K Johnson
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Graham N George
- Department of Geological Sciences and Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C5, Canada
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
100
|
Tan L, Tao Y, Wang T, Zou F, Zhang S, Kou Q, Niu A, Chen Q, Chu W, Chen X, Wang H, Yang Y. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections. J Med Chem 2017; 60:2669-2684. [DOI: 10.1021/acs.jmedchem.6b01261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liang Tan
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunliang Tao
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, China
| | - Ting Wang
- Department
of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, China
| | - Feng Zou
- Department
of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, China
| | - Shuhua Zhang
- Department
of Microbiology, Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, Sichuan Province 610041, China
| | - Qunhuan Kou
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Niu
- Department
of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Qian Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Chu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Chen
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haidong Wang
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, China
| | - Yushe Yang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|