51
|
Dutta N, Usman M, Ashraf MA, Luo G, Zhang S. A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
52
|
He J, Luo T, Shi Z, Angelidaki I, Zhang S, Luo G. Microbial shifts in anaerobic digestion towards phenol inhibition with and without hydrochar as revealed by metagenomic binning. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129718. [PMID: 35952432 DOI: 10.1016/j.jhazmat.2022.129718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The inhibition of anaerobic digestion (AD) by phenolic compounds is an obstacle to the efficient treatment of organic wastes. Besides, hydrochar produced from hydrothermal liquefaction of biomass has been previously reported to enhance AD. The present study aimed to provide deep insights into the microbial shifts at the species level to phenol (0-1.5 g/L) inhibition in AD of glucose with and without hydrochar by metagenomic analysis. Phenol higher than 1 g/L had severe inhibition on both the amount and rate of methane production in control experiments, while hydrochar significantly enhanced methane production, especially at phenol 1 g/L and 1.5 g/L. From metagenomic analysis, 78 High-quality metagenome-assembled genomes (MAGs) were obtained. Principal components analysis showed that the microbial communities were shifted when phenol concentration was increased to 0.25 g/L in control experiments and 1 g/L in hydrochar experiments. In control experiments, no MAGs involved in acetogenesis were found at phenol 1.5 g/L and Methanothrix sp.FDU243 was also inhibited. However, hydrochar resulted in the maintenance of several MAGs involved in acetogenesis and Methanothrix sp.FDU243 even at phenol 1.5 g/L, ensuring a persistent methane production. Furthermore, 6 phenol-degrading MAGs were identified, shifting dependent on the concentrations of phenol and the presence of hydrochar.
Collapse
Affiliation(s)
- Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Tao Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
53
|
Zhang L, Gong X, Chen Z, Zhou Y. Genome-centric metagenomics analysis revealed the metabolic function of abundant microbial communities in thermal hydrolysis-assisted thermophilic anaerobic digesters under propionate stress. BIORESOURCE TECHNOLOGY 2022; 360:127574. [PMID: 35792328 DOI: 10.1016/j.biortech.2022.127574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The ecological roles of microbial communities and how they interact with each other in thermal hydrolysis process (THP) assisted thermophilic anaerobic digestion (THP-AD) reactors remain largely unknown, especially under propionate stress. Two thermophilic THP-AD reactors had methane yield of 240-248 mL/g VSadded, but accumulated approximately 2000 mg/L propionate. Genome-centric metagenomics analysis showed that 68 metagenome-assembled genomes (MAGs) were recovered, 32 MAGs of which were substantially enriched. Firmicutes spp. dominated the enriched microbial community, including hydrolytic/fermentative bacteria and syntrophs. Methanogenic activities were mainly mediated by Methanosarcina sp. and Methanothermobacter spp. In addition to hydrogenotrophic methanogens, Thermodesulfovibrio sp. could also be a vital H2 scavenger, contributing to maintaining low H2 partial pressure in the bioreactors. The remarkable accumulation of propionate could be likely attributed to the weak syntrophic propionate-oxidizing activity or its absence. These findings advanced our knowledge about the mutualistic symbiosis of carbon metabolism in thermophilic THP-AD reactors.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
54
|
Liang J, Luo L, Wong JWC, He D. Recent advances in conductive materials amended anaerobic co-digestion of food waste and municipal organic solid waste: Roles, mechanisms, and potential application. BIORESOURCE TECHNOLOGY 2022; 360:127613. [PMID: 35840024 DOI: 10.1016/j.biortech.2022.127613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recently, conductive materials (i.e., carbon-based and iron-based materials) as a feasible and attractive approach have been introduced to anaerobic co-digestion (ACoD) system for promoting its performance and stability through direct interspecies electron transfer. Owing to the key roles of conductive materials in ACoD process, it is imperative to gain a profound understanding of their specific functions and mechanisms. Here, this review critically examined the state of the art of conductive materials assisted ACoD of food waste and common municipal organic solid waste. Then, the fundamental roles of conductive materials on ACoD enhancement and the relevant mechanisms were discussed. Last, the perspectives for co-digestate treatment, reutilization, and disposal were summarized. Moreover, the main challenges to conductive materials amended ACoD in on-site application were proposed and the future remarks were put forward. Collectively, this review poses a scientific basis for the potential application of conductive materials in ACoD process in the future.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
55
|
Usman M, Shi Z, Dutta N, Ashraf MA, Ishfaq B, El-Din MG. Current challenges of hydrothermal treated wastewater (HTWW) for environmental applications and their perspectives: A review. ENVIRONMENTAL RESEARCH 2022; 212:113532. [PMID: 35618004 DOI: 10.1016/j.envres.2022.113532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal treatment (HT) is an emerged thermochemical approach for the utilization of biomass. In the last decade, intense research has been conducted on bio-oil and hydrochar, during which extensive amount of hydrothermal treated wastewater (HTWW) is produced, containing large amount of organic compounds along with several toxic chemicals. The composition of HTWW is highly dependent on the process conditions and organic composition of biomass, which determines its further utilization. The current study provides a comprehensive overview of recent advancements in HTWW utilization and its properties which can be changed by varying different parameters like temperature, residence time, solid concentration, mass ratio and catalyst including types of biomasses. HTWW characterization, parameters, reaction mechanism and its application were also summarized. By considering the challenges of HTWW, some suggestions and proposed methodology to overcome the bottleneck are provided.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China.
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Nalok Dutta
- Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States
| | - Muhammad Awais Ashraf
- State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Bushra Ishfaq
- Food Technology Section, Post-harvest Research Center, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada.
| |
Collapse
|
56
|
Zhu R, Zhang Y, Zou H, Zheng Y, Guo RB, Fu SF. Understanding the mechanisms behind enhanced anaerobic digestion of corn straw by humic acids. BIORESOURCE TECHNOLOGY 2022; 359:127454. [PMID: 35697261 DOI: 10.1016/j.biortech.2022.127454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Humic acids (HAs) are abundant on earth, yet their effects on anaerobic digestion (AD) of cellulosic substrate are not fully uncovered. The effects of HAs on AD of corn straw and the mechanisms behind were analyzed in this study. Results showed that the effects of HAs on methane yield were closely related to the total solids (TS) content. At relative high TS content of 5.0%, HAs benefited AD process by increasing 13.8% of methane yield, accelerating methane production rate by 43% and shortening lag phase time by 37.5%. Microbial community analysis indicated that HAs increased the relative abundance of syntrophic bacteria (Syntrophomonadaceae and Synergistaceae), facilitating the degradation of volatile fatty acids. HAs might act as electron shuttles to directly transfer electrons to hydrogenotrophic methanogens for CO2 reduction to CH4. This study provides a simple and efficient strategy to facilitate the AD of cellulosic substrate by HAs addition.
Collapse
Affiliation(s)
- Rong Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States.
| | - Yun Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China
| | - Shan-Fei Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao 266101, PR China.
| |
Collapse
|
57
|
Novel Long-Chain Fatty Acid (LCFA)-Degrading Bacteria and Pathways in Anaerobic Digestion Promoted by Hydrochar as Revealed by Genome-Centric Metatranscriptomics Analysis. Appl Environ Microbiol 2022; 88:e0104222. [PMID: 35938788 PMCID: PMC9397102 DOI: 10.1128/aem.01042-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large amount of long-chain fatty acids (LCFA) are generated after lipids hydrolysis in anaerobic digestion (AD), and LCFA are difficult to be biodegraded. This study showed that hydrochar (HC), which was produced during the hydrothermal liquefaction of organic wastes, significantly increased the methane production rate (by 56.9%) of oleate, a typical refractory model LCFA. Genomic-centric metatranscriptomics analysis revealed that three novel microbes (Bin138 Spirochaetota sp., Bin35 Smithellaceae sp., and Bin54 Desulfomonilia sp.) that were capable of degrading LCFA were enriched by HC, which played an important role in the degradation of oleate. LCFA was degraded to acetate through the well-known LCFA β-oxidation pathway and the combined β-oxidation and butyrate oxidation pathway. In addition, it was found that HC promoted the direct interspecies electron transfer (DIET) between Methanothrix sp. and Bin54 Desulfomonilia sp. The enriched new types of LCFA-degrading bacteria and the promotion of DIET contributed to the improved methane production rate of oleate by HC. IMPORTANCE Long-chain fatty acids (LCFA) are difficult to be degraded in anaerobic digestion (AD), and the known LCFA degrading bacteria are only limited to the families Syntrophomonadaceae and Syntrophaceae. Here, we found that hydrochar effectively promoted AD of LCFA, and the new LCFA-degrading bacteria and a new metabolic pathway were also revealed based on genomic-centric metatranscriptomic analysis. This study provided a new method for enhancing the AD of organic wastes with high content of LCFA and increased the understanding of the microbes and their metabolic pathways involved in AD of LCFA.
Collapse
|
58
|
Liu X, Lu Q, Du M, Xu Q, Wang D. Hormesis-Like Effects of Tetrabromobisphenol A on Anaerobic Digestion: Responses of Metabolic Activity and Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11277-11287. [PMID: 35905436 DOI: 10.1021/acs.est.2c00062] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) has extensive applications in various fields; its release into ecosystems and the potential toxic effects on organisms are becoming major concerns. Here, we investigated the effects of TBBPA on anaerobic digestion, whose process is closely related to the carbon cycles under anaerobic conditions. The results revealed that TBBPA exhibited dose-dependent hormesis-like effects on methane production from glucose, i.e., the presence of 0.1 mg/L TBBPA increased the methane production rate by 8.79%, but 1.0-4.0 mg/L TBBPA caused 3.45-28.98% of decrement. We found that TBBPA was bound by the tyrosine-like proteins of the extracellular polymeric substances of anaerobes and induced the increase of reactive oxygen species, whose slight accumulation stimulated the metabolism activities but high accumulation increased the apoptosis of anaerobes. Owing to the differences between individual anaerobes in tolerance, TBBPA at 0.1 mg/L stimulated the acidogenesis and hydrogenotrophic methanogenesis, whereas higher levels (i.e., 1.0-4.0 mg/L) severely restrained all of the processes of acidogenesis, acetogenesis, and methanogenesis. Along with the accumulation of bisphenol A (BPA) produced from TBBPA by Longilinea sp. and Pseudomonas sp., the methanogenic pathway was partly shifted from acetate-dependent to hydrogen-dependent direction, and the activities of carbon monoxide dehydrogenase and acetyl-CoA decarbonylase/synthase were inhibited, while acetate kinase and F420 were hormetically affected. These findings elucidated the mechanism of anaerobic syntrophic consortium responses to TBBPA, supplementing the potential environmental risks of brominated flame retardants.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
59
|
Dyksma S, Gallert C. Effect of magnetite addition on transcriptional profiles of syntrophic Bacteria and Archaea during anaerobic digestion of propionate in wastewater sludge. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:664-678. [PMID: 35615789 DOI: 10.1111/1758-2229.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) is an important technology for the effective conversion of waste and wastewater to methane. Here, syntrophic bacteria transfer molecular hydrogen (H2 ), formate, or directly supply electrons (direct interspecies electron transfer, DIET) to the methanogens. Evidence is accumulating that the methanation of short-chain fatty acids can be enhanced by the addition of conductive material to the anaerobic digester, which has often been attributed to the stimulation of DIET. Since little is known about the transcriptional response of a complex AD microbial community to the addition of conductive material, we added magnetite to propionate-fed laboratory-scale reactors that were inoculated with wastewater sludge. Compared to the control reactors, the magnetite-amended reactors showed improved methanation of propionate. A genome-centric metatranscriptomics approach identified the active SCFA-oxidizing bacteria that affiliated with Firmicutes, Desulfobacterota and Cloacimonadota. The transcriptional profiles revealed that the syntrophic bacteria transferred acetate, H2 and formate to acetoclastic and hydrogenotrophic methanogens, whereas transcription of potential determinants for DIET such as conductive pili and outer-membrane cytochromes did not significantly change with magnetite addition. Overall, changes in the transcriptional profiles of syntrophic Bacteria and Archaea in propionate-fed lab-scale reactors amended with magnetite refute a major role of DIET in the studied system.
Collapse
Affiliation(s)
- Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| |
Collapse
|
60
|
Cyanophycin Granule Polypeptide: a Neglected High Value-Added Biopolymer, Synthesized in Activated Sludge on a Large Scale. Appl Environ Microbiol 2022; 88:e0074222. [PMID: 35862662 PMCID: PMC9317870 DOI: 10.1128/aem.00742-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recovery of microbial synthetic polymers with high economic value and market demand in activated sludge has attracted extensive attention. This work analyzed the synthesis of cyanophycin granule peptide (CGP) in activated sludge and its adsorption capacity for heavy metals and dyes. The distribution and expression of synthetic genes for eight biopolymers in two wastewater treatment plants (WWTPs) were analyzed by metagenomics and metatranscriptomics. The results indicate that the abundance and expression level of CGP synthase (cphA) are similar to those of polyhydroxyalkanoate polymerase, implying high synthesis of CGP in activated sludges. CGP in activated sludge is mainly polymerized from aspartic acid and arginine, and its secondary structure is mainly β-sheet. The crude yields of CGP are as high as 104 ± 26 and 76 ± 13 mg/g dry sludge in winter and in summer, respectively, comparable to those of polyhydroxyalkanoate and alginate. CGP has a stronger adsorption capacity for anionic pollutants (Cr (VI) and methyl orange) than for cationic pollutants because it is rich in guanidine groups. This study highlights prospects for recovery and application of CGP from WWTPs. IMPORTANCE The conversion of organic pollutants into bioresources by activated sludge can reduce the carbon dioxide emission of wastewater treatment plants. Identification of new high value-added biopolymers produced by activated sludge is beneficial to recover bioresources. Cyanophycin granule polypeptide (CGP), first discovered in cyanobacteria, has unique chemical and material properties suitable for industrial food, medicine, cosmetics, water treatment, and agriculture applications. Here, we revealed for the first time that activated sludge has a remarkable ability to produce CGP. These findings could further facilitate the conversion of wastewater treatment plants into resource recycling plants.
Collapse
|
61
|
Hu Y, Cai X, Du R, Yang Y, Rong C, Qin Y, Li YY. A review on anaerobic membrane bioreactors for enhanced valorization of urban organic wastes: Achievements, limitations, energy balance and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153284. [PMID: 35066041 DOI: 10.1016/j.scitotenv.2022.153284] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Sustainable urban development is threatened by an impending energy crisis and large amounts of organic wastes generated from the municipal sector among others. Conventional waste management methods involve greenhouse gas (GHG) emission and limited resource recovery, thus necessitating advanced techniques to convert such wastes into bioenergy, bio-fertilizers and valuable-added products. Research and application experiences from different scale applications indicate that the anaerobic membrane bioreactor (AnMBR) process is a kind of high-rate anaerobic digester for urban organic wastes valorization including food waste and waste sludge, while the research status is still insufficiently summarized. Through compiling recent achievements and literature, this review will focus on the following aspects, including AnMBR treatment performance and membrane fouling, technical limitations, energy balance and techno-economic assessment as well as future perspectives. AnMBR can enhance organic wastes treatment via complete retention of functional microbes and suspended solids, and timely separation of products and potential inhibitory substances, thus improving digestion efficiency in terms of increased organics degradation rates, biogas production and process robustness at a low footprint. When handling high-solid organic wastes, membrane fouling and mass transfer issues can be the challenges limiting AnMBR applications to a wet-type digestion, thus countermeasures are required to pursue extended implementations. A conceptual framework is proposed by taking various organic wastes disposal and final productions (permeate, biogas and biosolids) utilization into consideration, which will contribute to the development of AnMBR-based waste-to-resource facilities towards sustainable waste management and more economic-environmental benefits output.
Collapse
Affiliation(s)
- Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xuli Cai
- XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
62
|
Zhou S, Song D, Gu JD, Yang Y, Xu M. Perspectives on Microbial Electron Transfer Networks for Environmental Biotechnology. Front Microbiol 2022; 13:845796. [PMID: 35495710 PMCID: PMC9039739 DOI: 10.3389/fmicb.2022.845796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The overlap of microbiology and electrochemistry provides plenty of opportunities for a deeper understanding of the redox biogeochemical cycle of natural-abundant elements (like iron, nitrogen, and sulfur) on Earth. The electroactive microorganisms (EAMs) mediate electron flows outward the cytomembrane via diverse pathways like multiheme cytochromes, bridging an electronic connection between abiotic and biotic reactions. On an environmental level, decades of research on EAMs and the derived subject termed “electromicrobiology” provide a rich collection of multidisciplinary knowledge and establish various bioelectrochemical designs for the development of environmental biotechnology. Recent advances suggest that EAMs actually make greater differences on a larger scale, and the metabolism of microbial community and ecological interactions between microbes play a great role in bioremediation processes. In this perspective, we propose the concept of microbial electron transfer network (METN) that demonstrates the “species-to-species” interactions further and discuss several key questions ranging from cellular modification to microbiome construction. Future research directions including metabolic flux regulation and microbes–materials interactions are also highlighted to advance understanding of METN for the development of next-generation environmental biotechnology.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
63
|
Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
64
|
Yang ZM, Guo RB, Dong XH. Promoting biomethane production from propionate with Fe 2O 3@carbon nanotubes composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151762. [PMID: 34800454 DOI: 10.1016/j.scitotenv.2021.151762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Using a batch anaerobic system constructed with 60 mL serum bottles, potential of a composite material with Fe2O3 nanoparticles decorated on carbon nanotubes (CNTs) to enhance biomethane production was investigated. The composites (Fe2O3@CNTs) with well dispersed Fe2O3 nanoparticles (4.5 nm) were fabricated by a facile thermal decomposition method in a muffle furnace under nitrogen atmosphere. Compared with Fe2O3, Fe2O3@CNTs showed a large specific surface area and good electrical conductivity. Supplementation of Fe2O3@CNTs to the propionate-degrading enrichments enhanced the methane production rate, which was 10.4-fold higher than that in the control experiment without material addition. The addition of Fe2O3@CNTs also not only showed a clearly electrochemical response to flavin and cytochrome C, but also reduced the electron transfer resistance when compared to the control. Comparative analysis showed that Fe2O3 in Fe2O3@CNTs played a key role in initiating electrochemical response and triggering rapid methane production, while CNTs functioned as rapid electron conduits to facilitate electron transfer from iron-reducing bacteria (e.g., Acinetobacter, Syntrophomonas, and Geobacter) to methanogens (e.g. Methanosarcina).
Collapse
Affiliation(s)
- Zhi-Man Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, PR China.
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiao-Huan Dong
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| |
Collapse
|
65
|
Jin HY, He ZW, Ren YX, Yang WJ, Tang CC, Chen F, Zhou AJ, Liu W, Liang B, Wang A. Role and significance of water and acid washing on biochar for regulating methane production from waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152950. [PMID: 35007606 DOI: 10.1016/j.scitotenv.2022.152950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Methane recovered from anaerobic digestion of waste activated sludge (WAS) can be used as the energy supplement of the wastewater treatment plant, benefiting to its carbon-neutral operation. In order to enhance methane production, biochar (BC) has been widely selected as conductive material to build direct interspecies electron transfer (DIET) in anaerobic digestion of WAS. However, the role and significance of washing strategies, including water and acid washing, on BCs for regulating methane production have not been reported. This study selected the frequently used woody- (W) and straw (S)-BCs as mode. Compared to raw W-BC, water and acid washing W-BC increased the methane yields by 19.1% and 15.7%, respectively. Differently, the methane yields among raw, water and acid washing S-BCs were similar. Mechanism study showed that both the two washing strategies optimized the properties of raw W-BC for promoting methane production. Water and acid washing W-BCs increased the electron transfer functional groups, such as ketones and quinones, which were not observed in S-BCs. Moreover, the electron-active microorganisms were enriched with the presence of water and acid washing W-BCs, and the predominant pathway for methane production shifted from hydrogentrophic to acetotrophic and DIET methanogenesis, while the microbial communities, including bacteria and archaea, were similar with the presence of raw, water and acid washing S-BCs. These findings of this work provide some new insights for production improvement regulation of methane from anaerobic digestion of wastes induced by BCs.
Collapse
Affiliation(s)
- Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Jing Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
66
|
He J, Ren S, Zhang S, Luo G. Modification of hydrochar increased the capacity to promote anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 341:125856. [PMID: 34479140 DOI: 10.1016/j.biortech.2021.125856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrochar has been demonstrated to increase methane production rate during anaerobic digestion (AD) of organic wastes/wastewater by facilitating direct interspecies electron transfer (DIET). The present study compared the hydrochars prepared at different conditions (260 °C-1 h, 260 °C-8 h, 320 °C-1 h and 320 °C-8 h) on AD of glucose. Hydrochar prepared at lower temperature and residence time (260 °C-1 h) resulted in the highest methane production rate, which was 237% higher of control experiment without hydrochar. Modification of hydrochar (260 °C-1 h) by ball-milling further increased the capacity to increase methane production rate. Hydrothermal liquefaction (HTL) conditions affected the surface oxygen-containing functional groups that related with DIET, and hydrochar (260 °C-1 h) had higher peaks relating with C-O and O-H functional groups. Ball-milling enhanced the formation of such groups. Microbial analysis showed hydrochar (260 °C-1 h) by ball-milling resulted in the formation of different microbial communities as compared with control experiments, and Azospira and Methanosarcina were enriched, which might be involved in DIET.
Collapse
Affiliation(s)
- Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Shuang Ren
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
67
|
Shi Z, Usman M, He J, Chen H, Zhang S, Luo G. Combined microbial transcript and metabolic analysis reveals the different roles of hydrochar and biochar in promoting anaerobic digestion of waste activated sludge. WATER RESEARCH 2021; 205:117679. [PMID: 34600232 DOI: 10.1016/j.watres.2021.117679] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal pretreatment of waste activated sludge (WAS) could eliminate the rate limiting step of anaerobic digestion (AD) -hydrolysis. However, the high organic loading rate may cause acid accumulation, thus leading to an unstable system. This study compared the effect of different hydrochar (HC2-260°C and HC3-320°C) and biochar (BC5-500°C and BC7-700°C) on AD of hydrothermal pretreated WAS (HPS). Results demonstrated that hydrochar was superior to biochar in the methane yield and production rate, especially HC2. HC2 had the highest surface oxygen-containing functional groups that could facilitate direct interspecies electron transfer (DIET). The enhanced methane yield was related with the increased protein utilization, and hydrochar and biochar enriched different microbes related to protein degradation. Metabolomic analysis showed the significantly changed metabolites induced by hydrochar and biochar were involved in fatty acids and amino acids-related metabolism, indicating the rapid conversion of intermediated products, which was consistent with the microbial community structure results. Hydrochar and biochar also induced upregulation of metabolites related to microbial metabolic activity and extracellular electron transfer. Although biochar induced the same metabolic changes, the alterations of these metabolites were weaker than those of hydrochar. The results of this study offered new insights into the molecular mechanisms of enhanced AD of HPS by hydrochar and biochar.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Muhammad Usman
- Bioproducts Science and Engineering Laboratory, Washington State University (WSU), Tri-Cities, WA 99354, United States
| | - Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Huihui Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
68
|
He J, Shi Z, Luo T, Zhang S, Liu Y, Luo G. Phenol promoted caproate production via two-stage batch anaerobic fermentation of organic substance with ethanol as electron donor for chain elongation. WATER RESEARCH 2021; 204:117601. [PMID: 34481286 DOI: 10.1016/j.watres.2021.117601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The conversion of organic wastes/wastewater into medium chain fatty acids (MCFAs) such as caproate has attracted much attention, while the effects of toxic compounds on the process have rarely been studied. The present study investigated the effects of phenol (0-1.5 g/L), which is a toxicant and present in various organic wastes, on the caproate production in the chain elongation (CE) process with ethanol as electron donor via two-stage batch anaerobic fermentation of glucose. The results showed phenol ≤ 1 g/L did not affect short chain fatty acids (SCFAs) production, while 1 g/L phenol increased caproate production by 59.9% in the following CE process. The higher selectivity of caproate and higher consumption of ethanol contributed to the higher caproate production at 1 g/L phenol. It was also shown 1 g/L phenol had more positive effect on CE of butyrate than acetate. 1.5 g/L phenol inhibited both SCFAs production and CE processes. 16S rRNA genes analysis showed phenol had slight effect on the microbial communities for SCFAs production, while it obviously changed the dominant microbes in CE process. For CE process, metagenomic analysis was further conducted and phenol mainly affected fatty acid biosynthesis (FAB) pathway, but not reverse β-oxidization (RBO) pathway. 1 g/L phenol increased the abundances of genes in FAB pathway, which could be related with the higher caproate production. Genome reconstruction identified the dominant microbial species in CE process, which were changed with different concentrations of phenol. Most of the dominant species were new microbial species potentially involved in CE. The syntrophic cooperation between Petrimonas mucosa FDU058 and Methanofollis sp. FDU007 might play important role in increased caproate production at 1 g/L phenol, and their adaption to phenol could be due to the presence of genes relating with active efflux system and refolding of proteins.
Collapse
Affiliation(s)
- Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Tao Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China.
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|