51
|
Nawab J, Khan H, Ghani J, Zafar MI, Khan S, Toller S, Fatima L, Hamza A. New insights into the migration, distribution and accumulation of micro-plastic in marine environment: A critical mechanism review. CHEMOSPHERE 2023; 330:138572. [PMID: 37088212 DOI: 10.1016/j.chemosphere.2023.138572] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are widely distributed in the marine environment, posing a significant threat to marine biota. The contribution of anthropogenic and terrestrial sources to the aquatic ecosystem has led to an increase in MPs findings, and their abundance in aquatic biota has been reported to be of concern. MPs are formed mainly via photo degradation of macroplastics (large plastic debris), and their release into the environment is a result of the degradation of additives. Eco-toxicological risks are increasing for marine organisms, due to the ingestion of MPs, which cause damage to gastrointestinal (GI) tracts and stomach. Plastics with a size <5 mm are considered MPs, and they are commonly identified by Raman spectroscopy, Fourier transfer infrared (FTIR) spectroscopy, and Laser direct infrared (LDIR). The size, density and additives are the main factors influencing the abundance and bioavailability of MPs. The most abundant type of MPs found in fishes are fiber, polystyrenes, and fragments. These microscale pellets cause physiological stress and growth deformities by targeting the GI tracts of fishes and other biota. Approximately 80% MPs come from terrestrial sources, either primary, generated during different products such as skin care products, tires production and the use of MPs as carrier for pharmaceutical products, or secondary plastics, disposed of near coastal areas and water bodies. The issue of MPs and their potential effects on the marine ecosystem require proper attention. Therefore, this study conducted an extensive literature review on assessing MPs levels in fishes, sediments, seawater, their sources, and effects on marine biota (especially on fishes), chemo-physical behavior and the techniques used for their identification.
Collapse
Affiliation(s)
- Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan.
| | - Haris Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Ghani
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan; Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Simone Toller
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Laraib Fatima
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 2300, Pakistan
| | - Amir Hamza
- Department of Soil & Environmental Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
52
|
Ferreira GVB, Justino AKS, Eduardo LN, Schmidt N, Martins JR, Ménard F, Fauvelle V, Mincarone MM, Lucena-Frédou F. Influencing factors for microplastic intake in abundant deep-sea lanternfishes (Myctophidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161478. [PMID: 36634781 DOI: 10.1016/j.scitotenv.2023.161478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Plastic debris is ubiquitous in the hydrosphere. Yet, we lack an understanding of contamination among deep-sea species and primarily how each trait can influence microplastic intake. We investigated microplastic contamination in the digestive tract of hyper-abundant mesopelagic lanternfishes (n = 364 individuals) from the Southwestern Tropical Atlantic, captured from 90 to 1000 m depth. Overall, microplastics were detected in most individuals analysed (frequency of occurrence = 68 %). Large microplastics, mostly of a filamentous shape were the most frequent, followed by smaller fragments and foams. Microplastics made of high-density polymers (PET, PVC, PA, SBR rubber) were more prevalent than low-density ones (PE, EVA and PBD rubber), especially under deeper layers. Larger microplastics were detected in lanternfishes captured off the northeastern Brazilian coast (mean 0.88 ± SE 0.06 mm) compared to those from around the Rocas Atoll and Fernando de Noronha Archipelago (0.70 ± 0.07 mm; p≤ 0.05), ∼350 km from the continent. Moreover, lanternfishes that migrate from the upper mesopelagic (200-500 m) to the epipelagic layers (<200 m) had simultaneously the highest intake and the smallest particles (1.65 ± 0.17 particles individual-1 and 0.55 ± 0.07 mm; p≤ 0.05). Biological mediated transport of microplastics from the epipelagic to the mesopelagic waters was evinced, but fishes foraging in shallower layers had the lowest intake (1.11 ± 0.10 part. ind.-1; p≤ 0.05). Furthermore, the jaw length was positively associated with an increment in microplastic intake (Incidence Rate Ratio = 1.1; p≤ 0.05). The lanternfishes that preferably prey upon fish larvae are more prone to microplastic intake than their counterparts, which forage mostly on crustaceans and gelatinous zooplankton (p≤ 0.05).
Collapse
Affiliation(s)
- Guilherme V B Ferreira
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, Recife, PE 52171-900, Brazil.
| | - Anne K S Justino
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, Recife, PE 52171-900, Brazil; Université de Toulon, Aix Marseille Univ., CNRS, IRD, Mediterranean Institute of Oceanography, Toulon, France
| | - Leandro N Eduardo
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, Recife, PE 52171-900, Brazil; MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Natascha Schmidt
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, Marseille, France
| | - Júlia R Martins
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Programa de Pós-graduação em Ciências Ambientais e Conservação (PPG-CiAC), Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil
| | - Frédéric Ménard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, Marseille, France
| | - Vincent Fauvelle
- Université de Toulouse, LEGOS (CNES/CNRS/IRD/UPS), Toulouse, France
| | - Michael M Mincarone
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil; Chapman University, Schmid College of Science and Technology, 1 University Drive, Orange, CA 92866, USA
| | - Flávia Lucena-Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura (DEPAQ), Rua Dom Manuel de Medeiros, s/n, Recife, PE 52171-900, Brazil
| |
Collapse
|
53
|
Yang J, Monnot M, Sun Y, Asia L, Wong-Wah-Chung P, Doumenq P, Moulin P. Microplastics in different water samples (seawater, freshwater, and wastewater): Methodology approach for characterization using micro-FTIR spectroscopy. WATER RESEARCH 2023; 232:119711. [PMID: 36796150 DOI: 10.1016/j.watres.2023.119711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Microplastics of millimeter dimensions have been widely investigated in environmental compartments and today, studies are mainly focused on particles of smaller dimensions (< 500 µm). However, as there are no relevant standards or policies for the preparation and analysis of complex water samples containing such particles, the results may be questionable. Therefore, a methodological approach for 10 µm to 500 µm microplastic analysis was developed using μ-FTIR spectroscopy coupled with the siMPle analytical software. This was undertaken on different water samples (sea, fresh, and wastewater) taking into consideration rinsing water, digestion protocols, collection of microplastics, and sample characteristics. Ultrapure water was the optimal rinsing water and ethanol was also proposed with a mandatory previous filtration. Although water quality could give some guidelines for the selection of digestion protocols, it is not the only decisive factor. The methodology approach by μ-FTIR spectroscopy was finally assessed to be effective and reliable. This improved quantitative and qualitative analytical methodology for microplastic detection can then be used to assess the removal efficiency of conventional and membrane treatment processes in different water treatment plants.
Collapse
Affiliation(s)
- J Yang
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - M Monnot
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - Y Sun
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - L Asia
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | - P Doumenq
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | - P Moulin
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France.
| |
Collapse
|
54
|
Kuznetsova OV, Shtykov SN, Timerbaev AR. Mass Spectrometry Insight for Assessing the Destiny of Plastics in Seawater. Polymers (Basel) 2023; 15:polym15061523. [PMID: 36987303 PMCID: PMC10052999 DOI: 10.3390/polym15061523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plastic pollution has become an increasingly serious environmental issue that requires using reliable analytical tools to unravel the transformations of primary plastics exposed to the marine environment. Here, we evaluated the performance of the isotope ratio mass spectrometry (IRMS) technique for identifying the origin of polymer material contaminating seawater and monitoring the compositional alterations due to its chemical degradation. Of twenty-six plastic specimens available as consumer products or collected from the Mediterranean Sea, five plastics were shown to originate from biobased polymeric materials. Natural abundance carbon and hydrogen isotope measurements revealed that biopolymers incline to substantial chemical transformation upon a prolonged exposure to seawater and sunlight irradiation. To assess the seawater-mediated aging that leads to the release of micro/nano fragments from plastic products, we propose to use microfiltration. Using this non-destructive separation technique as a front end to IRMS, the fragmentation of plastics (at the level of up to 0.5% of the total mass for plant-derived polymers) was recorded after a 3-month exposure and the rate and extent of disintegration were found to be substantially different for the different classes of polymers. Another potential impact of plastics on the environment is that toxic metals are adsorbed on their surface from the seashore water. We addressed this issue by using inductively coupled mass spectrometry after nitric acid leaching and found that several metals occur in the range of 0.1-90 µg per g on naturally aged plastics and accumulate at even higher levels (up to 10 mg g-1) on pristine plastics laboratory-aged in contaminated seawater. This study measured the degradation degree of different polymer types in seawater, filling in the gaps in our knowledge about plastic pollution and providing a useful methodology and important reference data for future research.
Collapse
Affiliation(s)
- Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, 119991 Moscow, Russia
| | - Sergey N Shtykov
- Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Andrei R Timerbaev
- Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
55
|
Li T, Zhang W, Yu H, Hai C, Wang Y, Yu S, Tsedevdorj SO. Research status and prospects of microplastic pollution in lakes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:485. [PMID: 36933078 DOI: 10.1007/s10661-023-11043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As an emerging pollutant, microplastics have attracted widespread concern around the world. Research on microplastics was first conducted in oceans, and in recent years, inland water, especially lakes, has gradually become a hot spot. This paper systematically reviews the sampling, separation, purification, and identification technologies used to assess microplastics in lakes and summarizes the occurrence of lake microplastics worldwide. The results show that microplastics are widespread in lake water and sediment. There are obvious geographical differences in the occurrence of microplastics. The abundance of microplastics in different lakes varies greatly. The forms are mostly fibrous and fragments, and the main polymers are polypropylene (PP) and polyethylene (PE). Previous papers have failed to comment in as much detail on the microplastic sampling techniques employed within lake systems. The sampling and analysis methods are critical to accurately evaluating contamination results. Due to the widespread presence of microplastics and the lack of uniform standards, there are various sampling methods. Trawls and grabs are most widely used in the sampling of lake water bodies and sediment, and sodium chloride and hydrogen peroxide are the most widely used media for flotation and digestion, respectively. In the future, it will be critical to establish unified standards for lake microplastic sampling and analysis technology, further explore the migration mechanism of microplastics in lake systems, and pay attention to the impact of microplastics on lake ecosystems.
Collapse
Affiliation(s)
- Tong Li
- School of Geography, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Weiqing Zhang
- School of Geography, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Hui Yu
- School of Geography, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Chunxing Hai
- School of Geography, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yong Wang
- School of Geography, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Shan Yu
- School of Geography, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Ser-Od Tsedevdorj
- Department of Geography, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 14191, Mongolia
| |
Collapse
|
56
|
Laser microdissection pressure catapulting (LMPC): a new technique to handle single microplastic particles for number-based validation strategies. Anal Bioanal Chem 2023:10.1007/s00216-023-04611-z. [PMID: 36869899 DOI: 10.1007/s00216-023-04611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
This study examines laser microdissection pressure catapulting (LMPC) as an innovative method for microplastic research. Laser pressure catapulting as part of commercially available LMPC microscopes enables the precise handling of microplastic particles without any mechanical contact. In fact, individual particles with sizes between several micrometers and several hundred micrometers can be transported over centimeter-wide distances into a collection vial. Therefore, the technology enables the exact handling of defined numbers of small microplastics (or even individual ones) with the greatest precision. Herewith, it allows the production of particle number-based spike suspensions for method validation. Proof-of-principle LMPC experiments with polyethylene and polyethylene terephthalate model particles in the size range from 20 to 63 µm and polystyrene microspheres (10 µm diameter) demonstrated precise particle handling without fragmentation. Furthermore, the ablated particles showed no evidence of chemical alteration as seen in the particles' IR spectra acquired via laser direct infrared analysis. We propose LMPC as a promising new tool to produce future microplastic reference materials such as particle-number spiked suspensions, since LMPC circumvents the uncertainties resulting from the potentially heterogeneous behavior or inappropriate sampling from microplastic suspensions. Furthermore, LMPC could be advantageous for the generation of very accurate calibration series of spherical particles for microplastic analysis via pyrolysis-gas chromatography-mass spectrometry (down to 0.54 ng), as it omits the dissolution of bulk polymers.
Collapse
|
57
|
Shi R, Liu W, Lian Y, Zeb A, Wang Q. Type-dependent effects of microplastics on tomato (Lycopersicon esculentum L.): Focus on root exudates and metabolic reprogramming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160025. [PMID: 36356752 DOI: 10.1016/j.scitotenv.2022.160025] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Much attention has been paid to the prevalence of microplastics (MPs) in terrestrial systems. MPs have been shown to affect the physio-biochemical properties of plants. Different MPs may have distinctive behaviors and diverse effects on plant growth. In the present study, the effects of polystyrene (PS), polyethylene (PE), and polypropylene (PP) MPs on physio-biochemical properties, root exudates, and metabolomics of tomato (Lycopersicon esculentum L.) under hydroponic conditions were investigated. Our results show that MPs exposure has adverse effects on tomato growth. MPs exposure had a significant type-dependent effect (p < 0.001) on photosynthetic gas parameters, chlorophyll content, and antioxidant enzyme activities. After exposure to MPs, the content of low molecular weight organic acids in tomato root exudates was significantly increased, which was considered as a strategy to alleviate the toxicity of MPs. In addition, MPs treatment significantly changed the metabolites of tomato root and leaf. Metabolic pathway analysis showed that MPs treatment had a great effect on amino acid metabolism. We also found that plants exposed to PS and PP MPs produced more significant metabolic reprogramming than those exposed to PE MPs. This study provides important implications for the mechanism studies on the toxic effect of various MPs on crops and their future risk assessment.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
58
|
Liu MJ, Guo HY, Gao J, Zhu KC, Guo L, Liu BS, Zhang N, Jiang SG, Zhang DC. Characteristics of microplastic pollution in golden pompano (Trachinotus ovatus) aquaculture areas and the relationship between colonized-microbiota on microplastics and intestinal microflora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159180. [PMID: 36191704 DOI: 10.1016/j.scitotenv.2022.159180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MPs) pollution is a global marine environmental problem. The effects of MPs on the gut microbiota of aquatic organisms have received considerable attention. For example, microbes colonizing MPs in pond cultures alter the structure and function of the intestinal microbes of shrimp and fish. It was hypothesized that bacteria on MPs in natural mariculture areas also interact with the intestinal flora of golden pompano (Trachinotus ovatus) because biofilms can form on the surface of MPs during long-term floating in seawater. To our knowledge, this study is the first to investigate MPs pollution in T. ovatus aquaculture. DNA sequencing and bioinformatics analysis confirmed the effect of microbial colonization of MPs on the intestinal flora of T. ovatus. The MPs detected in the gut wet weight (w.w.) of golden pompano (546 ± 52 items/g) were mainly pellets and fragments of blue or green, whereas the sediment MPs dry weight (d.w.) (4765 ± 116 items/kg) were mainly black fibers. The MPs richness in the sediment gradually increased from the open-sea aquaculture area to the estuarine aquaculture area and was positively correlated with the MPs richness in the intestinal tract of golden pompano. MPs 20-200 μm were the most common in the gut and sediment. The intake of MPs increased the abundance of Proteobacteria and decreased that of Firmicutes in the intestinal flora. The functional compositions of MP-colonizing microbes and gut microbiota were similar, suggesting that the two communities influence each other. Network analysis further confirmed this and revealed that Vibrio plays a key role in the intestinal flora and surface microorganisms of MPs. Overall, the intake of MPs by aquatic animals not only affects the intestinal flora and intestinal microbial function, but also poses potential risks to aquaculture.
Collapse
Affiliation(s)
- Ming-Jian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; College of Fisheries, Tianjin Agricultural University, 300384 Tianjin, China
| | - Hua-Yang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Jie Gao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Ke-Cheng Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Liang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Bao-Suo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Dian-Chang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China.
| |
Collapse
|
59
|
Zhi Xiang JK, Bairoliya S, Cho ZT, Cao B. Plastic-microbe interaction in the marine environment: Research methods and opportunities. ENVIRONMENT INTERNATIONAL 2023; 171:107716. [PMID: 36587499 DOI: 10.1016/j.envint.2022.107716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.
Collapse
Affiliation(s)
- Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Zin Thida Cho
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|