51
|
The brominated flame retardants TBECH and DPTE alter prostate growth, histology and gene expression patterns in the mouse. Reprod Toxicol 2021; 102:43-55. [PMID: 33848595 DOI: 10.1016/j.reprotox.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and β, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαβ and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαβ affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαβ group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.
Collapse
|
52
|
Marteinson SC, Bodnaryk A, Fry M, Riddell N, Letcher RJ, Marvin C, Tomy GT, Fernie KJ. A review of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in the environment and assessment of its persistence, bioaccumulation and toxicity. ENVIRONMENTAL RESEARCH 2021; 195:110497. [PMID: 33232751 DOI: 10.1016/j.envres.2020.110497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Following the ban of many historically-used flame retardants (FRs), numerous replacement chemicals have been produced and used in products, with some being identified as environmental contaminants. One of these replacement flame retardants is 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH), which to date has not been identified for risk assessment and potential regulation. DBE-DBCH technical mixtures consist largely of α- and β-diastereomers with trace amounts of γ- and δ-DBE-DBCH. The α- and β-isomers are known contaminants in various environmental media. While current global use and production volumes of DBE-DBCH are unknown, recent studies identified that DBE-DBCH concentrations were among the highest of the measured bromine-based FRs in indoor and urban air in Europe. Yet our mass balance fugacity model and modeling of the physical-chemical properties of DBE-DBCH estimated only 1% partitioning to air with a half-life of 2.2 d atmospherically. In contrast, our modeling characterized DBE-DBCH adsorbing strongly to suspended particulates in the water column (~12%), settling onto sediment (2.5%) with minimal volatilization, but with most partitioning and adsorbing strongly to soil (~85%) with negligible volatilization and slow biodegradation. Our modeling further predicted that organisms would be exposed to DBE-DBCH through partitioning from the dissolved aquatic phase, soil, and by diet, and given its estimated logKow (5.24) and a half-life of 1.7 d in fish, DBE-DBCH is expected to bioaccumulate into lipophilic tissues. Low concentrations of DBE-DBCH are commonly measured in biota and humans, possibly because evidence suggests rapid metabolism. Yet toxicological effects are evident at low exposure concentrations: DBE-DBCH is a proven endocrine disruptor of sex and thyroid hormone pathways, with in vivo toxic effects on reproductive, metabolic, and other endpoints. The objectives of this review are to identify the current state of knowledge concerning DBE-DBCH through an evaluation of its persistence, potential for bioaccumulation, and characterization of its toxicity, while identifying areas for future research.
Collapse
Affiliation(s)
- Sarah C Marteinson
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Anjelica Bodnaryk
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, R3T 2N2, Canada
| | - Nicole Riddell
- Wellington Laboratories, 345 Southgate Dr., Guelph, ON, N1G 3M5, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Chris Marvin
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, R3T 2N2, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
53
|
Chen M, Zhu L, Wang Q, Shan G. Tissue distribution and bioaccumulation of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115887. [PMID: 33120332 DOI: 10.1016/j.envpol.2020.115887] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 05/24/2023]
Abstract
Tissue distribution of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in several kinds of edible fishes collected from Meiliang bay of Taihu Lake, China were investigated and the related human health risks were assessed. Perfluorooctanesulfonate (PFOS), perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer phosphate diester (6:2 diPAP) were the most abundant legacy perfluoroalkyl acid (PFAA), PFOS related precursor (PreFOS), and the emerging PFASs in all fish tissues, respectively. Similar to the legacy PFAAs, 6:2 diPAP and 6:6 perfluorophosphinate (6:6 PFPiA) had the highest levels in the fish liver, whereas the highest level of PFOSA was in kidney, which might be due to its intensive transformation in fish liver. The concentrations of PFASs were generally positively correlated with the trophic levels. The profiles of PFASs were significantly different among bitterling, crucian and other fish, which might be related to their different metabolic capacities. Bioaccumulation factors (BAFs) of PreFOSs, 6:2 diPAP, and 6:6 PFPiA were lower than those of PFAAs with the same number of perfluorinated carbons. The calculated hazard ratios (HR) of PFOS (Range: 0.0100-0.655) and perfluorooctanoic acid (PFOA) (<0.00200) in all fish muscles were less than 1.0. However, the HR of the ∑PFASs in crucian muscle was 1.04, which implied that frequent consumption of crucian collected from Meiliang Bay might pose potential risks to human health.
Collapse
Affiliation(s)
- Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Jinan, Shandong, 250014, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China.
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
54
|
Ma J, Li X, Ma S, Zhang X, Li G, Yu Y. Temporal trends of "old" and "new" persistent halogenated organic pollutants in fish from the third largest freshwater lake in China during 2011-2018 and the associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115497. [PMID: 32889513 DOI: 10.1016/j.envpol.2020.115497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The study aimed to investigate temporal trends of "old" and "new" persistent halogenated organic pollutants (HOPs) in Taihu Lake, the third largest freshwater lake in China, and the associated health risks. Five fish species were consecutively collected from the lake every year during 2011-2018. HOPs including 37 polychlorinated biphenyls (PCBs), 10 organochlorine pesticides (OCPs), short- and medium-chain chlorinated paraffins (SCCPs and MCCPs), 19 polybrominated diphenyl ethers (PBDEs), and 10 new brominated flame retardants (NBFRs), were measured. The results showed that all the HOPs were detected, with MCCPs and NBFRs showing the highest and lowest concentrations, respectively. The levels of SCCPs and MCCPs were several orders of magnitude higher than those of the other HOPs. There were obvious increasing trends for SCCPs, MCCPs, and hexachlorobenzene, but a decreasing trend for PBDEs. No obvious increasing or decreasing trends were observed for the other HOPs. The present study indicated that the use of NBFRs to replace PBDEs was not yet clearly observed. Fish consumption did not result in non-carcinogenic risks, but posed low carcinogenic risks, with PCBs and DDTs being the highest-risk contaminants because of historical residues. This is the first study for the temporal variations of the HOPs in the lake.
Collapse
Affiliation(s)
- Jinjing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiangnan Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
55
|
Zhou D, Zheng X, Liu X, Huang Y, Su W, Tan H, Wang Y, Chen D. Photodegradation of 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione and decabromodiphenyl ethane flame retardants: Kinetics, Main products, and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122983. [PMID: 32473325 DOI: 10.1016/j.jhazmat.2020.122983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Photodegradation has been demonstrated as one of the important environmental factors affecting the fate of contaminants such as brominated flame retardants (BFRs). However, a number of emerging BFRs, particularly those with high bromine substitution, have rarely been investigated for their photodegradation kinetics. Our study evaluated photodegradation of two highly brominated FRs, 1,3,5-tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) and decabromodiphenyl ethane (DBDPE), under various conditions. The results indicated that the degradation kinetics was affected by UV irradiation wavelength, intensity, solvent type, as well as the structural characteristics. TDBP-TAZTO exhibited degradation half-lives (t1/2) of 23.5-6931 min under various UV irradiation conditions and 91.2 days under natural sunlight. Its degradation was much slower than that of DBDPE which exhibited t1/2 of 0.8-101.9 min under UV and 41.3 min under natural sunlight. A variety of degradation products were detected as a result of different breakdown pathways. This indicated that photodegradation could substantially influence the fate of these highly brominated FRs, resulting in a cocktail of degradation products as environmentally occurring contaminants. This could also complicate the evaluation of the ecological risks of these target flame retardants, given that degradation products generally possess physicochemical properties and biological effects different from their parent chemicals.
Collapse
Affiliation(s)
- Daming Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoshi Zheng
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Weijie Su
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yan Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
56
|
Shi X, Wen B, Huang H, Zhang S. Cytotoxicity of hexabromocyclododecane, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane and 1,2,5,6-tetrabromocyclooctane in human SH-SY5Y neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139650. [PMID: 32758930 DOI: 10.1016/j.scitotenv.2020.139650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
With the listing of the of cycloaliphatic brominated flame retardants (CBFR) hexabromocyclododecane (HBCD) as a persistent organic pollutant (POP) by the Stockholm Convention, much attention has been paid to the environmental behaviors and biological effects of HBCD, as well as its potential alternatives, such as 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (TBECH) and 1,2,5,6-tetrabromocyclooctane (TBCO). In this study, the neurotoxicity of HBCD, TBECH, and TBCO in human SH-SY5Y cells were compared. The results showed that HBCD, TBECH, and TBCO induced cytotoxicity, including dose-dependent cell viability decreases, cell membrane permeability increases, cytoskeleton development damage, and apoptosis induction, with the cytotoxicity in the order of HBCD > TBCO > TBECH. The expression levels of apoptotic proteins (caspase-3, Bax, caspase-9, Bcl-2, and cytochrome c (Cyt c)) followed the same order, which indicated that mitochondrial apoptotic pathway may be one of the mechanisms responsible for their neurotoxicity. In order to study the mechanisms of cytotoxicity, CBFRs-induced reactive oxygen species (ROS) and the intracellular calcium levels were determined. The ROS levels were significantly elevated for three CBFRs treatment, suggesting that oxidative stress contributes to their cytotoxicity. The intracellular calcium concentrations were significantly enhanced for HBCD and TBCO treatment, but not for TBECH, indicating that in addition to ROS, cytotoxicity of HBCD and TBCO may follow Ca2+-mediated apoptotic pathway. This study first compared the neurotoxicity of different CBFRs, providing valuable information for their risk assessment.
Collapse
Affiliation(s)
- Xiaoli Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
57
|
Wang H, Liu S, Zhang C, Wan Y, Chang H. Occurrence and mass balance of emerging brominated flame retardants in a municipal wastewater treatment plant. WATER RESEARCH 2020; 185:116298. [PMID: 32818736 DOI: 10.1016/j.watres.2020.116298] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
As a class of alternative flame retardants, "novel" brominated flame retardants (NBFRs) have been widely used in clothing, textiles, electronics, building materials, and plastics and are frequently found in environmental samples. Although the use and discharge of NBFRs are increasing all over the world, little information is available about their fates and removal in wastewater treatment plants (WWTPs). This study investigated the occurrence and behavior of 2,4,6-tribromophenyl allyl ether (ATE), 2,3-dibromopropyl tribromophenyl ether (DPTE), tetrabromo-o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) in a municipal WWTP in Beijing, China. Four of the NBFRs (ATE, BTBPE, TBPH, and DBDPE) were detected in all wastewater and biosolid samples. The dominant compound in both wastewater and biosolid samples was DBDPE, with concentrations in the ranges of 6.4-18 ng/L and 83-288 ng/g dry weight (dw), respectively. A mass flow analysis indicated that the overall removal efficiencies were 31±18% for ATE, 97±1.5% for DPTE, 79±11% for BTBPE, 87±5.3% for TBPH, and 93±3.3% for DBDPE, but the removal efficiency in aqueous phase only ranged from -43 (ATE) to 57% (DBDPE). The low and negative removal efficiencies of ATE were possibly due to the transformation of DPTE during the anaerobic treatment processes. Under the aerobic conditions, BTBPE, TBPH and DBDPE underwent a very slow biodegradation. A total of 68-91% of the initial mass loadings of ATE, BTBPE, TBPH and DBDPE were found in the biosolid samples, suggesting that the four NBFRs were removed mainly via sorption in the WWTP.The biosolid was a huge reservoir of target NBFRs, and effective removal of NBFRs during treatment in the WWTP is critical.
Collapse
Affiliation(s)
- Hongping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing100083, China
| | - Songqing Liu
- China NIL Research Center for Proficiency Testing, Central Iron &Steel Research Institute, Beijing100081, China
| | - Cunxu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing100083, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing100083, China.
| |
Collapse
|
58
|
Yang H, Lu G, Yan Z, Liu J, Dong H, Bao X, Zhang X, Sun Y. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122245. [PMID: 32062346 DOI: 10.1016/j.jhazmat.2020.122245] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 05/18/2023]
Abstract
Little information is available on the bioaccumulation and trophic transfer of pharmaceuticals and personal care products (PPCPs) in urban rivers system, particularly for those affected by water transfer. Herein, a comprehensive study was conducted to investigate the biological residues, bioaccumulation and trophic transfer of 45 PPCPs in the Nanjing Qinhuai River system under the background of water diversion projects. A total of 30 compounds were detected with a descending order of overall concentration as plankton > benthic mollusc > fish (except grass carp). Higher biological residues were observed in the downstream than those in the upstream, with the largest increase for fish (136.4 %) and the lowest increase for phytoplankton (5.4 %). However, the bioaccumulation classifications of most PPCPs were unchanged among the three different water-diversion regions. Trophic magnification factors (TMFs) of organic UV filters (homosalate, oxybenzone, ethylhexyl methoxycinnamate and octocrylene) ranged from 1.23 to 2.04, suggesting trophic magnification potential, while trophic dilution for pharmaceuticals (sertraline, citalopram, caffeine and roxithromycin) with TMFs of 0.42 to 0.50 were observed. A notable positive correlation was observed between the pH-dependent distribution coefficient (logDow) and the TMFs of the PPCPs (P < 0.05). Although the human health hazard assessment indicated no immediate health risk via the consumption of freshwater food, attention should be paid to the joint effects of PPCPs.
Collapse
Affiliation(s)
- Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiadong Zhang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yu Sun
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
59
|
Liu Y, Luo X, Zeng Y, Tu W, Deng M, Wu Y, Mai B. Species-specific biomagnification and habitat-dependent trophic transfer of halogenated organic pollutants in insect-dominated food webs from an e-waste recycling site. ENVIRONMENT INTERNATIONAL 2020; 138:105674. [PMID: 32234680 DOI: 10.1016/j.envint.2020.105674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic, amphibious, and terrestrial organisms in or around a pond that was contaminated by e-waste were collected and persistent halogenated organic pollutants (HOPs) for these species were analyzed. Based on the stable isotope and dietary composition, the aquatic and terrestrial food webs and several insect-dominated food chains including insects - toads, insects - lizards, and insects - birds were constructed. Biomagnification factors (BMFs) for insect-dominated food chains and trophic magnification factors (TMFs) in aquatic and terrestrial food webs were calculated. The BMFs of HOPs (except DBDPE) in insect - bird food chains were significantly higher than those in insect - toad and insect - lizard food chains, indicating that HOPs accumulated more easily in homeotherms than in poikilotherms. Trophic magnification was present for most of the PCB congeners in both aquatic and terrestrial food webs. Differences between the trophic transfer of halogenated flame retardant in terrestrial and aquatic food webs were observed, with trophic magnification in the terrestrial food web but trophic dilution in the aquatic food web for most of chemicals (except for lower brominated PBDE congeners). Meanwhile, the contour plots of TMFs across combinations of log KOW and log KOA for terrestrial food web were distinct from those for aquatic food web. These results indicate that the biomagnification mechanisms of HOPs in aquatic food webs are different from those in terrestrial food webs, and further suggest that the bioaccumulation of contaminants in terrestrial ecosystems cannot be directly deduced from aquatic ecosystems.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Yanghong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
60
|
Ma G, Yu H, Han C, Jia Y, Wei X, Wang Z. Binding and Metabolism of Brominated Flame Retardant β-1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Human Microsomal P450 Enzymes: Insights from Computational Studies. Chem Res Toxicol 2020; 33:1487-1496. [DOI: 10.1021/acs.chemrestox.0c00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cenyang Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Jia
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
61
|
Wang X, Wei L, Zhu J, He B, Kong B, Jin Y, Fu Z. Tetrabromoethylcyclohexane (TBECH) exhibits immunotoxicity in murine macrophages. ENVIRONMENTAL TOXICOLOGY 2020; 35:159-166. [PMID: 31696622 DOI: 10.1002/tox.22852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Tetrabromoethylcyclohexane (TBECH) has been linked to endocrine disruption, hepatotoxicity, and reproductive toxicity. However, its immunotoxicity remains largely unknown. In the present study, RAW 264.7 cells, mouse macrophage cell line, were exposed to TBECH. MTT assays showed that TBECH significantly enhanced lactate dehydrogenase (LDH) release in RAW 264.7 cells. The mRNA expression of some proapoptotic genes was upregulated by TBECH. Accordingly, TBECH elevated caspase-3 activity. In addition, TBECH upregualted the mRNA levels of some pro-inflammatory cytokines, whereas it downregulated LPS-stimulated mRNA expression of these cytokines. Moreover, TBECH downregulated the mRNA expression of selected antigen presenting-related genes. Furthermore, TBECH increased reactive oxygen species level, reduced glutathione content and the activities of superoxide dismutase and catalase, and upregulated the mRNA expression of selected oxidative stress-related genes. The obtained data demonstrated that TBECH exhibits immunotoxicity in macrophages, and will help to evaluate its health risks.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
62
|
Won EJ, Choi B, Lee CH, Hong S, Lee JH, Shin KH. Variability of trophic magnification factors as an effect of estimated trophic position: Application of compound-specific nitrogen isotope analysis of amino acids. ENVIRONMENT INTERNATIONAL 2020; 135:105361. [PMID: 31887478 DOI: 10.1016/j.envint.2019.105361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The trophic magnification of persistent organic pollutants (POPs), which is the relationship between POP concentration and the trophic position (TPs) of an organism, is considered an important factor for prioritizing chemicals of concern in the environment. Organismal TPs are typically based on nitrogen isotope ratios of bulk tissue (δ15Nbulk). In this study, nitrogen isotope ratios of amino acids (δ15NAAs), a more precise approach for TP estimation (TPAAs), was applied and compared with estimations of TP based on δ15Nbulk (TPbulk) in marine organisms living in Masan Bay, South Korea. Compound-specific isotope analysis of the amino acids (CSIA-AAs) in fish samples allows us to calculate robust TPs by correcting the variation in baseline isotope values with use of the δ15Nbulk technique. In a benthic food chain, this approach reveals more significant magnification trends for POPs [polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs)] than those revealed by analysis of the relationship between TPbulk and POPs. The trophic magnification factors (TMF) associated with TPAAs were significant for some POPs, especially pp'-DDD and chlordane. The results presented in this study suggest that TP calculations based on δ15NAAs are an effective tool for characterizing trophic magnification trends related to the fates of various pollutants.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea; Institute of Marine & Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Bohyung Choi
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea; Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Chang Hwa Lee
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Hyeon Lee
- Environmental Human Research & Consulting (EH R&C), Incheon 22689, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea; Institute of Marine & Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
63
|
Liu M, Cheng M, Zhang Q, Hansen G, He Y, Yu C, Lin H, Zhang H, Wang X. Significant elevation of human methylmercury exposure induced by the food trade in Beijing, a developing megacity. ENVIRONMENT INTERNATIONAL 2020; 135:105392. [PMID: 31864030 DOI: 10.1016/j.envint.2019.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) poses health risks to humans worldwide. The investigation of a longer chain of biogeochemical MeHg transport from production to consumption than that addressed in previous studies could provide additional scientific foundation for the reduction of risks. The main objective of this study is to identify the impacts of the interregional food trade along with the age, gender and socioeconomic status of people on human MeHg exposure in a developing megacity. Based on a field investigation, sampling and measurements, we provide experimental evidence regarding the substantial displacement of human MeHg exposure from production areas to consumption areas induced by the food trade. In 2018, 20% and 64% of the exposure in Beijing originated from the international and interprovincial food trade, respectively. Meanwhile, the ingestion of fish contributed 79% to the total exposure, followed by rice (4.4%), crab (3.8%) and shrimp (2.7%), and the exposure risk in urban districts was higher than that in rural areas by a factor of 2.2. A significantly higher contribution of imported deep-sea species to exposure among young people than among older people was observed (P < 0.01**), and a larger contribution of the international food trade to the MeHg exposure risk for women of childbearing age (average: 27%) than that among other groups (average: 10%) was found. Overall, our efforts demonstrate the dramatic impact of the food trade on MeHg exposure in a developing megacity, and we suggest that MeHg-susceptible populations in China should choose indigenous fish species (e.g., hairtail, yellow croaker and carp species) rather than imported deep-sea species as their dietary protein source.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
| | - Menghan Cheng
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gunnar Hansen
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| | - Yipeng He
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| | - Chenghao Yu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haoran Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
64
|
Guo W, Han J, Wu S, Shi X, Wang Q, Zhou B. Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate Affects Lipid Metabolism in Zebrafish Larvae via DNA Methylation Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:355-363. [PMID: 31804803 DOI: 10.1021/acs.est.9b05796] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is a ubiquitous environmental contaminant, but its toxicity is not fully understood. Accordingly, we investigated the effects of TBPH and its metabolite, mono-(2-ethyhexyl)tetrabromophthalate (TBMEHP), on lipid metabolism using a zebrafish model. The molecular docking study revealed that TBPH and TBMEHP bind to zebrafish peroxisome proliferator-activated receptor γ (PPARγ), with binding energies similar to rosiglitazone, a PPARγ agonist. Zebrafish embryos 0.75 hpf were exposed to TBPH (0.2-2000 nM) or TBMEHP (0.2-2000 nM) until 72 hpf, and their effects on PPARγ-mediated lipid metabolism were evaluated. Significant regional DNA demethylation of the PPARγ promoter was observed in the larvae at 72 hpf. Demethylation of the PPARγ promoter accompanied by upregulation of tet1 and tet2 transcription caused upregulation of PPARγ transcription and certain downstream genes involved in lipid lipolysis, transport, and metabolism. The triglyceride and total cholesterol concentrations in the larvae were significantly reduced following exposure to TBPH or TBMEHP. Furthermore, significant increases in the whole ATP content and locomotor activity in the 120 hpf larvae were observed. The overall results suggest that both TBPH and TBMEHP affect methylation of the PPARγ promoter, subsequently influencing larvae lipid metabolism via the PPARγ signaling pathway and disrupting energy homeostasis.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shengmin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiongjie Shi
- College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
65
|
Xiong P, Yan X, Zhu Q, Qu G, Shi J, Liao C, Jiang G. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13551-13569. [PMID: 31682424 DOI: 10.1021/acs.est.9b03159] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Use of legacy brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD), has been reduced due to adverse effects of these chemicals. Several novel brominated flame retardants (NBFRs), such decabromodiphenyl ethane (DBDPE) and bis(2,4,6-tribromophenoxy) ethane (BTBPE), have been developed as replacements for PBDEs. NBFRs are used in various industrial and consumer products, which leads to their ubiquitous occurrence in the environment. This article reviews occurrence and fate of a select group of NBFRs in the environment, as well as their human exposure and toxicity. Occurrence of NBFRs in both abiotic, including air, water, dust, soil, sediment and sludge, and biotic matrices, including bird, fish, and human serum, have been documented. Evidence regarding the degradation, including photodegradation, thermal degradation and biodegradation, and bioaccumulation and biomagnification of NBFRs is summarized. The toxicity data of NBFRs show that several NBFRs can cause adverse effects through different modes of action, such as hormone disruption, endocrine disruption, genotoxicity, and behavioral modification. The primary ecological risk assessment shows that most NBFRs exert no significant environmental risk, but it is worth noting that the result should be carefully used owing to the limited toxicity data.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
66
|
Chen M, Wang Q, Zhu Y, Zhu L, Xiao B, Liu M, Yang L. Species dependent accumulation and transformation of 8:2 polyfluoroalkyl phosphate esters in sediment by three benthic organisms. ENVIRONMENT INTERNATIONAL 2019; 133:105171. [PMID: 31610368 DOI: 10.1016/j.envint.2019.105171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Sediment is a major sink for 8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) in the environment. In the present study, three representative benthic organisms, including carp (Cyrinus carpio), loach (Misgurnus anguillicaudatus) and worm (Limnodrilus hoffmeisteri), were exposed to 8:2 diPAP spiked sediment at 300 ng g-1. 8:2 diPAP in the sediment was bioavailable to carp, loach and worm even though the biota-sediment accumulation factors (BSAFs) (0.137, 0.0273, 0.413 g g-1, respectively) were relatively low due to its large molecular weight and high log KOW value. The worm displayed the greatest enrichment ability among the three species, implying the utility of using worm as a bio-indicator of 8:2 diPAP pollution in sediment. The biotransformation products (e.g. 8:2 FTUCA and 7:3 FTCA) were detected in all the three species, suggesting that they had the ability to transform 8:2 diPAP. Loach displayed the strongest metabolism capacity while worm displayed the weakest. Transformation of 8:2 diPAP also took place in the sediment by microorganisms. Notably, the concentration ratio of 7:3 FTCA and 8:2 FTUCA in the sediment was much lower than that in benthic organisms, suggesting that the aquatic benthic organisms and microorganisms had different transformation activities and mechanisms.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, PR China.
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
67
|
Bekele TG, Zhao H, Wang Q, Chen J. Bioaccumulation and Trophic Transfer of Emerging Organophosphate Flame Retardants in the Marine Food Webs of Laizhou Bay, North China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13417-13426. [PMID: 31693343 DOI: 10.1021/acs.est.9b03687] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the increase in production, usage, and discharge of organophosphate flame retardants (OPFRs), little information is available about their bioaccumulation and trophic transfer in the marine food web. In this study, seawater, sediment, and marine species (10 fish and 9 invertebrate species) collected from Laizhou Bay, North China, were analyzed to investigate the levels, bioaccumulation, and biomagnification of OPFRs in a marine food web. Of 20 OPFRs screened for, 17 were quantifiable in seawater, sediment, and organisms. The ∑OPFRs concentrations ranged from 0.2 to 28.4 ng/L in seawater, 0.1-96.9 ng/g dry weight in sediment, and 21.1-3510 ng/g lipid weight in organisms. Benthic fish accumulated more OPFRs than pelagic fish and invertebrates. A linear and significant increase of bioaccumulation factors with increasing lipophilicity of OPFRs was observed (R2 = 0.63, p < 0.05), and the biota-sediment accumulation factors increased with hydrophobicity up to log KOW = 4.59 and then decreased with increase in log KOW. Trophic magnification factors of OPFRs ranged from 1.06 to 2.52, indicating biomagnification potential of OPFRs in a marine food web. This study provides important insight into the biomagnification potential of OPFRs and suggests further investigation on this group of chemicals.
Collapse
Affiliation(s)
- Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , 116024 , China
- Department of Natural Resource Management , Arba Minch University , Arba Minch , 21, Ethiopia
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , 116024 , China
| | - Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , 116024 , China
| |
Collapse
|
68
|
Tang Y, Yin M, Yang W, Li H, Zhong Y, Mo L, Liang Y, Ma X, Sun X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:984-991. [PMID: 31220374 DOI: 10.1002/wer.1163] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of emerging pollutants (EPs) is continuously reported worldwide. Nevertheless, only few of these compounds are toxicologically evaluated due to their vast numbers. Reliable analytical methods and toxicity assessment methods are the basis of either the management or the elimination of EPs. In this paper, literature published in 2018 on EPs were reviewed with special regard to their occurrence, detection methods, fate in the environment, and ecological toxicity assessment. Particular focus was placed on practical considerations, novel processes, and new solution strategies. PRACTITIONER POINTS: Literature published in 2018 on emerging pollutants were reviewed. This review article is with special regard to the occurrence, detection methods, fate and toxicity assessment of emerging pollutants. Particular focus was placed on practical considerations, novel processes and new solution strategies.
Collapse
Affiliation(s)
- Yankui Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Maozhong Yin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Weiwei Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Huilan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yaxuan Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Lihong Mo
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Xiang Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
69
|
Eng ML, Karouna-Renier NK, Henry PFP, Letcher RJ, Schultz SL, Bean TG, Peters LE, Palace VP, Williams TD, Elliott JE, Fernie KJ. In ovo exposure to brominated flame retardants Part II: Assessment of effects of TBBPA-BDBPE and BTBPE on hatching success, morphometric and physiological endpoints in American kestrels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:151-159. [PMID: 31035249 DOI: 10.1016/j.ecoenv.2019.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTPBE) are both brominated flame retardants (BFRs) that have been detected in birds; however, their potential biological effects are largely unknown. We assessed the effects of embryonic exposure to TBBPA-BDBPE and BTBPE in a model avian predator, the American kestrel (Falco sparverius). Fertile eggs from a captive population of kestrels were injected on embryonic day 5 (ED5) with a vehicle control or one of three doses within the range of concentrations that have been detected in biota (nominal concentrations of 0, 10, 50 or 100 ng/g egg; measured concentrations 0, 3.0, 13.7 or 33.5 ng TBBPA-BDBPE/g egg and 0, 5.3, 26.8 or 58.1 ng BTBPE/g egg). Eggs were artificially incubated until hatching (ED28), at which point blood and tissues were collected to measure morphological and physiological endpoints, including organ somatic indices, circulating and glandular thyroid hormone concentrations, thyroid gland histology, hepatic deiodinase activity, and markers of oxidative stress. Neither compound had any effects on embryo survival through 90% of the incubation period or on hatching success, body mass, organ size, or oxidative stress of hatchlings. There was evidence of sex-specific effects in the thyroid system responses to the BTBPE exposures, with type 2 deiodinase (D2) activity decreasing at higher doses in female, but not in male hatchlings, suggesting that females may be more sensitive to BTBPE. However, there were no effects of TBBPA-BDBPE on the thyroid system in kestrels. For the BTPBE study, a subset of high-dose eggs was collected throughout the incubation period to measure changes in BTBPE concentrations. There was no decrease in BTBPE over the incubation period, suggesting that BTBPE is slowly metabolized by kestrel embryos throughout their ∼28-d development. These two compounds, therefore, do not appear to be particularly toxic to embryos of the American kestrel.
Collapse
Affiliation(s)
- Margaret L Eng
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta, British Columbia, Canada
| | | | - Paula F P Henry
- U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Sandra L Schultz
- U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville, MD, USA
| | - Thomas G Bean
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - Lisa E Peters
- Riddell Faculty of Earth Environment and Resources, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vince P Palace
- International Institute of Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John E Elliott
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Pacific Wildlife Research Centre, Delta, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| |
Collapse
|
70
|
Kurt-Karakus PB, Muir DCG, de Jourdan B, Teixeira C, Epp Martindale J, Embers H, Wang X, Keir M, Backus S. Bioaccumulation of Selected Halogenated Organic Flame Retardants in Lake Ontario. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1198-1210. [PMID: 30901092 DOI: 10.1002/etc.4413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The trophic magnification of polybrominated diphenyl ethers (PBDEs) and selected nonlegacy halogenated organic compounds (HOCs) was determined in the food web of Lake Ontario (ON, Canada). In all, 28 Br3 -Br8 -PBDEs and 24 HOCs (10 of which had not been targeted previously) were analyzed. Average concentrations of Σ28 PBDEs in fish ranged between 79.7 ± 54.2 ng/g lipid weight in alewife (Alosa pseudoharengus) and 815 ± 695 ng/g lipid weight in lake trout (Salvelinus namaycush). For invertebrates, concentrations were between 13.4 ng/g lipid weight (net plankton; >110 μm) and 41.9 ng/g lipid weight in Diaporeia (Diaporeia hoyi). Detection frequency (DF) for HOCs was highest for anti-Dechlorane Plus (anti-DDC-CO), 1,3-diiodobenzene (1,3-DiiB), tribromo-methoxy-methylbenzene (ME-TBP), allyl 2,4,6-tribromophenyl ether (TBP-AE), pentabromocyclododecene (PBCYD), α+β-tetrabromocylcooctane (TBCO), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE), and pentabromotoluene (PBT; DF for all = 100% in lake trout). Tetrabromoxylene (TBX), dibromopropyl 2,4,6-tribromophenyl ether (TBP-DBPE), and syn-DDC-CO were also frequently detected in trout (DF = 70-78%), whereas 2,3,4,5,6-pentabromoethyl benzene (PBEB) was detected only in plankton. Several HOCs were reported in aquatic biota in the Great Lakes (USA/Canada) for the first time in the present study, including PBCYD, 1,3DiiB, BATE, TBP-DBPE, PBT, α + β-TBCO, and ME-TBP. The Br4-6 -BDEs (-47, -85, -99, -100, -153, and -154) all had prey-weighted biomagnification factors (BMFPW ) values >6, whereas BMFPW values for Br7-8 -BDEs were <1. The highest BMFPW values of non-PBDEs were for TBP-DBPE (10.6 ± 1.34) and ME-TBP (4.88 ± 0.60), whereas TBP-AE had a BMFPW value of <1. Significant (p ≤ 0.05) trophic magnification factors (TMFs), both positive and negative, were found for Br4-8- BDEs (BDE 196 = 0.4; BDE 154 = 9.5) and for bis(2,4,6-tribromophenoxy)ethane (BTBPE; 0.53), PBCYD (1.8), 1,3-DiiB (0.33), and pentabromobenzene (PBB; 0.25). Food chain length was found to have a significant influence on the TMF values. Environ Toxicol Chem 2019;38:1198-1210. © 2019 SETAC.
Collapse
Affiliation(s)
- Perihan B Kurt-Karakus
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario, Canada
| | - Benjamin de Jourdan
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario, Canada
- Huntsman Ocean Sciences, St. Andrews, New Brunswick, Canada
| | - Camilla Teixeira
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario, Canada
| | | | - Heather Embers
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario, Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario, Canada
| | - Mike Keir
- Water Quality Monitoring and Surveillance, Environment & Climate Change Canada, Burlington, Ontario, Canada
| | - Sean Backus
- Water Quality Monitoring and Surveillance, Environment & Climate Change Canada, Burlington, Ontario, Canada
| |
Collapse
|
71
|
Fu L, Pei J, Zhang Y, Cheng X, Long S, Zeng L. Polybrominated diphenyl ethers and alternative halogenated flame retardants in mollusks from the Chinese Bohai Sea: Levels and interspecific differences. MARINE POLLUTION BULLETIN 2019; 142:551-558. [PMID: 31232338 DOI: 10.1016/j.marpolbul.2019.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs) were measured in eleven mollusk species collected from the Chinese Bohai Sea. PBDEs and AHFRs were detected in all species, and their average total concentrations were in the range of 22.5-355 and 10.0-84.3 ng/g lipid weight, respectively. Decabromodiphenyl ether (BDE-209) and decabromodiphenylethane (DBDPE) were the dominant halogenated flame retardants (HFRs), contributing 22.5% to 73.6% and 3.1% to 38.3% of the total HFRs, respectively. The levels of PBDEs and AHFRs were moderate to high from a global perspective. Interspecific differences in the accumulation of PBDEs and AHFRs were characterized by heat map and cluster analysis. Composition profile differences were also observed, with higher proportions of AHFRs in gastropods than in bivalves. These species-specific differences in concentrations and profiles in mollusks were attributed to different species traits, including feeding habit, trophic level, and metabolic potential.
Collapse
Affiliation(s)
- Lingfang Fu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Jie Pei
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yuyu Zhang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaogu Cheng
- Guangzhou Research Institute of Environmental Protection, Guangzhou 510620, China
| | - Shenxing Long
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lixi Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
72
|
Wang X, Zhong W, Xiao B, Liu Q, Yang L, Covaci A, Zhu L. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism. ENVIRONMENT INTERNATIONAL 2019; 125:25-32. [PMID: 30690428 DOI: 10.1016/j.envint.2019.01.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The bioavailability and biomagnification of organophosphate esters (OPEs) were investigated in a food web in the Zhushan Bay of Taihu Lake, China. The organisms included mainly three biological groups: plankton, invertebrates, and fish, which displayed distinctly different compositional profiles of OPEs. In general, the log BAFs (bioaccumulation factor) of OPEs displayed a significant correlation with their log Kow (octanol-water partitioning coefficient), suggesting that the bioaccumulation was mainly controlled by the hydrophobicity. The log BAFs of the more hydrophobic OPEs in benthic invertebrates were higher than in fish, suggesting that ingesting sediment constituted additional exposure route for benthic invertebrates. The log BSAFs (biota-sediment accumulation factor) in the benthic invertebrates increased with log Kow in the range of 1.44-5.73 and decreased afterwards. The depressed bioavailability of the highly hydrophobic OPEs was attributed to their strong adsorption to the sediment. The biomagnification potency of OPEs was affected by hydrophobicity of the compounds and biotransformation properties in the organisms at different trophic levels. 2-Ethylhexyl diphenyl phosphate biomagnified in the fish food web of Taihu Lake with a TMF (trophic magnification factor) of 3.61, which was due to the combined results of its relatively high hydrophobicity (log Kow of 5.73) and decreased metabolism potential in the high-trophic-level fish. The constant metabolism diminished the biomagnification potency of hydrophobic compounds triphenyl phosphate and tricresyl phosphate in this food web.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, PR China.
| |
Collapse
|
73
|
Wang X, Wei L, Wang Y, He B, Kong B, Zhu J, Jin Y, Fu Z. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to TBECH (tetrabromoethylcyclohexane). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:106-113. [PMID: 30528700 DOI: 10.1016/j.cbpc.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022]
Abstract
Tetrabromoethylcyclohexane (TBECH), as one emerging brominated flame retardants, is ubiquitous in the environment, including water and aquatic organisms. TBECH was found to exhibit endocrine-disrupting effects in different models, whereas a survey of comprehensive toxic effects of TBECH on zebrafish is limited. In the present study, zebrafish (Danio rerio) were waterborne exposed continuously to TBECH from embryonic stage (3 h post-fertilization (hpf)) to the time when the respective parameters were evaluated. Exposure to TBECH reduced hatchability of zebrafish embryos at 72 and 96 hpf, diminished heart rate of zebrafish larvae at 48 hpf, and increased malformation in zebrafish larvae at 96 hpf. In addition, exposure to TBECH diminished free swimming distance both in the light and under a photoperiod of 10 min light/10 min dark cycles in zebrafish larvae at 6 days post-fertilization (dpf). Moreover, exposure to TBECH elevated activities of superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA) content, whereas it reduced glutathione (GSH) content, in zebrafish larvae at 6 dpf. Accordingly, RT-qPCR analysis demonstrated that TBECH exposure increased the mRNA levels of sod1, sod2, cat, and gpx1 in zebrafish larvae at 6 dpf. With respect to the immune aspect, the mRNA levels of pro-inflammatory genes, including il-1b, il-6, il-8, and tnfa, in larval zebrafish at 6 dpf were increased by exposure to TBECH, while pretreatment with TBECH inhibited 24 h of exposure to LPS-stimulated elevation in the mRNA levels of the abovementioned four pro-inflammatory genes in zebrafish larvae at 6 dpf. Furthermore, TBECH treatment increased caspase-3 enzyme activities and regulated apoptosis-related genes in larval zebrafish at 6 dpf. Taken together, the data obtained in this study demonstrated that TBECH caused developmental and locomotor behavioral toxicity, immunotoxicity, oxidative stress and proapoptotic effects in early life zebrafish. The present study will help to understand the comprehensive toxicity of TBECH in zebrafish.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
74
|
Lee HJ, Jung JH, Kwon JH. Evaluation of the bioaccumulation potential of selected alternative brominated flame retardants in marine fish using in vitro metabolic transformation rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1333-1342. [PMID: 30759573 DOI: 10.1016/j.scitotenv.2018.10.432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The global consumption of alternative brominated flame retardants (BFRs) has increased with the restriction of the first generation BFRs such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). However, many alternative BFRs are suspected to be persistent in the environment and possibly bioaccumulative after their release into the environment because of their chemical properties, which are similar to those of the already banned BFRs. In this study, the bioaccumulation potential of selected alternative BFRs (1,2-bis(2,4,6‑tribromophenoxy)ethane (BTBPE), 1,2,3,4,5,6‑hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), 2,3,4,5,6‑pentabromotoluene (PBT), 2‑ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), and 2,3,4,5‑tetrabromo-6-chlorotoluene (TBCT)) was evaluated. The in vitro depletion rate constants (kdepl) were measured for the alternative BFRs using liver S9 fractions isolated from five marine fish species (Epinephelus septemfasciatus, Konosirus punctatus, Lateolabrax japonicus, Mugil cephalus, and Sebastes schlegelii) that inhabit the oceans off the Korean coast. The measured kdepl values were converted to in vitro intrinsic clearance rate constants (CLin vitro) to estimate whole-body metabolic rate constants (kMET) using an in vitro to in vivo extrapolation (IVIVE) model. Finally, the bioconcentration factors (BCF) were determined using a one-compartment model. The transformation kinetics for obtaining kdepl agreed well with first-order chemical kinetics, regardless of initial BFR concentrations. The values of CLin vitro were lower in the selected marine fish species than those in freshwater fish species, implying slower metabolic transformation. The derived BCF values based on the total concentration in water (BCFTOT) ranged from 16 (TBB in M. cephalus) to 27,000 (HBB in K. punctatus). The BCF values for HBB and PBT were >2000 except for those in M. cephalus suggesting further investigation of BCF values of BFRs whose log KOW is between 6 and 7.
Collapse
Affiliation(s)
- Hyun-Jeoung Lee
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jee-Hyun Jung
- Oil & POPs Research Group, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|