51
|
Depalo N, Fanizza E, Vischio F, Denora N, Laquintana V, Cutrignelli A, Striccoli M, Giannelli G, Agostiano A, Curri ML, Scavo MP. Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: a scanning electron microscopy investigation. RSC Adv 2019; 9:21810-21825. [PMID: 35518842 PMCID: PMC9066453 DOI: 10.1039/c9ra02381j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
The adsorption at cell surfaces and cell internalization of two drug delivery lipid based nanovectors has been investigated by means of Field Emission Scanning Electron Microscopy (FE-SEM) operating at low beam voltage on two different colon carcinoma cell lines, CaCo-2 and CoLo-205, that were compared with the M14 melanoma cell line, as a reference. The cells were incubated with the investigated multifunctional nanovectors, based on liposomes and magnetic micelles loaded with 5-fluorouracil, as a chemotherapeutic agent, and a FE-SEM systematic investigation was performed, enabling a detailed imaging of any morphological changes of the drug exposed cells as a function of time. The results of the FE-SEM investigation were validated by MTS assay and immunofluorescence staining of the Ki-67 protein performed on the investigated cell lines at different times. The two nanoformulations resulted in a comparable effect on CaCo-2 and M14 cell lines, while for CoLo 205 cells, the liposomes provided an cytotoxic activity higher than that observed in the case of the micelles. The study highlighted the high potential of FE-SEM as a valuable complementary technique for imaging and monitoring in time the drug effects on the selected cells exposed to the two different nanoformulations.
Collapse
Affiliation(s)
- Nicoletta Depalo
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Elisabetta Fanizza
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Fabio Vischio
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Nunzio Denora
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Valentino Laquintana
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Annalisa Cutrignelli
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Marinella Striccoli
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| | - Angela Agostiano
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Lucia Curri
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| |
Collapse
|
52
|
Zhang C, Zhang D, Liu J, Wang J, Lu Y, Zheng J, Li B, Jia L. Functionalized MoS 2-erlotinib produces hyperthermia under NIR. J Nanobiotechnology 2019; 17:76. [PMID: 31217009 PMCID: PMC6582482 DOI: 10.1186/s12951-019-0508-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Molybdenum disulfide (MoS2) has been widely explored for biomedical applications due to its brilliant photothermal conversion ability. In this paper, we report a novel multifunctional MoS2-based drug delivery system (MoS2-SS-HA). By decorating MoS2 nanosheets with hyaluronic acid (HA), these functionalized MoS2 nanosheets have been developed as a tumor-targeting chemotherapeutic nanocarrier for near-infrared (NIR) photothermal-triggered drug delivery, facilitating the combination of chemotherapy and photothermal therapy into one system for cancer therapy. RESULTS The nanocomposites (MoS2-SS-HA) generated a uniform diameter (ca. 125 nm), exhibited great biocompatibility as well as high stability in physiological solutions, and could be loaded with the insoluble anti-cancer drug erlotinib (Er). The release of Er was greatly accelerated under near infrared laser (NIR) irradiation, showing that the composites can be used as responsive systems, with Er release controllable through NIR irradiation. MTT assays and confocal imaging results showed that the MoS2-based nanoplatform could selectively target and kill CD44-positive lung cancer cells, especially drug resistant cells (A549 and H1975). In vivo tumor ablation studies prove a better synergistic therapeutic effect of the joint treatment, compared with either chemotherapy or photothermal therapy alone. CONCLUSION The functionalized MoS2 nanoplatform developed in this work could be a potent system for targeted drug delivery and synergistic chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
| | - Doudou Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Jie Wang
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Yusheng Lu
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Junxia Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Wucheng Building, 5FL, No.200 Xiyuangong Road, Fuzhou, 350108 Fujian China
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Sunlight Building, 6FL; Science Park, Xueyuan Road, University Town, Fuzhou, 350116 Fujian China
| |
Collapse
|
53
|
Houdaihed L, Evans JC, Allen C. In Vivo Evaluation of Dual-Targeted Nanoparticles Encapsulating Paclitaxel and Everolimus. Cancers (Basel) 2019; 11:E752. [PMID: 31146485 PMCID: PMC6628352 DOI: 10.3390/cancers11060752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
A synergistic combination of paclitaxel (PTX) and everolimus (EVER) can allow for lower drug doses, reducing the toxicities associated with PTX, while maintaining therapeutic efficacy. Polymeric nanoparticles (NPs) of high stability provide opportunities to modify the toxicity profile of the drugs by ensuring their delivery to tumor at the synergistic ratio while limiting systemic drug exposure and the toxicities that result. The current study goal is to study the in vivo fate of human epidermal factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) dual-targeted PTX+EVER-loaded NPs (Dual-NPs) in an MDA-MB-231-H2N BC tumor-bearing mouse model. The pharmacokinetic parameters, plasma area under the curve (AUC) and half-life (t1/2), were found to be 20-fold and 3 to 4-fold higher, respectively, for the drugs when administered in the Dual-NPs in comparison to the free-drug combination (i.e., PTX+EVER) at an equivalent dose of PTX. While maintaining anti-tumor efficacy, the levels of body weight loss were significantly lower (p < 0.0001) and the overall degree of neurotoxicity was reduced with Dual-NP treatment in comparison to the free-drug combination when administered at an equivalent dose of PTX. This study suggests that Dual-NPs present a promising platform for the delivery of the PTX and EVER combination with the potential to reduce severe PTX-induced toxicities and in turn, improve quality of life for patients with BC.
Collapse
Affiliation(s)
- Loujin Houdaihed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
54
|
Tam YT, Repp L, Ma ZX, Feltenberger JB, Kwon GS. Oligo(Lactic Acid) 8-Rapamycin Prodrug-Loaded Poly(Ethylene Glycol)-block-Poly(Lactic Acid) Micelles for Injection. Pharm Res 2019; 36:70. [PMID: 30888509 DOI: 10.1007/s11095-019-2600-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To prepare an oligo(lactic acid)8-rapamycin prodrug (o(LA)8-RAP)-loaded poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) micelle for injection and characterize its compatibility and performance versus a RAP-loaded PEG-b-PLA micelle for injection in vitro and in vivo. METHODS Monodisperse o(LA)8 was coupled on RAP at the C-40 via DCC/DMAP chemistry, and conversion of o(LA)8-RAP prodrug into RAP was characterized in vitro. Physicochemical properties of o(LA)8-RAP- and RAP-loaded PEG-b-PLA micelles and their antitumor efficacies in a syngeneic 4 T1 breast tumor model were compared. RESULTS Synthesis of o(LA)8-RAP prodrug was confirmed by 1H NMR and mass spectroscopy. The o(LA)8-RAP prodrug underwent conversion in PBS and rat plasma by backbiting and esterase-mediated cleavage, respectively. O(LA)8-RAP-loaded PEG-b-PLA micelles increased water solubility of RAP equivalent to 3.3 mg/ml with no signs of precipitation. Further, o(LA)8-RAP was released more slowly than RAP from PEG-b-PLA micelles. With added physical stability, o(LA)8-RAP-loaded PEG-b-PLA micelles significantly inhibited tumor growth relative to RAP-loaded PEG-b-PLA micelles in 4 T1 breast tumor-bearing mice without signs of acute toxicity. CONCLUSIONS An o(LA)8-RAP-loaded PEG-b-PLA micelle for injection is more stable than a RAP-loaded PEG-b-PLA micelle for injection, and o(LA)8-RAP converts into RAP rapidly in rat plasma (t1/2 = 1 h), resulting in antitumor efficacy in a syngeneic 4 T1 breast tumor model.
Collapse
Affiliation(s)
- Yu Tong Tam
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA.,Discovery Pharmaceutical Sciences Merck Research Laboratories, South San Francisco, California, 94080, USA
| | - Lauren Repp
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Zhi-Xiong Ma
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - John B Feltenberger
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA.
| |
Collapse
|
55
|
Siepmann J, Faham A, Clas SD, Boyd BJ, Jannin V, Bernkop-Schnürch A, Zhao H, Lecommandoux S, Evans JC, Allen C, Merkel OM, Costabile G, Alexander MR, Wildman RD, Roberts CJ, Leroux JC. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int J Pharm 2019; 558:128-142. [PMID: 30639218 DOI: 10.1016/j.ijpharm.2018.12.080] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
In pharmaceutical technology, lipids and polymers are considered pillar excipients for the fabrication of most dosage forms, irrespective of the administration route. They play various roles ranging from support vehicles to release rate modifiers, stabilizers, solubilizers, permeation enhancers and transfection agents. Focusing on selected applications, which were discussed at the Annual Scientific Meeting of the Gattefossé Foundation 2018, this manuscript recapitulates the fundamental roles of these two important classes of excipients, either employed alone or in combination, and provides insight on their functional properties in various types of drug formulations. Emphasis is placed on oral formulations for the administration of active pharmaceutical ingredients with low aqueous solubilities or poor permeation properties. Additionally, this review article covers the use of lipids and polymers in the design of colloidal injectable delivery systems, and as substrates in additive manufacturing technologies for the production of tailor-made dosage forms.
Collapse
Affiliation(s)
- Juergen Siepmann
- University of Lille, Inserm, CHU Lille, U1008, 59000 Lille, France
| | - Amina Faham
- DuPont Health & Nutrition (formerly Dow Pharma Solutions), 8810 Horgen, Switzerland
| | | | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Andreas Bernkop-Schnürch
- University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Hang Zhao
- Laboratoire de Chimie des Polymères Organiques LCPO, UMR 5629 CNRS, Université de Bordeaux, Bordeaux-INP, 33600 Pessac, France
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques LCPO, UMR 5629 CNRS, Université de Bordeaux, Bordeaux-INP, 33600 Pessac, France
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ricky D Wildman
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Clive J Roberts
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
56
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
57
|
Bagheri M, Bresseleers J, Varela-Moreira A, Sandre O, Meeuwissen SA, Schiffelers RM, Metselaar JM, van Nostrum CF, van Hest JCM, Hennink WE. Effect of Formulation and Processing Parameters on the Size of mPEG- b-p(HPMA-Bz) Polymeric Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15495-15506. [PMID: 30415546 PMCID: PMC6333397 DOI: 10.1021/acs.langmuir.8b03576] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Micelles composed of block copolymers of poly(ethylene glycol)- b-poly( N-2-benzoyloxypropyl methacrylamide) (mPEG- b-p(HPMA-Bz)) have shown great promise as drug-delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing micelle size were investigated to tailor sizes in the range of 25-100 nm. Micelles were prepared by a nanoprecipitation method, and their size was modulated by the block copolymer properties such as molecular weight, their hydrophilic-to-hydrophobic ratio, homopolymer content, as well as formulation and processing parameters. It was shown that the micelles have a core-shell structure using a combination of dynamic light scattering and transmission electron microscopy analysis. By varying the degree of polymerization of the hydrophobic block ( NB) between 68 and 10, at a fixed hydrophilic block mPEG5k ( NA = 114), it was shown that the hydrophobic core of the micelle was collapsed following the power law of ( NB × Nagg)1/3. Further, the calculated brush height was similar for all the micelles examined (10 nm), indicating that crew-cut micelles were made. Both addition of homopolymer and preparation of micelles at lower concentrations or lower rates of addition of the organic solvent to the aqueous phase increased the size of micelles due to partitioning of the hydrophobic homopolymer chains to the core of the micelles and lower nucleation rates, respectively. Furthermore, it was shown that by using different solvents, the size of the micelles substantially changed. The use of acetone, acetonitrile, ethanol, tetrahydrofuran, and dioxane resulted in micelles in the size range of 45-60 nm after removal of the organic solvents. The use of dimethylformamide and dimethylsulfoxide led to markedly larger sizes of 75 and 180 nm, respectively. In conclusion, the results show that by modulating polymer properties and processing conditions, micelles with tailorable sizes can be obtained.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jaleesa Bresseleers
- ChemConnection
BV, 5349 AB Oss, The Netherlands
- Department
of Bio-Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aida Varela-Moreira
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
- Department
of Clinical Chemistry and Haematology, University
Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Olivier Sandre
- Laboratoire
de Chimie de Polymères Organiques, Université de Bordeaux, UMR 5629 CNRS, 33607 Pessac, France
| | | | - Raymond M. Schiffelers
- Department
of Clinical Chemistry and Haematology, University
Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands
| | - Josbert M. Metselaar
- Department
of Nanomedicine and Theranostics, Institute
for Experimental Molecular Imaging RWTH University Clinic, 52074 Aachen, Germany
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan C. M. van Hest
- Department
of Bio-Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
58
|
Qiu M, Wang X, Sun H, Zhang J, Deng C, Zhong Z. Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E. Mol Pharm 2018; 15:4854-4861. [PMID: 30259747 DOI: 10.1021/acs.molpharmaceut.8b00498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monomethyl auristatin E (MMAE) is an extremely potent peptide drug that is currently used in the form of antibody drug conjugates (ADCs) for treating different cancers. ADCs are, however, associated with low drug conjugation, immunogenicity, small scale production, and high costs. Here, cRGD-functionalized polylipopeptide micelles (cRGD-Lipep-Ms) were explored for enhanced loading and targeted delivery of MMAE to HCT-116 colorectal tumor xenografts. Interestingly, cRGD-Lipep-Ms achieved an MMAE loading content of 5.5 wt %, which was 55-fold higher than that of poly(ethylene glycol)- b-poly(d,l-lactide) micelles. MMAE-loaded cRGD-Lipep-Ms (MMAE-cRGD-Lipep-Ms) showed a small hydrodynamic size of 59 nm, minimal drug leakage in 10% FBS, and efficient uptake and superb antiproliferative activity in αvβ5-overexpressing HCT-116 tumor cells. Remarkably, MMAE-cRGD-Lipep-Ms displayed over 10-fold better toleration than free MMAE in mice and completely suppressed growth of HCT-116 colorectal tumor xenografts. These polylipopeptide micelles have appeared to be an attractive alternative to ADCs for targeted delivery of potent peptide drugs.
Collapse
Affiliation(s)
- Min Qiu
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Huanli Sun
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
59
|
Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, Shen Y. The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. ACS NANO 2018; 12:6179-6192. [PMID: 29847730 DOI: 10.1021/acsnano.8b02830] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polymer micelles are one of the most investigated nanocarriers for drug delivery; many have entered clinical trials and some are in clinic use, but their delivery systems have not yet shown the expected high therapeutic efficacy in clinics. Further understanding their in vivo behaviors, particularly how quickly and by what mechanism polymer micelles are cleared ( i. e., via micelles or unimers) once injected, is key to solving this dilemma. Herein, we hope to answer these questions for the clinically relevant polyethylene glycol- block-poly(ε-caprolactone) (PEG-PCL) and PEG- block-poly(d,l-lactide) (PEG-PDLLA) micelles. A small fraction of the hydrophobic chain ends was conjugated with a pair of fluorescence resonance energy transfer (FRET) dyes, Cy5 and Cy5.5, and used to fabricate FRET micelles whose FRET efficiency was correlated to the percentage of polymer chains in the micelles, the micelle degree. In vitro, serum proteins induced PEG-PCL micelle dissociation to some extent; mouse serum or blood surprisingly did not induce micelle dissociation but once with shear applied by a microfluidic channel caused most PEG-PCL micelles dissociated. After intravenous administration in mice, the PEG-PCL or PEG-PDLLA micelles were quickly sequestered into the liver as unimers, and the micelle degree in the blood quickly decreased to about 20%. The FRET-imaging experiments showed that in blood vessels the micelles quickly dissociated into unimers, which were found associated with albumin in blood and in liver. Thus, it is concluded that, upon intravenous injection, the shear and the bloodborne proteins (particularly albumin) induced the most (∼80%) PEG-PCL and PEG-PDLLA micelles to quickly dissociate into unimers, which were sequestered by Kupffer cells, while intact micelles were difficult to clear. These micelles were able to penetrate tumors and were very stable with cell membranes, but dissociated gradually inside cells. These findings on in vivo micelle fate and the clearance mechanism are directional for the rational design of polymer micelles for improved therapeutics; particularly, improving micelle stability in blood is the prerequisite for surface functionalizations such as introducing targeting ligands.
Collapse
Affiliation(s)
- Xuanrong Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Guowei Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | | | - Shiqi Hu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xin Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
60
|
Houdaihed L, Evans JC, Allen C. Codelivery of Paclitaxel and Everolimus at the Optimal Synergistic Ratio: A Promising Solution for the Treatment of Breast Cancer. Mol Pharm 2018; 15:3672-3681. [PMID: 29863881 DOI: 10.1021/acs.molpharmaceut.8b00217] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical studies examining the combination of paclitaxel (PTX) and everolimus (EVER), an mTOR inhibitor, have failed to result in significant improvements in efficacy and toxicity in patients with breast cancer (BC), relative to treatment with PTX alone. These disappointing clinical trial results have been attributed to poorly designed preclinical studies using the combination of PTX and EVER as well as the significantly different pharmacokinetic profiles of the two drugs. In the current work, the potential synergy between PTX and EVER was examined in a panel of six BC cell lines that differ in terms of their molecular subtype and drug sensitivity. Polymeric nanoparticles (NPs) were used to encapsulate PTX and EVER at an optimal synergistic ratio to achieve specific, colocalized delivery of the combination therapy in BC cell lines. Combinations of PTX and EVER (especially at relatively high doses of EVER) resulted in pronounced synergy in all BC cell lines evaluated. The optimal molar ratio of PTX:EVER was determined to be 1:0.5. The combination was delivered to BC cells at the synergistic ratio via encapsulation within polymeric NPs formed from the poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PEG- b-PLGA) copolymer. The NPs had an average diameter of less than 100 nm and were capable of in vitro retention of the encapsulated PTX and EVER at the optimal synergistic molar ratio for over 7 days. Cytotoxicity data demonstrated that PTX+EVER-loaded NPs were significantly less cytotoxic than the free drug combination in MCF-7 and SKBR3 BC cell lines following 72 h, suggesting that PTX+EVER-loaded NPs remain stable and retain the drug combination loaded within the core after 72 h. The uptake of FITC-labeled NPs in SKBR3 cells was evaluated by flow cytometry, with approximately 41% of cells demonstrating detectable fluorescence after 24 h of exposure. The thorough and systematic approach used in this study to determine and evaluate a synergistic PTX:EVER ratio in conjunction with a potentially promising delivery vector for the drug combination could offer a future clinical benefit for patients with BC.
Collapse
Affiliation(s)
- Loujin Houdaihed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - James C Evans
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Christine Allen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| |
Collapse
|
61
|
Hahn L, Lübtow MM, Lorson T, Schmitt F, Appelt-Menzel A, Schobert R, Luxenhofer R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules 2018; 19:3119-3128. [DOI: 10.1021/acs.biomac.8b00708] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Michael M. Lübtow
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Frederik Schmitt
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antje Appelt-Menzel
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
62
|
Shire Z, Vakili MR, Morgan TDR, Hall DG, Lavasanifar A, Weinfeld M. Nanoencapsulation of Novel Inhibitors of PNKP for Selective Sensitization to Ionizing Radiation and Irinotecan and Induction of Synthetic Lethality. Mol Pharm 2018; 15:2316-2326. [PMID: 29688721 DOI: 10.1021/acs.molpharmaceut.8b00169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is increasing interest in developing and applying DNA repair inhibitors in cancer treatment to augment the efficacy of radiation and conventional genotoxic chemotherapy. However, targeting the inhibitor is required to avoid reducing the repair capacity of normal tissue. The aim of this study was to develop nanodelivery systems for the encapsulation of novel imidopiperidine-based inhibitors of the DNA 3'-phosphatase activity of polynucleotide kinase/phosphatase (PNKP), a DNA repair enzyme that plays a critical role in rejoining DNA single- and double-strand breaks. For this purpose, newly identified hit compounds with potent PNKP inhibitory activity, imidopiperidines A12B4C50 and A83B4C63 were encapsulated in polymeric micelles of different poly(ethylene oxide)- b-poly(ε-caprolactone) (PEO- b-PCL)-based structures. Our results showed efficient loading of A12B4C50 and A83B4C63 in PEO- b-PCLs with pendent carboxyl and benzyl carboxylate groups, respectively, and relatively slow release over 24 h. Both free and encapsulated inhibitors were able to sensitize HCT116 cells to radiation and the topoisomerase I poison, irinotecan. In addition, the encapsulated inhibitors were capable of inducing synthetic lethalilty in phosphatase and tensin homologue (PTEN)-deficient cells. We also established the validity of the peptide GE11 as a suitable ligand for active targeted delivery of nanoencapsulated drugs to colorectal cancer cells overexpressing epidermal growth factor receptor (EGFR). Our results show the potential of nanoencapsulated inhibitors of PNKP as either mono or combined therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Zahra Shire
- Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , AB , Canada T6G 1Z2.,Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , AB , Canada T6G 2E1
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , AB , Canada T6G 2E1
| | - Timothy D R Morgan
- Department of Chemistry, Faculty of Science , University of Alberta , Edmonton , AB , Canada T6G 2G2
| | - Dennis G Hall
- Department of Chemistry, Faculty of Science , University of Alberta , Edmonton , AB , Canada T6G 2G2
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , AB , Canada T6G 2E1
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , AB , Canada T6G 1Z2
| |
Collapse
|
63
|
Abstract
The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Peter Qiao
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
64
|
Gjuroski I, Furrer J, Vermathen M. How Does the Encapsulation of Porphyrinic Photosensitizers into Polymer Matrices Affect Their Self-Association and Dynamic Properties? Chemphyschem 2018; 19:1089-1102. [PMID: 29384257 DOI: 10.1002/cphc.201701318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) with porphyrinic photosensitizers largely relies on efficient drug formulations to prevent porphyrin aggregation and to enhance water solubility and stability in physiologic environments. In this study, we compare two polymeric carrier systems, polyvinylpyrrolidone (PVP) and block copolymer micelles (BCMs) formed by the poloxamer Kolliphor P188 (KP), for their encapsulation efficiencies of porphyrin (xPP) and chlorin e6 (xCE) derivatives. Monomerization, loading efficiency, and dynamic properties were examined by 1 H NMR spectroscopy chemical shift titration, DOSY, and T2 relaxation time measurements. Binding affinity was determined by UV/Vis spectroscopy. Both PVP and KP-BCMs were well suited to disaggregate and encapsulate amphiphilic xCE, whereas they were less efficient for the xPP compounds. PVP exhibited higher monomerization efficiency than KP-BCMs. Significant differences were found in the dynamic behavior of the carriers. PVP formed rather stable complexes with the porphyrinic compounds, whereas a dynamic equilibrium between free and bound porphyrins was found to exist in the presence of KP-BCMs. This may have a considerable impact on the pharmacokinetic properties of the corresponding delivery systems.
Collapse
Affiliation(s)
- Ilche Gjuroski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
65
|
Liu X, Li Y, Tan X, Rao R, Ren Y, Liu L, Yang X, Liu W. Multifunctional hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release for enhanced tumor suppression. Biomaterials 2018; 157:136-148. [PMID: 29268144 DOI: 10.1016/j.biomaterials.2017.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022]
Abstract
Therapeutic efficacy of conventional single PEGylated polymeric micelles is significantly reduced by limited endocytosis and intracellular drug release. To improve drug delivery efficiency, poly (ethylene glycol)-block-poly (l-lactic acid)/(Arg-Gly-Asp-Phe)-poly (aminoethyl ethylene phosphate)-block-poly (l-lactic acid) (PEG-PLLA/RGDF-PAEEP-PLLA) hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release are developed. The optimized hybrid micelles with 6 wt % of RGDF have favorable in vitro and in vivo activities. The hybrid micelles could temporarily shield the targeting efficacy of RGDF at pH 7.4 due to the steric effect exerted by concealment of RGDF peptides in the PEG corona, which strongly decreases the clearance by mononuclear phagocyte system and consequently improves the tumor accumulation. Inside the solid tumor with a lower acidic pH, the hybrid micelles restore the active tumor targeting property with exposed RGDF on the surface of the micelles because of the increased protonation and stretching degree of PAEEP blocks. RGDF-mediated endocytosis improves the tumor cell uptake. The hybrid micelles would also enhance intracellular drug release because of the hydrolysis of the acid/phosphatase-sensitivity of PAEEP blocks in endo/lysosome. Systemic administration of the hybrid micelles significantly inhibits tumor growth by 96% due to the integration of enhanced circulation time, tumor accumulation, cell uptake and intracellular drug release.
Collapse
Affiliation(s)
- Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yinghuan Li
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lingyan Liu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
66
|
Zhu Y, Zhang J, Meng F, Cheng L, Feijen J, Zhong Z. Reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate) micelles: synthesis and CD44-mediated potent delivery of docetaxel to triple negative breast tumor in vivo. J Mater Chem B 2018; 6:3040-3047. [DOI: 10.1039/c8tb00094h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Docetaxel-loaded core crosslinked HA-P(TMC-DTC) micelles show high targetability to CD44-overexpressing MDA-MB-231 breast tumor and effectively inhibit tumor growth.
Collapse
Affiliation(s)
- Yaqin Zhu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jan Feijen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|