51
|
Denninger A, Becker T, Westedt U, Wagner KG. Advanced In Vivo Prediction by Introducing Biphasic Dissolution Data into PBPK Models. Pharmaceutics 2023; 15:1978. [PMID: 37514164 PMCID: PMC10386266 DOI: 10.3390/pharmaceutics15071978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus®, similar to extended-release dissolution profiles. Thus, a mechanistic dissolution/precipitation model of the assessed drug products was not required. The developed elimination/distribution models were used to simulate the pharmacokinetics of the evaluated drug products and compared with available human data. In essence, an in vitro to in vivo extrapolation (IVIVE) was successfully developed. Organic partitioning profiles obtained from the BiPHa+ dissolution analysis enabled highly accurate predictions of the pharmacokinetic behavior of the investigated drug products. In addition, PBPK models of (pro-)drugs with pronounced first-pass metabolism enabled adjustment of the solely passive diffusion predicting organic partitioning profiles, and increased prediction accuracy further.
Collapse
Affiliation(s)
- Alexander Denninger
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
- Corden Pharma GmbH, Otto-Hahn-Strasse, 68723 Plankstadt, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| |
Collapse
|
52
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
53
|
Thompson SA, Gala U, Davis DA, Kucera S, Miller D, Williams RO. Can the Oral Bioavailability of the Discontinued Prostate Cancer Drug Galeterone Be Improved by Processing Method? KinetiSol® Outperforms Spray Drying in a Head-to-head Comparison. AAPS PharmSciTech 2023; 24:137. [PMID: 37344629 DOI: 10.1208/s12249-023-02597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Galeterone, a novel prostate cancer candidate treatment, was discontinued after a Phase III clinical trial due to lack of efficacy. Galeterone is weakly basic and exhibits low solubility in biorelevant media (i.e., ~ 2 µg/mL in fasted simulated intestinal fluid). It was formulated as a 50-50 (w/w) galeterone-hypromellose acetate succinate spray-dried dispersion to increase its bioavailability. Despite this increase, the bioavailability of this formulation may have been insufficient and contributed to its clinical failure. We hypothesized that reformulating galeterone as an amorphous solid dispersion by KinetiSol® compounding could increase its bioavailability. In this study, we examined the effects of composition and manufacturing technology (Kinetisol and spray drying) on the performance of galeterone amorphous solid dispersions. KinetiSol compounding was utilized to create galeterone amorphous solid dispersions containing the complexing agent hydroxypropyl-β-cyclodextrin or hypromellose acetate succinate with lower drug loads that both achieved a ~ 6 × increase in dissolution performance versus the 50-50 spray-dried dispersion. When compared to a spray-dried dispersion with an equivalent drug load, the KinetiSol amorphous solid dispersions formulations exhibited ~ 2 × exposure in an in vivo rat study. Acid-base surface energy analysis showed that the equivalent composition of the KinetiSol amorphous solid dispersion formulation better protected the weakly basic galeterone from premature dissolution in acidic media and thereby reduced precipitation, inhibited recrystallization, and extended the extent of supersaturation during transit into neutral intestinal media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Molecular Pharmaceutics and Drug Delivery Division, The University of Texas at Austin College of Pharmacy, 2409 W. University Ave. PHR 4.214, Austin, Texas, 78712, USA.
| | - Urvi Gala
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Daniel A Davis
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Sandra Kucera
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Dave Miller
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, The University of Texas at Austin College of Pharmacy, 2409 W. University Ave. PHR 4.214, Austin, Texas, 78712, USA
| |
Collapse
|
54
|
Dohrn S, Kyeremateng SO, Bochmann E, Sobich E, Wahl A, Liepold B, Sadowski G, Degenhardt M. Thermodynamic Modeling of the Amorphous Solid Dispersion-Water Interfacial Layer and Its Impact on the Release Mechanism. Pharmaceutics 2023; 15:pharmaceutics15051539. [PMID: 37242781 DOI: 10.3390/pharmaceutics15051539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
During the dissolution of amorphous solid dispersion (ASD) formulations, the gel layer that forms at the ASD/water interface strongly dictates the release of the active pharmaceutical ingredient (API) and, hence, the dissolution performance. Several studies have demonstrated that the switch of the gel layer from eroding to non-eroding behavior is API-specific and drug-load (DL)-dependent. This study systematically classifies the ASD release mechanisms and relates them to the phenomenon of the loss of release (LoR). The latter is thermodynamically explained and predicted via a modeled ternary phase diagram of API, polymer, and water, and is then used to describe the ASD/water interfacial layers (below and above the glass transition). To this end, the ternary phase behavior of the APIs, naproxen, and venetoclax with the polymer poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and water was modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The glass transition was modeled using the Gordon-Taylor equation. The DL-dependent LoR was found to be caused by API crystallization or liquid-liquid phase separation (LLPS) at the ASD/water interface. If crystallization occurs, it was found that API and polymer release was impeded above a threshold DL at which the APIs crystallized directly at the ASD interface. If LLPS occurs, an API-rich phase and a polymer-rich phase are formed. Above a threshold DL, the less mobile and hydrophobic API-rich phase accumulates at the interface which prevents API release. LLPS is further influenced by the composition and glass transition temperature of the evolving phases and was investigated at 37 °C and 50 °C regarding impact of temperature of. The modeling results and LoR predictions were experimentally validated by means of dissolution experiments, microscopy, Raman spectroscopy, and size exclusion chromatography. The experimental results were found to be in very good agreement with the predicted release mechanisms deduced from the phase diagrams. Thus, this thermodynamic modeling approach represents a powerful mechanistic tool that can be applied to classify and quantitatively predict the DL-dependent LoR release mechanism of PVPVA64-based ASDs in water.
Collapse
Affiliation(s)
- Stefanie Dohrn
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Samuel O Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Esther Bochmann
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Ekaterina Sobich
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andrea Wahl
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Bernd Liepold
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| |
Collapse
|
55
|
Deac A, Qi Q, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: A Close Look at the Dissolution Interface. Mol Pharm 2023; 20:2217-2234. [PMID: 36926898 DOI: 10.1021/acs.molpharmaceut.3c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Despite the recent success of amorphous solid dispersions (ASDs) at enabling the delivery of poorly soluble small molecule drugs, ASD-based dosage forms are limited by low drug loading. This is partially due to a sharp decline in drug release from the ASD at drug loadings surpassing the 'limit of congruency' (LoC). In some cases, the LoC is as low as 5% drug loading, significantly increasing the risk of pill burden. Despite efforts to understand the mechanism responsible for the LoC, a clear picture of the molecular processes occurring at the ASD/solution interface remains elusive. In this study, the ASD/solution interface was studied for two model compounds formulated as ASDs with copovidone. The evolution of a gel layer and its phase behavior was captured in situ with fluorescence confocal microscopy, where fluorescent probes were added to label the hydrophobic and hydrophilic phases. Phase separation was detected in the gel layer for most of the ASDs. The morphology of the hydrophobic phase was found to correlate with the release behavior, where a discrete phase resulted in good release and a continuous phase formed a barrier leading to poor release. The continuous phase formed at a lower drug loading for the system with stronger drug-polymer interactions. This was due to incorporation of the polymer into the hydrophobic phase. The study highlights the complex molecular and phase behavior at the ASD/solution interface of copovidone-based ASDs and provides a thermodynamic argument for qualitatively predicting the release behavior based on drug-polymer interactions.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
56
|
Correa-Soto CE, Gao Y, Indulkar AS, Zhang GGZ, Taylor LS. Release Enhancement by Plasticizer Inclusion for Amorphous Solid Dispersions Containing High T g Drugs. Pharm Res 2023; 40:777-790. [PMID: 36859747 DOI: 10.1007/s11095-023-03483-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Plasticizers are commonly used in the preparation of amorphous solid dispersions (ASDs) with the main goal of aiding processability; however, to the best of our knowledge, the impact of plasticizers on drug release has not been explored. The goal of this study was to evaluate diverse plasticizers, including glycerol and citrate derivatives, as additives to increase the drug loading where good drug release could be achieved from copovidone (PVPVA)-based dispersions, focusing on high glass transition (Tg) drugs, atazanavir (ATZ) and ledipasvir (LED). METHODS ASDs were prepared using the high Tg compounds, atazanavir (ATZ) and ledipasvir (LED), as model drugs. Release was evaluated using surface normalized dissolution testing. Differential scanning calorimetry was used to measure glass transition temperature and water vapor sorption was performed on select samples. RESULTS The presence of a plasticizer at 5% w/w for ATZ and 10% w/w for LED ASDs, led to improved drug release. For ATZ ASDs, in the absence of plasticizer, release was very poor at drug loadings of 10% w/w and above. Good release was obtained for plasticized ASDs up to a drug loading of 25%. The corresponding improvement for LED was from 5 to 20% DL. Interestingly, for a low Tg compound, ritonavir, relatively smaller improvements in release as a function of drug loading were achieved through plasticizer incorporation. CONCLUSIONS The use of plasticizers represents a potential new strategy to increase drug loading in ASDs for high Tg compounds with a low tendency to crystallize and may help improve a major limitation of ASD formulations, namely the high excipient burden.
Collapse
Affiliation(s)
- Clara E Correa-Soto
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Pivotal Drug Product, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, USA
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
57
|
Jørgensen JR, Mohr W, Rischer M, Sauer A, Mistry S, Müllertz A, Rades T. Stability and intrinsic dissolution of vacuum compression molded amorphous solid dispersions of efavirenz. Int J Pharm 2023; 632:122564. [PMID: 36586638 DOI: 10.1016/j.ijpharm.2022.122564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this study, the stability and intrinsic dissolution of vacuum compression molded (VCM) amorphous solid dispersions (ASDs) of efavirenz (EFV) were investigated in relation to its solubility limits in seven polymers determined by the melting point depression (MPD) method. The extrapolated solubility limits of EFV at 22 °C ranged from 3 to 68% (w/w) with PVOH being the only polymer suggesting immiscibility with EFV according to both MPD and Hansen solubility parameters (HSPs). All ASDs with EFV loadings below or close to their calculated solubility limit did not show any signs of crystallization upon conditioning for 7 months at either 22 or 37 °C and 23 or 75% relative humidity. However, all ASDs with EFV loading above the solubility limit crystallized at high humidity, while the ASDs with cellulose derived carrier polymers proved kinetically stable at low humidity over 7 months. While the EFV intrinsic dissolution rates from the VCM ASDs were partly depending on the polymer dissolution rate, no correlation was observed between EFV matrix crystallization and its miscibility in the polymer. Altogether, the observations of the study underline the importance of combining preformulation miscibility determination and dissolution studies to rationally decide on both stability and viability of ASD formulations.
Collapse
Affiliation(s)
- Jacob Rune Jørgensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Wolfgang Mohr
- Losan Pharma GmbH, Otto-Hahn-Str. 13, 79395 Neuenburg, Germany
| | | | - Andreas Sauer
- SE Tylose GmbH & Co. KG, Kasteler Str. 45, 65203 Wiesbaden, Germany
| | - Shilpa Mistry
- Harke Pharma GmbH, Xantener Str. 1, 45479 Mülheim a. d. Ruhr, Germany
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
58
|
Cao Z, Harmon DM, Yang R, Razumtcev A, Li M, Carlsen MS, Geiger AC, Zemlyanov D, Sherman AM, Takanti N, Rong J, Hwang Y, Taylor LS, Simpson GJ. Periodic Photobleaching with Structured Illumination for Diffusion Imaging. Anal Chem 2023; 95:2192-2202. [PMID: 36656303 DOI: 10.1021/acs.analchem.2c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic "comb-bleach" patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Ziyi Cao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Dustin M Harmon
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Minghe Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Mark S Carlsen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Andreas C Geiger
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana47907, United States
| | - Alex M Sherman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Nita Takanti
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Jiayue Rong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| |
Collapse
|
59
|
Supersaturation and phase behavior during dissolution of amorphous solid dispersions. Int J Pharm 2023; 631:122524. [PMID: 36549404 DOI: 10.1016/j.ijpharm.2022.122524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Amorphous solid dispersion (ASD) is a promising strategy to enhance solubility and bioavailability of poorly water-soluble drugs. Due to higher free energy of ASD, supersaturated drug solution could be generated during dissolution. When amorphous solubility of a drug is exceeded, drug-rich nanodroplets could form and act as a reservoir to maintain the maximum free drug concentration in solution, facilitating the absorption of the drug in vivo. Dissolution behavior of ASD has received increasing interests. This review will focus on the recent advances in ASD dissolution, including the generation and maintenance of supersaturated drug solution in absence or presence of liquid-liquid phase separation. Mechanism of drug release from ASD including polymer-controlled dissolution and drug-controlled dissolution will be introduced. Formation of amorphous drug-rich nanodroplets during dissolution and the underlying mechanism will be discussed. Phase separation morphology of hydrated ASD plays a critical role in dissolution behavior of ASD, which will be highlighted. Supersaturated drug solution shows poor physical stability and tends to crystallize. The effect of polymer and surfactant on supersaturated drug solution will be demonstrated and some unexpected results will be shown. Physicochemical properties of drug and polymer could impact ASD dissolution and some of them even show opposite effect on dissolution and physical stability of ASD in solid state, respectively. This review will contribute to a better understanding of ASD dissolution and facilitate a rational design of ASD formulation.
Collapse
|
60
|
Deac A, Qi Q, Indulkar AS, Purohit HS, Gao Y, Zhang GGZ, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: Role of Drug Load and Molecular Interactions. Mol Pharm 2023; 20:722-737. [PMID: 36545917 DOI: 10.1021/acs.molpharmaceut.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High drug load amorphous solid dispersions (ASDs) have been a challenge to formulate partially because drug release is inhibited at high drug loads. The maximum drug load prior to inhibition of release has been termed the limit of congruency (LoC) and has been most widely studied for copovidone (PVPVA)-based ASDs. The terminology was derived from the observation that below LoC, the polymer controlled the kinetics and the drug and the polymer released congruently, while above LoC, the release rates diverged and were impaired. Recent studies show a correlation between the LoC value and drug-polymer interaction strength, where a lower LoC was observed for systems with stronger interactions. The aim of this study was to investigate the causality between drug-PVPVA interaction strength and LoC. Four chemical analogues with diverse abilities to interact with PVPVA were used as model drugs. The distribution of the polymer between the dilute aqueous phase and the insoluble nanoparticles containing drug was studied with solution nuclear magnetic resonance spectroscopy and traditional separation techniques to understand the thermodynamics of the systems in a dilute environment. Polymer diffusion to and from ASD particles suspended in aqueous solution was monitored for drug loads above the LoC to investigate the thermodynamic driving force for polymer release. The surface composition of ASD compacts before and after exposure to buffer was studied with Fourier transform infrared spectroscopy to capture potential kinetic barriers to release. It was found that ASD compacts with drug loads above the LoC formed an insoluble barrier on the surface that was in pseudo-equilibrium with the aqueous phase and prevented further release of drugs and polymers during dissolution. The insoluble barrier contained a substantial amount of the polymer for the strongly interacting drug-polymer systems. In contrast, a negligible amount was found for the weakly interacting systems. This observation provides an explanation for the ability of strongly interacting systems to form an insoluble barrier at lower drug loads. The study highlights the importance of thermodynamic and kinetic factors on the dissolution behavior of ASDs and provides a potential framework for maximizing the drug load in ASDs.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| |
Collapse
|
61
|
Moseson DE, Benson EG, Cao Z, Bhalla S, Wang F, Wang M, Zheng K, Narwankar PK, Simpson GJ, Taylor LS. Impact of Aluminum Oxide Nanocoating on Drug Release from Amorphous Solid Dispersion Particles. Mol Pharm 2023; 20:593-605. [PMID: 36346665 DOI: 10.1021/acs.molpharmaceut.2c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atomic layer coating (ALC) is emerging as a particle engineering strategy to inhibit surface crystallization of amorphous solid dispersions (ASDs). In this study, we turn our attention to evaluating drug release behavior from ALC-coated ASDs, and begin to develop a mechanistic framework. Posaconazole/hydroxypropyl methylcellulose acetate succinate was used as a model system at both 25% and 50% drug loadings. ALC-coatings of aluminum oxide up to 40 nm were evaluated for water sorption kinetics and dissolution performance under a range of pH conditions. Scanning electron microscopy with energy dispersive X-ray analysis was used to investigate the microstructure of partially released ASD particles. Coating thickness and defect density (inferred from deposition rates) were found to impact water sorption kinetics. Despite reduced water sorption kinetics, the presence of a coating was not found to impact dissolution rates under conditions where rapid drug release was observed. Under slower releasing conditions, underlying matrix crystallization was reduced by the coating, enabling greater levels of drug release. These results demonstrate that water was able to penetrate through the ALC coating, hydrating the amorphous solid, which can initiate dissolution of drug and/or polymer (depending on pH conditions). Swelling of the ASD substrate subsequently occurs, disrupting and cracking the coating, which serves to facilitate rapid drug release. Water sorption kinetics are highlighted as a potential predictive tool to investigate the coating quality and its potential impact on dissolution performance. This study has implications for formulation design and evaluation of ALC-coated ASD particles.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emily G Benson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shradha Bhalla
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, California 95054, United States
| | - Garth J Simpson
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
62
|
Purohit HS, Zhang GGZ, Gao Y. Detecting Crystallinity in Amorphous Solid Dispersions Using Dissolution Testing: Considerations on Properties of Drug Substance, Drug Product, and Selection of Dissolution Media. J Pharm Sci 2023; 112:290-303. [PMID: 36306864 DOI: 10.1016/j.xphs.2022.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
Dissolution testing has long been used to monitor product quality. Its role in quality control of amorphous solid dispersion (ASD) formulations is relatively new. In the presence of the crystalline phase, the dissolution of ASDs is determined by the dynamics between the dissolution rate of the amorphous solids and the rate of crystal growth. The detection of crystalline phase by dissolution test has not been well understood in the context of drug properties, formulation characteristics and dissolution test variables. This study systematically evaluated the impact of key parameters such as intrinsic crystallization tendency of the API, drug loading, extent of dissolution sink conditions and level of crystallinity on the ASD dissolution behavior. The results indicated diverse dissolution behaviors due to the differences in the intrinsic crystallization propensity of the drug, the drug loading, the ASD polymers and the dissolution sink index. Each of the complex dissolution profiles were interpreted based on visual observations during dissolution, the appropriate sink index based on the amorphous solubility, and the competition between drug dissolution versus crystallization. The findings of this study provide insights towards the various considerations that should be taken into account towards rationally developing a discriminatory dissolution method.
Collapse
Affiliation(s)
- Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, USA.
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, USA.
| |
Collapse
|
63
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release Mechanisms of Amorphous Solid Dispersions: Role of Drug-Polymer Phase Separation and Morphology. J Pharm Sci 2023; 112:304-317. [PMID: 36306863 DOI: 10.1016/j.xphs.2022.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
64
|
Moseson DE, Hiew TN, Su Y, Taylor LS. Formulation and Processing Strategies which Underpin Susceptibility to Matrix Crystallization in Amorphous Solid Dispersions. J Pharm Sci 2023; 112:108-122. [PMID: 35367246 DOI: 10.1016/j.xphs.2022.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
Through matrix crystallization, an amorphous solid may transform directly into its more stable crystalline state, reducing the driving force for dissolution. Herein, the mechanism of matrix crystallization in an amorphous solid dispersion (ASD) was probed. ASDs of bicalutamide/copovidone were prepared by solvent evaporation and hot melt extrusion, and sized by mortar and pestle or cryomilling techniques, modulating the level of mechanical activation experienced by the sample. Drug loading (DL) of the binary ASD was varied from 5-50%, and ternary systems were formulated at 30% DL with two surfactants (sodium dodecyl sulfate, Vitamin E TPGS). Imaging of partially dissolved or crystallized compacts by scanning electron microscopy with energy-dispersive X-ray analysis and confocal fluorescence microscopy was performed to investigate pathways of hydration, phase separation, and crystallization. Monitoring drug and polymer release of ASD powder under non-sink conditions provided insight into supersaturation and desupersaturation profiles. Systems at the greatest risk of matrix crystallization had high DLs, underwent mechanical activation, and/or contained surfactant. Systems having greatest resistance to matrix crystallization had rapid and congruent drug and polymer release. This study has implications for formulation and process design of ASDs and risk assessment of matrix crystallization.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yongchao Su
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
65
|
Oberoi HS, Arce F, Purohit HS, Yu M, Fowler CA, Zhou D, Law D. Design of a Re-Dispersible High Drug Load Amorphous Formulation. J Pharm Sci 2023; 112:250-263. [PMID: 36243131 DOI: 10.1016/j.xphs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Amorphous solid dispersions (ASD) are a commonly used enabling formulation technology to drive oral absorption of poorly soluble drugs. To ensure adequate solid-state stability and dissolution characteristics, the ASD formulation design typically has ≤ 25% drug loading. Exposed to aqueous media, ASD formulations can produce drug-rich colloidal dispersion with particle size < 500 nm. This in situ formation of colloidal particles requires incorporation of excess excipients in the formulation. The concept of using engineered drug-rich particles having comparable size as those generated by ASDs in aqueous media is explored with the goal of increasing drug loading in the solid dosage form. Utilizing ABT-530 as model compound, a controlled solvent-antisolvent precipitation method resulted in a dilute suspension that contained drug-rich (90% (w/w)) amorphous nanoparticles (ANP). The precipitation process was optimized to yield a suspension containing < 300 nm ANP. A systematic evaluation of formulation properties and process variables resulted in the generation of dry powders composed of 1-8 µm agglomerates of nanoparticles which in contact with water regenerated the colloidal suspension having particle size comparable to primary particles. Thus, this work demonstrates an approach to designing a re-dispersible ANP based powder containing ≥90% w/w ABT-530 that could be used in preparation of a high drug load solid dosage form.
Collapse
Affiliation(s)
| | - Freddy Arce
- Current Affiliation: Bristol Myers Squibb, NJ, USA
| | | | - Mengqi Yu
- NCE-Formulation Sciences, AbbVie Inc., North Chicago, IL, USA
| | - Craig A Fowler
- NCE-Formulation Sciences, AbbVie Inc., North Chicago, IL, USA
| | | | - Devalina Law
- NCE-Formulation Sciences, AbbVie Inc., North Chicago, IL, USA.
| |
Collapse
|
66
|
Zhao P, Han W, Shu Y, Li M, Sun Y, Sui X, Liu B, Tian B, Liu Y, Fu Q. Liquid-liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. J Control Release 2023; 353:42-50. [PMID: 36414193 DOI: 10.1016/j.jconrel.2022.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As a promising strategy, amorphous solid dispersion has been extensively employed in improving the oral bioavailability of insoluble drugs. Despite the numerous advantages, the problems associated with supersaturation stability limit its further application. Recently, the formation and stability of the liquid-liquid phase separation drug aggregate (LLPS-DA) have been found to be vital for supersaturation maintenance. An in-depth review of LLPS-DA was required to further explore the supersaturation maintenance mechanism in vivo. Hence, this study aimed to present a short review to introduce the LLPS-DA, highlight the in vivo advantages for oral administration, and discuss the prospects to help understand the in vivo behavior of LLPS-DA.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- Department of Pharmaceutics, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
67
|
Hiew TN, Saboo S, Zemlyanov DY, Punia A, Wang M, Smith D, Lowinger M, Solomos MA, Schenck L, Taylor LS. Improving Dissolution Performance and Drug Loading of Amorphous Dispersions Through a Hierarchical Particle Approach. J Pharm Sci 2022:S0022-3549(22)00583-4. [PMID: 36574837 DOI: 10.1016/j.xphs.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 12/26/2022]
Abstract
Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Sugandha Saboo
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Wang
- Biopharmaceutics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Lowinger
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marina A Solomos
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
68
|
Lag Time in Diffusion-Controlled Release Formulations Containing a Drug-Free Outer Layer. Processes (Basel) 2022. [DOI: 10.3390/pr10122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Theoretical considerations along with extensive Monte Carlo simulations are used to calculate the lag time before the initiation of diffusion-controlled drug release in multilayer planar devices with an outer layer containing no drug. The presented results are also relevant in formulations coated by a drug-free membrane as well as in other reservoir systems. The diffusion of drug molecules through the outer layer towards the release medium is considered, giving rise to the observed lag time. We have determined the dependence of lag time on the thickness and the diffusion coefficient of the drug-free outer layer, as well as on the initial drug concentration and the surface area of the planar device. A simple expression, obtained through an analytical solution of diffusion equation, provides an approximate estimate for the lag time that describes the numerical results reasonably well; according to this relation, the lag time is proportional to the squared thickness of the outer layer over the corresponding diffusion coefficient and inversely proportional to the logarithm of the linear number density of the drug that is initially loaded in the inner layer.
Collapse
|
69
|
Combining drug salt formation with amorphous solid dispersions - a double edged sword. J Control Release 2022; 352:47-60. [PMID: 36206947 PMCID: PMC9733678 DOI: 10.1016/j.jconrel.2022.09.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Glass transition temperature (Tg) is important for amorphous compounds because it can have implications on their physical and chemical stability. With drugs that possess ionizable acidic or basic groups, salt formation is a potential strategy to reduce re-crystallization tendency through Tg elevation. While salt formation has been reported to impact re-crystallization tendency, it is not known if this holds true for all drugs and if it is useful in the context of amorphous solid dispersion (ASD) formulations. In addition, little information on the impact of salt formation on drug release performance of ASD is available. Herein, the influence of salt formation and Tg elevation on the release performance of lumefantrine (Tg = 19.7 °C) when formulated as an ASD with copovidone (PVPVA) was examined. Lumefantrine salts and lumefantrine salt-PVPVA ASDs with drug loadings (DLs) ranging from 5 to 30% were prepared. The acids used for salt formation were benzoic acid, benzenesulfonic acid, camphorsulfonic acid, hydrochloric acid, p-toluenesulfonic acid, poly(ethylene) glycol 250 diacid (PEG 250 diacid), and sulfuric acid. Salt formation resulted in an elevation of Tg compared to lumefantrine free base, with the largest increase in Tg observed with lumefantrine sulfate. With a lower Tg salt, ASDs could be formulated at higher DLs while ensuring drug release. In contrast, drug release ceased at a DL as low as 5% when Tg of the salt was high. However, ASDs with lower Tgs such as the benzoate and PEG 250 diacid salts showed poor stability against re-crystallization when stored under stress storage conditions. When using a salt in an ASD formulation, attention should be paid to the Tg of the salt, since it may show opposing effects on physical stability and drug release, at least for PVPVA-based ASDs.
Collapse
|
70
|
Frank DS, Punia A, Fahy M, Dalton C, Rowe J, Schenck L. Densifying Co-Precipitated Amorphous Dispersions to Achieve Improved Bulk Powder Properties. Pharm Res 2022; 39:3197-3208. [PMID: 36271203 DOI: 10.1007/s11095-022-03416-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Precipitation of amorphous solid dispersions has gained traction in the pharmaceutical industry given its application to pharmaceuticals with varying physicochemical properties. Although preparing co-precipitated amorphous dispersions (cPAD) in high-shear rotor-stator devices allows for controlled shear conditions during precipitation, such aggressive mixing environments can result in materials with low bulk density and poor flowability. This work investigated annealing cPAD after precipitation by washing with heated anti-solvent to improve bulk powder properties required for downstream drug product processing. METHODS Co-precipitation dispersions were prepared by precipitation into pH-modified aqueous anti-solvent. Amorphous dispersions were washed with heated anti-solvent and assessed for bulk density, flowability, and dissolution behavior relative to both cPAD produced without a heated wash and spray dried intermediate. RESULTS Washing cPAD with a heated anti-solvent resulted in an improvement in flowability and increased bulk density. The mechanism of densification was ascribed to annealing over the wetted Tg of the material, which lead to collapse of the porous co-precipitate structure into densified granules without causing crystallization. In contrast, an alternative approach to increase bulk density by precipitating the ASD using low shear conditions showed evidence of crystallinity. The dissolution rate of the densified cPAD granules was lower than that of the low-bulk density dispersions, although both samples reached concentrations equivalent to that of the spray dried intermediate after 90 min dissolution. CONCLUSIONS Hot wash densification was a tenable route to produce co-precipitated amorphous dispersions with improved properties for downstream processing compared to non-densified powders.
Collapse
Affiliation(s)
- Derek S Frank
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Mairead Fahy
- Pharmaceutical Commercialization Technology, Merck & Co., Inc., Rahway, NJ, USA
| | - Chad Dalton
- Formulation Sciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Jasmine Rowe
- Formulation Sciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
71
|
Krummnow A, Danzer A, Voges K, Dohrn S, Kyeremateng SO, Degenhardt M, Sadowski G. Explaining the Release Mechanism of Ritonavir/PVPVA Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14091904. [PMID: 36145652 PMCID: PMC9505701 DOI: 10.3390/pharmaceutics14091904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
In amorphous solid dispersions (ASDs), an active pharmaceutical ingredient (API) is dissolved on a molecular level in a polymeric matrix. The API is expected to be released from the ASD upon dissolution in aqueous media. However, a series of earlier works observed a drastic collapse of the API release for ASDs with high drug loads (DLs) compared to those with low DLs. This work provides a thermodynamic analysis of the release mechanism of ASDs composed of ritonavir (RIT) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA). The observed release behavior is, for the first time, explained based on the quantitative thermodynamic phase diagram predicted by PC-SAFT. Both liquid–liquid phase separation in the dissolution medium, as well as amorphous phase separation in the ASD, could be linked back to the same thermodynamic origin, whereas they had been understood as different phenomena so far in the literature. Furthermore, it is illustrated that upon release, independent of DL, both phenomena occur simultaneously for the investigated system. It could be shown that the non-congruent release of the drug and polymer is observed when amorphous phase separation within the ASD has taken place to some degree prior to dissolution. Nanodroplet formation in the dissolution medium could be explained as the liquid–liquid phase separation, as predicted by PC-SAFT.
Collapse
Affiliation(s)
- Adrian Krummnow
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andreas Danzer
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Kristin Voges
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Stefanie Dohrn
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Samuel O. Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
- Correspondence: (S.O.K.); (G.S.); Tel.: +49-621-589-4940 (S.O.K.); +49-231-755-2635 (G.S.)
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
- Correspondence: (S.O.K.); (G.S.); Tel.: +49-621-589-4940 (S.O.K.); +49-231-755-2635 (G.S.)
| |
Collapse
|
72
|
Nambiar AG, Singh M, Mali AR, Serrano DR, Kumar R, Healy AM, Agrawal AK, Kumar D. Continuous Manufacturing and Molecular Modeling of Pharmaceutical Amorphous Solid Dispersions. AAPS PharmSciTech 2022; 23:249. [PMID: 36056225 DOI: 10.1208/s12249-022-02408-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.
Collapse
Affiliation(s)
- Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
73
|
Abstract
![]()
Formulations containing nanosized drug particles such
as nanocrystals
and nanosized amorphous drug aggregates recently came into light as
promising strategies to improve the bioavailability of poorly soluble
drugs. However, the increased solubility due to the reduction in particle
size cannot adequately explain the enhanced bioavailability. In this
study, the mechanisms and extent of enhanced passive permeation by
drug particles were investigated using atazanavir, lopinavir, and
clotrimazole as model drugs. Franz diffusion cells with lipid-infused
membranes were utilized to evaluate transmembrane flux. The impact
of stirring rate, receiver buffer condition, and particle size was
investigated, and mass transport analyses were conducted to calculate
transmembrane flux. Flux enhancement by particles was found to be
dependent on particle size as well as the partitioning behavior of
the drug between the receiver solution and the membrane, which is
determined by both the drug and buffer used. A flux plateau was observed
at high particle concentrations above amorphous solubility, confirming
that mass transfer of amorphous drug particles from the aqueous solution
to the membrane occurs only through the molecularly dissolved drug.
Mass transport models were used to calculate flux enhancement by particles
for various drugs at different conditions. Good agreements were obtained
between experimental and predicted values. These results should contribute
to improved bioavailability prediction of nanosized drug particles
and better design of formulations containing colloidal drug particles.
Collapse
Affiliation(s)
- Akshay Narula
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269, United States
| |
Collapse
|
74
|
Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int J Pharm 2022; 625:122120. [PMID: 35987321 DOI: 10.1016/j.ijpharm.2022.122120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Amorphous solid dispersion formulations (ASD) are increasingly being used as a formulation strategy to improve bioavailability of poorly soluble drugs. One of the limitations of ASDs, in particular for high glass transition temperature (Tg) compounds, is the drug loading threshold (termed the limit of congruency, LoC) below which rapid, complete and congruent release of drug and polymer is achieved. In this study, several ionic and non-ionic surfactants were added to atazanavir-copovidone ASDs with the main goal of increasing the limit of congruency. Atazanavir (ATZ) is a relatively high Tg compound with a LoC of 5 % drug loading (DL). Surface normalized dissolution studies revealed that addition of 5 % w/w of surfactant, sodium dodecyl sulfate (SDS) or cetrimonium bromide (CTAB), to the binary copovidone-based ASD doubled the LoC (from 5 to 10 % DL), resulting in a more than 30-fold increase in total release compared to the corresponding binary ASD. Moreover, addition of 5 % of Span®80 increased the LoC to 15 % DL. ASD Tg was found to decrease upon addition of surfactants and water sorption extent was found to increase. We speculate that surfactants act as plasticizers, which may facilitate polymer release from ASDs containing a high Tg drug, providing a possible explanation for the observed enhancement in drug release from ternary ASDs and the increase in LoC.
Collapse
|
75
|
Qi Q, Taylor LS. Improved dissolution of an enteric polymer and its amorphous solid dispersions by polymer salt formation. Int J Pharm 2022; 622:121886. [PMID: 35661745 DOI: 10.1016/j.ijpharm.2022.121886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Weakly acidic polymers, historically used as enteric coatings, are increasingly being employed in solubility-enhancing amorphous solid dispersion (ASD) formulations. However, there is a lack of fundamental understanding around how these carboxylic acid-containing polymers dissolve, in particular when molecularly mixed with a lipophilic drug, as in an ASD. Identification of critical factors dominating their dissolution is vital for rational design of new polymers with enhanced release properties to address contemporary ASD delivery challenges, notably achieving good release at higher drug loadings. Herein, after identification of polymer solubilization via ionization as the rate limiting step for dissolution, hydroxypropylmethyl cellulose phthalate (HP-50) was converted to a salt by neutralization of the phthalic acid groups with different bases. Surface normalized dissolution was performed to assess the dissolution rate improvement achieved by polymer pre-ionization via salt formation. Polymer salts showed ∼ 3-fold faster release than HP-50 at pH 6.8 (50 mM sodium phosphate buffer). Importantly, a polymer salt was able to maintain a rapid dissolution rate, irrespective of the buffer capacity of the medium, whereas the protonated polymer showed greatly diminished dissolution as medium buffer capacity decreased toward physiological gastrointestinal tract values. HP-50 and two polymer salts were formulated into ASDs with miconazole, a lipophilic and weakly basic antifungal drug, at a 20% drug loading. Rapid drug release rates were achieved with polymer salt ASDs, whereby drug release was 14 times faster than from the protonated HP-50 ASD. This study highlights the critical role of polymer ionization and buffer capacity in the dissolution of HP-50-based systems and how pre-ionization via polymer salt formation is a successful strategy for the design of new polymers for improved ASD performance.
Collapse
Affiliation(s)
- Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
76
|
Preparation and pharmacokinetics in vivo of linarin solid dispersion and liposome. CHINESE HERBAL MEDICINES 2022; 14:310-316. [PMID: 36117666 PMCID: PMC9476784 DOI: 10.1016/j.chmed.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Objective The current investigation aimed to determine the appropriate dosage form by comparing solid dispersion and liposome to achieve the purpose of improving the solubility and bioavailability of linarin. Methods Linarin solid dispersion (LSD) and linarin liposome (LL) were developed via the solvent method and the thin film hydration method respectively. The Transwell chamber model of Caco-2 cells was established to evaluate the absorption of drug. The pharmacokinetics of linarin, LSD and LL in rats after ig administration were carried out by high performance liquid chromatography (HPLC) method. Results The solubility of LSD and LL was severally 3.29 times and 3.09 times than that of linarin. The permeation coefficients of LSD and LL were greater than 10−6, indicating that the absorption of LSD and LL were both better than linarin. The bioavailability of the LSD was 3.363 times higher than that of linarin, and the bioavailability of LL was 0.9886 times higher than that of linarin. Conclusion The linarin was more suitable for making solid dispersion to enhance its solubility and bioavailability.
Collapse
|
77
|
Yang R, Zhang GGZ, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm 2022; 619:121708. [PMID: 35364219 DOI: 10.1016/j.ijpharm.2022.121708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
Abstract
Amorphous-amorphous phase separation (AAPS) is an important phase transition process for amorphous solid dispersion (ASD) performance both in terms of drug release as well as physical and chemical stability during storage. Addition of surfactants to ASD systems can impact both of these processes. One possible mechanism through which surfactants affect ASD performance is via their impact on AAPS. Unfortunately, despite their increasing usage in ASD formulations, the effect of surfactant on AAPS is still poorly understood, and there are limited analytical techniques that provide microstructural and composition information about phase separated ASDs. In this study, the impact of four surfactants (sodium dodecyl sulfate, Tween 80, Span 20 and Span 85) on water-induced phase separation in ASDs formulated with ritonavir and polyvinylpyrrolidone/vinyl acetate (PVPVA) was investigated using a variety of orthogonal analytical methods. Transparent films of ASDs with different compositions were prepared by spin coating. Fluorescence confocal microscopy in combination with an in situ humidity chamber was used to monitor the kinetics and morphology of phase separation following exposure to high relative humidity. Optical photothermal IR analysis of phase separated films enabled characterization of domain composition and surfactant distribution. Liquid-liquid phase separation concentration, zeta potential and solution nuclear magnetic resonance spectroscopy measurements enabled interpretation of interaction with and partition of surfactants into the drug-rich phase. It was found that phase separation kinetics and morphology were notably changed by the surfactants. Further, the surfactants showed different affinities for the drug-rich versus the aqueous/polymer-rich phases. The employed analytical techniques were found to be complementary in providing insight into surfactant location in phase separated systems. This study highlights the complexity of phase separation, especially in the presence of surfactants, and provides a foundation to understand the impact of AAPS on ASD performance.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Kevin Kjoller
- Photothermal Spectroscopy Corp, Santa Barbara, CA 93101, USA
| | - Eoghan Dillon
- Photothermal Spectroscopy Corp, Santa Barbara, CA 93101, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
78
|
Zhao P, Hu G, Chen H, Li M, Wang Y, Sun N, Wang L, Xu Y, Xia J, Tian B, Liu Y, He Z, Fu Q. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: A case of nimodipine. Int J Pharm 2022; 616:121538. [PMID: 35124119 DOI: 10.1016/j.ijpharm.2022.121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guowei Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haonan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yiting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Nan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jialong Xia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
79
|
Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone. Pharm Res 2022; 39:381-397. [PMID: 35169959 DOI: 10.1007/s11095-022-03183-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE To understand the role of different surfactants, incorporated into amorphous solid dispersions (ASDs) of ritonavir and copovidone, in terms of their impact on release, phase behavior and stabilization of amorphous precipitates formed following drug release. METHODS Ternary ASDs with ritonavir, copovidone and surfactants (30:70:5 w/w/w) were prepared by rotary evaporation. ASD release performance was tested using Wood's intrinsic dissolution rate apparatus and compared to the binary drug-polymer ASD with 30% drug loading. Size measurement of amorphous droplets was performed using dynamic light scattering. Solid state characterization was performed using attenuated total reflectance-infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. RESULTS All surfactant-containing ASDs showed improvement over the binary ASD. Span 85 and D-α-tocopheryl polyethylene glycol succinate (TPGS) showed complete release with no evidence of AAPS or crystallization whereas Span 20 and Tween 80 showed < 50% release with amorphous amorphous phase separation (AAPS). Span 20 also induced solution crystallization. Sodium dodecyl sulfate (SDS) showed very rapid, albeit incomplete (~ 80%) release. AAPS was not observed with SDS. However, crystallization on the dissolving solid surface was noted. Span 20 and TPGS formed the smallest and most size-stable droplets with ~ 1 µm size whereas coalescence was noted with other surfactants. CONCLUSIONS Surfactants improved the release performance relative to the binary ASD. Different surfactant types impacted overall performance to varying extents and affected different attributes. Overall, Span 85 showed best performance (complete release, no crystallization/AAPS and small droplet size). Correlation between physicochemical properties and surfactant performance was not observed.
Collapse
Affiliation(s)
- Anura S Indulkar
- Drug Product Development, Research and Development, AbbVie Inc., N Waukegan Road, North Chicago, IL, 60064, USA
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Xiaochun Lou
- Drug Product Development, Research and Development, AbbVie Inc., N Waukegan Road, North Chicago, IL, 60064, USA
| | - Geoff G Z Zhang
- Drug Product Development, Research and Development, AbbVie Inc., N Waukegan Road, North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
80
|
Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharm Res 2022; 39:167-188. [PMID: 35013849 DOI: 10.1007/s11095-021-03159-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Surfactants are increasingly being added to amorphous solid dispersion (ASDs) formulations to enhance processability and release performance. The goal of the current work was to investigate the impact of cationic, anionic and non-ionic surfactants on the rate and extent of clopidogrel (CPD) release from copovidone-based ASDs. METHODS CPD release was evaluated for ASDs with different drug loadings using a surface normalized intrinsic dissolution apparatus. Studies were also carried out using dynamic light scattering, zeta potential measurements, and nuclear magnetic resonance spectroscopy to probe the impact of surfactants on drug-rich nanodroplet physical stability and clopidogrel-surfactant interactions. RESULTS CPD ASDs showed good release for drug loadings as high as 40%, before the release fell off a cliff at higher drug loadings. Only sodium dodecyl sulfate, added at a 5% level, was able to improve the release at 50% drug loading, with other surfactants proving to be ineffective. However, some of the surfactants evaluated did show some benefits in improving nanodroplet stability against size enlargement. Ionic and non-ionic surfactants were observed to interact differently with CPD-rich nanodroplets, and variations in the kinetics and morphology of water-induced phase separation were noted in the presence and absence of surfactants in ASD films. CONCLUSIONS In summary, addition of surfactants to ASD formulations may lead to some improvements in formulation performance, but predictive capabilities and mechanisms of surfactant effect still require further studies.
Collapse
|
81
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
82
|
Thompson SA, Davis DA, Moon C, Williams RO. Increasing Drug Loading of Weakly Acidic Telmisartan in Amorphous Solid Dispersions through pH Modification during Hot-Melt Extrusion. Mol Pharm 2022; 19:318-331. [PMID: 34846902 DOI: 10.1021/acs.molpharmaceut.1c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral drug therapy requiring large quantities of active pharmaceutical ingredients (APIs) can cause a substantial pill burden, which can increase nonadherence and worsen healthcare outcomes. Maximizing the drug loading of APIs in oral dosage forms is essential to reduce pill burden. This can be challenging for poorly water-soluble APIs without compromising performance. We show a promising strategy for maximizing the drug loading of pH-dependent APIs in amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) without compromising their dissolution performance. We examine potential increases in the drug loading (w/w) of telmisartan in ASDs by incorporating bases to modify pH during HME. Telmisartan is a weakly acidic, poorly water-soluble API with pH-dependent solubility. It is practically insoluble at physiological pH, but its solubility increases exponentially at pH values above 10. Telmisartan was extruded with the polymer Soluplus and various bases. With no base, the maximum drug loading achieved by extrusion was only 5% before crystalline telmisartan was detected. Including a strong, water-soluble base (NaOH or KOH) increased the maximum amorphous drug loading to 50%. These results indicate that telmisartan has pH-dependent solubility in a molten polymer, similar to that in an aqueous solution. We also examine the stability of Soluplus when extruded with a strong base, using solid-state nuclear magnetic resonance (ssNMR) to determine that NaOH (but not KOH) causes degradation by hydrolysis. Supersaturation was maintained for at least 20 h during dissolution testing of a 50% telmisartan ASD in biorelevant media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Daniel A Davis
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| |
Collapse
|
83
|
Nunes PD, Pinto JF, Henriques J, Paiva AM. Insights into the Release Mechanisms of ITZ:HPMCAS Amorphous Solid Dispersions: The Role of Drug-Rich Colloids. Mol Pharm 2022; 19:51-66. [PMID: 34919407 DOI: 10.1021/acs.molpharmaceut.1c00578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the dissolution mechanisms of amorphous solid dispersions (ASDs) and being able to link enhanced drug exposure with process parameters are key when formulating poorly soluble compounds. Thus, in this study, ASDs composed by itraconazole (ITZ) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were formulated with different polymer grades and drug loads (DLs) and processed by spray drying with different atomization ratios and outlet temperatures. Their in vitro performance and the ability to form drug-rich colloids were then evaluated by a physiologically relevant dissolution method. In gastric media, drug release followed a diffusion-controlled mechanism and drug-rich colloids were not formed since the solubility of the amorphous API at pH 1.6 was not exceeded. After changing to intestinal media, the API followed a polymer dissolution-controlled release, where the polymer rapidly dissolved, promoting the immediate release of API and thus leading to liquid-liquid phase separation (LLPS) and consequent formation of drug-rich colloids. However, the release of API and polymer was not congruent, so API surface enrichment occurred, which limited the further dissolution of the polymer, leading to a drug-controlled release. ASDs formulated with M-grade showed the highest ability to maintain supersaturation and the lowest tendency for AAPS due to its good balance between acetyl and succinoyl groups, and thus strong interactions with both the hydrophobic drug and the aqueous dissolution medium. The ability to form colloids increased for low DL (15%) and high specific surface area due to the high amount of polymer released until the occurrence of API surface enrichment. Even though congruent release was not observed, all ASDs formed drug-rich colloids that were stable in the solution until the end of the dissolution study (4 h), maintaining the same size distribution (ca. 300 nm). Drug-rich colloids can, in vivo, act as a drug reservoir replenishing the drug while it permeates. Designing ASDs that are prone to form colloids can overcome the solubility constraints of Biopharmaceutics Classification System (BCS) II and IV drugs, posing as a reliable formulation strategy.
Collapse
Affiliation(s)
- Patrícia D Nunes
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal.,R&D Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal.,Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João F Pinto
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Henriques
- R&D Drug Product Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| | - A Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciência S.A., Campus do Lumiar, Building S, 1649-038 Lisboa, Portugal
| |
Collapse
|
84
|
pH-Dependent supersaturation from amorphous solid dispersions of weakly basic drugs. Pharm Res 2021; 39:2919-2936. [PMID: 34890018 DOI: 10.1007/s11095-021-03147-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE In amorphous solid dispersions (ASDs), the chemical potential of a drug can be reduced due to mixing with the polymer in the solid matrix, and this can lead to reduced drug release when the polymer is insoluble in the dissolution media. If both the drug and the polymer composing an ASD are ionizable, drug release from the ASD becomes pH-dependent. The goal of this study was to gain insights into the pH-dependent solubility suppression from ASD formulations. METHODS The maximum release of clotrimazole, a weakly basic drug, from ASDs formulated with insoluble and pH-responsive polymers, was determined as a function of solution pH. Drug-polymer interactions in ASDs were probed using melting point depression, moisture sorption, and solid-state Nuclear Magnetic Resonance spectroscopy (SSNMR) measurements. RESULTS The extent of solubility suppression was dependent on polymer type and drug loading. The strength of drug-polymer interactions was found to correlate well with the degree of solubility suppression. For the same ASD, the degree of solubility suppression was nearly constant across the solution pH range studied, suggesting that polymer-drug interactions in residual ASD solids was independent of solution pH. The total drug release agrees with the Henderson-Hasselbalch relationship if the suppressed amorphous solubility of the free drug is independent of solution pH. CONCLUSIONS The mechanism of solubility suppression at different solution pHs appeared to be drug-polymer interactions in the solid-state, where the concentration of the free drug remains the same at variable pHs and the total drug concentration follows the Henderson-Hasselbalch relationship.
Collapse
|
85
|
Schönfeld BV, Westedt U, Wagner KG. Compression of amorphous solid dispersions prepared by hot-melt extrusion, spray drying and vacuum drum drying. Int J Pharm X 2021; 3:100102. [PMID: 34877525 PMCID: PMC8632852 DOI: 10.1016/j.ijpx.2021.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
The present study explored vacuum drum drying (VDD) as an alternative technology for amorphous solid dispersions (ASDs) manufacture compared to hot-melt extrusion (HME) and spray drying (SD) focusing on downstream processability (powder properties, compression behavior and tablet performance). Ritonavir (15% w/w) in a copovidone/sorbitan monolaurate matrix was used as ASD model system. The pure ASDs and respective tablet blends (TB) (addition of filler, glidant, lubricant) were investigated. Milled extrudate showed superior powder properties (e.g., flowability, bulk density) compared to VDD and SD, which could be compensated by the addition of 12.9% outer phase. Advantageously, the VDD intermediate was directly compressible, whereas the SD material was not, resulting in tablets with defects based on a high degree of elastic recovery. Compared to HME, the VDD material showed superior tabletability when formulated as TB, resulting in stronger compacts at even lower solid fraction values. Despite the differences in tablet processing, tablets showed similar tablet performance in terms of disintegration and dissolution independent of the ASD origin. In conclusion, VDD is a valid alternative to manufacture ASDs. VDD offered advantageous downstream processability compared to SD: less solvents and process steps required (no second drying), improved powder properties and suitable for direct compression. ASD technology has influence on particle morphology Compression behavior dominated by particle morphology Vacuum drum dried intermediate direct compressible into tablets Vacuum drum dried material shows better tabletability as milled extrudate ASD technology: no impact on tablet disintegration/dissolution
Collapse
Key Words
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- Amorphous solid dispersion
- CP, compaction pressure
- Compression analysis
- D, tablet diameter
- Downstream processing
- FFC, flow function coefficient
- HME, hot-melt extrusion
- Hot-melt extrusion
- LOD, loss on drying
- P, breaking force
- PSD, particle size distribution
- PSmin, minimal punch separation
- RTV, ritonavir
- Ritonavir
- SD, spray drying
- SE, secondary electron
- SEM, scanning electron microscope
- SF, solid fraction
- SSA, specific surface area
- Spray drying
- TER, Total elastic recovery
- TS, tensile strength
- Tg, glass transition temperature
- V, volume
- VDD, vacuum drum drying
- Vacuum drum drying
- X-ray μCT, X-ray microcomputed tomography
- f1, difference factor
- f2, similarity factor
- n.d., not determined
- na, not applicable
- t, tablet thickness
- w, tablet wall height
Collapse
Affiliation(s)
- Barbara V. Schönfeld
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
- AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
- Corresponding author.
| |
Collapse
|
86
|
Faiz Afzal MA, Lehmkemper K, Sobich E, Hughes TF, Giesen DJ, Zhang T, Krauter CM, Winget P, Degenhardt M, Kyeremateng SO, Browning AR, Shelley JC. Molecular-Level Examination of Amorphous Solid Dispersion Dissolution. Mol Pharm 2021; 18:3999-4014. [PMID: 34570503 DOI: 10.1021/acs.molpharmaceut.1c00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amorphous solid dispersions (ASDs) are commonly used to orally deliver small-molecule drugs that are poorly water-soluble. ASDs consist of drug molecules in the amorphous form which are dispersed in a hydrophilic polymer matrix. Producing a high-performance ASD is critical for effective drug delivery and depends on many factors such as solubility of the drug in the matrix and the rate of drug release in aqueous medium (dissolution), which is linked to bioperformance. Often, researchers perform a large number of design iterations to achieve this objective. A detailed molecular-level understanding of the mechanisms behind ASD dissolution behavior would aid in the screening, designing, and optimization of ASD formulations and would minimize the need for testing a wide variety of prototype formulations. Molecular dynamics and related types of simulations, which model the collective behavior of molecules in condensed phase systems, can provide unique insights into these mechanisms. To study the effectiveness of these simulation techniques in ASD formulation dissolution, we carried out dissipative particle dynamics simulations, which are particularly an efficient form of molecular dynamics calculations. We studied two stages of the dissolution process: the early-stage of the dissolution process, which focuses on the dissolution at the ASD/water interface, and the late-stage of the dissolution process, where significant drug release would have occurred and there would be a mixture of drug and polymer molecules in a predominantly aqueous environment. Experimentally, we used Fourier transform infrared spectroscopy to study the interactions between drugs, polymers, and water in the dry and wet states and the chromatographic technique to study the rate of drug and polymer release. Both experiments and simulations provided evidence of polymer microstructures and drug-polymer interactions as important factors for the dissolution behavior of the investigated ASDs, consistent with previous work by Pudlas et al. (Eur. J. Pharm. Sci. 2015, 67, 21-31). As experimental and simulation results are consistent and complementary, it is clear that there is significant potential for combined experimental and computational research for a detailed understanding of ASD formulations and, hence, formulation optimization.
Collapse
Affiliation(s)
- Mohammad Atif Faiz Afzal
- Materials Science, Schrödinger, LLC, Suite 1300, 101 SW Main Street, Portland, Oregon 97204, United States
| | - Kristin Lehmkemper
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Ekaterina Sobich
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Thomas F Hughes
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | - David J Giesen
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | - Teng Zhang
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | | | - Paul Winget
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | - Matthias Degenhardt
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Samuel O Kyeremateng
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Andrea R Browning
- Materials Science, Schrödinger, LLC, Suite 1300, 101 SW Main Street, Portland, Oregon 97204, United States
| | - John C Shelley
- Materials Science, Schrödinger, LLC, Suite 1300, 101 SW Main Street, Portland, Oregon 97204, United States
| |
Collapse
|
87
|
Hiew TN, Zemlyanov DY, Taylor LS. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Mol Pharm 2021; 19:392-413. [PMID: 34494842 DOI: 10.1021/acs.molpharmaceut.1c00481] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
88
|
Sip S, Rosiak N, Miklaszewski A, Talarska P, Dudziec E, Cielecka-Piontek J. Amorphous Form of Carvedilol Phosphate-The Case of Divergent Properties. Molecules 2021; 26:molecules26175318. [PMID: 34500748 PMCID: PMC8434513 DOI: 10.3390/molecules26175318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
The amorphous form of carvedilol phosphate (CVD) was obtained as a result of grinding. The identity of the obtained amorphous form was confirmed by powder X-ray diffraction (PXRD), different scanning calorimetry (DSC), and FT-IR spectroscopy. The process was optimized in order to obtain the appropriate efficiency and time. The crystalline form of CVD was used as the reference standard. Solid dispersions of crystalline and amorphous CVD forms with hydrophilic polymers (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®) were obtained. Their solubility at pH 1.2 and 6.8 was carried out, as well as their permeation through a model system of biological membranes suitable for the gastrointestinal tract (PAMPA-GIT) was established. The influence of selected polymers on CVD properties was defined for the amorphous form regarding the crystalline form of CVD. As a result of grinding (four milling cycles lasting 15 min with 5 min breaks), amorphous CVD was obtained. Its presence was confirmed by the “halo effect” on the diffraction patterns, the disappearance of the peak at 160.5 °C in the thermograms, and the changes in position/disappearance of many characteristic bands on the FT-IR spectra. As a result of changes in the CVD structure, its lower solubility at pH 1.2 and pH 6.8 was noted. While the amorphous dispersions of CVD, especially with Pluronic® F-127, achieved better solubility than combinations of crystalline forms with excipients. Using the PAMPA-GIT model, amorphous CVD was assessed as high permeable (Papp > 1 × 10−6 cm/s), similarly with its amorphous dispersions with excipients (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®), although in their cases, the values of apparent constants permeability were decreased.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland;
| | - Patrycja Talarska
- Department of Immunobiology, Poznan University of Medical Sciences, ul. Rokietnicka 8, 60-806 Poznan, Poland;
| | - Ewa Dudziec
- Department of Rheumatology and Rehabilitation, Poznan University of Medical Sciences, ul. 28 Czerwca 1956 r. 135/147, 61-545 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
- Correspondence:
| |
Collapse
|
89
|
Ji Y, Hao D, Luebbert C, Sadowski G. Insights into influence mechanism of polymeric excipients on dissolution of drug formulations: A molecular interaction‐based theoretical model analysis and prediction. AIChE J 2021. [DOI: 10.1002/aic.17372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuanhui Ji
- Jiangsu Province Hi‐Tech Key Laboratory for Bio‐medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing China
| | - Dule Hao
- Jiangsu Province Hi‐Tech Key Laboratory for Bio‐medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing China
| | - Christian Luebbert
- TU Dortmund, Department of Biochemical and Chemical Engineering Laboratory of Thermodynamics Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund, Department of Biochemical and Chemical Engineering Laboratory of Thermodynamics Dortmund Germany
| |
Collapse
|
90
|
Chen Y, Lubach JW, Tang S, Narang AS. Effect of Counterions on Dissolution of Amorphous Solid Dispersions Studied by Surface Area Normalized Dissolution. Mol Pharm 2021; 18:3429-3438. [PMID: 34338529 DOI: 10.1021/acs.molpharmaceut.1c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Solubility enhancement has become a common requirement for formulation development to deliver poorly water soluble drugs. Amorphous solid dispersions (ASDs) and salt formation have been two successful strategies, yet there are opportunities for further development. For ASDs, drug-polymer phase separation may occur at high drug loadings during dissolution, limiting the increase of drug loadings in ASD formulations. For salt formation, a salt form with high crystallinity and sufficient solid-state stability is required for solid dosage form development. This work studied the effect of counterions on the dissolution performance of ASDs. Surface area normalized dissolution or intrinsic dissolution methodology was employed to eliminate the effect of particle size and provide a quantitative comparison of the counterion effect on the intrinsic dissolution rate. Using indomethacin (IMC)-poly(vinylpyrrolidone-co-vinyl acetate) ASD as a model system, the effect of different bases incorporated into the ASD during preparation, the molar ratios between the base and IMC, and the drug loadings in the ASD were systematically studied. Strong bases capable of ionizing IMC significantly enhanced drug dissolution, while a weak base did not. A physical mixture of a strong base and the ASD also enhanced the dissolution rate, but the effect was less pronounced. At different base to IMC molar ratios, dissolution enhancement increased with the base to IMC ratio. At different drug loadings, without a base, the IMC dissolution rate decreased with the increase of drug loading. After incorporating a strong base, it increased with the increase of drug loading. The observations from this study were thought to be related to both the ionization of IMC in ASDs and the increase of microenvironment pH by the incorporated bases. With the significant enhancement of the drug dissolution rate, our work provides a promising approach of overcoming the dissolution limitation of ASD formulations at high drug loadings.
Collapse
Affiliation(s)
- Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W Lubach
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shijia Tang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ajit S Narang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
91
|
Que C, Deac A, Zemlyanov DY, Qi Q, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Impact of Drug-Polymer Intermolecular Interactions on Dissolution Performance of Copovidone-Based Amorphous Solid Dispersions. Mol Pharm 2021; 18:3496-3508. [PMID: 34319746 DOI: 10.1021/acs.molpharmaceut.1c00419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For poorly soluble drugs formulated as amorphous solid dispersions (ASDs), fast and complete release with the generation of drug-rich colloidal particles is beneficial for optimizing drug absorption. However, this ideal dissolution profile can only be achieved when the drug releases at the same normalized rate as the polymer, also known as congruent release. This phenomenon only occurs when the drug loading (DL) is below a certain value. The maximal DL at which congruent release occurs is defined as the limit of congruency (LoC). The purpose of this study was to investigate the relationship between drug chemical structure and LoC for PVPVA-based ASDs. The compounds investigated shared a common scaffold substituted with different functional groups, capable of forming hydrogen bonds only, halogen bonds only, both hydrogen and halogen bonds, or nonspecific interactions only with the polymer. Intermolecular interactions were studied and confirmed by X-ray photoelectron spectroscopy and infrared spectroscopy. The release rates of ASDs with different DLs were investigated using surface area normalized dissolution. ASDs with hydrogen bond formation between the drug and polymer had lower LoCs, while compounds that were only able to form halogen bonds or nonspecific interactions with the polymer achieved considerably higher LoCs. This study highlights the impact of different types of drug-polymer interactions on ASD dissolution performance, providing insights into the role of drug and polymer chemical structures on the LoC and ASD performance in general.
Collapse
Affiliation(s)
- Chailu Que
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - QingQing Qi
- Department of Chemistry, College of Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anura S Indulkar
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yi Gao
- Science and Technology, Operations, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
92
|
Li M, Razumtcev A, Yang R, Liu Y, Rong J, Geiger AC, Blanchard R, Pfluegl C, Taylor LS, Simpson GJ. Fluorescence-Detected Mid-Infrared Photothermal Microscopy. J Am Chem Soc 2021; 143:10809-10815. [PMID: 34270255 DOI: 10.1021/jacs.1c03269] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy and then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Intrinsic ultraviolet autofluorescence of tryptophan and protein microparticles enabled label-free F-PTIR microscopy. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir/polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water sorption in spin-cast films.
Collapse
Affiliation(s)
- Minghe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruochen Yang
- Physical and Industrial Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youlin Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andreas C Geiger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Romain Blanchard
- Pendar Technologies, 30 Spinelli Pl, Cambridge, Massachusetts 02138, United States
| | - Christian Pfluegl
- Pendar Technologies, 30 Spinelli Pl, Cambridge, Massachusetts 02138, United States
| | - Lynne S Taylor
- Physical and Industrial Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
93
|
Hate SS, Mosquera-Giraldo LI, Taylor LS. A Mechanistic Study of Drug Mass Transport from Supersaturated Solutions Across PAMPA Membranes. J Pharm Sci 2021; 111:102-115. [PMID: 34237298 DOI: 10.1016/j.xphs.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
There is an increasing shift from dissolution testing to dissolution-permeation testing of formulations during formulation development and this has led increasing application of permeability measurements using parallel artificial membrane permeability assay (PAMPA) membranes. However, there is a lack of thorough analysis of the impact of variabilities in the PAMPA setup on the mass flow rate outcomes, particularly for complex solubility-enabling formulations. In this study, we investigated the impact of amorphous drug-rich nanodroplets, formed in supersaturated solutions by liquid-liquid phase separation, on membrane transport by measuring mass flow rate across PAMPA membranes. In addition, we explored the impact of PAMPA variants such as lipid composition, hydrophobicity and pore size of the filter support, as well as receiver sink properties on membrane mass flow rates of solutions containing amorphous nanodroplets. Filter properties and lipid composition did not show a notable influence on the mass flow rates for lipophilic molecules, while a marked impact was observed for hydrophilic molecules. High sink conditions in the receiver compartment, arising from addition of micellar surfactant, altered the membrane integrity for lipid-impregnated hydrophilic membranes. In contrast, no such effect was observed for a hydrophobic filter support. Membrane integrity tests also suggested that monitoring water transport may be an improved approach over using Lucifer yellow. Furthermore, high sink conditions in the receiver compartment resulted in an increase in the overall mass flow rate. This was due to the effect of asymmetric conditions, generated across the membrane, on mass transport kinetics. Linearity between mass flow rate and donor concentration was observed until the donor concentration reached the amorphous solubility. Above the amorphous solubility, a gradual increase in mass flow rate was observed i.e., with an increasing number of nanodroplets in the solution. This was attributed to decrease in the permeability barrier across unstirred water layer due to reduction of the concentration gradient as nanodroplets dissolved to replenish absorbed drug. Observations made in this study provide insights into the mechanisms associated with mass transport of supersaturated solutions across PAMPA membranes, which are critical for improved evaluation of enabling formulations.
Collapse
Affiliation(s)
- Siddhi S Hate
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
94
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
95
|
Cordova M, Balodis M, Hofstetter A, Paruzzo F, Nilsson Lill SO, Eriksson ESE, Berruyer P, Simões de Almeida B, Quayle MJ, Norberg ST, Svensk Ankarberg A, Schantz S, Emsley L. Structure determination of an amorphous drug through large-scale NMR predictions. Nat Commun 2021; 12:2964. [PMID: 34016980 PMCID: PMC8137699 DOI: 10.1038/s41467-021-23208-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Knowledge of the structure of amorphous solids can direct, for example, the optimization of pharmaceutical formulations, but atomic-level structure determination in amorphous molecular solids has so far not been possible. Solid-state nuclear magnetic resonance (NMR) is among the most popular methods to characterize amorphous materials, and molecular dynamics (MD) simulations can help describe the structure of disordered materials. However, directly relating MD to NMR experiments in molecular solids has been out of reach until now because of the large size of these simulations. Here, using a machine learning model of chemical shifts, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex formation energies.
Collapse
Affiliation(s)
- Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martins Balodis
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Albert Hofstetter
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Federico Paruzzo
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sten O Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma S E Eriksson
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Simões de Almeida
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael J Quayle
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Stefan T Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Anna Svensk Ankarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
96
|
Saboo S, Bapat P, Moseson DE, Kestur US, Taylor LS. Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. Pharmaceutics 2021; 13:pharmaceutics13050735. [PMID: 34067666 PMCID: PMC8156319 DOI: 10.3390/pharmaceutics13050735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
To reduce the dosage size of amorphous solid dispersion (ASD)-based formulations, it is of interest to devise formulation strategies that allow increased drug loading (DL) without compromising dissolution performance. The aim of this study was to explore how surfactant addition impacts drug release as a function of drug loading from a ternary ASD, using felodipine as a model poorly soluble compound. The addition of 5% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant) to felodipine-polyvinylpyrrolidone/vinyl acetate ASDs was found to facilitate rapid and congruent (i.e., simultaneous) release of drug and polymer at higher DLs relative to binary ASDs (drug and polymer only). For binary ASDs, good release was observed for DLs up to <20% DL; this increased to 35% DL with surfactant. Microstructure evolution in ASD films following exposure to 100% relative humidity was studied using atomic force microscopy coupled with nanoscale infrared imaging. The formation of discrete, spherical drug-rich domains in the presence of surfactant appeared to be linked to systems showing congruent and rapid release of drug and polymer. In contrast, a contiguous drug-rich phase was formed for systems without surfactant at higher DLs. This study supports the addition of surfactant to ASD formulations as a strategy to increase DL without compromising release. Furthermore, insights into the potential role of surfactant in altering ASD release mechanisms are provided.
Collapse
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Oral Formulation Sciences and Technology, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Pradnya Bapat
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Dana E. Moseson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
| | - Umesh S. Kestur
- Drug Product Development, Bristol-Myers Squibb Company, One Squib Drive, New Brunswick, NJ 08903, USA;
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (S.S.); (P.B.); (D.E.M.)
- Correspondence: ; Tel.: +1-765-496-6614
| |
Collapse
|
97
|
Mutual Effects of Hydrogen Bonding and Polymer Hydrophobicity on Ibuprofen Crystal Inhibition in Solid Dispersions with Poly( N-vinyl pyrrolidone) and Poly(2-oxazolines). Pharmaceutics 2021; 13:pharmaceutics13050659. [PMID: 34064530 PMCID: PMC8148000 DOI: 10.3390/pharmaceutics13050659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Poly(N-vinyl pyrrolidone) (PVP), poly(2-methyl-2-oxazoline) (PMOZ), poly(2-ethyl-2-oxazoline) (PEOZ), poly(2-n-propyl-2-oxazoline) (PnPOZ), and poly(2-isopropyl-2-oxazoline) (PiPOZ) were used to prepare solid dispersions with ibuprofen (IB), a model poorly-water soluble drug. Dispersions, prepared by solvent evaporation, were investigated using powder X-ray diffractometry, differential scanning calorimetry, and FTIR spectroscopy; hydrogen bonds formed between IB and all polymers in solid dispersions. PMOZ, the most hydrophilic polymer, showed the poorest ability to reduce or inhibit the crystallinity of IB. In contrast, the more hydrophobic polymers PVP, PEOZ, PnPOZ, and PiPOZ provided greater but similar abilities to reduce IB crystallinity, despite the differing polymer hydrophobicity and that PiPOZ is semi-crystalline. These results indicate that crystallinity disruption is predominantly due to hydrogen bonding between the drug molecules and the polymer. However, carrier properties affected drug dissolution, where PnPOZ exhibited lower critical solution temperature that inhibited the release of IB, whereas drug release from other systems was consistent with the degree of ibuprofen crystallinity within the dispersions.
Collapse
|
98
|
Yang R, Mann AKP, Van Duong T, Ormes JD, Okoh GA, Hermans A, Taylor LS. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. Mol Pharm 2021; 18:2066-2081. [PMID: 33784104 DOI: 10.1021/acs.molpharmaceut.1c00055] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dissolution of amorphous solid dispersions (ASD) can lead to the formation of amorphous drug-rich nano species (nanodroplets) via liquid-liquid phase separation or glass-liquid phase separation when the drug concentration exceeds the amorphous solubility. These nanodroplets have been shown to be beneficial for ASD performance both in vitro and in vivo. Thus, understanding the generation and stability of nanodroplets from ASD formulations is important. In this study, the impacts of polymer selection and active pharmaceutical ingredient (API) physicochemical properties (wet glass transition temperature (Tg) and log P) on nanodroplet release were studied. Six APIs with different physicochemical properties were formulated as ASDs with two polymers, polyvinylpyrrolidone/vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). Their release performance was evaluated using both powder and surface normalized dissolution of compacts. In general, HPMCAS-based dispersions resulted in higher drug release compared to PVPVA-based dispersions. The two polymers also exhibited different trends in nanodroplet formation as a function of drug loading (DL). PVPVA ASDs exhibited a "falling-off-the-cliff" effect, with a dramatic decline in release performance with a small increase in drug loading, while HPMCAS ASDs exhibited a negative "slope" in the release rate as a function of drug loading. For both polymers, low Tg compounds achieved higher levels of nanodroplet formation compared to high Tg compounds. The nanodroplets generated from ASD dissolution were also monitored with dynamic light scattering, and HPMCAS was found to be more effective at stabilizing nanodroplets against size increase. Insights from this study may be used to guide formulation design and selection of excipients based on API physicochemical properties.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Amanda K P Mann
- Merck & Co., Inc. 2000, Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - James D Ormes
- Merck & Co., Inc. 2000, Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Grace A Okoh
- Merck & Co., Inc. 2000, Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andre Hermans
- Merck & Co., Inc. 2000, Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
99
|
Bochmann ES, Steidel A, Rosenblatt KM, Gessner D, Liepold B. Assessment of the amorphous solid dispersion erosion behavior following a novel small-scale predictive approach. Eur J Pharm Sci 2021; 158:105682. [DOI: 10.1016/j.ejps.2020.105682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
|
100
|
Ashwathy P, Anto AT, Sudheesh MS. A mechanistic review on the dissolution phase behavior and supersaturation stabilization of amorphous solid dispersions. Drug Dev Ind Pharm 2021; 47:1-11. [PMID: 33494623 DOI: 10.1080/03639045.2021.1879843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amorphous solid dispersion (ASD) technology is an attractive formulation approach for poorly soluble drugs because of the supersaturated state acquired during its dissolution. The high thermodynamic activity of the supersaturated state of the drug is also a driver for the enhanced absorptive flux across a membrane. However, this advantage can easily be lost due to the inherent instability of supersaturation, causing drug precipitation. Stabilizing the supersaturated state during the dissolution of ASD for the relevant absorption time frame is a challenging area in formulation research. Stabilizing the supersaturated state by using polymeric excipients and understanding the phase behavior of drugs during dissolution are required for the optimal performance of ASD formulations. A number of confounding kinetic, formulation and physiological factors can influence the evolution of supersaturation and phase changes during dissolution of ASDs. The review highlights the complex nature of dissolution of ASDs and the need of biorelevant dissolution for proper risk assessment and optimizing formulation development.
Collapse
Affiliation(s)
- P Ashwathy
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - Akshaya T Anto
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Kochi, India
| |
Collapse
|