51
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
52
|
Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Am J Cancer Res 2022; 12:4993-5014. [PMID: 35836812 PMCID: PMC9274750 DOI: 10.7150/thno.74571] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral nerve injury (PNI) caused by trauma, chronic disease and other factors may lead to partial or complete loss of sensory, motor and autonomic functions, as well as neuropathic pain. Biological activities are always accompanied by mechanical stimulation, and biomechanical microenvironmental homeostasis plays a complicated role in tissue repair and regeneration. Recent studies have focused on the effects of biomechanical microenvironment on peripheral nervous system development and function maintenance, as well as neural regrowth following PNI. For example, biomechanical factors-induced cluster gene expression changes contribute to formation of peripheral nerve structure and maintenance of physiological function. In addition, extracellular matrix and cell responses to biomechanical microenvironment alterations after PNI directly trigger a series of cascades for the well-organized peripheral nerve regeneration (PNR) process, where cell adhesion molecules, cytoskeletons and mechanically gated ion channels serve as mechanosensitive units, mechanical effector including focal adhesion kinase (FAK) and yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransduction elements. With the rapid development of tissue engineering techniques, a substantial number of PNR strategies such as aligned nerve guidance conduits, three-dimensional topological designs and piezoelectric scaffolds emerge expected to improve the neural biomechanical microenvironment in case of PNI. These tissue engineering nerve grafts display optimized mechanical properties and outstanding mechanomodulatory effects, but a few bottlenecks restrict their application scenes. In this review, the current understanding in biomechanical microenvironment homeostasis associated with peripheral nerve function and PNR is integrated, where we proposed the importance of balances of mechanosensitive elements, cytoskeletal structures, mechanotransduction cascades, and extracellular matrix components; a wide variety of promising tissue engineering strategies based on biomechanical modulation are introduced with some suggestions and prospects for future directions.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| |
Collapse
|
53
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
55
|
|
56
|
Pires LS, Magalhães FD, Pinto AM. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers (Basel) 2022; 14:1464. [PMID: 35406337 PMCID: PMC9003422 DOI: 10.3390/polym14071464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
The constant evolution and advancement of the biomedical field requires robust and innovative research. Two-dimensional nanomaterials are an emerging class of materials that have risen the attention of the scientific community. Their unique properties, such as high surface-to-volume ratio, easy functionalization, photothermal conversion, among others, make them highly versatile for a plethora of applications ranging from energy storage, optoelectronics, to biomedical applications. Recent works have proven the efficiency of 2D nanomaterials for cancer photothermal therapy (PTT), drug delivery, tissue engineering, and biosensing. Combining these materials with hydrogels and scaffolds can enhance their biocompatibility and improve treatment for a variety of diseases/injuries. However, given that the use of two-dimensional nanomaterials-based polymeric composites for biomedical applications is a very recent subject, there is a lot of scattered information. Hence, this review gathers the most recent works employing these polymeric composites for biomedical applications, providing the reader with a general overview of their potential.
Collapse
Affiliation(s)
- Laura S. Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|
57
|
Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. BIOMATERIALS ADVANCES 2022; 135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury (PNI) caused by injury may influence the patients' lifelong mobility unless there is an appropriate treatment. Tissue engineering has become a hot field to replace traditional autologous nerve transplantation due to its low surgical damage and easy-to-industrial advantages. Graphene (GR) is a kind of carbon nanomaterial with good electrical and mechanical properties that satisfy the demand for a good tissue scaffold for nerve regeneration. Herein, a novel and biosafe hydrogel is fabricated by using graphene and sodium alginate (GR-SA) together. This hydrogel not only can mimic the nerve growth microenvironment but also can promote the expression of neurotrophic substances and growth factors. Additionally, GR-SA hydrogel can significantly reduce inflammatory factors. Moreover, the results of both in vitro and in vivo tests demonstrate that GR-SA hydrogel has a promising prospect in PNI regeneration.
Collapse
|
58
|
Ren J, Tang X, Wang T, Wei X, Zhang J, Lu L, Liu Y, Yang B. A Dual-Modal Magnetic Resonance/Photoacoustic Imaging Tracer for Long-Term High-Precision Tracking and Facilitating Repair of Peripheral Nerve Injuries. Adv Healthc Mater 2022; 11:e2200183. [PMID: 35306758 DOI: 10.1002/adhm.202200183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/05/2022] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing is considered a crucial technique to assess the axonal regeneration level after injury, but traditional tracers do not meet the needs of in vivo neural tracing in deep tissues. Magnetic resonance (MR) and photoacoustic (PA) imaging have high spatial resolution, great penetration depth, and rich contrast. Fe3 O4 nanoparticles may work well as a dual-modal diagnosis probe for neural tracers, with the potential to improve nerve regeneration. The present study combines antegrade neural tracing imaging therapy for the peripheral nervous system. Fe3 O4 @COOH nanoparticles are successfully conjugated with biotinylated dextran amine (BDA) to produce antegrade nano-neural tracers, which are encapsulated by microfluidic droplets to control leakage and allow sustained, slow release. They have many notable advantages over traditional tracers, including dual-modal real-time MR/PA imaging in vivo, long-duration release effect, and limitation of uncontrolled leakage. These multifunctional anterograde neural tracers have potential neurotherapeutic function, are reliable and may be used as a new platform for peripheral nerve injury imaging and treatment integration.
Collapse
Affiliation(s)
- Jingyan Ren
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiaoduo Tang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Tao Wang
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xin Wei
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Junhu Zhang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Laijin Lu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Yang Liu
- Department of Hand Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Bai Yang
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun Jilin 130012 China
| |
Collapse
|
59
|
Li S, Yu X, Li Y, Zhang T. Conductive polypyrrole-coated electrospun chitosan nanoparticles/poly(D,L-lactide) fibrous mat: influence of drug delivery and Schwann cells proliferation. Biomed Phys Eng Express 2022; 8. [PMID: 35168214 DOI: 10.1088/2057-1976/ac5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
For nerve tissue engineering (NTE), scaffolds with the ability to release drugs under control and support the rapid proliferation of cells are very important for the repair of nerve defects. This study aimed to fabricate a conductive drug-loaded fiber mat by electrospinning and assess its potential as a scaffold for Schwann cells proliferation. The conductive polypyrrole (PPy) was coated on an electrospun poly (D, L-lactide) (PLA) fibrous mat, which was simultaneously embedded with protein-loaded chitosan nanoparticles and ibuprofen as a model small molecule drug. The fibrous mat shows suitable conductivity, mechanical properties, and hydrophilicity for NTE. For drug release and degradation studies, the fibrous mat can achieve sustained release of bovine serum albumin (BSA) and ibuprofen, and the PPy coating can increase the surface wettability and conductivity while slowing down the degradation of the fibrous mat. The application of electrical stimulation (ES) to the fibrous mat can accelerate the release of ibuprofen, but there was no significant effect on the release rate of the protein. The fibrous mat showed no cytotoxicityin vitro, and Schwann cells (SCs) can adhere, grow, and proliferate well on mats. At the 120th hour of culturein vitro, the relative growth rate of SCs on the conductive drug-loaded fibrous mat reached 198.22 ± 2.34%, which was an increase of 37.93% compared to the SCs on the drug-loaded fibrous mat with ES. The density and elongation of SCs on the conductive drug-loaded fibrous mat were greater than those on the PLA fibrous mat, indicating that the conductive polypyrrole-coated electrospun chitosan nanoparticles/PLA fibrous mat has good potential for application in nerve regeneration.
Collapse
Affiliation(s)
- Siqi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China.,State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
60
|
Mutepfa AR, Hardy JG, Adams CF. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:693438. [PMID: 35274106 PMCID: PMC8902299 DOI: 10.3389/fmedt.2022.693438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition caused by damage to the spinal cord through trauma or disease, often with permanent debilitating effects. Globally, the prevalence of SCI is estimated between 40 to 80 cases per million people per year. Patients with SCI can experience devastating health and socioeconomic consequences from paralysis, which is a loss of motor, sensory and autonomic nerve function below the level of the injury that often accompanies SCI. SCI carries a high mortality and increased risk of premature death due to secondary complications. The health, social and economic consequences of SCI are significant, and therefore elucidation of the complex molecular processes that occur in SCI and development of novel effective treatments is critical. Despite advances in medicine for the SCI patient such as surgery and anaesthesiology, imaging, rehabilitation and drug discovery, there have been no definitive findings toward complete functional neurologic recovery. However, the advent of neural stem cell therapy and the engineering of functionalized biomaterials to facilitate cell transplantation and promote regeneration of damaged spinal cord tissue presents a potential avenue to advance SCI research. This review will explore this emerging field and identify new lines of research.
Collapse
Affiliation(s)
- Anthea R. Mutepfa
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
- Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Christopher F. Adams
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
61
|
Liu L, Wang W, Hong W, Jin Y, Wang L, Liu S, Wang A, Liu X. Photothermal 2D Nanosheets Combined With Astragaloside IV for Antibacterial Properties and Promoting Angiogenesis to Treat Infected Wounds. Front Bioeng Biotechnol 2022; 9:826011. [PMID: 35223823 PMCID: PMC8864217 DOI: 10.3389/fbioe.2021.826011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection, inflammatory disorder, and poor angiogenesis of tissue in chronic wounds are the main reasons why wounds are difficult to heal. In this study, a novel MSN-PEG@AS/BP nano-spray was designed to solve these issues. Astragaloside IV (AS) was loaded in mesoporous silica nanoparticles (MSN) to enhance angiogenesis and regulate inflammation, and the two-dimensional (2D) nanosheet black phosphorus (BP) was used to kill bacteria through a photothermal effect. Under thermal decomposition, the covalent bond of polyethylene glycol (PEG) was broken, releasing AS to promote the proliferation of fibroblasts, the formation of blood vessels, and the resolution of inflammation. AS can promote the polarization of the anti-inflammatory (M2) macrophage phenotype to enhance the deposition of extracellular matrix and the formation of blood vessels. Besides, BP showed a significant photothermal effect and nearly 99.58% of Escherichia coli and 99.13% of Staphylococcus aureus were killed in an antibacterial study. This nano-spray would be a novel therapeutic agent for infected wound treatment.
Collapse
Affiliation(s)
- Lichang Liu
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Wenfeng Wang
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Weihong Hong
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Yuyan Jin
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Lichun Wang
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Sujun Liu
- Department of Nephrology, Zhuhai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Ailin Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Xusheng Liu,
| |
Collapse
|
62
|
Liu H, Zou Q, Kim MG, Qiao Z, Nguyen DTT, Koo B, Lee HJ, Jang YO, Kim JK, Shin Y. Homobifunctional Imidoester Combined Black Phosphorus Nanosheets Used as Cofactors for Nucleic Acid Extraction. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00046-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Tang M, Zhang X, Yang A, Liu Y, Xie K, Zhou Y, Wang C, Liu J, Shi P, Lin X. Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105388. [PMID: 34894073 DOI: 10.1002/smll.202105388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Neurons can be modified to express light-sensitive proteins for enabling stimulation with a high spatial and temporal resolution, but such techniques require gene transfection and systematical implantation. Here, a black phosphorus nanosheet-based injectable strategy is described for wireless neural stimulation both in vitro and in vivo without cell modifications. These nanosheets, with minimal invasiveness, high biocompatibility, and biodegradability, are anchored on cell membranes as miniature near-infrared (NIR) light transducers to create local heating for neural activity excitation. Based on cultured multielectrode-array recording, in vivo electrophysiology analysis, and open field behavioral tests, it is demonstrated that remotely applied NIR illumination can reliably trigger spiking activity in cultured neurons and rat brains. Excitingly, reliable regulation of brain function to control animal behaviors is also described. Moreover, this approach has shown its potential for future clinical use by successful high-frequency stimulation in cells and animals in this proof-of-concept study. It is believed that this new method will offer a powerful alternative to other neural stimulation solutions and potentially be of independent value to the healthcare system.
Collapse
Affiliation(s)
- Minghui Tang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaoge Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Anqi Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yajing Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong, 518057, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
64
|
Stratified-structural hydrogel incorporated with magnesium-ion-modified black phosphorus nanosheets for promoting neuro-vascularized bone regeneration. Bioact Mater 2022; 16:271-284. [PMID: 35386320 PMCID: PMC8965728 DOI: 10.1016/j.bioactmat.2022.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis and neurogenesis play irreplaceable roles in bone repair. Although biomaterial implantation that mimics native skeletal tissue is extensively studied, the nerve-vascular network reconstruction is neglected in the design of biomaterials. Our goal here is to establish a periosteum-simulating bilayer hydrogel and explore the efficiency of bone repair via enhancement of angiogenesis and neurogenesis. In this contribution, we designed a bilayer hydrogel platform incorporated with magnesium-ion-modified black phosphorus (BP) nanosheets for promoting neuro-vascularized bone regeneration. Specifically, we incorporated magnesium-ion-modified black phosphorus (BP@Mg) nanosheets into gelatin methacryloyl (GelMA) hydrogel to prepare the upper hydrogel, whereas the bottom hydrogel was designed as a double-network hydrogel system, consisting of two interpenetrating polymer networks composed of GelMA, PEGDA, and β-TCP nanocrystals. The magnesium ion modification process was developed to enhance BP nanosheet stability and provide a sustained release platform for bioactive ions. Our results demonstrated that the upper layer of hydrogel provided a bionic periosteal structure, which significantly facilitated angiogenesis via induction of endothelial cell migration and presented multiple advantages for the upregulation of nerve-related protein expression in neural stem cells (NSCs). Moreover, the bottom layer of the hydrogel significantly promoted bone marrow mesenchymal stem cells (BMSCs) activity and osteogenic differentiation. We next employed the bilayer hydrogel structure to correct rat skull defects. Based on our radiological and histological examinations, the bilayer hydrogel scaffolds markedly enhanced early vascularization and neurogenesis, which prompted eventual bone regeneration and remodeling. Our current strategy paves way for designing nerve-vascular network biomaterials for bone regeneration. Developing a periosteum-simulating bilayer hydrogel to improve the efficiency of neuro-vascularized bone repair. A magnesium-ion-modified black phosphorus (BP) nanosheets incorporated hydrogel platform was designed. Designing nerve-vascular network biomaterials for bone regeneration.
Collapse
|
65
|
Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan WE, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Mater Today Bio 2022; 13:100211. [PMID: 35198959 PMCID: PMC8841887 DOI: 10.1016/j.mtbio.2022.100211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerve injury usually impairs neurological functions. The excessive oxidative stress and disrupted bioelectrical conduction gives rise to a hostile microenvironment and impedes nerve regeneration. Therefore, it is of urgent need to develop tissue engineering products which help alleviate the oxidative insults and restore bioelectrical signals. Melatonin (MLT) is an important endogenous hormone that diminishes the accumulation of reactive oxygen species. Reduced graphene oxide (RGO) possesses the excellent electrical conductivity and biocompatibility. In this study, a multilayered MLT/RGO/Polycaprolactone (PCL) composite scaffold was fabricated with beaded nanostructures to improve cell attachment and proliferation. It also exhibited stable mechanical properties by high elastic modulus and guaranteed structural integrity for nerve regeneration. The live/dead cell staining and cell counting kit assay were performed to evaluate the toxicity of the scaffold. JC-1 staining was carried out to assess the mitochondrial potential. The composite scaffold provided a biocompatible interface for cell viability and improved ATP production for energy supply. The scaffold improved the sensory and locomotor function recovery by walking track analysis and electrophysiological evaluation, reduced Schwann cell apoptosis and increased its proliferation. It further stimulated myelination and axonal outgrowth by enhancing S100β, myelin basic protein, β3-tubulin, and GAP43 levels. The findings demonstrated functional and morphological recovery by this biomimetic scaffold and indicated its potential for translational application.
Collapse
Affiliation(s)
- Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
66
|
Fan L, Xiao C, Guan P, Zou Y, Wen H, Liu C, Luo Y, Tan G, Wang Q, Li Y, Yu P, Zhou L, Ning C. Extracellular Matrix-Based Conductive Interpenetrating Network Hydrogels with Enhanced Neurovascular Regeneration Properties for Diabetic Wounds Repair. Adv Healthc Mater 2022; 11:e2101556. [PMID: 34648694 DOI: 10.1002/adhm.202101556] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Indexed: 12/30/2022]
Abstract
The critical effects that impair diabetic wound healing are characterized by poor vascularization and severe peripheral neuropathy. Current management strategies for diabetic wound healing are unsatisfactory, due to the paucity of neurovascular regeneration at the wound site. Importantly, conductivity in skin tissue is reported to be essential for modulating myriad biological processes especially vascular and nerve regeneration. Herein, an extracellular matrix (ECM)-based conductive dressing is synthesized from an interpenetrating polymer network hydrogel composed of gelatin methacryloyl, oxidized chondroitin sulfate (OCS), and OCS-polypyrrole conductive nanoparticles that can promote diabetic wound repairing by enhancing local neurovascular regeneration. The conductive hydrogels combine the advantageous features of water-swollen hydrogels with conductive polymers (CPs) to provide tissue-matching electrical conductivity and mechanical properties for neurovascular regeneration. In vitro and in vivo studies show that the conductive hydrogel can promote neurovascular regeneration by increasing intracellular Ca2+ concentration, which subsequently promotes phosphorylation of proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. Furthermore, the conductive hydrogel stimulates full-thickness diabetic wound repair on day 14 by promoting local neurovascular regeneration and collagen deposition. These findings corroborate that the ECM-based conductive interpenetrating network hydrogel dressing significantly promotes wound repairing due to its neurovascular regeneration properties, suggesting that they are suitable candidates for diabetic wound repair.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Cairong Xiao
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Pengfei Guan
- Department of Orthopaedics The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 China
| | - Yan Zou
- Department of Radiology The Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou 510630 China
| | - Huiquan Wen
- Department of Radiology The Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou 510630 China
| | - Can Liu
- Department of Spine Surgery The First Hospital of Zhejiang University Hangzhou 310003 China
| | - Yian Luo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Qiyou Wang
- Department of Orthopaedics The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 China
| | - Yangfan Li
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Peng Yu
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Lei Zhou
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Chengyun Ning
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| |
Collapse
|
67
|
Fan H. Central Nervous System Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_29-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
68
|
Yao X, Yan Z, Li X, Li Y, Ouyang Y, Fan C. Tacrolimus-Induced Neurotrophic Differentiation of Adipose-Derived Stem Cells as Novel Therapeutic Method for Peripheral Nerve Injury. Front Cell Neurosci 2021; 15:799151. [PMID: 34955758 PMCID: PMC8692949 DOI: 10.3389/fncel.2021.799151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are frequent traumatic injuries across the globe. Severe PNIs result in irreversible loss of axons and myelin sheaths and disability of motor and sensory function. Schwann cells can secrete neurotrophic factors and myelinate the injured axons to repair PNIs. However, Schwann cells are hard to harvest and expand in vitro, which limit their clinical use. Adipose-derived stem cells (ADSCs) are easily accessible and have the potential to acquire neurotrophic phenotype under the induction of an established protocol. It has been noticed that Tacrolimus/FK506 promotes peripheral nerve regeneration, despite the mechanism of its pro-neurogenic capacity remains undefined. Herein, we investigated the neurotrophic capacity of ADSCs under the stimulation of tacrolimus. ADSCs were cultured in the induction medium for 18 days to differentiate along the glial lineage and were subjected to FK506 stimulation for the last 3 days. We discovered that FK506 greatly enhanced the neurotrophic phenotype of ADSCs which potentiated the nerve regeneration in a crush injury model. This work explored the novel application of FK506 synergized with ADSCs and thus shed promising light on the treatment of severe PNIs.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Li
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing, China
| | - Yanhao Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
69
|
Chauhan N, Saxena K, Tikadar M, Jain U. Recent advances in the design of biosensors based on novel nanomaterials: An insight. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| |
Collapse
|
70
|
Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng ZQ. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104175. [PMID: 34608668 DOI: 10.1002/adma.202104175] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The long-segment peripheral nerve injury (PNI) represents a global medical challenge, leading to incomplete nerve tissue recovery and unsatisfactory functional reconstruction. However, the current electrical stimulation (ES) apparatuses fail perfect nerve repair due to their inability of the variable synchronous self-regulated function with physiological states. It is urgent to develop an implantable ES platform with physiologically adaptive function to provide instantaneous and nerve-preferred ES. Here, a physiologically self-regulated electrical signal is generated by integrating a novel tribo/piezoelectric hybrid nanogenerator with a nanoporous nerve guide conduit to construct a fully implantable neural electrical stimulation (FI-NES) system. The optimal neural ES parameters completely originate from the body itself and are highly self-responsive to different physiological states. The morphological evaluation, representative protein expression level, and functional reconstruction of the regenerated nerves are conducted to assess the PNI recovery process. Evidence shows that the recovery effect of 15 mm length nerve defects under the guidance of the FI-NES system is significantly close to the autograft. The designed FI-NES system provides an effective method for long-term accelerating the recovery of PNI in vivo and is also appropriate for other tissue injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
| | - Lijuan Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chengteng Lai
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210002, P. R. China
| | - Qi Wu
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210002, P. R. China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fengyu Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
71
|
Yan Z, Chen C, Rosso G, Qian Y, Fan C. Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms. Front Bioeng Biotechnol 2021; 9:746074. [PMID: 34820361 PMCID: PMC8606639 DOI: 10.3389/fbioe.2021.746074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral nerve tissues possess the ability to regenerate within artificial nerve scaffolds, however, despite the advance of biomaterials that support nerve regeneration, the functional nerve recovery remains unsatisfactory. Importantly, the incorporation of two-dimensional nanomaterials has shown to significantly improve the therapeutic effect of conventional nerve scaffolds. In this review, we examine whether two-dimensional nanomaterials facilitate angiogenesis and thereby promote peripheral nerve regeneration. First, we summarize the major events occurring after peripheral nerve injury. Second, we discuss that the application of two-dimensional nanomaterials for peripheral nerve regeneration strategies by facilitating the formation of new vessels. Then, we analyze the mechanism that the newly-formed capillaries directionally and metabolically support neuronal regeneration. Finally, we prospect that the two-dimensional nanomaterials should be a potential solution to long range peripheral nerve defect. To further enhance the therapeutic effects of two-dimensional nanomaterial, strategies which help remedy the energy deficiency after peripheral nerve injury could be a viable solution.
Collapse
Affiliation(s)
- Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.,Institute of Physiology II, University of Münster, Münster, Germany
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
72
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
73
|
Wu SY, Qian RL, Ma CL, Shan Y, Wu YJ, Wu XY, Zhang JL, Zhu XB, Ji HT, Qu CY, Hou F, Liu LZ. Photoluminescence and magnetism integrated multifunctional black phosphorus probes through controllable PO bond orbital hybridization. Phys Chem Chem Phys 2021; 23:22476-22482. [PMID: 34586129 DOI: 10.1039/d1cp03155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological probes with integrated photoluminescence and magnetism characteristics play a critical role in modern clinical diagnosis and surgical protocols combining fluorescence optical imaging (FOI) with magnetic resonance imaging (MRI) technology. However, traditional magnetic semiconductors can easily generate a spin splitting at the Fermi level and half-metallic electronic occupation, which will sharply reduce the radiation recombination efficiency of photogenerated carriers. To overcome this intrinsic contradiction, we propose a controllable oxidation strategy to introduce some particular PO bonds into black phosphorus nanosheets, in which the p orbital hybridization between P and O atoms not only provides some carrier recombination centers but also leads to a room-temperature spin polarization. As a result, the coexistence of photoluminescence and magnetism is realized in multifunctional black phosphorus probes with excellent biocompatibility. This work provides a new insight into integrating photoluminescence and magnetism together by intriguing atomic orbital hybridization.
Collapse
Affiliation(s)
- S Y Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - R L Qian
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - C L Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Y Shan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Y J Wu
- Department of Neurology, Suzhou Science and Technology Town Hospital affiliated to Nanjing Medical University, Suzhou, 215009, China
| | - X Y Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - J L Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - X B Zhu
- School of Mechano-Electronic Engineering, Suzhou Vocational University, Suzhou, Jiangsu 215104, China
| | - H T Ji
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - C Y Qu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - F Hou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - L Z Liu
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
74
|
Zhang Y, Ma C, Xie J, Ågren H, Zhang H. Black Phosphorus/Polymers: Status and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100113. [PMID: 34323318 DOI: 10.1002/adma.202100113] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Indexed: 06/13/2023]
Abstract
As a newly emerged mono-elemental nanomaterial, black phosphorus (BP) has been widely investigated for its fascinating physical properties, including layer-dependent tunable band gap (0.3-1.5 eV), high ON/OFF ratio (104 ), high carrier mobility (103 cm2 V-1 s-1 ), excellent mechanical resistance, as well as special in-plane anisotropic optical, thermal, and vibrational characteristics. However, the instability caused by chemical degradation of its surface has posed a severe challenge for its further applications. A focused BP/polymer strategy has more recently been developed and implemented to hurdle this issue, so at present BP/polymers have been developed that exhibit enhanced stability, as well as outstanding optical, thermal, mechanical, and electrical properties. This has promoted researchers to further explore the potential applications of black phosphorous. In this review, the preparation processes and the key properties of BP/polymers are reviewed, followed by a detailed account of their diversified applications, including areas like optoelectronics, bio-medicine, and energy storage. Finally, in accordance with the current progress, the prospective challenges and future directions are highlighted and discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chunyang Ma
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Jianlei Xie
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
75
|
Xiong J, Yuan H, Wu H, Cheng J, Yang S, Hu T. Black phosphorus conjugation of chemotherapeutic ginsenoside Rg3: enhancing targeted multimodal nanotheranostics against lung cancer metastasis. Drug Deliv 2021; 28:1748-1758. [PMID: 34463184 PMCID: PMC8409949 DOI: 10.1080/10717544.2021.1966129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is a significant challenge in lung cancer chemophotothermal (CPT) therapy to develop multifunctional theranostic nanoagent (MTN) for precise targeting and successful tumor treatments, especially for lung metastasis. To overcome this problem, we effectively design and construct multifunctional black phosphorus (BP) nanoagents, BPs/G-Rg3@PLGA. BPs quantum dots (BPsQDs) are co-loaded onto poly(lactic-co-glycolic acid) (PLGA) with subsequent conjugations of a cancer therapeutic compound, ginsenoside Rg3 (G-Rg3), in this composite nanoagent. The in vivo delivery findings suggest that BPs/G-Rg3@PLGA has an excellent affinity for primary tumors and metastatic lung tumors. Furthermore, when paired with near-light irradiation, BPs/G-Rg3@PLGA shows superior controllable CPT therapy synergetic therapeutics, significantly increasing photothermal tumor ablation effectiveness. Mechanistically, heating causes rapid G-Rg3 release from the non-complex, and thermal therapy induces apoptosis, culminating in the reduction of lung cancer metastasis. Additionally, in vivo and in vitro findings support the biocompatibility of BPs/G-Rg3@PLGA. This thesis identifies a versatile BPs-based MTN for lung cancer metastasis control.
Collapse
Affiliation(s)
- Jie Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yuan
- Department of Pathology, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hongge Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
76
|
Huang H, Dong C, Chang M, Ding L, Chen L, Feng W, Chen Y. Mitochondria-specific nanocatalysts for chemotherapy-augmented sequential chemoreactive tumor therapy. EXPLORATION (BEIJING, CHINA) 2021; 1:50-60. [PMID: 37366463 PMCID: PMC10291566 DOI: 10.1002/exp.20210149] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/01/2021] [Indexed: 06/28/2023]
Abstract
Endogenic tumor chemodynamic therapy (CDT) is emerging as a tumor-therapeutic strategy featuring in situ treatments with high efficiency and specificity based on the Fenton reaction principle. Considering the limitation of monotherapy and relatively insufficient intracellular level of endogenous hydrogen peroxide (H2O2) in tumor tissues, a mitochondria-specific nanocatalyst composed of cisplatin prodrug and gallic acid-ferrous (GA-Fe(II)) nanocomposites is successfully fabricated to fulfill chemotherapy-augmented sequential chemoreactive tumor therapy. The bioactive cisplatin elevates the level of endogenous H2O2 through the activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX)-related cascaded reactions, and the GA-Fe(II) nanocomposites possessing sustainable Fenton catalytic activity subsequently catalyzes H2O2 into highly reactive and toxic hydroxyl radicals to substantially inhibit tumor progression. Especially, this mitochondria-specific nanocatalyst amplifies oxidative stress, stimulates mitochondrial dysfunction, downregulates AKT/mTOR signaling and finally induces cell autophagic death. Both in vitro and in vivo measurements verify that the chemotherapy-augmented sequential chemoreactive nanotherapy based on the mitochondria-specific nanocatalyst implements excellent anticancer efficiency and avoids undesired side effects. This work reveals the enormous potential of chemotherapy-augmented CDT for combating tumors.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical EngineeringShanghai UniversityShanghaiP. R. China
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiP. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan HospitalFudan University, and Shanghai Institute of Medical ImagingShanghaiP. R. China
| | - Meiqi Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
| | - Li Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
| | - Liang Chen
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiP. R. China
| | - Wei Feng
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiP. R. China
| | - Yu Chen
- School of Environmental and Chemical EngineeringShanghai UniversityShanghaiP. R. China
- Materdicine Lab, School of Life SciencesShanghai UniversityShanghaiP. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiP. R. China
| |
Collapse
|
77
|
Hao M, Zhang Z, Liu C, Tian Y, Duan J, He J, Sun Z, Xia H, Zhang S, Wang S, Sang Y, Xing G, Liu H. Hydroxyapatite Nanorods Function as Safe and Effective Growth Factors Regulating Neural Differentiation and Neuron Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100895. [PMID: 34247433 DOI: 10.1002/adma.202100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Neural stem cell (NSC) transplantation is one of the most promising therapeutic strategies for neurodegenerative diseases. However, the slow spontaneous differentiation of NSCs often hampers their application in neural repair. Although some biological growth factors accelerate the differentiation of NSCs, their high cost, short half-life, and unpredictable behavior in vivo, as well as the complexity of the operation, hinder their clinical use. In this study, it is demonstrated that hydroxyapatite (HAp), the main component of bone, in the form of nanorods, can regulate the neural differentiation of NSCs and maturation of the newly differentiated cells. Culturing NSCs with HAp nanorods leads to the differentiation of NSCs into mature neurons that exhibit well-defined electrophysiological behavior within 5 days. The state of these neurons is much better than when culturing the cells without HAp nanorods, which undergo a 2-week differentiation process. Furthermore, RNA-sequencing data reveal that the neuroactive ligand-receptor interaction pathway is dominant in the enriched differentiated neuronal population. Hence, inorganic growth factors like HAp act as a feasible, effective, safe, and practical tool for regulating the differentiation of NSCs and can potentially be used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zixian Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
78
|
Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021; 7:3503-3529. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.
Collapse
Affiliation(s)
- Alexander Halim
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xiao-Feng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
79
|
Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. BURNS & TRAUMA 2021; 9:tkab011. [PMID: 34212061 PMCID: PMC8240533 DOI: 10.1093/burnst/tkab011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve guide conduits (NGCs), as alternatives to nerve autografts and allografts, have been widely explored as an advanced tool for the treatment of peripheral nerve injury. However, the repairing efficiency of NGCs still needs significant improvements. Functional NGCs that provide a more favorable microenvironment for promoting axonal elongation and myelination are of great importance. In recent years, 3D printing technologies have been widely applied in the fabrication of customized and complex constructs, exhibiting great potential for tissue engineering applications, especially for the construction of functional NGCs. In this review, we introduce the 3D printing technologies for manufacturing functional NGCs, including inkjet printing, extrusion printing, stereolithography-based printing and indirect printing. Further, we summarize the current methods and strategies for constructing functional NGCs, such as designing special conduit architectures, using appropriate materials and co-printing with different biological cues. Finally, the challenges and prospects for construction of functional NGCs are also presented.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
80
|
Yao X, Qian Y, Fan C. Electroactive nanomaterials in the peripheral nerve regeneration. J Mater Chem B 2021; 9:6958-6972. [PMID: 34195746 DOI: 10.1039/d1tb00686j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe peripheral nerve injuries are threatening the life quality of human beings. Current clinical treatments contain some limitations and therefore extensive research and efforts are geared towards tissue engineering approaches and development. The biophysical and biochemical characteristics of nanomaterials are highly focused on as critical elements in the design and fabrication of regenerative scaffolds. Recent studies indicate that the electrical properties and nanostructure of biomaterials can significantly affect the progress of nerve repair. More importantly, these studies also demonstrate the fact that electroactive nanomaterials have substantial implications for regulating the viability and fate of primary supporting cells in nerve regeneration. In this review, we summarize the current knowledge of electroconductive and piezoelectric nanomaterials. We exemplify typical cellular responses through cell-material interfaces, and the nanomaterial-induced microenvironment rebalance in terms of several key factors, immune responses, angiogenesis and oxidative stress. This work highlights the mechanism and application of electroactive nanomaterials to the development of regenerative scaffolds for peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
81
|
Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021; 16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nerve guide conduits (NGCs) connect dissected nerve stumps and effectively repair short-range peripheral nerve defects. However, for long-range defects, autografts show better therapeutic effects, despite intrinsic limitations. Recent evidence shows that biomimetic design is essential for high-performance NGCs, and 3D printing is a promising fabricating technique. The current work includes a brief review of the challenges for peripheral nerve regeneration. The authors propose a potential solution using biomimetic 3D-printed NGCs as alternative therapies. The assessment of biomimetic designs includes microarchitecture, mechanical property, electrical conductivity and biologics inclusion. The applications of 3D printing in preparing NGCs and present strategies to improve therapeutic effects are also discussed.
Collapse
Affiliation(s)
- Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
82
|
Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021; 8:rbab032. [PMID: 34188955 PMCID: PMC8226110 DOI: 10.1093/rb/rbab032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties. In recent decades, many researchers explored their applications in tissue engineering and regenerative medicine. Reduced graphene oxide (rGO) possesses remarkable structural and functional resemblance to graphene, although some residual oxygen-containing groups and defects exist in the structure. Such structure holds great potential since the remnant-oxygenated groups can further be functionalized or modified. Moreover, oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media. Therefore, it is preferable to utilize rGO in the production of composite materials. The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration. On the one hand, rGO impacts on Schwann cells and neurons which are major components of peripheral nerves. On the other hand, rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells, including embryonic stem cells, mesenchymal stem cells, adipose-derived stem cells and neural stem cells. This review will briefly introduce the production and major properties of rGO, and its potential in modulating the cellular behaviors of specific stem cells. Finally, we present its emerging roles in the production of composite scaffolds for nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Metro loop Road Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 600 Yishan Road, Shanghai 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
83
|
Sun R, Chen H, Sutrisno L, Kawazoe N, Chen G. Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:404-428. [PMID: 34121928 PMCID: PMC8183558 DOI: 10.1080/14686996.2021.1924044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 05/03/2023]
Abstract
Photothermal therapy (PTT) has attracted broad attention as a promising method for cancer therapy with less severe side effects than conventional radiation therapy, chemotherapy and surgical resection. PTT relies on the photoconversion capacity of photothermal agents (PTAs), and a wide variety of nanomaterials have been employed as PTAs for cancer therapy due to their excellent photothermal properties. The PTAs are systematically or locally administered and become enriched in cancer cells to increase ablation efficiency. In recent years, PTAs and three-dimensional scaffolds have been hybridized to realize the local delivery of PTAs for the repeated ablation of cancer cells. Meanwhile, the composite scaffolds can stimulate the reconstruction and regeneration of the functional tissues and organs after ablation of cancer cells. A variety of composite scaffolds of photothermal nanomaterials have been prepared to combine the advantages of different modalities to maximize their therapeutic efficacy with minimal side effects. The synergistic effects make the composite scaffolds attractive for biomedical applications. This review summarizes these latest advances and discusses the future prospects.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Linawati Sutrisno
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
84
|
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. NPJ Regen Med 2021; 6:31. [PMID: 34078912 PMCID: PMC8172906 DOI: 10.1038/s41536-021-00142-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
As the application of graphene nanomaterials gets increasingly attractive in the field of tissue engineering and regenerative medicine, the long-term evaluation is necessary and urgent as to their biocompatibility and regenerative capacity in different tissue injuries, such as nerve, bone, and heart. However, it still remains controversial about the potential biological effects of graphene on neuronal activity, especially after severe nerve injuries. In this study, we establish a lengthy peripheral nerve defect rat model and investigate the potential toxicity of layered graphene-loaded polycaprolactone scaffold after implantation during 18 months in vivo. In addition, we further identify possible biologically regenerative effects of this scaffold on myelination, axonal outgrowth, and locomotor function recovery. It is confirmed that graphene-based nanomaterials exert negligible toxicity and repair large nerve defects by dual regulation of Schwann cells and astroglia in the central and peripheral nervous systems. The findings enlighten the future of graphene nanomaterial as a key type of biomaterials for clinical translation in neuronal regeneration.
Collapse
|
85
|
Shrestha S, Shrestha BK, Joong OK, Park CH, Kim CS. Para-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. Biomater Sci 2021; 9:1691-1704. [PMID: 33410823 DOI: 10.1039/d0bm01034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Structural parameters, such as metal-like semiconductor and electrochemical properties of functionalized polyaniline, hold great potential especially for the development of the cell-substrate interface due to its ion/electron transfer ability. We report the one-step synthesis of sulfonic acid-doped polyaniline nanobuds (s-PANINbs) with controlled shape/size under various oxidation potentials. The different oxidation states of s-PANINbs are used to investigate the cell-specific platform for the induction of neuronal networks in PC12 cells, including the growth, proliferation, and differentiation of cells. The unique structure of one-dimensional (1-D) s-PANINbs enhances its intrinsic conductive properties, and facilitates the dispersibility and electrochemical activity via covalent bonding with dopants. The protonated emeraldine salt nanobuds of s-PANINbs synthesized at 0.18 V anodic potential demonstrated low resistivity (∼81.18 mΩ) and charge transfer resistance (∼3253 Ω). The most biologically compatible protonated emeraldine salt was used in vitro to induce PC12 cells associated with neurite outgrowth, contributing to the electrophysiology of neuronal cells under an external electrical stimulation. The western blotting analysis and qRT-PCR results show that β-III Tubulin, synapsin I, and TREK-1 are highly expressed in PC12 cells, confirming their successful differentiation into neural-specific cells. Our approach demonstrates the promising role of the self-standing framework based on the s-PANINbs of the protonated emeraldine salt in peripheral nerve repair for the future in vivo cell-interface.
Collapse
Affiliation(s)
- Sita Shrestha
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Oh Kwang Joong
- Department of chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
86
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
87
|
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J Mater Chem B 2021; 8:7076-7120. [PMID: 32648567 DOI: 10.1039/d0tb00824a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wonderful black phosphorus (BP) and some BP analogs (BPAs) have been increasingly studied for their biomedical applications owing to their fascinating properties and biodegradability, but opportunities and challenges have always coexisted in their study. Poor stability upon exposure to the natural environment is the major obstacle hampering their in vivo applications. BP/polymer and BPAs/polymer nanocomposites can not only efficiently prevent their oxidation and aggregation but also exhibit "biological activity" due to synergistic effects. In this review, we briefly describe the synthesis methods and stability strategies of BP/polymer and BPAs/polymer. Then, advances pertaining to their exciting therapeutic applications in various fields are systematically introduced, such as cancer therapy (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Some challenges for future clinical trials and possible directions for further study are finally discussed.
Collapse
Affiliation(s)
- Dong An
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Jianye Fu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, P. R. China
| | - Chenyang Xing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bing Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| |
Collapse
|
88
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
89
|
Increased neuritogenesis on ternary nanofiber matrices of PLCL and laminin decorated with black phosphorus. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
90
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
91
|
Huang X, Zhou Y, Woo CM, Pan Y, Nie L, Lai P. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. FRONTIERS OF OPTOELECTRONICS 2020; 13:327-351. [PMID: 36641565 PMCID: PMC9743864 DOI: 10.1007/s12200-020-1084-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
As an outstanding two-dimensional material, black phosphorene, has attracted significant attention in the biomedicine field due to its large surface area, strong optical absorption, distinct bioactivity, excellent biocompatibility, and high biodegradability. In this review, the preparation and properties of black phosphorene are summarized first. Thereafter, black phosphorene-based multifunctional platforms employed for the diagnosis and treatment of diseases, including cancer, bone injuries, brain diseases, progressive oxidative diseases, and kidney injury, are reviewed in detail. This review provides a better understanding of the exciting properties of black phosphorene, such as its high drug-loading efficiency, photothermal conversion capability, high 1O2 generation efficiency, and high electrical conductivity, as well as how these properties can be exploited in biomedicine. Finally, the research perspectives of black phosphorene are discussed.
Collapse
Affiliation(s)
- Xiazi Huang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yingying Zhou
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chi Man Woo
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Puxiang Lai
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China.
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
92
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
93
|
Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/mTOR/p70S6K Signaling Pathway Regulation on Neuron Remodeling Caused by Translocation Repair. Front Neurosci 2020; 14:565870. [PMID: 33132828 PMCID: PMC7550644 DOI: 10.3389/fnins.2020.565870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve injury repair has been considered a difficult problem in the field of trauma for a long time. Conventional surgical methods are not applicable in some special types of nerve injury, prompting scholars to seek to develop more effective nerve translocation repair technologies. The purpose of this study was to explore the functional state of neurons in injured lower limbs after translocation repair, with a view to preliminarily clarify the molecular mechanisms underlying this process. Eighteen Sprague–Dawley rats were divided into the normal, tibial nerve in situ repair, and common peroneal nerve transposition repair tibial nerve groups. Nerve function assessment and immunohistochemical staining of neurofilament 200 (NF-200), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) in the dorsal root ganglia were performed at 12 weeks after surgery. Tibial nerve function and neuroelectrophysiological analysis, osmic acid staining, muscle strength testing, and muscle fiber staining showed that the nerve translocation repair could restore the function of the recipient nerve to a certain extent; however, the repair was not as efficient as the in situ repair. Immunohistochemical staining showed that the translocation repair resulted in changes in the microstructure of neuronal cell bodies, and the expressions of Akt, mTOR, and p70S6K in the three dorsal root ganglia groups were significantly different (p < 0.05). This study demonstrates that the nerve translocation repair technology sets up a new reflex loop, with the corresponding neuroskeletal adjustments, in which, donor neurons dominate the recipient nerves. This indicates that nerve translocation repair technology can lead to neuronal remodeling and is important as a supplementary treatment for a peripheral nerve injury. Furthermore, the Akt/mTOR/p70S6K signaling pathway may be involved in the formation of the new neural reflex loop created as a result of the translocation repair.
Collapse
Affiliation(s)
- Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Dongdong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Department of Orthopedics, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Xuejing Kang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China.,Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Peixun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
94
|
Dong X, Cheng Q, Long Y, Xu C, Fang H, Chen Y, Dai H. A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
95
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
96
|
Puhl DL, Funnell JL, D’Amato AR, Bao J, Zagorevski DV, Pressman Y, Morone D, Haggerty AE, Oudega M, Gilbert RJ. Aligned Fingolimod-Releasing Electrospun Fibers Increase Dorsal Root Ganglia Neurite Extension and Decrease Schwann Cell Expression of Promyelinating Factors. Front Bioeng Biotechnol 2020; 8:937. [PMID: 32923432 PMCID: PMC7456907 DOI: 10.3389/fbioe.2020.00937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023] Open
Abstract
Researchers are investigating the use of biomaterials with aligned guidance cues, like those provided by aligned electrospun fibers, to facilitate axonal growth across critical-length peripheral nerve defects. To enhance the regenerative outcomes further, these aligned fibers can be designed to provide local, sustained release of therapeutics. The drug fingolimod improved peripheral nerve regeneration in preclinical rodent models by stimulating a pro-regenerative Schwann cell phenotype and axonal growth. However, the systemic delivery of fingolimod for nerve repair can lead to adverse effects, so it is necessary to develop a means of providing sustained delivery of fingolimod local to the injury. Here we created aligned fingolimod-releasing electrospun fibers that provide directional guidance cues in combination with the local, sustained release of fingolimod to enhance neurite outgrowth and stimulate a pro-regenerative Schwann cell phenotype. Electrospun fiber scaffolds were created by blending fingolimod into poly(lactic-co-glycolic acid) (PLGA) at a w/w% (drug/polymer) of 0.0004, 0.02, or 0.04%. We examined the effectiveness of these scaffolds to stimulate neurite extension in vitro by measuring neurite outgrowth from whole and dissociated dorsal root ganglia (DRG). Subsequently, we characterized Schwann cell migration and gene expression in vitro. The results show that drug-loaded PLGA fibers released fingolimod for 28 days, which is the longest reported release of fingolimod from electrospun fibers. Furthermore, the 0.02% fingolimod-loaded fibers enhanced neurite outgrowth from whole and dissociated DRG neurons, increased Schwann cell migration, and reduced the Schwann cell expression of promyelinating factors. The in vitro findings show the potential of the aligned fingolimod-releasing electrospun fibers to enhance peripheral nerve regeneration and serve as a basis for future in vivo studies.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anthony R. D’Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan Bao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Dmitri V. Zagorevski
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Morone
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Agnes E. Haggerty
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Therapy and Human Movement Sciences and Department of Physiology, Northwestern University, Chicago, IL, United States
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
- Edward Hines, Jr. VA Hospital, Hines, IL, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|