51
|
Guo H, Xia Y, Feng K, Qu X, Zhang C, Wan F. Surface Engineering of Metal-Organic Framework as pH-/NIR-Responsive Nanocarrier for Imaging-Guided Chemo-Photothermal Therapy. Int J Nanomedicine 2020; 15:3235-3250. [PMID: 32440121 PMCID: PMC7216792 DOI: 10.2147/ijn.s239910] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Metal-organic frameworks (MOFs) have attracted intensive research interest in the biomedical field because of their unique properties. However, in order to realize the high loading capacity and therapeutic efficacy, it is still urgent to develop a multifunctional MOFs-based nanoplatform. MATERIALS AND METHODS Herein, a pH/near-infrared (NIR) dual-responsive drug delivery system based on zeolitic imidazolate framework-8 (ZIF-8) is constructed for synergistic chemo-photothermal therapy and dual-modal magnetic resonance (MR)/photoacoustic (PA) imaging. The doxorubicin hydrochloride (DOX) is embedded into ZIF-8 through one-pot method, and the resultant ZIF-8/DOX is then successively modified with polydopamine, Mn ions and poly(ethylene glycol). The obtained ZIF-8/DMPP is systematically characterized, and both its in vitro and in vivo biological effects are evaluated in detail. RESULTS The ZIF-8/DMPP possesses a high drug-loading content of 18.9% and displays appropriate size and morphology. The pH-dependent degradation and drug release behavior of prepared ZIF-8/DMPP are confirmed. Importantly, the results demonstrate that the photothermal effect of ZIF-8/DMPP under NIR laser irradiation can significantly accelerate its drug releasing rate, further improving the intracellular drug concentrations. Thereafter, the augmented chemotherapeutic efficiency by photothermal effect against cancer cells is verified both in vitro and in vivo. Besides, the favorable MR and PA imaging capacity of ZIF-8/DMPP is also evidenced on the tumor model. CONCLUSION Taken together, the surface engineering of ZIF-8-based nanocarrier in this work offers a promising strategy for the multifunctional MOFs-based drug delivery system.
Collapse
Affiliation(s)
- Haibin Guo
- Henan Provincial People’s Hospital, Henan Provincial Reproductive Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan450003, People’s Republic of China
| | - Yanqing Xia
- Henan Provincial People’s Hospital, Henan Provincial Reproductive Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan450003, People’s Republic of China
| | - Ke Feng
- Henan Provincial People’s Hospital, Henan Provincial Reproductive Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan450003, People’s Republic of China
| | - Xiaowei Qu
- Henan Provincial People’s Hospital, Henan Provincial Reproductive Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan450003, People’s Republic of China
| | - Cuilian Zhang
- Henan Provincial People’s Hospital, Henan Provincial Reproductive Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan450003, People’s Republic of China
| | - Feng Wan
- Henan Provincial People’s Hospital, Henan Provincial Reproductive Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan450003, People’s Republic of China
| |
Collapse
|
52
|
Yu HH, Lin CH, Chen YC, Chen HH, Lin YJ, Lin KYA. Dopamine-Modified Zero-Valent Iron Nanoparticles for Dual-Modality Photothermal and Photodynamic Breast Cancer Therapy. ChemMedChem 2020; 15:1645-1651. [PMID: 32338431 DOI: 10.1002/cmdc.202000192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Phototherapy has the advantages of minimal invasion, few side effects, and improved accuracy for cancer therapy. The application of a polydopamine (PDA)-modified nano zero-valent iron (nZVI@PDA) as a new synergistic agent in combination with photodynamic/photothermal (PD/PT) therapy to kill cancer cells is discussed here. The nZVI@PDA offered high light-to-heat conversion and ROS generation efficiency under near-infrared (NIR) irradiation (808 nm), thus leading to irreversible damage to nZVI@PDA-treated MCF-7 cells at low concentration, without inducing apoptosis in normal cells. Irradiation of nZVI@PDA using an NIR laser converted the energy of the photons to heat and ROS. Our results showed that modification of the PDA on the surface of nZVI can improve the biocompatibility of the nZVI@PDA. This work integrated the PD and PT effects into a single nanodevice to afford a highly efficient cancer treatment. Meanwhile, nZVI@PDA, which combines the advantages of PDA and nZVI, displayed excellent biocompatibility and tumoricidal ability, thus suggesting its huge potential for future clinical research in cancer therapy.
Collapse
Affiliation(s)
- Hsin Her Yu
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Yu-Jing Lin
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Rd. South Dist., Taichung City, 402, Taiwan
| |
Collapse
|
53
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
54
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
55
|
Li Q, Zhou S, Zhang T, Zheng B, Tang H. Bioinspired sensor chip for detection of miRNA-21 based on photonic crystals assisted cyclic enzymatic amplification method. Biosens Bioelectron 2020; 150:111866. [DOI: 10.1016/j.bios.2019.111866] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023]
|
56
|
Zou Y, Wu T, Li N, Guo X, Li Y. Photothermal-enhanced synthetic melanin inks for near-infrared imaging. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Zhou LN, Pan H, Kan JL, Guan Q, Zhou Y, Dong YB. Single-molecular phosphorus phthalocyanine-based near-infrared-II nanoagent for photothermal antitumor therapy. RSC Adv 2020; 10:22656-22662. [PMID: 35514554 PMCID: PMC9054689 DOI: 10.1039/d0ra03530k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
As one of the noninvasive cancer treatments, photothermal therapy (PTT) has drawn intense attention recently. In this context, an important task is to explore novel and versatile nanoscale photothermal agents (PTAs), especially those with strong NIR-II light absorption, high photothermal conversion efficiency, good photostability and biocompatibility. Phthalocyanines (Pcs), as the second-generation photosensitizers, are a promising class of candidates for PTT due to their strong NIR absorption and high photothermal conversion efficiency. However, the poor water solubility severely limited their application as PTAs in tumor treatment. Herein, we report a molecular phosphorus phthalocyanine (P-Pc)-based nanoagent via incorporation of human serum albumin (HSA) under mild conditions. The obtained nanoscale P-Pc-HSA possesses excellent photothermal conversion efficiency (64.7%) upon 1064 nm light irradiation, furthermore, it can be a highly efficient NIR-II antitumor nanoagent via photothermal treatment (PTT), which is fully evidenced by the in vitro and in vivo experiments. A molecular phosphorus phthalocyanine (P-Pc)-based nanoagent P-Pc-HSA, which can be a highly efficient NIR-II antitumor agent, is reported.![]()
Collapse
Affiliation(s)
- Li-Na Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Houhe Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jing-Lan Kan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qun Guan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yang Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
58
|
Park J, Moon H, Hong S. Recent advances in melanin-like nanomaterials in biomedical applications: a mini review. Biomater Res 2019; 23:24. [PMID: 31827881 PMCID: PMC6889561 DOI: 10.1186/s40824-019-0175-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Melanins are a group of biopigments in microorganisms that generate a wide range of colorants. Due to their multifunctionality, including ultraviolet protection, radical scavenging, and photothermal conversion, in addition to their intrinsic biocompatibility, natural melanins and synthetic melanin-like nanomaterials have been suggested as novel nano-bio platforms in biomedical applications. MAIN BODY Recent approaches in the synthesis of melanin-like nanomaterials and their biomedical applications have briefly been reviewed. Melanin-like nanomaterials have been suggested as endogenous chromophores for photoacoustic imaging and radical scavengers for the treatment of inflammatory diseases. The photothermal conversion ability of these materials under near-infrared irradiation allows hyperthermia-mediated cancer treatments, and their intrinsic fluorescence can be an indicator in biosensing applications. Furthermore, catechol-rich melanin and melanin-like nanomaterials possess a versatile affinity for various functional organic and inorganic additives, allowing the design of multifunctional hybrid nanomaterials that expand their range of applications in bioimaging, therapy, theranostics, and biosensing. CONCLUSION Melanin-like natural and synthetic nanomaterials have emerged; however, the under-elucidated chemical structures of these materials are still a major obstacle to the construction of novel nanomaterials through bottom-up approaches and tuning the material properties at the molecular level. Further advancements in melanin-based medical applications can be achieved with the incorporation of next-generation chemical and molecular analytical tools.
Collapse
Affiliation(s)
- Jihyo Park
- Department of Emerging Materials Science, DGIST, Daegu, 42988 South Korea
| | - Haeram Moon
- Department of Emerging Materials Science, DGIST, Daegu, 42988 South Korea
| | - Seonki Hong
- Department of Emerging Materials Science, DGIST, Daegu, 42988 South Korea
| |
Collapse
|
59
|
Zhang P, Xu Q, Li X, Wang Y. pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110396. [PMID: 31924025 DOI: 10.1016/j.msec.2019.110396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Recently, stimuli-responsive gene carriers have been widely studied to overcome the extra- and intracellular barriers in cancer treatment. In this study, we modified polydopamine nanoparticles with low-molecular weight polyethylenimine (PEI1.8k) and polyethylene glycol-phenylboronic acid (PEG-PBA) to prepare pH-responsive gene carrier PDANP-PEI-rPEG. PBA and polydopamine could form pH-responsive boronate ester bonds. Non-responsive PDANP-PEI-nPEG and non-PEGylated PDANP-PEI were also studied as control. Both PDANP-PEI-rPEG/DNA and PDANP-PEI-nPEG/DNA complexes remained stable in the pH environment of blood circulation or extracellular delivery (pH 7.4) owing to the PEG modification. And after being internalized into endosomes, the boronate ester bonds could be cleaved. The pH responsive ability of PDANP-PEI-rPEG might facilitate complexes dissociation and gene release inside cells. The transfection level of PDANP-PEI-rPEG/DNA complexes was about 100 times higher than that of PDANP-PEI-nPEG/DNA complexes with the same mass ratios. Moreover, after NIR light irradiation at the power density of 2.6 W/cm2 for 20 min, the good photothermal conversion ability of PDANP resulted in quick endosomal escape. The transfection level of PDANP-PEI-rPEG/DNA complexes doubled, even higher than that of lipofectamine 2000/DNA complexes. This was also confirmed by Bafilomycin A1 inhibition test and CLSM observation. In response to the acidic pH within cancer cells and the NIR light irradiation, the PDANP-PEI-rPEG carrier could overcome multiple obstacles in gene delivery, which was promising for further application in gene therapy.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Qinan Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xinfang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
60
|
Miao Z, Liu P, Wang Y, Li K, Huang D, Yang H, Zhao Q, Zha Z, Zhen L, Xu CY. PEGylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903596. [PMID: 31441213 DOI: 10.1002/smll.201903596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Elemental tantalum is a well-known biomedical metal in clinics due to its extremely high biocompatibility, which is superior to that of other biomedical metallic materials. Hence, it is of significance to expand the scope of biomedical applications of tantalum. Herein, it is reported that tantalum nanoparticles (Ta NPs), upon surface modification with polyethylene glycol (PEG) molecules via a silane-coupling approach, are employed as a metallic photoacoustic (PA) contrast agent for multiwavelength imaging of tumors. By virtue of the broad optical absorbance from the visible to near-infrared region and high photothermal conversion efficiency (27.9%), PEGylated Ta NPs depict high multiwavelength contrast capability for enhancing PA imaging to satisfy the various demands (penetration depth, background noise, etc.) of clinical diagnosis as needed. Particularly, the PA intensity of the tumor region postinjection is greatly increased by 4.87, 7.47, and 6.87-fold than that of preinjection under 680, 808, and 970 nm laser irradiation, respectively. In addition, Ta NPs with negligible cytotoxicity are capable of eliminating undesirable reactive oxygen species, ensuring the safety for biomedical applications. This work introduces a silane-coupling strategy for the surface engineering of Ta NPs, and highlights the potential of Ta NPs as a biocompatible metallic contrast agent for multiwavelength photoacoustic image.
Collapse
Affiliation(s)
- Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Peiying Liu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yichuan Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Zhen
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng-Yan Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Bay Laboratory, Shenzhen, 518052, China
| |
Collapse
|
61
|
Samiei Foroushani M, Niroumand N, Karimi Shervedani R, Yaghoobi F, Kefayat A, Torabi M. A theranostic system based on nanocomposites of manganese oxide nanoparticles and a pH sensitive polymer: Preparation, and physicochemical characterization. Bioelectrochemistry 2019; 130:107347. [PMID: 31437809 DOI: 10.1016/j.bioelechem.2019.107347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/17/2023]
Abstract
A multifunctional nanocomposite theranostic system is constructed of manganese oxide (Mn3O4) nanoparticles (NPs), as a tumor diagnostic agent, in conjunction with polyacrylic acid (PAA), as a pH-sensitive drug delivery agent, and methotrexate (MTX), as a model of targeting agent and anticancer drug. Physicochemical characteristics of the Mn3O4@PAA/MTX system is studied in detail by several techniques, including X-ray and Auger photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The system performance is studied based on (i) in-vitro MRI measurements to support efficiency of the Mn3O4@PAA NPs as a diagnostic agent, (ii) drug release performance of the Mn3O4@PAA/MTX NPs at pHs of 5.4 and 7.4 through in-vitro method to evaluate application of the NPs as pH-sensitive nanocarriers for MTX, and (iii) impedance spectroscopy measurements to show Mn3O4@PAA/MTX NPs affinity for capturing of cancer cells. The results show that (i) Mn3O4@PAA NPs can be used as a contrast agent in MRI measurements (r1 ≅ 6.5 mM-1 s-1), (ii) the MTX, loaded on Mn3O4@PAA NPs, is released faster and more efficient at pH 5.4 than 7.4, and (iii) the GC-Mn3O4@PAA/MTX electrode system captures the 4T1 cells 3.32 times larger than L929 cells.
Collapse
Affiliation(s)
| | - Nazanin Niroumand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Fatemeh Yaghoobi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mostafa Torabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
62
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
63
|
Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019; 309:203-219. [PMID: 31362077 DOI: 10.1016/j.jconrel.2019.07.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
Nanocarriers sensitive to near infrared light (NIR) are useful templates for chemo-photothermal therapy (PTT) and imaging of tumors due to the ability to change the absorbed NIR energy to heat. The conventional photo-absorbing reagents lack the efficient loading and release of drug before reaching the target site leading to insufficient therapeutic outcomes. To overcome these limitations, the surface of nanocarriers can be modified with different polymers with wide functionalities to provide systems with diagnostic, therapeutic, and theranostic capabilities. Among various polymers, polydopamine (PDA) has been more interested due to complex structure with various chemical moieties, and the capacity to be used through different coating mechanism. In this review, we describe the complex structure, chemical properties, and coating mechanisms of PDA. Moreover, the advantage and surface modification of some relevant nanosystems based on carbon materials, gold, iron oxide, manganese, and upconverting nanomaterials by using PDA will be discussed, in detail.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
64
|
Luo S, Wu J, Jia Z, Tang P, Sheng J, Xie C, Liu C, Gan D, Hu D, Zheng W, Lu X. An Injectable, Bifunctional Hydrogel with Photothermal Effects for Tumor Therapy and Bone Regeneration. Macromol Biosci 2019; 19:e1900047. [PMID: 31318163 DOI: 10.1002/mabi.201900047] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Shiyu Luo
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu 610083 China
- School of Clinical MedicineChengdu Medical CollegeChengdu 610500 China
| | - Juan Wu
- Department of PharmacyThe General Hospital of Western Theater Command Chengdu 610083 China
| | - Zhanrong Jia
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University Chengdu 610031 China
| | - Pengfei Tang
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University Chengdu 610031 China
| | - Jun Sheng
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu 610083 China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University Chengdu 610031 China
| | - Chen Liu
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu 610083 China
| | - Donglin Gan
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University Chengdu 610031 China
| | - Dong Hu
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu 610083 China
- School of Clinical MedicineChengdu Medical CollegeChengdu 610500 China
| | - Wei Zheng
- Department of OrthopedicsThe General Hospital of Western Theater Command Chengdu 610083 China
| | - Xiong Lu
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
65
|
Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater 2019; 92:37-47. [PMID: 31108260 DOI: 10.1016/j.actbio.2019.05.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
Abstract
Surgical removal remains the main clinical approach to treat breast cancer, although risks including high local recurrence of cancer and loss of breast tissues are the threats for the survival and quality of life of patients after surgery. In this study, bifunctional scaffold based on dopamine-modified alginate and polydopamine (PDA) was fabricated using 3D printing with an aim to treat breast cancer and fill the cavity, thereby achieving tissue repair. The as-prepared alginate-polydopamine (Alg-PDA) scaffold exhibited favorable photothermal effect both in vitro and in vivo upon 808 nm laser irradiation. Further, the Alg-PDA scaffold showed great flexibility and similar modulus with normal breast tissues and facilitated the adhesion and proliferation of normal breast epithelial cells. Moreover, the in vivo performance of the Alg-PDA scaffold could be tracked by magnetic resonance and photoacoustic dual-modality imaging. The scaffold that was fabricated using simple and biocompatible materials with individual-designed structure and macropores, as well as outstanding photothermal effect and enhanced cell proliferation ability, might be a potential option for breast cancer treatment and tissue repair after surgery. STATEMENT OF SIGNIFICANCE: In this study, a three-dimensional porous scaffold was developed using 3D printing for the treatment of local recurrence of breast cancer and the following tissue repair after surgery. In this approach, easily available materials (dopamine-modified alginate and PDA) with excellent biocompatibility were selected and prepared as printing inks. The fabricated scaffold showed effective photothermal effects for cancer therapy, as well as matched mechanical properties with breast tissues. Furthermore, the scaffold supported attachment and proliferation of normal breast cells, which indicates its potential ability for adipose tissue repair. Together, the 3D-printed scaffold might be a promising option for the treatment of locally recurrent breast cancer cells and the following tissue repair after surgery.
Collapse
|
66
|
Affiliation(s)
- Jürgen Liebscher
- Institute of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
67
|
Maddah M, Delavari H. H, Mehravi B. Preparation of Bio‐Inspired Melanin Nanoplatforms Chelated with Manganese Ions as a Potential T1 MRI Contrast Agent. ChemistrySelect 2019. [DOI: 10.1002/slct.201802926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mahsa Maddah
- Department of Higher TechnologiesTarbiat Modares University, Tehran Iran
| | - Hamid Delavari H.
- Department of Materials EngineeringTarbiat Modares University P.O. Box 14115–143, Tehran Iran
| | - Bita Mehravi
- Department of Medical NanotechnologyIran University of Medical Science, Tehran Iran
| |
Collapse
|
68
|
Guo J, Suma T, Richardson JJ, Ejima H. Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. ACS Biomater Sci Eng 2019; 5:5578-5596. [DOI: 10.1021/acsbiomaterials.8b01507] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Junling Guo
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Tomoya Suma
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Joseph J. Richardson
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
69
|
Han X, Xu Y, Li Y, Zhao X, Zhang Y, Min H, Qi Y, Anderson GJ, You L, Zhao Y, Nie G. An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS NANO 2019; 13:4379-4391. [PMID: 30901191 DOI: 10.1021/acsnano.8b09607] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Combining informative imaging methodologies with effective treatments to destroy tumors is of great importance for oncotherapy. Versatile nanotheranostic agents that inherently possess both diagnostic imaging and therapeutic capabilities are highly desirable to meet these requirements. Here, a simple but powerful nanoplatform based on polydopamine-coated gold nanostar (GNS@PDA), which can be easily diversified to achieve various function extensions, is designed to realize functional and anatomical imaging-guided photothermal oncotherapy. This nanoplatform intrinsically enables computed tomography/photoacoustic/two-photon luminescence/infrared thermal tetramodal imaging and can further incorporate fibroblast activation protein (FAP, a protease highly expressed in most of tumors) activatable near-infrared fluorescence imaging and Fe3+-based magnetic resonance imaging for comprehensive diagnosis. Moreover, GNS@PDA exhibits excellent photothermal performance and efficient tumor accumulation. Under the precise guidance of multimodal imaging, GNS@PDA conducts homogeneous photothermal ablation of bulky solid tumors (∼200 mm3) in a xenograft mouse model. These results suggest great promise of this extendable nanoplatform for cancer theranostics.
Collapse
Affiliation(s)
- Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ying Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Sino-Danish College, Sino-Danish Center for Education and Research , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Department of Pharmacy , Copenhagen University , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yingqiu Qi
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , P.R. China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute , Royal Brisbane Hospital , Brisbane , Queensland 4029 , Australia
| | - Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , P.R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
70
|
Wang N, Yang Y, Wang X, Tian X, Qin W, Wang X, Liang J, Zhang H, Leng X. Polydopamine as the Antigen Delivery Nanocarrier for Enhanced Immune Response in Tumor Immunotherapy. ACS Biomater Sci Eng 2019; 5:2330-2342. [DOI: 10.1021/acsbiomaterials.9b00359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ning Wang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ying Yang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xinxin Tian
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenjuan Qin
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxiao Wang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jiayi Liang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hailing Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
71
|
Wu J, Zheng Y, Jiang S, Qu Y, Wei T, Zhan W, Wang L, Yu Q, Chen H. Two-in-One Platform for High-Efficiency Intracellular Delivery and Cell Harvest: When a Photothermal Agent Meets a Thermoresponsive Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12357-12366. [PMID: 30859807 DOI: 10.1021/acsami.9b01586] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efficient intracellular delivery of exogenous macromolecules is a key operation in biological research and for clinical applications. Moreover, under particular in vitro or ex vivo conditions, harvesting the engineered cells that maintain good viability is also important. However, none of the methods currently available is truly satisfactory in all respects. Herein, a "two-in-one" platform based on a polydopamine/poly( N-isopropylacrylamide) (PDA/PNIPAAm) hybrid film is developed, showing high efficiency in both cargo delivery and cell harvest without compromising cell viability. Due to the strong photothermal effect of PDA in response to near-infrared irradiation, this film can deliver diverse molecules to a number of cell types (including three hard-to-transfect cells) with an efficiency of ∼99% via membrane-disruption mechanism. Moreover, due to the thermoresponsive properties of PNIPAAm, the cells are harvested from the film without compromising viability by simply decreasing the temperature. A proof-of-concept experiment demonstrates that, using this platform, "recalcitrant" endothelial cells can be transfected by the functional ZNF580 gene and the harvested transfected cells can be recultured with high retention of viability and improved migration. In general, this "two-in-one" platform provides a reliable, universally applicable approach for both intracellular delivery and cell harvest in a highly efficient and nondestructive way, with great potential for use in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Shuaibing Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
72
|
Li XJ, Li WT, Li ZHR, Zhang LP, Gai CC, Zhang WF, Ding DJ. Iron-Chelated Polydopamine Decorated Doxorubicin-Loaded Nanodevices for Reactive Oxygen Species Enhanced Cancer Combination Therapy. Front Pharmacol 2019; 10:75. [PMID: 30787876 PMCID: PMC6372743 DOI: 10.3389/fphar.2019.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 01/07/2023] Open
Abstract
Combination therapy which enhances efficacy and reduces toxicity, has been increasingly applied as a promising strategy for cancer therapy. Here, a reactive oxygen species (ROS) that enhanced combination chemotherapy nanodevices was fabricated based on the Fe-chelated polydopamine (PDA) nanoparticles (NPs). The structure was characterized by dynamic light scattering-autosizer, transmission electron microscopy, energy dispersive spectroscopy, and Fourier-transform infrared (FT-IR) spectrophotometer. The in vitro drug release profile triggered by low intracellular pH indicated that the system demonstrated controlled therapeutic activity. In vitro cell uptake studies showed that doxorubicin (DOX)-loaded Fe-PDA/ folic acid (FA)- polyethylene glycol (DOX@Fe-PDA/FA-PEG) had a strong uptake capacity and can be rapidly internalized by MCF-7 cells. The in vitro experiments demonstrated that DOX@Fe-PDA/FA-PEG triggered the intracellular ROS overproduction, thereby enhancing its therapeutic effect on breast cancer. In summary, this experiment demonstrated the novel DOX-loaded composite NPs used as a potential targeted nanocarrier for breast cancer treatment, which could be a promising therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Xu-Jing Li
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Wen-Tong Li
- Department of Pathology, Weifang Medical University, Weifang, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China
| | - Zi-Hao-Ran Li
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Li-Ping Zhang
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Cheng-Cheng Gai
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Wei-Fen Zhang
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,College of Pharmacy, Weifang Medical University, Weifang, China
| | - De-Jun Ding
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, China.,College of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
73
|
Lemaster JE, Wang Z, Hariri A, Chen F, Hu Z, Huang Y, Barback CV, Cochran R, Gianneschi NC, Jokerst JV. Gadolinium Doping Enhances the Photoacoustic Signal of Synthetic Melanin Nanoparticles: A Dual Modality Contrast Agent for Stem Cell Imaging. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:251-259. [PMID: 33859455 PMCID: PMC8045669 DOI: 10.1021/acs.chemmater.8b04333] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this paper, we show that gadolinium-loaded synthetic melanin nanoparticles (Gd(III)-SMNPs) exhibit up to a 40-fold enhanced photoacoustic signal intensity relative to synthetic melanin alone and higher than other metal-chelated SMNPs. This property makes these materials useful as dual labeling agents because Gd(III)-SMNPs also behave as magnetic resonance imaging (MRI) contrast agents. As a proof-of-concept, we used these nanoparticles to label human mesenchymal stem cells. Cellular uptake was confirmed with bright-field optical and transmission electron microscopy. The Gd(III)-SMNP-labeled stem cells continued to express the stem cell surface markers CD73, CD90, and CD105 and proliferate. The labeled stem cells were subsequently injected intramyocardially in mice, and the tissue was observed by photoacoustic and MR imaging. We found that the photoacoustic signal increased as the cell number increased (R 2 = 0.96), indicating that such an approach could be employed to discriminate between stem cell populations with a limit of detection of 2.3 × 104 cells in in vitro tests. This multimodal photoacoustic/MRI approach combines the excellent temporal resolution of photoacoustics with the anatomic resolution of MRI.
Collapse
Affiliation(s)
- Jeanne E. Lemaster
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhao Wang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ali Hariri
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ziying Hu
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuran Huang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher V. Barback
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Richard Cochran
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
74
|
Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9392-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
75
|
Xiong Y, Sun F, Zhang Y, Yang Z, Liu P, Zou Y, Yu Y, Tong F, Yi C, Yang S, Xu Z. Polydopamine-mediated bio-inspired synthesis of copper sulfide nanoparticles for T1-weighted magnetic resonance imaging guided photothermal cancer therapy. Colloids Surf B Biointerfaces 2019; 173:607-615. [DOI: 10.1016/j.colsurfb.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022]
|
76
|
Chen YC, Lin KYA, Lin CC, Lu TY, Lin YH, Lin CH, Chen KF. Photoinduced antibacterial activity of NRC03 peptide-conjugated dopamine/nano-reduced graphene oxide against Staphylococcus aureus. Photochem Photobiol Sci 2019; 18:2442-2448. [DOI: 10.1039/c9pp00202b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NRC03-DA/nRGO possessed biocompatible properties and NIR photothermal energy conversion capability. The continuous photoinduced NRC03 peptide release consequently improved the therapeutic efficiency of photothermal therapy against S. aureus.
Collapse
Affiliation(s)
- Y. C. Chen
- Department of Civil Engineering
- National Chi Nan University
- Nantou
- Taiwan
- Department of Biotechnology
| | - K. Y. A. Lin
- Department of Environmental Engineering
- National Chung Hsing University
- Taichung
- Taiwan
| | - C. C. Lin
- Department of Biotechnology
- National Formosa University
- Yunlin
- Taiwan
| | - T. Y. Lu
- Department of Biotechnology
- National Formosa University
- Yunlin
- Taiwan
| | - Y. H. Lin
- Department of Food Technology and Marketing
- Taipei University of Marine Technology
- Taipei
- Taiwan
| | - C. H. Lin
- Department of Biotechnology
- National Formosa University
- Yunlin
- Taiwan
| | - K. F. Chen
- Department of Civil Engineering
- National Chi Nan University
- Nantou
- Taiwan
| |
Collapse
|
77
|
Zhang H, Chen Y, Cai Y, Liu J, Liu P, Li Z, An T, Yang X, Liang C. Paramagnetic CuS hollow nanoflowers for T2-FLAIR magnetic resonance imaging-guided thermochemotherapy of cancer. Biomater Sci 2019; 7:409-418. [DOI: 10.1039/c8bm01412d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Green synthesized 3D CuS hollow nanoflowers are for the first time proved to be a T1 positive MRI contrast agent for imaging-guided thermochemotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology
- Institute of Solid State Physics
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Yaodong Chen
- Department of Abdominal Ultrasound
- The First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology
- Institute of Solid State Physics
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology
- Institute of Solid State Physics
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| | - Pengfei Liu
- Department of Magnetic Resonance
- The First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Zizhuo Li
- Department of Abdominal Ultrasound
- The First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Tingting An
- Department of Abdominal Ultrasound
- The First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Xiuhua Yang
- Department of Abdominal Ultrasound
- The First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology
- Institute of Solid State Physics
- Hefei Institutes of Physical Science
- Chinese Academy of Sciences
- Hefei 230031
| |
Collapse
|
78
|
Ambrico M, Manini P, Ambrico PF, Ligonzo T, Casamassima G, Franchi P, Valgimigli L, Mezzetta A, Chiappe C, d'Ischia M. Nanoscale PDA disassembly in ionic liquids: structure–property relationships underpinning redox tuning. Phys Chem Chem Phys 2019; 21:12380-12388. [DOI: 10.1039/c9cp01545k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An integrated EPR and electrical impedance spectroscopy approach to predict ionic liquid-mediated tuning of the redox properties of polydopamine nanoparticles.
Collapse
Affiliation(s)
- Marianna Ambrico
- CNR – Istituto per las Scienza e la tecnologia dei plasmi via Amendola 122/D
- 70126 Bari
- Italy
| | - Paola Manini
- Dipartimento di Scienze Chimiche
- Università di Napoli Federico II
- Napoli
- Italy
| | - Paolo F. Ambrico
- CNR – Istituto per las Scienza e la tecnologia dei plasmi via Amendola 122/D
- 70126 Bari
- Italy
| | - Teresa Ligonzo
- Dipartimento Interateneo di Fisica
- Università degli Studi di Bari
- Bari
- Italy
| | | | - Paola Franchi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna
- Italy
| | - Luca Valgimigli
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- Bologna
- Italy
| | - Andrea Mezzetta
- Dipartimento di Farmacia
- Universita’ degli Studi di Pisa
- Pisa
- Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia
- Universita’ degli Studi di Pisa
- Pisa
- Italy
| | - Marco d'Ischia
- Dipartimento di Scienze Chimiche
- Università di Napoli Federico II
- Napoli
- Italy
| |
Collapse
|
79
|
Lu W, Liao Y, Jiang C, Wang R, Shan X, Chen Q, Sun G, Liu J. Polydopamine-coated NaGdF4:Dy for T1/T2-weighted MRI/CT multimodal imaging-guided photothermal therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj00561g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T1/T2-weighted MRI/CT imaging-guided PTT agent NaGdF4:Dy@PPF was prepared and demonstrated its promising application for early diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Wei Lu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Yuxuan Liao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Ruoming Wang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Jianhua Liu
- Department of Radiology
- Second Hospital of Jilin University
- Changchun
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|
80
|
El Yakhlifi S, Ihiawakrim D, Ersen O, Ball V. Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles Produced by NaIO 4 Oxidation of Dopamine. Biomimetics (Basel) 2018; 3:biomimetics3040036. [PMID: 31105257 PMCID: PMC6352692 DOI: 10.3390/biomimetics3040036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023] Open
Abstract
Polydopamine (PDA) deposition, obtained from the oxidation of dopamine and other catecholamines, is a universal way to coat all known materials with a conformal coating which can subsequently be functionalized at will. The structural analogies between polydopamine and eumelanin, the black-brown pigment of the skin, were incited to produce stable polydopamine nanoparticles in solution, instead of amorphous precipitates obtained from the oxidation of dopamine. Herein, we demonstrate that size-controlled and colloidally stable PDA-based nanoparticles can be obtained in acidic conditions, where spontaneous auto-oxidation of dopamine is suppressed, using sodium periodate as the oxidant and a protein, like alkaline phosphatase (ALP), as a templating agent. The size of the PDA@ALP nanoparticles depends on the dopamine/enzyme ratio and the obtained particles display enzymatic activity of alkaline phosphatase, with an activity extending up to two weeks after particle synthesis. The PDA@ALP nanoparticles can be engineered in polyelectrolyte multilayered films to potentially design model biosensors.
Collapse
Affiliation(s)
- Salima El Yakhlifi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, CEDEX, 67085 Strasbourg, France.
| | - Dris Ihiawakrim
- Institut de Physique et de Chimie des Matériaux, UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, CEDEX 2, 67034 Strasbourg, France.
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux, UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, BP 43, CEDEX 2, 67034 Strasbourg, France.
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, CEDEX, 67085 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France.
| |
Collapse
|
81
|
Facile synthesis of ultrasmall polydopamine-polyethylene glycol nanoparticles for cellular delivery. Biointerphases 2018; 13:06D407. [PMID: 30360628 DOI: 10.1116/1.5042640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Very small polydopamine (PDA) polyethylene glycol (PEG) crosslinked copolymer (PDA-PEG) nanoparticles have been prepared following a convenient one-step procedure in aqueous solution. Particle sizes and colloidal stabilities have been optimized by varying PEG in view of chain length and end group functionalities. In particular, amine-terminated PEG3000 [PEG3000(NH2)2] reacted with polydopamine intermediates so that very small, crosslinked PDA-PEG nanoparticles with sizes of less than 50 nm were formed. These nanoparticles remained stable in buffer solution and no sedimentation occurred. Chemical functionalization was straight-forward as demonstrated by the attachment of fluorescent dyes. The PDA-PEG nanoparticles revealed efficient cellular uptake via endocytosis and high cytocompatibility, thus rendering them attractive candidates for cell imaging or for drug delivery applications.
Collapse
|
82
|
Mu H, Wang Y, Wei H, Lu H, Feng Z, Yu H, Xing Y, Wang H. Collagen peptide modified carboxymethyl cellulose as both antioxidant drug and carrier for drug delivery against retinal ischaemia/reperfusion injury. J Cell Mol Med 2018; 22:5008-5019. [PMID: 30030883 PMCID: PMC6156360 DOI: 10.1111/jcmm.13768] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/03/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress can cause injury in retinal endothelial cells. Carboxymethyl cellulose modified with collagen peptide (CMCC) is of a distinct antioxidant capacity and potentially a good drug carrier. In this study, the protective effects of CMCC against H2 O2 -induced injury of primary retinal endothelial cells were investigated. In vitro, we demonstrated that CMCC significantly promoted viability of H2 O2 -treated cells, efficiently restrained cellular reactive oxygen species (ROS) production and cell apoptosis. Then, the CMCC was employed as both drug and anti-inflammatory drug carrier for treatment of retinal ischaemia/reperfusion (I/R) in rats. Animals were treated with CMCC or interleukin-10-loaded CMCC (IL-10@CMCC), respectively. In comparisons, the IL-10@CMCC treatment exhibited superior therapeutic effects, including better restoration of retinal structural thickness and less retinal apoptosis. Also, chemiluminescence demonstrated that transplantation of IL-10@CMCC markedly reduced the retinal oxidative stress level compared with CMCC alone and potently recovered the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that CMCC provides a promising platform to enhance the drug-based therapy for I/R-related retinal injury.
Collapse
Affiliation(s)
- Hua Mu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yeqing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haiying Wei
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hong Lu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Zhuolei Feng
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Hongmin Yu
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Xing
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Haijing Wang
- Department of Ophthalmologythe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
83
|
Ball V. Polydopamine Nanomaterials: Recent Advances in Synthesis Methods and Applications. Front Bioeng Biotechnol 2018; 6:109. [PMID: 30175095 PMCID: PMC6108306 DOI: 10.3389/fbioe.2018.00109] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022] Open
Abstract
Polydopamine (PDA), the final oxidation product of dopamine or other catecholamines, attracted much attention as versatile coatings that can be used to cover the surface of almost all materials with a conformal layer of adjustable thickness ranging from a few to about 100 nm. These PDA layers can be subsequently modified with molecules carrying nucleophilic groups or with metallic nanoparticles from solutions containing metallic cations. However, during the deposition of PDA film on the surfaces, the reaction products that are simultaneously obtained from the oxidation of catecholamines in solution precipitate. Hence, some recent effort has been devoted to produce PDA in the form of nanoparticles. The aim of this short review is to give a comprehensive description of the synthesis methods yielding of PDA nanoparticles in the absence or in the presence of templating agents (polymers, polyelectrolytes, surfactants, proteins, and even some small organic molecules). We will also describe the use of thin PDA layers to coat already synthesized nanoparticles or nanotubes. Finally, several first applications of the obtained PDA nanoparticles will be described.
Collapse
Affiliation(s)
- Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale, Strasbourg, France
| |
Collapse
|
84
|
Xie Y, Wang J, Wang Z, Krug KA, Rinehart JD. Perfluorocarbon-loaded polydopamine nanoparticles as ultrasound contrast agents. NANOSCALE 2018; 10:12813-12819. [PMID: 29947626 PMCID: PMC6319376 DOI: 10.1039/c8nr02605j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A versatile platform for the development of new ultrasound contrast agents is demonstrated through a one-pot synthesis and fluorination of submicron polydopamine (PDA-F) nanoparticles. The fluorophilicity of these particles allows loading with perfluoropentane (PFP) droplets that display strong and persistent ultrasound contrast in aqueous suspension and ex vivo tissue samples. Contrast under continuous imaging by color Doppler persists for 1 h in 135 nm PDA-F samples, even at maximum clinical imaging power (MI = 1.9). Additionally, use of a Cadence Contrast Pulse Sequence (CPS) results in a non-linear response suitable for imaging at 0.5 mg mL-1. Despite the PFP volatility and the lack of a hollow core, PDA-F particles display minimal signal loss after storage for over a week. The ability to tune size, metal-chelation, and add covalently-bound organic functionality offers myriad possibilities for extending this work to multimodal imaging, targeted delivery, and therapeutic functionality.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhao Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kelsey A. Krug
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
| | - Jeffrey D. Rinehart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA,
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
85
|
Liu H, Chu C, Liu Y, Pang X, Wu Y, Zhou Z, Zhang P, Zhang W, Liu G, Chen X. Novel Intrapolymerization Doped Manganese-Eumelanin Coordination Nanocomposites with Ultrahigh Relaxivity and Their Application in Tumor Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800032. [PMID: 30027037 PMCID: PMC6051206 DOI: 10.1002/advs.201800032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/23/2018] [Indexed: 05/03/2023]
Abstract
While magnetic resonance imaging contrast agents have potential in noninvasive image-guided tumor treatment, further developments are needed to increase contrast, biodegradability, and safety. Here, novel engineered manganese-eumelanin coordination nanocomposites (MnEMNPs) are developed via a facile one-pot intrapolymerization doping (IPD) approach in aqueous solution, through simple chemical oxidation-polymerization of the 3,4-dihydroxy-DL-phenylalanine precursor with potassium permanganate serving as the Mn source and an oxidant. The resulting MnEMNPs possess ultrahigh longitudinal relaxivity (r1 value up to 60.8 mM-1 s-1 at 1.5 T) attributed to the high manganese doping efficiency (>10%) and geometrically confined conformation. Due to their high manganese chelation stability, excellent biocompatibility, and strong near-infrared absorption, high-performance longitudinal-transverse (T1-T2) dual-modal magnetic resonance/photoacoustic imaging and photothermal tumor ablation are achieved. Furthermore, the hydrogen peroxide-triggered decomposition behavior of MnEMNPs circumvents the poor biodegradation issue of many nanomaterials. This facile, convenient, economical, and efficient IPD strategy will open up new avenues for the development of high-performance multifunctional theranostic nanoplatforms in bionanomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of Radiologythe Third Affiliated HospitalArmy Medical UniversityChongqing400010China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Yu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of UltrasoundSouthwest HospitalArmy Medical UniversityChongqing400000China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Yayun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Weiguo Zhang
- Department of Radiologythe Third Affiliated HospitalArmy Medical UniversityChongqing400010China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400010China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
86
|
Patra D, Mukherjee S, Chakraborty I, Dash TK, Senapati S, Bhattacharyya R, Shunmugam R. Iron(III) Coordinated Polymeric Nanomaterial: A Next-Generation Theranostic Agent for High-Resolution T1-Weighted Magnetic Resonance Imaging and Anticancer Drug Delivery. ACS Biomater Sci Eng 2018; 4:1738-1749. [DOI: 10.1021/acsbiomaterials.8b00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | | | | |
Collapse
|
87
|
Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y. Dual-responsive dithio-polydopamine coated porous CeO 2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine 2018; 13:2161-2173. [PMID: 29695903 PMCID: PMC5905827 DOI: 10.2147/ijn.s152002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The aim was to produce the first report of assembling degradable stimuli-responsive dithio-polydopamine coating with a cancer target unit for synergistic and targeted drug delivery. Methods A multifunctional drug delivery system was constructed by coating a dual-responsive dithio-polydopamine (PDS) on porous CeO2 nanorods and subsequent conjugation of lactose derivative, where the PDS was formed by self-polymerization of dithio-dopamine (DOPASS). Results The multifunctional drug delivery system displayed excellent cancer targeted ability resulting from the conjugation of lactose derivative, which could specifically recognize the overexpressed asialoglycoprotein receptors on the surface of HepG2 cells. It also showed a dual-responsive property of glutathione and pH, achieving controllable drug release from the cleavage of disulfide bond and subsequent degradation of PDS in cancer cells. Moreover, the degradation of PDS led to the exposure of CeO2 nanorods, which has a synergistic anticancer effect due to its cytotoxicity to cancer cells. Conclusion This work presents a good example of a rational design towards synergistic and targeted DDS for cancer chemotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaowen Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kun Shang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhimin Tian
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yongquan Qu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
88
|
Zhang W, Liu L, Chen H, Hu K, Delahunty I, Gao S, Xie J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8:2521-2548. [PMID: 29721097 PMCID: PMC5928907 DOI: 10.7150/thno.23789] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact.
Collapse
Affiliation(s)
- Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Lin Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Hongmin Chen
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, ErDao District, Changchun 13033, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
89
|
Li J, Wu C, Hou P, Zhang M, Xu K. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens Bioelectron 2018; 102:1-8. [DOI: 10.1016/j.bios.2017.10.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023]
|
90
|
Mrówczyński R. Polydopamine-Based Multifunctional (Nano)materials for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7541-7561. [PMID: 28786657 DOI: 10.1021/acsami.7b08392] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since Lee published a pioneering paper about polydopamine (PDA), application of that polymer in a number of areas has grown enormously in the last 10 years and is still growing. PDA's spectacular success can be attributed to its unique features, i.e., simple preparation protocol, strong adhesive properties, easy and straightforward functionalization, and biocompatibility. Therefore, this polymer has attracted the attention of a vast group of scientists, including those working in the field of nanomedicine. In consequence, polydopamine has been merged with various nanostructures that differ in size and nature, which has resulted in novel types of multifunctional nanomaterials that have recently been extensively exploited in nanomedicine and particularly in cancer therapy. The aim of this article is to offer insight into the latest achievements (up until the end of 2016) in the field of synthesis and application of nanomaterials based on polydopamine and their application in cancer therapy. The conclusions regarding the application of polydopamine-based nanoplatforms in this area and future prospects are given at the end.
Collapse
Affiliation(s)
- Radosław Mrówczyński
- NanoBioMedical Centre , Adam Mickiewicz University in Poznan , Umultowska 85 , 61-614 Poznan , Poland
| |
Collapse
|
91
|
Addisu KD, Hailemeskel BZ, Mekuria SL, Andrgie AT, Lin YC, Tsai HC. Bioinspired, Manganese-Chelated Alginate-Polydopamine Nanomaterials for Efficient in Vivo T 1-Weighted Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5147-5160. [PMID: 29277987 DOI: 10.1021/acsami.7b13396] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manganese-based nanomaterials are an emerging new class of magnetic resonance imaging (MRI) contrast agents (CAs) that provide impressive contrast abilities. MRI CAs that can respond to pathophysiological parameters such as pH or redox potential are also highly in demand for MRI-guided tumor diagnosis. Until now, synthesizing nanomaterials with good biocompatibility, physiochemical stability, and good contrast effects remains a challenge. This study investigated two new systems of calcium/manganese cations complexed with either alginate-polydopamine or alginate-dopamine nanogels [AlgPDA(Ca/Mn) NG or AlgDA(Ca/Mn) NG]. Under such systems, Ca cations form ionic interactions via carboxylic acids of the Alg backbone to enhance the stability of the synthetic nanogels (NGs). Likewise, complexation of Mn cations also increased the colloidal stability of the synthetic NGs. The magnetic property of the prepared CAs was confirmed with superconducting quantum interference device measurements, proving the potential paramagnetic property. Hence, the T1 relaxivity measurement showed that PDA-complexed synthetic NGs reveal a strong positive contrast enhancement with r1 = 12.54 mM-1·s-1 in 7.0 T MRI images, whereas DA-complexed synthetic NGs showed a relatively lower T1 relaxivity effect with r1 = 10.13 mM-1·s-1. In addition, both the synthetic NGs exhibit negligible cytotoxicity with >92% cell viability up to 0.25 mM concentration, when incubated with the mouse macrophage (RAW 264.7) and HeLa cells, and high biocompatibility under in vivo analysis. The in vivo MRI test indicates that the synthetic NG exhibits a high signal-to-noise ratio for longer hours, which provides a longer image acquisition time for tumor and anatomical imaging. Furthermore, T1-weighted MRI results revealed that PEGylated AlgPDA(Ca/Mn) NGs significantly enhanced the signals from liver and tumor tissues. Therefore, owing to the enhanced permeability and retention effect, significantly enhanced in vitro and in vivo imagings, low cost, and one-pot synthesis method, the Mn-based biomimetic approach used in this study provides a promising and competitive alternative for noninvasive tumor detection and comprehensive anatomical diagnosis.
Collapse
Affiliation(s)
- Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Balkew Zewge Hailemeskel
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| | - Yu-Chun Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital , Taipei 114, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology , Taipei 106, Taiwan, ROC
| |
Collapse
|
92
|
Li H, Jia Y, Peng H, Li J. Recent developments in dopamine-based materials for cancer diagnosis and therapy. Adv Colloid Interface Sci 2018; 252:1-20. [PMID: 29395035 DOI: 10.1016/j.cis.2018.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/17/2022]
Abstract
Dopamine-based materials are emerging as novel biomaterials and have attracted considerable interests in the fields of biosensing, bioimaging and cancer therapy due to their unique physicochemical properties, such as versatile adhesion property, high chemical reactivity, excellent biocompatibility and biodegradability, strong photothermal conversion capacity, etc. In this review, we present an overview of recent research progress on dopamine-based materials for diagnosis and therapy of cancer. The review starts with a summary of the physicochemical properties of dopamine-based materials in general. Then detailed description is followed on their applications in the fields of diagnosis and treatment of cancers. The review concludes with an outline of some remaining challenges for dopamine-based materials to be used for clinical applications.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
93
|
Zhou X, Lv X, Zhao W, Zhou T, Zhang S, Shi Z, Ye S, Ren L, Chen Z. Porous MnFe2O4-decorated PB nanocomposites: a new theranostic agent for boosted T1/T2 MRI-guided synergistic photothermal/magnetic hyperthermia. RSC Adv 2018; 8:18647-18655. [PMID: 35541095 PMCID: PMC9080558 DOI: 10.1039/c8ra02946f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
This study reports a multifunctional core/shell nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI), enhanced photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) due to its surface coating with a porous shell. Importantly, by means of introducing the surface coating of a porous shell, it helps entrap large quantities of water around NPs and allow more efficient water exchange, leading to greatly improved MR contrast signals. Besides, the porous shell helps the near-infrared (NIR) absorbance of the core, and then the extremely enhanced thermal effect can be obtained under synergistic combination of PTT and MHT. By synthesizing multifunctional porous MnFe2O4/PB as an example, we found that the transversal relaxivity (r2) of MnFe2O4 NPs might improve from 112.11 to 123.46 mM−1 s−1, and the specific absorption rate (SAR) of MnFe2O4/PB nanoparticles reached unprecedented levels of up to 4800 W g−1 compared with the SAR 1182 W g−1 of PTT under an 808 nm laser and 180 W g−1 of MHT under an external AC magnetic field. Meanwhile, when MnFe2O4 was decorated on PB nanoparticles, the magnetic properties became lower slightly, but the synergistic photothermal/magnetic hyperthermia conversion was enhanced greatly. Subsequently, in vitro T1–T2 dual-modal MRI, PTT and MHT results verified that MnFe2O4/PB could serve as an excellent MRI/PTT/MHT theranostic agent. Furthermore, the MnFe2O4/PB NPs were applied as a T1–T2 dual-modal MRI, PTT and MHT theranostic agent for in vivo MRI-guided photothermal and magnetic hyperthermia ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The T1–T2 dual-modal MR imaging result shows a significantly contrast in the tumor site. The MPB-mediated PTT and MHT result shows high therapeutic efficiency as a result of high photothermal and magnetic hyperthermia conversion efficiency. The multifunctional NPs have a great potential application for future clinical tumorous diagnosis and treatment. We synthesized a new theranostic agent of porous MnFe2O4-decorated PB nanocomposites for boosted T1/T2 MRI-guided synergistic photothermal/magnetic hyperthermia.![]()
Collapse
Affiliation(s)
- Xi Zhou
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xiaolin Lv
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Wen Zhao
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Tiantian Zhou
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Shupeng Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Zhan Shi
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Shefang Ye
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Zhiwei Chen
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research
- Xiamen University
- Xiamen 361005
- P. R. China
| |
Collapse
|
94
|
Nieto C, Vega MA, Marcelo G, Martín del Valle E. Polydopamine nanoparticles kill cancer cells. RSC Adv 2018; 8:36201-36208. [PMID: 35558470 PMCID: PMC9088449 DOI: 10.1039/c8ra05586f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Polydopamine (PD) is a synthetic melanin analogue of growing importance in the field of biomedicine, especially with respect to cancer research, due, in part, to its biocompatibility.
Collapse
Affiliation(s)
- Celia Nieto
- Department of Chemical Engineering
- Universidad de Salamanca
- Salamanca
- Spain
| | - Milena A. Vega
- Department of Chemical Engineering
- Universidad de Salamanca
- Salamanca
- Spain
| | - Gema Marcelo
- Department of Chemical Engineering
- Universidad de Salamanca
- Salamanca
- Spain
| | | |
Collapse
|
95
|
Wang X, Li F, Yan X, Ma Y, Miao ZH, Dong L, Chen H, Lu Y, Zha Z. Ambient Aqueous Synthesis of Ultrasmall Ni 0.85Se Nanoparticles for Noninvasive Photoacoustic Imaging and Combined Photothermal-Chemotherapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41782-41793. [PMID: 29148694 DOI: 10.1021/acsami.7b15780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Large-size-induced long-term retention in the body has hampered the translational applications of many reported nanomedicines. Herein, we reported a multifunctional theranostic agent composed of ultrasmall poly(acrylic acid)-functionalized Ni0.85Se nanoparticles (PAA-Ni0.85Se NPs), which were successfully obtained through a facile ambient aqueous precipitation strategy. Without exhibiting any noticeable toxicity, the as-prepared PAA-Ni0.85Se NPs (average diameter of 6.40 ± 1.89 nm) showed considerable absorption in near-infrared (NIR) region and high photothermal conversion efficiency of 54.06%, which could induce remarkable photoacoustic signals for tumor imaging and heat for localized ablation of cancerous cells upon exposure to NIR light. Notably, the ultrasmall PAA-Ni0.85Se NPs, unlike conventional nanomaterials with larger sizes, showed reasonable body clearance within 8 h after intravenous injection. Furthermore, ascribed to protonation process of amino groups in DOX molecules and carboxyl groups in PAA molecules in an acidic microenvironment, the drug-loaded (doxorubicin hydrochloride, DOX·HCl) PAA-Ni0.85Se NPs (PAA-Ni0.85Se-DOX NPs) revealed promoted drug release at acidic pH, which could be useful for acidic tumor microenvironment responsive drug delivery. Evident from the results of cell-killing assay in vitro and tumor treatment study in vivo, PAA-Ni0.85Se-DOX NPs exhibited evident synergistic effects on killing 4T1 breast cancer cells. Thus, this study presents a multifunctional theranostic agent composed of ultrasmall PAA-Ni0.85Se NPs for potential cancer treatment without long-term toxicity concerns.
Collapse
Affiliation(s)
- Xianwen Wang
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Fei Li
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Xu Yan
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Yan Ma
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Zhao-Hua Miao
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Liang Dong
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Huajian Chen
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Yang Lu
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| | - Zhengbao Zha
- School of Biological and Medical Engineering and ‡School of Chemistry and Chemical Engineering, Hefei University of Technology , Hefei, Anhui 230009, P.R. China
| |
Collapse
|
96
|
PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids Surf B Biointerfaces 2017; 160:11-21. [DOI: 10.1016/j.colsurfb.2017.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
|
97
|
Deng Z, Shang B, Peng B. Polydopamine Based Colloidal Materials: Synthesis and Applications. CHEM REC 2017; 18:410-432. [PMID: 29124869 DOI: 10.1002/tcr.201700051] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/02/2017] [Indexed: 01/29/2023]
Abstract
Polydopamine is a synthetic analogue of natural melanin (eumelanin) produced from oxidative polymerization of dopamine. Owing to its strong adhesion ability, versatile chemical reactivity, biocompatibility and biodegradation, polydopamine is commonly applied as a versatile linker to synthesize colloidal materials with diverse structures, unique physicochemical properties and tunable functions, which allow for a broad scope of applications including biomedicine, sensing, catalysis, environment and energy. In this personal account, we discuss first about the different synthetic approaches of polydopamine, as well as its polymerization mechanism, and then with a comprehensive overview of recent progress in the synthesis and applications of polydopamine-based colloidal materials. Finally, we summarize this personal account with future perspectives.
Collapse
Affiliation(s)
- Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bin Shang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
98
|
Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Barrett A, Guo Z, Tao W, Wu J, Shi X. Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. NANO LETTERS 2017; 17:6790-6801. [PMID: 29058908 DOI: 10.1021/acs.nanolett.7b03021] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polydopamine (PDA) coating as a bioinspired strategy for nanoparticles (NPs) has been extensively applied in cancer theranostics. However, a cellular-level understanding of nano-biointeraction of these PDA-coated NPs (PDNPs), which drives the fate of them and acts as a critical step to determine their efficacy, still remains unknown. Herein, we utilized the representative mesoporous silica NPs (MSNs) to be coated with PDA and study their nano-bioactivities in cancer cells. HeLa cell line was utilized as a model in this study. The PDNPs were discovered to be internalized through three specific pathways, that is, Caveolae-, Arf6-dependent endocytosis, and Rab34-mediated macropinocytosis (55%, 20% and 37% of uptake inhibition by nystatin, Arf6 knockdown, and rottlerin, respectively). Autophagy-mediated accumulation of PDNPs in lysosomes was observed and the formed PDA shells shedded in the lysosomes. Almost 40% of the NPs were transported out of cells via Rab8/10- and Rab3/26-mediated exocytosis pathways at our tested level. On the basis of these results, a novel combined cancer treatment strategy was further proposed using drug-loaded MSNs-PDA by (i) utilizing naturally intracellular mechanism-controlled PDA shedding for organelle-targeted release of drugs in lysosomes to generate lysosome impairment and (ii) blocking the demonstrated exocytosis pathways for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Li Ding
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Xianbing Zhu
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Yiling Wang
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University , Kaifeng, Henan 475004, China
| | - Xiang Ling
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University , Guangzhou 510006, China
| | - Houjie Chen
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Wenhao Nan
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Austin Barrett
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Zilei Guo
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Wei Tao
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Jun Wu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University , Guangzhou 510006, China
| | - Xiaojun Shi
- School of Life Sciences, Tsinghua University , Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| |
Collapse
|
99
|
Wang Z, Carniato F, Xie Y, Huang Y, Li Y, He S, Zang N, Rinehart JD, Botta M, Gianneschi NC. High Relaxivity Gadolinium-Polydopamine Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701830. [PMID: 29024478 DOI: 10.1002/smll.201701830] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/04/2017] [Indexed: 06/07/2023]
Abstract
This study reports the preparation of a series of gadolinium-polydopamine nanoparticles (GdPD-NPs) with tunable metal loadings. GdPD-NPs are analyzed by nuclear magnetic relaxation dispersion and with a 7-tesla (T) magnetic resonance imaging (MRI) scanner. A relaxivity of 75 and 10.3 mM-1 s-1 at 1.4 and 7 T is observed, respectively. Furthermore, superconducting quantum interference device magnetometry is used to study intraparticle magnetic interactions and determine the GdPD-NPs consist of isolated metal ions even at maximum metal loadings. From these data, it is concluded that the observed high relaxivities arise from a high hydration state of the Gd(III) at the particle surface, fast rate of water exchange, and negligible antiferromagnetic coupling between Gd(III) centers throughout the particles. This study highlights design parameters and a robust synthetic approach that aid in the development of this scaffold for T1 -weighted, high relaxivity MRI contrast agents.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale Teresa Michel 11, 15120, Alessandria, AL, Italy
| | - Yijun Xie
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yuran Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yiwen Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sha He
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nanzhi Zang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeffrey D Rinehart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" Viale Teresa Michel 11, 15120, Alessandria, AL, Italy
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
100
|
Wang S, Lin J, Wang Z, Zhou Z, Bai R, Lu N, Liu Y, Fu X, Jacobson O, Fan W, Qu J, Chen S, Wang T, Huang P, Chen X. Core–Satellite Polydopamine–Gadolinium‐Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28703340 DOI: 10.1002/adma.201701013] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Indexed: 05/07/2023]
Affiliation(s)
- Sheng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060 China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060 China
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Ruiliang Bai
- Section on Quantitative Imaging and Tissue Science Division of Imaging, Behavior and Genomic Integrity Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD 20892 USA
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Siping Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060 China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060 China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|