51
|
Correa E, Moncada ME, Gutiérrez OD, Vargas CA, Zapata VH. Characterization of polycaprolactone/rGO nanocomposite scaffolds obtained by electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109773. [PMID: 31349438 DOI: 10.1016/j.msec.2019.109773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
The incorporation of nanoparticles inside polymeric matrices has led to the development of multifunctional composites necessary to repair human tissues. The addition of nanoparticles may improve the properties of the composite materials such as surface area, mechanical properties, flexibility, hydrophilicity, electrical conductivity, etc. These properties can help in cellular growth, proliferation and/or differentiation. In this work, scaffolds of polycaprolactone (PCL) and reduced graphite oxide (rGO) were built by electrospinning technique. The ratios of rGO/PCL employed were 0.25, 0.5, 0.75 and 1 wt%. Two different voltage setup (10 and 15 kV) and distance of 10 cm were used for electrospinning. Thermal, mechanical, morphological, electrical, porosity and absorption water tests were made to the scaffolds. Samples electrospun at 10 kV with rGO showed improvement in mechanical properties with an increase of 190% of Young's Modulus in comparison with sample without rGO. Furthermore, samples electrospun at 15 kV showed an important deterioration with the addition of rGO but had an increase in the electrical conductivity and porosity. Overall, the addition of 0.75 and 1 wt% of rGO led to a detriment on properties due to formation of aggregates. The voltage on the electrospinning process plays a very important role in the final properties of the nanocomposites scaffolds of PCL-rGO.
Collapse
Affiliation(s)
- E Correa
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Calle 54A No. 30 - 01, 050013, Grupo de Investigación en Materiales Avanzados y Energía - MATyER, Colombia.
| | - M E Moncada
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Calle 54A No. 30 - 01, 050013, Grupo de Investigación en Materiales Avanzados y Energía - MATyER, Colombia
| | - O D Gutiérrez
- Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia, Grupo de Investigación Química Básica, Aplicada y Ambiente - ALQUIMIA
| | - C A Vargas
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Calle 54A No. 30 - 01, 050013, Grupo de Investigación en Materiales Avanzados y Energía - MATyER, Colombia
| | - V H Zapata
- Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia, Grupo de Óxidos Avanzados
| |
Collapse
|
52
|
Shan S, Jia S, Lawson T, Yan L, Lin M, Liu Y. The Use of TAT Peptide-Functionalized Graphene as a Highly Nuclear-Targeting Carrier System for Suppression of Choroidal Melanoma. Int J Mol Sci 2019; 20:E4454. [PMID: 31509978 PMCID: PMC6769650 DOI: 10.3390/ijms20184454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Tumorous metastasis is a difficult challenge to resolve for researchers and for clinicians. Targeted delivery of antitumor drugs towards tumor cells' nuclei can be a practical approach to resolving this issue. This work describes an efficient nuclear-targeting delivery system prepared from trans-activating transcriptional activator (TAT) peptide-functionalized graphene nanocarriers. The TAT peptide, originally observed in a human immunodeficiency virus 1 (HIV-1), was incorporated with graphene via an edge-functionalized ball-milling method developed by the author's research group. High tumor-targeting capability of the resulting nanocarrier was realized by the strong affinity between TAT and the nuclei of cancer cells, along with the enhanced permeability and retention (EPR) effect of two-dimensional graphene nanosheets. Subsequently, a common antitumor drug, mitomycin C (MMC), was covalently linked to the TAT-functionalized graphene (TG) to form a nuclear-targeted nanodrug MMC-TG. The presence of nanomaterials inside the nuclei of ocular choroidal melanoma (OCM-1) cells was shown using transmission electron microscopy (TEM) and confocal laser scanning microscopy. In vitro results from a Transwell co-culture system showed that most of the MMC-TG nanodrugs were delivered in a targeted manner to the tumorous OCM-1 cells, while a very small amount of MMC-TG was delivered in a non-targeted manner to normal human retinal pigment epithelial (ARPE-19) cells. TEM results further confirmed that apoptosis of OCM-1 cells was started from the lysis of nuclear substances, followed by the disappearance of nuclear membrane and cytoplasm. This suggests that the as-synthesized MMC-TG is a promising nuclear-target nanodrugfor resolution of tumorous metastasis issues at the headstream.
Collapse
Affiliation(s)
- Suyan Shan
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Shujuan Jia
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale Bio Photonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Mimi Lin
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
53
|
Zhu B, Li Y, Huang F, Chen Z, Xie J, Ding C, Li J. Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomater Sci 2019; 7:4730-4737. [PMID: 31497814 DOI: 10.1039/c9bm01203f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrical stimulation (ES) exhibits a positive role in promoting the cell activity of osteoblasts. Conducting polymers have the advantages of biocompatibility, good environmental stability and easy synthesis, which have been widely used as charge carriers for electrical stimulation; moreover, considering clinical applications, biomaterial-related infection is an important issue that needs to be solved. Thus, conducting polymers with both antibacterial and osteogenic properties are highly demanded for effect repair. However, it remains a challenge to combine these two characteristics efficiently in a simple way. Herein, an Ag-loaded poly(amide-amine) dendrimer was prepared by a simple chemical reduction procedure, which acted as a dopant for the polymerization of polyaniline (PANI) on biomedical titanium (Ti) sheets. The obtained PANI coating showed outstanding antibacterial properties against Gram-negative (E. coli) and Gram-positive (S. aureus) microbes with a 1000-fold increase when compared with that of pure Ti. In addition, note that the polymer coating together with ES facilitated the proliferation and differentiation of MC3T3. The alkaline phosphatase (ALP) activity and intracellular calcium content of the cells showed a 19.09% and 24.02% increase, respectively, when compared with the case of electrically stimulated Ti after 12 days. Moreover, the existence of PAMAM facilitated mineralization. The strategy developed herein is simple and can be easily manipulated, which shows potential applications in the coating of implants for hard tissue repair.
Collapse
Affiliation(s)
- Bengao Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuhan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Fuhui Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhuoxin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
54
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
55
|
Lee S, Eom T, Kim MK, Yang SG, Shim BS. Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT:PSS / graphene oxide composites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
56
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
57
|
Wu C, Liu A, Chen S, Zhang X, Chen L, Zhu Y, Xiao Z, Sun J, Luo H, Fan H. Cell-Laden Electroconductive Hydrogel Simulating Nerve Matrix To Deliver Electrical Cues and Promote Neurogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22152-22163. [PMID: 31194504 DOI: 10.1021/acsami.9b05520] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural nerve tissue is composed of nerve bundles with multiple aligned assembles, and matrix electroconductivity is beneficial to the transmission of intercellular electrical signals, or effectively deliver external electrical cues to cells. Herein, aiming at the biomimetic design of the extracellular matrix for neurons, we first synthesized electroconductive polypyrrole (PPy) nanoparticles with modified hydrophilicity to improve their uniformity in collagen hydrogel. Next, cell-laden collagen-PPy hybrid hydrogel microfibers with highly oriented microstructures were fabricated via a microfluidic chip. The hydrogel microfibers formed a biomimetic three-dimensional microenvironment for neurons, resulting from the native cell adhesion domains, oriented fibrous structures, and conductivity. The oriented fibrous microstructures enhanced neuron-like cells aligning with fibers' axon; the matrix conductivity improved cell extension and upregulated neural-related gene expression; moreover, external electrical stimulation further promoted the neuronal functional expression. This mechanism was attributed to the electroconductive matrix and its delivered electrical stimulation to cells synergistically upregulated the expression of an L-type voltage-gated calcium channel, resulting in an increase in the intracellular calcium level, which in turn promoted neurogenesis. This approach has potential in constructing the biomimetic microenvironment for neurogenesis.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Amin Liu
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Suping Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Xiaofeng Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Lu Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Yuda Zhu
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials , Sichuan University , Sichuan , Chengdu 610064 , P. R. China
| |
Collapse
|
58
|
Zhou T, Yan L, Xie C, Li P, Jiang L, Fang J, Zhao C, Ren F, Wang K, Wang Y, Zhang H, Guo T, Lu X. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805440. [PMID: 31106983 DOI: 10.1002/smll.201805440] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS-scavenging, and osteoinductive porous Ti scaffold is prepared by the on-surface in situ assembly of a polypyrrole-polydopamine-hydroxyapatite (PPy-PDA-HA) film through a layer-by-layer pulse electrodeposition (LBL-PED) method. During LBL-PED, the PPy-PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy-PDA-HA films. Ultimately, the PPy-PDA-HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy-PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.
Collapse
Affiliation(s)
- Ting Zhou
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Liwei Yan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Lili Jiang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, Center for Advanced Materials and Energy, School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cancan Zhao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Genome Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, Xinjiang, 830054, China
| | - Hongping Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Tailin Guo
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
59
|
Zheng Z, Huang L, Yan L, Yuan F, Wang L, Wang K, Lawson T, Lin M, Liu Y. Polyaniline Functionalized Graphene Nanoelectrodes for the Regeneration of PC12 Cells via Electrical Stimulation. Int J Mol Sci 2019; 20:E2013. [PMID: 31022890 PMCID: PMC6515035 DOI: 10.3390/ijms20082013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/05/2023] Open
Abstract
The regeneration of neurons is an important goal of neuroscience and clinical medicine. The electrical stimulation of cells is a promising technique to meet this goal. However, its efficiency highly depends on the electrochemical properties of the stimulation electrodes used. This work reports on the preparation and use of a highly electroactive and biocompatible nanoelectrode made from a novel polyaniline functionalized graphene composite. This nanocomposite was prepared using a facile and efficient polymerization-enhanced ball-milling method. It was used to stimulate the growth of PC12 cells under various electrical fields. The enhanced growth of axons and improved wound regeneration of PC12 cells were observed after this treatment, suggesting a promising strategy for neuro traumatology.
Collapse
Affiliation(s)
- Zheng Zheng
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Libin Huang
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lefeng Wang
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Ke Wang
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mimi Lin
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
60
|
Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X. Graphene-Based Nanocomposites for Neural Tissue Engineering. Molecules 2019; 24:E658. [PMID: 30781759 PMCID: PMC6413135 DOI: 10.3390/molecules24040658] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 11/25/2022] Open
Abstract
Graphene has made significant contributions to neural tissue engineering due to its electrical conductivity, biocompatibility, mechanical strength, and high surface area. However, it demonstrates a lack of biological and chemical cues. Also, it may cause potential damage to the host body, limiting its achievement of efficient construction of neural tissues. Recently, there has been an increasing number of studies showing that combining graphene with other materials to form nano-composites can provide exceptional platforms for both stimulating neural stem cell adhesion, proliferation, differentiation and neural regeneration. This suggests that graphene nanocomposites are greatly beneficial in neural regenerative medicine. In this mini review, we will discuss the application of graphene nanocomposites in neural tissue engineering and their limitations, through their effect on neural stem cell differentiation and constructs for neural regeneration.
Collapse
Affiliation(s)
- Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Yu Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Xiaoming Luo
- Department of Preventive Medicine, School of Public Health, Chengdu Medical College, Chengdu 610500, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
61
|
Shang L, Huang Z, Pu X, Yin G, Chen X. Preparation of Graphene Oxide-Doped Polypyrrole Composite Films with Stable Conductivity and Their Effect on the Elongation and Alignment of Neurite. ACS Biomater Sci Eng 2019; 5:1268-1278. [DOI: 10.1021/acsbiomaterials.8b01326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Shang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
62
|
Jing W, Zhang Y, Cai Q, Chen G, Wang L, Yang X, Zhong W. Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chem Neurosci 2019; 10:348-357. [PMID: 30212623 DOI: 10.1021/acschemneuro.8b00286] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The strategy of using electrical stimulation (ES) to promote the neural differentiation and regeneration of injured nerves is proven feasible. Study of the possible molecular mechanisms in relation to this ES promotion effect should be helpful for understanding the phenomenon. In this study, it was identified that the neuronal differentiation of PC12 cells was enhanced when the electric field intensity was in the range of 30-80 mV/mm, and a lower or higher electric-field intensity displayed inferior effects. Under ES, however, levels of intracellular reactive oxygen species (ROS), intracellular Ca2+ dynamics, and expression of TREK-1 were measured as being gradually increasing alongside higher electric-field intensity. In trying to understand the relationship between the ES enhancement on differentiation and these variations in cell activities, parallel experiments were conducted by introducing exogeneous H2O2 into culture systems at different concentrations. Similarly, the effects of H2O2 concentration on the neuronal differentiation of PC12 cells, intracellular ROS and Ca2+ levels, and TREK-1 expression were systematically characterized. In comparative studies, it was found in two cases that ES of 50 mV/mm for 2 h/day and H2O2 of 5 μM in culture medium shared comparable results for intracellular ROS and Ca2+ levels and TREK-1 expression. Higher H2O2 concentrations (e.g., 10 and 20 μM) demonstrated adverse effects on cell differentiation and caused DNA damage. A stronger ES (e.g., 100 mV/mm), being associated with a higher intracellular ROS level, also resulted in weaker enhancement of the neuronal differentiation of PC12 cells. These facts suggested that the intracellular ROS generated under ES might be an intermediate signal transducer involved in cascade reactions relative to cell differentiation.
Collapse
Affiliation(s)
- Wei Jing
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yifan Zhang
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qing Cai
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, PR China
| | - Lin Wang
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weihong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
63
|
Shueibi O, Zhou Z, Wang X, Yi B, He X, Zhang Y. Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf53a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
64
|
A novel GelMA-pHEMA hydrogel nerve guide for the treatment of peripheral nerve damages. Int J Biol Macromol 2019; 121:699-706. [DOI: 10.1016/j.ijbiomac.2018.10.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 01/18/2023]
|
65
|
Imaninezhad M, Pemberton K, Xu F, Kalinowski K, Bera R, Zustiak SP. Directed and enhanced neurite outgrowth following exogenous electrical stimulation on carbon nanotube-hydrogel composites. J Neural Eng 2018; 15:056034. [DOI: 10.1088/1741-2552/aad65b] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
66
|
Borah R, Ingavle GC, Sandeman SR, Kumar A, Mikhalovsky SV. Amine-Functionalized Electrically Conductive Core-Sheath MEH-PPV:PCL Electrospun Nanofibers for Enhanced Cell-Biomaterial Interactions. ACS Biomater Sci Eng 2018; 4:3327-3346. [PMID: 33435069 DOI: 10.1021/acsbiomaterials.8b00624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, a conducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) along with a biodegradable polymer poly(ε-caprolactone) (PCL) was used to prepare an electrically conductive, biocompatible, bioactive, and biodegradable nanofibrous scaffold for possible use in neural tissue engineering applications. Core-sheath electrospun nanofibers of PCL as the core and MEH-PPV as the sheath, were surface-functionalized with (3-aminopropyl) triethoxysilane (APTES) and 1,6-hexanediamine to obtain amine-functionalized surface to facilitate cell-biomaterial interactions with the aim of replacing the costly biomolecules such as collagen, fibronectin, laminin, and arginyl-glycyl-aspartic acid (RGD) peptide for surface modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the formation of core-sheath morphology of the electrospun nanofibers, whereas Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed successful incorporation of amine functionality after surface functionalization. Adhesion, spreading, and proliferation of 3T3 fibroblasts were enhanced on the surface-functionalized electrospun meshes, whereas the neuronal model rat pheochromocytoma 12 (PC12) cells also adhered and differentiated into sympathetic neurons on these meshes. Under a constant electric field of 500 mV for 2 h/day for 3 consecutive days, the PC12 cells displayed remarkable improvement in the neurite formation and outgrowth on the surface-functionalized meshes that was comparable to those on the collagen-coated meshes under no electrical signal. Electrical stimulation studies further demonstrated that electrically stimulated PC12 cells cultured on collagen I coated meshes yielded more and longer neurites than those of the unstimulated cells on the same scaffolds. The enhanced neurite growth and differentiation suggest the potential use of these scaffolds for neural tissue engineering applications.
Collapse
Affiliation(s)
- Rajiv Borah
- Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, India
| | - Ganesh C Ingavle
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton BN2 4GJ, United Kingdom.,Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International University, Pune 412115, India
| | - Susan R Sandeman
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Ashok Kumar
- Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, India
| | - Sergey V Mikhalovsky
- ANAMAD Ltd., Sussex Innovation Centre, Science Park Square, Falmer, Brighton BN1 9SB, United Kingdom.,SD Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty 050000, Kazakhstan
| |
Collapse
|
67
|
Russell RA, Foster LJR, Holden PJ. Carbon nanotube mediated miscibility of polyhydroxyalkanoate blends and chemical imaging using deuterium-labelled poly(3-hydroxyoctanoate). Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
68
|
Jin L, Hu B, Li Z, Li J, Gao Y, Wang Z, Hao J. Synergistic Effects of Electrical Stimulation and Aligned Nanofibrous Microenvironment on Growth Behavior of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18543-18550. [PMID: 29768013 DOI: 10.1021/acsami.8b04136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Incontrollable cellular growth behavior is a significant issue, which severely affects the functional tissue formation and cellular protein expression. Development of natural extracellular matrix (ECM) like biomaterials to present microenvironment cues for regulation of cell responses can effectively overcome this problem. The external simulation and topological characteristics as typical guiding cues are capable of providing diverse influences on cellular growth. Herein, we fabricated two-dimensional aligned conductive nanofibers (2D-ACNFs) by an electrospinning process and surface polymerization, and the obtained 2D-ACNFs provided the effects of both alignment and electrical stimulation (ES) on cellular response of human mesenchymal cells (hMSCs). The results of cellular responses implied that the obtained 2D-ACNFs could offer a synergistic effect of both ES and aligned nanopattern on hMSC growth behavior. The effects could not only promote hMSCs to contact each other and maintain cellular activity but also provide positive promotion to regulate cellular proliferation. Thus, we believe that the obtained 2D-ACNFs will have a broad application in the biomedical field, such as cell culture with ES, directional induction for cell growth, and damaged tissue repair, etc.
Collapse
Affiliation(s)
- Lin Jin
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
- Henan Key Laboratory of Rare Earth Functional Materials , Zhoukou 466001 , P. R. China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials , Zhoukou 466001 , P. R. China
| | - Zhanrong Li
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
| | - Jingguo Li
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
| | - Yanzheng Gao
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
| | - Zhenling Wang
- Henan Key Laboratory of Rare Earth Functional Materials , Zhoukou 466001 , P. R. China
| | - Jianhua Hao
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P. R. China
| |
Collapse
|
69
|
Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci 2018; 81:144-162. [PMID: 29983457 PMCID: PMC6029263 DOI: 10.1016/j.progpolymsci.2018.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human body motion can generate a biological electric field and a current, creating a voltage gradient of -10 to -90 mV across cell membranes. In turn, this gradient triggers cells to transmit signals that alter cell proliferation and differentiation. Several cell types, counting osteoblasts, neurons and cardiomyocytes, are relatively sensitive to electrical signal stimulation. Employment of electrical signals in modulating cell proliferation and differentiation inspires us to use the electroactive polymers to achieve electrical stimulation for repairing impaired tissues. Electroactive polymers have found numerous applications in biomedicine due to their capability in effectively delivering electrical signals to the seeded cells, such as biosensing, tissue regeneration, drug delivery, and biomedical implants. Here we will summarize the electrical characteristics of electroactive polymers, which enables them to electrically influence cellular function and behavior, including conducting polymers, piezoelectric polymers, and polyelectrolyte gels. We will also discuss the biological response to these electroactive polymers under electrical stimulation. In particular, we focus this review on their applications in regenerating different tissues, including bone, nerve, heart muscle, cartilage and skin. Additionally, we discuss the challenges in tissue regeneration applications of electroactive polymers. We conclude that electroactive polymers have a great potential as regenerative biomaterials, due to their ability to stimulate desirable outcomes in various electrically responsive cells.
Collapse
Affiliation(s)
- Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
70
|
Borah R, Ingavle GC, Sandeman SR, Kumar A, Mikhalovsky S. Electrically conductive MEH-PPV:PCL electrospun nanofibres for electrical stimulation of rat PC12 pheochromocytoma cells. Biomater Sci 2018; 6:2342-2359. [DOI: 10.1039/c8bm00559a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrically conductive, porous, mechanically strong and bioactive electrospun MEH-PPV:PCL nanofibres with blended and core-sheath formulations for enhanced neurite formation and neurite outgrowth.
Collapse
Affiliation(s)
- Rajiv Borah
- Materials Research Laboratory
- Department of Physics
- Tezpur University
- Tezpur
- India
| | - Ganesh C. Ingavle
- Biomaterials and Medical Devices Research Group
- School of Pharmacy and Biomolecular Sciences
- Huxley Building
- University of Brighton
- Brighton BN2 4GJ
| | - Susan R. Sandeman
- Biomaterials and Medical Devices Research Group
- School of Pharmacy and Biomolecular Sciences
- Huxley Building
- University of Brighton
- Brighton BN2 4GJ
| | - Ashok Kumar
- Materials Research Laboratory
- Department of Physics
- Tezpur University
- Tezpur
- India
| | - Sergey Mikhalovsky
- Biomaterials and Medical Devices Research Group
- School of Pharmacy and Biomolecular Sciences
- Huxley Building
- University of Brighton
- Brighton BN2 4GJ
| |
Collapse
|
71
|
Kim W, Lee JS, Shin DH, Jang J. Platinum nanoparticles immobilized on polypyrrole nanofibers for non-enzyme oxalic acid sensor. J Mater Chem B 2018; 6:1272-1278. [DOI: 10.1039/c7tb00629b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxalic acid (OA), naturally available in many fruits and vegetables, reacts easily with Ca2+ and Mg2+ ions to produce an insoluble salt.
Collapse
Affiliation(s)
- Wooyoung Kim
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University
- Seoul
- Korea
| | - Jun Seop Lee
- Department of Nanochemistry
- College of Bionano
- Gachon University
- Sungnam
- Republic of Korea
| | - Dong Hoon Shin
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University
- Seoul
- Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University
- Seoul
- Korea
| |
Collapse
|
72
|
Liu Z, Dong L, Wang L, Wang X, Cheng K, Luo Z, Weng W. Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Sci Rep 2017; 7:17926. [PMID: 29263335 PMCID: PMC5738366 DOI: 10.1038/s41598-017-17120-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
In electrical stimulation (ES), daily stimulation time means the interacting duration with cells per day, and is a vital factor for mediating cellular function. In the present study, the effect of stimulation time on osteogenic differentiation of MC3T3-E1 cells was investigated under ES on polypyrrole (Ppy) planar interdigitated electrodes (IDE). The results demonstrated that only a suitable daily stimulation time supported to obviously upregulate the expression of ALP protein and osteogenesis-related genes (ALP, Col-I, Runx2 and OCN), while a short or long daily stimulation time showed no significant outcomes. These might be attributed to the mechanism that an ES induced transient change in intracellular calcium ion concentration, which was responsible for activating calcium ion signaling pathway to enhance cellular osteogenic differentiation. A shorter daily time could lead to insufficient duration for the transient change in intracellular calcium ion concentration, and a longer daily time could give rise to cellular fatigue with no transient change. This work therefore provides new insights into the fundamental understanding of cell responses to ES and will have an impact on further designing materials to mediate cell behaviors.
Collapse
Affiliation(s)
- Zongguang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Liming Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xiaozhao Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Zhongkuan Luo
- Zhejiang-California International NanoSystems Institute, Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
73
|
Chen J, Li X, Sun Y, Hu Y, Peng Y, Li Y, Yin G, Liu H, Xu J, Zhong S. Synthesis of Size-Tunable Hollow Polypyrrole Nanostructures and Their Assembly into Folate-Targeting and pH-Responsive Anticancer Drug-Delivery Agents. Chemistry 2017; 23:17279-17289. [DOI: 10.1002/chem.201702945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| | - Xiufang Li
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| | - Yanhua Sun
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| | - Yuwei Hu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| | - Yulong Peng
- School of Basic Medical Science; Central South University; Changsha, Hunan 410083 P.R. China
| | - Yimin Li
- School of Basic Medical Science; Central South University; Changsha, Hunan 410083 P.R. China
| | - Gang Yin
- School of Basic Medical Science; Central South University; Changsha, Hunan 410083 P.R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| | - Jiangfeng Xu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 P.R. China
| |
Collapse
|
74
|
Wu F, Jin L, Zheng X, Yan B, Tang P, Yang H, Deng W, Yang W. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38323-38335. [PMID: 29039642 DOI: 10.1021/acsami.7b12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe3O4/PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
Collapse
Affiliation(s)
- Fengluan Wu
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Long Jin
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Bingyun Yan
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Pandeng Tang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Huikai Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Weili Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Weiqing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| |
Collapse
|
75
|
Repair of nerve injury by implanting prostheses obtained from isogenic acellular nerve segments. Rev Esp Cir Ortop Traumatol (Engl Ed) 2017. [DOI: 10.1016/j.recote.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
76
|
García-Medrano B, Mesuro Domínguez N, Simón Pérez C, Garrosa García M, Gayoso Del Villar S, Mayo Íscar A, Gayoso Rodríguez MJ, Martín Ferrero MA. Repair of nerve injury by implanting prostheses obtained from isogenic acellular nerve segments. Rev Esp Cir Ortop Traumatol (Engl Ed) 2017; 61:359-366. [PMID: 28760548 DOI: 10.1016/j.recot.2017.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION When a nerve section with a significant gap occurs, it is necessary to use a prosthesis to suture it. To date an autologous nerve segment graft appears to be the best treatment; but it has several important disadvantages. Our goal is to study the effectiveness of an isogenic acellular nerve prosthesis comparing a simple suture with tubulisation. MATERIAL AND METHOD Four groups of Wistar rats were used. The animals in Group 0 served as donors of nerve segments to graft. Group 1 received the implant with an end-to-end suture. In group 2, the implant was sutured inside an ɛ-caprolactone tube. Group 3 received it in a polylactic-co-glycolic acid tube. We evaluated the motor function (sciatic index and step test in motion), and the regeneration length by histological study of regeneration, after a maximum of 3 weeks. RESULTS Regeneration was uneven in the three groups. In all groups, there were implants with regenerated nerve fibres at the maximum studied length (15mm) and others where regeneration was scarce. The mean regeneration length was greater in the direct end-to-end suture group (G1), although the regeneration speed was similar in the three groups. Group 1 showed the highest percentage of regeneration, but the variability of results prevents this difference reaching statistical significance. We found no significant differences between the two groups with polymer tubes. CONCLUSION For the implantation of isogenic acellular nerve prosthesis, under our experimental conditions, the direct end-to-end suture was more effective than when it isprotected with biopolymer tubes.
Collapse
Affiliation(s)
- B García-Medrano
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, España.
| | - N Mesuro Domínguez
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Cl Simón Pérez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - M Garrosa García
- Estadística e Investigación Operativa, Universidad de Medicina de Valladolid, Valladolid, España
| | - S Gayoso Del Villar
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - A Mayo Íscar
- Estadística e Investigación Operativa, Universidad de Medicina de Valladolid, Valladolid, España
| | - M J Gayoso Rodríguez
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - M A Martín Ferrero
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| |
Collapse
|
77
|
Ren S, Guo Y, Ma S, Mao Q, Wu D, Yang Y, Jing H, Song X, Hao C. Co 3 O 4 nanoparticles assembled on polypyrrole/graphene oxide for electrochemical reduction of oxygen in alkaline media. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62846-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
78
|
Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2433-2454. [PMID: 28552644 DOI: 10.1016/j.nano.2017.03.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
One-dimensional (1D) carbon nanotubes (CNTs) and the two-dimensional (2D) graphene represent the most widely studied allotropes of carbon. Due to their unique structural, electrical, mechanical and optical properties, 1D and 2D carbon nanostructures are considered to be leading candidates for numerous applications in biomedical fields, including tissue engineering, drug delivery, bioimaging and biosensors. The biocompatibility and toxicity issues associated with these nanostructures have been a critical impediment for their use in biomedical applications. In this review, we present an overview of the various materials types, properties, functionalization strategies and characterization methods of 1D and 2D carbon nanomaterials and their derivatives in terms of their biomedical applications. In addition, we discuss various factors and mechanisms affecting their toxicity and biocompatibility.
Collapse
|
79
|
Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri-Khoulenjani S, Shokrgozar MA. Piezoelectric electrospun nanocomposite comprising Au NPs/PVDF for nerve tissue engineering. J Biomed Mater Res A 2017; 105:1984-1993. [DOI: 10.1002/jbm.a.36050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/18/2017] [Accepted: 02/27/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Asma S. Motamedi
- Biomedical Engineering Department; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
- Polymer and Color Engineering Department; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | | | - Shadab Bagheri-Khoulenjani
- Polymer and Color Engineering Department; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | | |
Collapse
|
80
|
Shehzad K, Xu Y, Gao C, Li H, Dang ZM, Hasan T, Luo J, Duan X. Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7591-7600. [PMID: 28155272 DOI: 10.1021/acsami.6b14984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.
Collapse
Affiliation(s)
- Khurram Shehzad
- College of Information Science and Electronic Engineering, Zhejiang University , Hangzhou 310027, China
| | - Yang Xu
- College of Information Science and Electronic Engineering, Zhejiang University , Hangzhou 310027, China
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California , Los Angeles, California 90095, United States
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University , Hangzhou 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University , Hangzhou 310027, China
| | - Zhi-Min Dang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University , Beijing 100084, China
| | - Tawfique Hasan
- Cambridge Graphene Centre, University of Cambridge , Cambridge CB3 0FA, United Kingdom
| | - Jack Luo
- College of Information Science and Electronic Engineering, Zhejiang University , Hangzhou 310027, China
- Institute for Materials Research and Innovation, The University of Bolton , Deane Road, Bolton BL3 5AB, United Kingdom
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
81
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
82
|
Hu C, Zhang G, Li H, Zhang C, Chang Y, Chang Z, Sun X. Thin sandwich graphene oxide@N-doped carbon composites for high-performance supercapacitors. RSC Adv 2017. [DOI: 10.1039/c7ra00909g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An ultrathin layer of ca. ∼1.9 nm N-doped carbon was deposited on GO via dehalogenation of PVDC.
Collapse
Affiliation(s)
- Cejun Hu
- College of Energy
- Beijing University of Chemical Technology
- Beijing
- China
| | - Guoxin Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
- College of Electrical Engineering and Automation
| | - Haoyuan Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Cong Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yingna Chang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zheng Chang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaoming Sun
- College of Energy
- Beijing University of Chemical Technology
- Beijing
- China
- State Key Laboratory of Chemical Resource Engineering
| |
Collapse
|