51
|
Read JE, Luo D, Chowdhury TT, Flower RJ, Poston RN, Sukhorukov GB, Gould DJ. Magnetically responsive layer-by-layer microcapsules can be retained in cells and under flow conditions to promote local drug release without triggering ROS production. NANOSCALE 2020; 12:7735-7748. [PMID: 32211625 DOI: 10.1039/c9nr10329e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery.
Collapse
Affiliation(s)
- Jordan E Read
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | | | | | | | | | | | | |
Collapse
|
52
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
53
|
Mayorova OA, Sindeeva OA, Lomova MV, Gusliakova OI, Tarakanchikova YV, Tyutyaev EV, Pinyaev SI, Kulikov OA, German SV, Pyataev NA, Gorin DA, Sukhorukov GB. Endovascular addressing improves the effectiveness of magnetic targeting of drug carrier. Comparison with the conventional administration method. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102184. [PMID: 32222475 DOI: 10.1016/j.nano.2020.102184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
Many nanomedicine approaches are struggling to reach high enough effectiveness in delivery if applied systemically. The perspective is sought to explore the clinical practices currently used for localized treatment. In this study, we combine in vivo targeting of carriers sensitive to the external magnetic field with clinically used endovascular delivery to specific site. Fluorescent micron-size capsules made of biodegradable polymers and containing magnetite nanoparticles incorporated in the capsule wall were explored in vivo using Near-Infrared Fluorescence Live Imaging for Real-Time. Comparison of systemic (intravenous) and directed (intra-arterial) administration of the magnetic microcapsule targeting in the hindpaw vessels demonstrated that using femoral artery injection in combination with magnetic field exposure is 4 times more efficient than tail vein injection. Thus, endovascular targeting significantly improves the capabilities of nanoengineered drug delivery systems reducing the systemic side effects of therapy.
Collapse
Affiliation(s)
- Oksana A Mayorova
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Olga A Sindeeva
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia.
| | - Maria V Lomova
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Olga I Gusliakova
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia; Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Yana V Tarakanchikova
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | | | - Sergey I Pinyaev
- National Research Ogarev Mordovia State University, Saransk, Russia
| | - Oleg A Kulikov
- National Research Ogarev Mordovia State University, Saransk, Russia
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | | | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia; School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom; I.M.Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
54
|
Liu JF, Lan Z, Ferrari C, Stein JM, Higbee-Dempsey E, Yan L, Amirshaghaghi A, Cheng Z, Issadore D, Tsourkas A. Use of Oppositely Polarized External Magnets To Improve the Accumulation and Penetration of Magnetic Nanocarriers into Solid Tumors. ACS NANO 2020; 14:142-152. [PMID: 31854966 PMCID: PMC7002255 DOI: 10.1021/acsnano.9b05660] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Drug delivery to solid tumors is hindered by hydrostatic and physical barriers that limit the penetration of nanocarriers into tumor tissue. When exploiting the enhanced permeability and retention (EPR) effect for passive targeting of nanocarriers, the increased interstitial fluid pressure and dense extracellular matrix in tumors limits the distribution of the nanocarriers to perivascular regions. Previous strategies have shown that magnetophoresis enhances accumulation and penetration of nanoparticles into solid tumors. However, because magnetic fields fall off rapidly with distance from the magnet, these methods have been limited to use in superficial tumors. To overcome this problem, we have developed a system comprising two oppositely polarized magnets that enables the penetration of magnetic nanocarriers into more deeply seeded tumors. Using this method, we demonstrate a 5-fold increase in the penetration and a 3-fold increase in the accumulation of magnetic nanoparticles within solid tumors compared to EPR.
Collapse
Affiliation(s)
- Jessica F. Liu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ziyang Lan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carolina Ferrari
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel M. Stein
- Department of Radiology, Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth Higbee-Dempsey
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Author: Andrew Tsourkas, Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 S. 33 St. Philadelphia, PA 19104, United States. , David Issadore, Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 S. 33 St. Philadelphia, PA 19104, United States.
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Author: Andrew Tsourkas, Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 S. 33 St. Philadelphia, PA 19104, United States. , David Issadore, Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 S. 33 St. Philadelphia, PA 19104, United States.
| |
Collapse
|
55
|
Sindeeva OA, Verkhovskii RA, Abdurashitov AS, Voronin DV, Gusliakova OI, Kozlova AA, Mayorova OA, Ermakov AV, Lengert EV, Navolokin NA, Tuchin VV, Gorin DA, Sukhorukov GB, Bratashov DN. Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs. ACS Biomater Sci Eng 2019; 6:389-397. [PMID: 33463221 DOI: 10.1021/acsbiomaterials.9b01669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 μm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Peoples' Friendship University of Russia, 6 Mikluho-Maklaya St., Moscow 117198, Russia
| | - Roman A Verkhovskii
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Yuri Gagarin State Technical University of Saratov, 77 Politekhnicheskaya st., Saratov 410054, Russia
| | - Arkady S Abdurashitov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | - Denis V Voronin
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,National University of Oil and Gas (Gubkin University), 65 Leninsky Prospekt, Moscow 119991, Russia
| | - Olga I Gusliakova
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia
| | | | - Oksana A Mayorova
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia
| | - Aleksey V Ermakov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia
| | - Ekaterina V Lengert
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Ghent University, 653 Coupure Links, Ghent 9000, Belgium
| | - Nikita A Navolokin
- Saratov State Medical University, 112 Bolshaya Kazachia st., Saratov 410012, Russia
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,National University of Oil and Gas (Gubkin University), 65 Leninsky Prospekt, Moscow 119991, Russia.,Institute of Precision Mechanics and Control, Russian Academy of Sciences, 24 Rabochaya St., Saratov 410028, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Peoples' Friendship University of Russia, 6 Mikluho-Maklaya St., Moscow 117198, Russia.,Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia.,Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
56
|
Zyuzin MV, Cassani M, Barthel MJ, Gavilan H, Silvestri N, Escudero A, Scarpellini A, Lucchesi F, Teran FJ, Parak WJ, Pellegrino T. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41957-41971. [PMID: 31584801 DOI: 10.1021/acsami.9b15501] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The design of magnetic nanostructures whose magnetic heating efficiency remains unaffected at the tumor site is a fundamental requirement to further advance magnetic hyperthermia in the clinic. This work demonstrates that the confinement of magnetic nanoparticles (NPs) into a sub-micrometer cavity is a key strategy to enable a certain degree of nanoparticle motion and minimize aggregation effects, consequently preserving the magnetic heat loss of iron oxide nanocubes (IONCs) under different conditions, including intracellular environments. We fabricated magnetic layer-by-layer (LbL) self-assembled polyelectrolyte sub-micrometer capsules using three different approaches, and we studied their heating efficiency as obtained in aqueous dispersions and after internalization by tumor cells. First, IONCs were added to the hollow cavities of LbL submicrocapsules, allowing the IONCs to move to a certain extent in the capsule cavities. Second, IONCs were coencapsulated into solid calcium carbonate cores coated with LbL polymer shells. Third, IONCs were incorporated within the polymer layers of the LbL capsule walls. In aqueous solution, higher specific absorption rate (SAR) values were related to those of free IONCs, while lower SAR values were recorded for capsule/core assemblies. However, after uptake by cancer cell lines (SKOV-3 cells), the SAR values of the free IONCs were significantly lower than those observed for capsule/core assemblies, especially after prolonged incubation periods (24 and 48 h). These results show that IONCs packed into submicrocavities preserve the magnetic losses, as the SAR values remained almost invariable. Conversely, free IONCs without the protective capsule shell agglomerated and their magnetic losses were strongly reduced. Indeed, IONC-loaded capsules and free IONCs reside inside endosomal and lysosomal compartments after cellular uptake and show strongly reduced magnetic losses due to the immobilization and aggregation in centrosymmetrical structures in the intracellular vesicles. The confinement of IONCs into sub-micrometer cavities is a key strategy to provide a sustained and predictable heating dose inside biological matrices.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191023 St. Petersburg , Russia
| | - Marco Cassani
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica , Università di Genova , Via Dodecaneso 33 , 16146 Genova , Italy
| | - Markus J Barthel
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Helena Gavilan
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Niccolò Silvestri
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica , Università di Genova , Via Dodecaneso 33 , 16146 Genova , Italy
| | - Alberto Escudero
- Leibniz Institute for New Materials , Campus D2 2, D-66123 Saarbrücken , Germany
- Departamento de Química Inorgánica and Instituto de Investigaciones Químicas (IIQ) , Universidad de Sevilla-CSIC , Calle Américo Vespucio 49 , E-41092 Seville , Spain
| | - Alice Scarpellini
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Federica Lucchesi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Informatica,B ioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS) , Via all'Opera Pia, 13 , 16145 Genova , Italy
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
- Nanobiotecnología (iMdea-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| | - Wolfgang J Parak
- Faculty of Physics and Chemistry and CHyN , Universität Hamburg , 20146 Hamburg , Germany
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
57
|
Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1571. [PMID: 31241251 DOI: 10.1002/wnan.1571] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022]
Abstract
Drug delivery strategies aim to maximize a drug's therapeutic index by increasing the concentration of drug at target sites while minimizing delivery to off-target tissues. Because biological tissues are minimally responsive to magnetic fields, there has been a great deal of interest in using magnetic nanoparticles in combination with applied magnetic fields to selectively control the accumulation and release of drug in target tissues while minimizing the impact on surrounding tissue. In particular, spatially variant magnetic fields have been used to encourage accumulation of drug-loaded magnetic nanoparticles at target sites, while time-variant magnetic fields have been used to induce drug release from thermally sensitive nanocarriers. In this review, we discuss nanoparticle formulations and approaches that have been developed for magnetic targeting and/or magnetically induced drug release, as well as ongoing challenges in using magnetism for therapeutic applications. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Jessica F Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bian Jang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
58
|
Submicron-Sized Nanocomposite Magnetic-Sensitive Carriers: Controllable Organ Distribution and Biological Effects. Polymers (Basel) 2019; 11:polym11061082. [PMID: 31242626 PMCID: PMC6630964 DOI: 10.3390/polym11061082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn’t cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.
Collapse
|
59
|
Nurul Ulya H, Taufiq A, Sunaryono. Comparative Structural Properties of Nanosized ZnO/Fe3O4 Composites Prepared by Sonochemical and Sol-Gel Methods. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/276/1/012059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
60
|
Novel type of hollow hydrogel microspheres with magnetite and silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1114-1121. [DOI: 10.1016/j.msec.2019.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023]
|
61
|
Zyuzin MV, Timin AS, Sukhorukov GB. Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4747-4762. [PMID: 30840473 DOI: 10.1021/acs.langmuir.8b04280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191002 St. Petersburg , Russia
| | - Alexander S Timin
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Gleb B Sukhorukov
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| |
Collapse
|
62
|
Liu YL, Chen D, Shang P, Yin DC. A review of magnet systems for targeted drug delivery. J Control Release 2019; 302:90-104. [PMID: 30946854 DOI: 10.1016/j.jconrel.2019.03.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/18/2022]
Abstract
Magnetic drug targeting is a method by which magnetic drug carriers in the body are manipulated by external magnetic fields to reach the target area. This method is potentially promising in applications for treatment of diseases like cancers, nervous system diseases, sudden sensorineural hearing loss, and so on, due to the advantages in that it can improve efficacy, reduce drug dosage and side effects. Therefore, it has received extensive attention in recent years. Successful magnetic drug targeting requires a good magnet system to guide the drug carriers to the target site. Up to date there have been many efforts to design the magnet systems for targeted drug delivery. However, there are few comprehensive reviews on these systems. Here we review the progresses made in this field. We summarized the systems already developed or proposed, and categorized them into two groups: static field magnet systems and varying field magnet systems. Based on the requirements for more powerful targeting performance, the prospects and the future research directions in this field are anticipated.
Collapse
Affiliation(s)
- Ya-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, Guangzhou, PR China
| | - Da Chen
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Peng Shang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, Guangzhou, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen 518057, Guangzhou, PR China.
| |
Collapse
|
63
|
Rutkowski S, Mu L, Si T, Gai M, Sun M, Frueh J, He Q. Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting. Colloids Surf B Biointerfaces 2019; 175:44-55. [DOI: 10.1016/j.colsurfb.2018.11.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
|
64
|
Trushina DB, Burova AS, Borodina TN, Soldatov MA, Klochko TY, Bukreeva TV. Thermo-Induced Shrinking of “Dextran Sulfate/Polyarginine” Capsules with Magnetic Nanoparticles in the Shell. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x18060182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic Drug Delivery: Where the Field Is Going. Front Chem 2018; 6:619. [PMID: 30619827 PMCID: PMC6297194 DOI: 10.3389/fchem.2018.00619] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Targeted delivery of anticancer drugs is considered to be one of the pillars of cancer treatment as it could allow for a better treatment efficiency and less adverse effects. A promising drug delivery approach is magnetic drug targeting which can be realized if a drug delivery vehicle possesses a strong magnetic moment. Here, we discuss different types of magnetic nanomaterials which can be used as magnetic drug delivery vehicles, approaches to magnetic targeted delivery as well as promising strategies for the enhancement of the imaging-guided delivery and the therapeutic action.
Collapse
Affiliation(s)
- Paige M. Price
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | - Waleed E. Mahmoud
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, Bloomington, IN, United States
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
66
|
German SV, Novoselova MV, Bratashov DN, Demina PA, Atkin VS, Voronin DV, Khlebtsov BN, Parakhonskiy BV, Sukhorukov GB, Gorin DA. High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles. Sci Rep 2018; 8:17763. [PMID: 30531926 PMCID: PMC6288109 DOI: 10.1038/s41598-018-35846-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
We demonstrate a novel approach to the controlled loading of inorganic nanoparticles and proteins into submicron- and micron-sized porous particles. The approach is based on freezing/thawing cycles, which lead to high loading densities. The process was tested for the inclusion of Au, magnetite nanoparticles, and bovine serum albumin in biocompatible vaterite carriers of micron and submicron sizes. The amounts of loaded nanoparticles or substances were adjusted by the number of freezing/thawing cycles. Our method afforded at least a three times higher loading of magnetite nanoparticles and a four times higher loading of protein for micron vaterite particles, in comparison with conventional methods such as adsorption and coprecipitation. The capsules loaded with magnetite nanoparticles by the freezing-induced loading method moved faster in a magnetic field gradient than did the capsules loaded by adsorption or coprecipitation. Our approach allows the preparation of multicomponent nanocomposite materials with designed properties such as remote control (e.g. via the application of an electromagnetic or acoustic field) and cargo unloading. Such materials could be used as multimodal contrast agents, drug delivery systems, and sensors.
Collapse
Affiliation(s)
- Sergei V German
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia.,Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Marina V Novoselova
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia.,Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Demina
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,Shubnikov Institute of Crystallography of the Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, 119333, Russia
| | - Vsevolod S Atkin
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Denis V Voronin
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Boris N Khlebtsov
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov, 410049, Russia
| | - Bogdan V Parakhonskiy
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,University of Ghent, 9000, Ghent, Belgium
| | - Gleb B Sukhorukov
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia. .,Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.
| |
Collapse
|
67
|
Navolokin NA, German SV, Bucharskaya AB, Godage OS, Zuev VV, Maslyakova GN, Pyataev NA, Zamyshliaev PS, Zharkov MN, Terentyuk GS, Gorin DA, Sukhorukov GB. Systemic Administration of Polyelectrolyte Microcapsules: Where Do They Accumulate and When? In Vivo and Ex Vivo Study. NANOMATERIALS 2018; 8:nano8100812. [PMID: 30308931 PMCID: PMC6215302 DOI: 10.3390/nano8100812] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 01/07/2023]
Abstract
Multilayer capsules of 4 microns in size made of biodegradable polymers and iron oxide magnetite nanoparticles have been injected intravenously into rats. The time-dependent microcapsule distribution in organs was investigated in vivo by magnetic resonance imaging (MRI) and ex vivo by histological examination (HE), atomic absorption spectroscopy (AAS) and electron spin resonance (ESR), as these methods provide information at different stages of microcapsule degradation. The following organs were collected: Kidney, liver, lung, and spleen through 15 min, 1 h, 4 h, 24 h, 14 days, and 30 days after intravenous injections (IVIs) of microcapsules in a saline buffer at a dosage of 2.5 × 10⁸ capsule per kg. The IVI of microcapsules resulted in reversible morphological changes in most of the examined inner organs (kidney, heart, liver, and spleen). The capsules lost their integrity due to degradation over 24 h, and some traces of iron oxide nanoparticles were seen at 7 days in spleen and liver structure. The morphological structure of the tissues was completely restored one month after IVI of microcapsules. Comprehensive analysis of the biodistribution and degradation of entire capsules and magnetite nanoparticles as their components gave us grounds to recommend these composite microcapsules as useful and safe tools for drug delivery applications.
Collapse
Affiliation(s)
- Nikita A Navolokin
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Sergei V German
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Biophotonics Laboratory, Skoltech Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Alla B Bucharskaya
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Olga S Godage
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Viktor V Zuev
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Galina N Maslyakova
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Nikolaiy A Pyataev
- Laboratory of Pharmacokinetics and Targeted Drug Delivery, Medicine Institute, National Research Ogarev Mordovia State University, Saransk 430005, Russia.
| | - Pavel S Zamyshliaev
- Laboratory of Pharmacokinetics and Targeted Drug Delivery, Medicine Institute, National Research Ogarev Mordovia State University, Saransk 430005, Russia.
| | - Mikhail N Zharkov
- Laboratory of Pharmacokinetics and Targeted Drug Delivery, Medicine Institute, National Research Ogarev Mordovia State University, Saransk 430005, Russia.
| | - Georgy S Terentyuk
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Dmitry A Gorin
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Biophotonics Laboratory, Skoltech Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Gleb B Sukhorukov
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
68
|
Mora B, Perez-Valle A, Redondo C, Boyano MD, Morales R. Cost-Effective Design of High-Magnetic Moment Nanostructures for Biotechnological Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8165-8172. [PMID: 29390182 DOI: 10.1021/acsami.7b16779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Disk-shaped magnetic nanostructures present distinctive features for novel biomedical applications. Fine tuning of geometry and dimensions is demanded to evaluate efficiency and capability of such applications. This work addresses a cost-effective, versatile, and maskless design of biocompatible high-magnetic moment elements at the sub-micrometer scale. Advantages and disadvantages of two high throughput fabrication routes using interference lithography were evaluated. Detrimental steps such as the release process of nanodisks into aqueous solution were optimized to fully preserve the magnetic properties of the material. Then, cell viability of the nanostructures was assessed in primary melanoma cultures. No toxicity effects were observed, validating the potential of these nanostructures in biotechnological applications. The present methodology will allow the fabrication of magnetic nanoelements at the sub-micrometer scale with unique spin configurations, such as vortex state, synthetic antiferromagnets, or exchange-coupled heterostructures, and their use in biomedical techniques that require a remote actuation or a magneto-electric response.
Collapse
Affiliation(s)
| | | | | | - Maria Dolores Boyano
- Department of Cell Biology and Histology , University of the Basque Country UPV/EHU, and Biocruces Health Research Institute , 48903 Barakaldo , Spain
| | - Rafael Morales
- IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| |
Collapse
|
69
|
Li L, Wang F, Shao Z. Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study. Carbohydr Polym 2018; 184:277-287. [DOI: 10.1016/j.carbpol.2017.12.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
|
70
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|
71
|
Timin AS, Litvak MM, Gorin DA, Atochina-Vasserman EN, Atochin DN, Sukhorukov GB. Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization. Adv Healthc Mater 2018; 7. [PMID: 29193876 DOI: 10.1002/adhm.201700818] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine.
Collapse
Affiliation(s)
- Alexander S. Timin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Maxim M. Litvak
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Dmitry A. Gorin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- Skoltech Center of Photonics & Quantum Materials; Skolkovo Institute of Science and Technology; Skolkovo Innovation Center; Building 3 Moscow 143026 Russian Federation
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- RASA Center; Kazan Federal University; 18 Kremlyovskaya Street Kazan 42008 Russian Federation
- Pulmonary; Allergy and Critical Care Division; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Dmitriy N. Atochin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Cardiovascular Research Center; Massachusetts General Hospital; 149 East, 13 Street Charlestown MA 02129 USA
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
72
|
Nifontova G, Zvaigzne M, Baryshnikova M, Korostylev E, Ramos-Gomes F, Alves F, Nabiev I, Sukhanova A. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization. NANOSCALE RESEARCH LETTERS 2018; 13:30. [PMID: 29372483 PMCID: PMC5785454 DOI: 10.1186/s11671-018-2447-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 05/15/2023]
Abstract
Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, Moscow, Russian Federation 115409
| | - Maria Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, Moscow, Russian Federation 115409
| | - Maria Baryshnikova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, Moscow, Russian Federation 115409
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye Shosse 24, Moscow, Russian Federation 115478
| | - Evgeny Korostylev
- Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region Russian Federation 141701
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- Clinic of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, Moscow, Russian Federation 115409
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, rue Cognacq Jay 51, 51095 Reims, France
| | - Alyona Sukhanova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, Moscow, Russian Federation 115409
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, rue Cognacq Jay 51, 51095 Reims, France
| |
Collapse
|
73
|
Borvinskaya E, Gurkov A, Shchapova E, Baduev B, Meglinski I, Timofeyev M. Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish. Biol Open 2018; 7:bio030015. [PMID: 29305467 PMCID: PMC5829502 DOI: 10.1242/bio.030015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022] Open
Abstract
The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis.
Collapse
Affiliation(s)
- Ekaterina Borvinskaya
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- Institute of Biology at Karelian Research Centre of Russian Academy of Sciences, Petrozavodsk 185035, Russia
| | - Anton Gurkov
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- Baikal Research Centre, Irkutsk 664003, Russia
| | | | - Boris Baduev
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- Baikal Research Centre, Irkutsk 664003, Russia
| | - Igor Meglinski
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
- University of Oulu, Optoelectronics and Measurement Techniques Laboratory, Oulu 90570, Finland
| | - Maxim Timofeyev
- Institute of Biology at Irkutsk State University, Irkutsk 664003, Russia
| |
Collapse
|
74
|
Vidiasheva IV, Abalymov AA, Kurochkin MA, Mayorova OA, Lomova MV, German SV, Khalenkow DN, Zharkov MN, Gorin DA, Skirtach AG, Tuchin VV, Sukhorukov GB. Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers. Biomater Sci 2018; 6:2219-2229. [DOI: 10.1039/c8bm00479j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeted cell delivery via electromagnetic tweezers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dmitry A. Gorin
- Saratov State University
- Saratov
- Russia
- Skolkovo Institute of Science and Technology
- Moscow
| | | | - Valery V. Tuchin
- Saratov State University
- Saratov
- Russia
- Tomsk State University
- Tomsk
| | - Gleb B. Sukhorukov
- Saratov State University
- Saratov
- Russia
- Queen Mary University of London
- England
| |
Collapse
|
75
|
Rutkowski S, Si T, Gai M, Frueh J, He Q. Hydrodynamic electrospray ionization jetting of calcium alginate particles: effect of spray-mode, spraying distance and concentration. RSC Adv 2018; 8:24243-24249. [PMID: 35539165 PMCID: PMC9082322 DOI: 10.1039/c8ra03490g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023] Open
Abstract
Hydrodynamic electrospray ionization jetting was applied for generating and characterizing calcium cross-linked alginate microparticles. These microparticles show different diameters and aspect ratios for three electrospray modes (dripping, conejet and multijet modes), four spraying distances (5, 10, 15 and 20 cm), and six spraying concentrations. Comparing the three different electrospray modes, we found that the conejet mode results in the smallest particle diameters, lowest aspect ratio and smallest variations over the parameter space mentioned above. For all spraying modes, the resultant particle diameters become independent of the spraying distance at a sprayed solute concentration ≥ 2.5%. The aspect ratio of microparticles varies significantly for different spraying modes and distances. An increasing aspect ratio of all spray modes was determined for sodium alginate spraying concentrations ≤ 1.5% and spraying distances of 20 cm; this phenomenon can be explained with the chain ejection effect. This systematic investigation offers a basic database for industrial applications of hydrodynamic electrospray ionization. Hydrodynamic electrospray ionization jetting was applied for generating and characterizing calcium cross-linked alginate microparticles.![]()
Collapse
Affiliation(s)
- Sven Rutkowski
- Key Lab of Microsystems and Microstructures Manufacturing
- Micro/Nanotechnology Research Center
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Tieyan Si
- Key Lab of Microsystems and Microstructures Manufacturing
- Micro/Nanotechnology Research Center
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Meiyu Gai
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
- National Research Tomsk Polytechnic University
| | - Johannes Frueh
- Key Lab of Microsystems and Microstructures Manufacturing
- Micro/Nanotechnology Research Center
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing
- Micro/Nanotechnology Research Center
- Harbin Institute of Technology
- Harbin 150080
- P. R. China
| |
Collapse
|
76
|
Liu X, Zheng H, Li G, Li H, Zhang P, Tong W, Gao C. Fabrication of polyurethane microcapsules with different shapes and their influence on cellular internalization. Colloids Surf B Biointerfaces 2017; 158:675-681. [DOI: 10.1016/j.colsurfb.2017.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
|