51
|
Cui Q, Yuan H, Bao X, Ma G, Wu M, Xing C. Synergistic Photodynamic and Photothermal Antibacterial Therapy Based on a Conjugated Polymer Nanoparticle-Doped Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:4436-4443. [DOI: 10.1021/acsabm.0c00423] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qifan Cui
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Xueying Bao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Gang Ma
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Manman Wu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
52
|
Liu L, Luo X, Liu J. Bidirectional Regulation of Singlet Oxygen Generation from Luminescent Gold Nanoparticles through Surface Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000011. [PMID: 32174021 DOI: 10.1002/smll.202000011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Singlet oxygen (1 O2 ) generation has been observed from ultrasmall luminescent gold nanoparticles (AuNPs), but regulation of 1 O2 generation ability from the nanosized noble metals has remained challenging. Herein, the 1 O2 generation ability of ultrasmall AuNPs (d ≈ 1.8 nm) is reported to be highly correlated to the surface factors including the amount of Au(I) species and surface charge. By taking the advantages of facile in situ PEGylation, it is discovered that a high amount of Au(I) species and surface charge results in strong ability in generation of 1 O2 , whereas a relative low amount of Au(I) species and surface charge leads to weak ability in 1 O2 production. A feasible general strategy is then developed to controllably regulate the 1 O2 generation efficiency of the AuNPs through facile ligand exchange with positively-charged or negatively-charged thiolated ligands. The AuNPs as nanophotosensitizer for 1 O2 generation in the cellular level is also demonstrated to be highly controllable through surface ligand exchange with synergistical effects of 1 O2 generation ability and subcellular distribution to lysosome or mitochondria. The strategy in the bidirectional regulation of 1 O2 generation from ultrasmall AuNPs provides guidance for future design of nanosized metal nanomedicine toward specific disease diagnosis and treatment.
Collapse
Affiliation(s)
- Lulu Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
53
|
Dai J, Wu X, Ding S, Lou X, Xia F, Wang S, Hong Y. Aggregation-Induced Emission Photosensitizers: From Molecular Design to Photodynamic Therapy. J Med Chem 2020; 63:1996-2012. [PMID: 32039596 DOI: 10.1021/acs.jmedchem.9b02014] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment option for cancers and other diseases. The key factor that determines the effectiveness of PDT is the photosensitizers (PSs). Upon light irradiation, the PSs would be activated, produce reactive oxygen species (ROS), and induce cell death. One of the challenges is that traditional PSs adopt a large flat disc-like structure, which tend to interact with the adjacent molecules through strong π-π stacking that reduces their ROS generation ability. Aggregation-induced emission (AIE) molecules with a twisted configuration to suppress strong intermolecular interactions represent a new class of PSs for image-guided PDT. In this Miniperspective, we summarize the recent progress on the design rationale of AIE-PSs and the strategies to achieve desirable theranostic applications in cancers. Subsequently, approaches of combining AIE-PS with other imaging and treatment modalities, challenges, and future directions are addressed.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyang Ding
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
54
|
Wen Y, Schreiber CL, Smith BD. Dual-Targeted Phototherapeutic Agents as Magic Bullets for Cancer. Bioconjug Chem 2020; 31:474-482. [PMID: 31940166 DOI: 10.1021/acs.bioconjchem.9b00836] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imagine the ideal cancer drug that only kills cancer cells and does not affect nearby noncancerous cells. In the words of Paul Ehrlich, the drug acts like a magic bullet. This Topical Review summarizes an emerging new strategy to achieve this audacious goal. The central concept is a dual-targeted phototherapeutic agent for photodynamic or photothermal therapy. The dual-targeted phototherapeutic agent promotes cancer cell specificity by leveraging three levels of selectivity. Cell death will only occur in the anatomical location that is illuminated with light (Selectivity Level 1) and in cancer cells within the illumination area that have selectively accumulated the agent (Selectivity Level 2). The cancer cell killing effect is highly localized if the agent accumulates in hypersensitive intracellular organelles (Selectivity Level 3). The common targeting units for cancer cells and organelles are described, along with recent examples of dual-targeted phototherapeutic agents that incorporate these two classes of targeting units.
Collapse
Affiliation(s)
- Ying Wen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Cynthia L Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
55
|
Yuan P, Ruan Z, Yan L. Tetraphenylporphine-Modified Polymeric Nanoparticles Containing NIR Photosensitizer for Mitochondria-Targeting and Imaging-Guided Photodynamic Therapy. ACS Biomater Sci Eng 2020; 6:1043-1051. [PMID: 33464862 DOI: 10.1021/acsbiomaterials.9b01662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Near-infrared (NIR) photodynamic therapy (PDT) is a promising antitumor strategy under NIR light irradiation to kill cancer cells. Mitochondria has a critical function in sustaining cellular viability and death, which is the ideal organelle for PDT. Here, we reported a tetraphenylporphine (TPP)-conjugated amphiphilic copolymer and an iodinated boron dipyrromethene photosensitizer (BDPI) with high singlet oxygen yield to form nanoparticles (PBDPI-TPP), which could realize mitochondria-targeting and improve the NIR imaging-guided PDT. The as-prepared mitochondria-targeting nanoplatform could show effective subcellular localization and bring about significant irreversible mitochondrial injury for enhanced PDT. Both in vitro and in vivo experiments revealed that the mitochondria-targeting PDT system could achieve a remarkable therapeutic effect, indicating that it is a promising nanoplatform for NIR imaging-guided PDT in cancer therapeutics.
Collapse
Affiliation(s)
- Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
56
|
Wang J, Zhu X, Zhang J, Wang H, Liu G, Bu Y, Yu J, Tian Y, Zhou H. AIE-Based Theranostic Agent: In Situ Tracking Mitophagy Prior to Late Apoptosis To Guide the Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1988-1996. [PMID: 31771326 DOI: 10.1021/acsami.9b15577] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) takes advantage of reactive oxygen species (ROS) to trigger the apoptosis for cancer therapy. Given that cell apoptosis is a form of programmed cell death involved with multiple suborganelles and cancer cells are more sensitive to ROS than normal cells, early confirmation of the apoptosis induced by ROS would effectively avoid overtreatment. Herein, we highlight an aggregation-induced emission (AIE)-based theranostic agent (TPA3) to in situ dynamically track mitophagy prior to late apoptosis. TPA3 showed high specificity to autophagy vacuoles (AVs), of which appearance is the signature event of mitophagy during early apoptosis and delivered photocytotoxicity to cancer cells and skin cancer tumors in nude mice under irradiation of white light. Furthermore, in situ monitoring of the dynamical mitophagy process involved with mitochondria, AVs, and lysosomes was performed for the first time under confocal microscopy, providing a real-time self-monitoring system for assessing the curative effect prior to late apoptosis. This fluorescence imaging guided PDT witness great advances for applying in the clinical application.
Collapse
Affiliation(s)
- Junjun Wang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences , Anhui University , Hefei 230601 , P. R. China
| | - Haiyan Wang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences , Anhui University , Hefei 230601 , P. R. China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| | - Yingcui Bu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University, Ministry of Education , Hefei 230601 , P. R. China
| |
Collapse
|
57
|
|
58
|
Kong Q, Ma B, Yu T, Hu C, Li G, Jiang Q, Wang Y. A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy. NEW J CHEM 2020. [DOI: 10.1039/d0nj00822b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, photodynamic therapy (PDT) has become an effective method for cancer therapy.
Collapse
Affiliation(s)
- Qunshou Kong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Tao Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
59
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
60
|
Yang C, Zhang H, Wang Z, Wu X, Jin Y. Mitochondria-targeted tri-triphenylphosphonium substituted meso-tetra(4-carboxyphenyl)porphyrin(TCPP) by conjugation with folic acid and graphene oxide for improved photodynamic therapy. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitochondria are extensively researched as target sites to maximize photodynamic therapy (PDT) effects because they play crucial roles in metabolism. Here, a mitochondria targeting PDT agent, tri-triphenylphosphonium substituted meso-tetra(4-carboxyphenyl)porphyrin (TCPP-TPP) is prepared for the first time. Considering that many porphyrin derivatives are quick to aggregate, thereby reducing the PDT effect, our photosensitizer (PS) was loaded on a folic acid (FA) decorated graphene oxide (GO) nanosystem, called GF@TCPP-TPP, by electrostatic and [Formula: see text]–[Formula: see text] stacking or hydrophobic cooperative interactions, to improve the transportation of photosensitizers and enhance the therapeutic effect. Herein, we have performed a detailed study of photodynamic activity of GF@TCPP-TPP nanocomposites and evaluated their potential as a photosensitizer in PDT. An MTT assay showed that GF@TCPP-TPP inhibited HeLa cells in a concentration-dependent manner under light (650 ± 10 nm, 5 mW [Formula: see text] and 10 min), and presented remarkably improved PDT efficiency (IC[Formula: see text] g [Formula: see text] mL[Formula: see text] of equivalent TCPP-TPP) over free TCPP (IC[Formula: see text] after irradiation. Furthermore, our research indicated that Type I mechanisms (the generation of hydroxyl radicals) play a predominant role in the GF@TCPP-TPP induced PDT process. This coincides with the low singlet oxygen (1O[Formula: see text] quantum yield ([Formula: see text] [Formula: see text] 33.6%) in a DMF solution. Moreover, cell morphological changes after GF@TCPP-TPP PDT further demonstrated that GF@TCPP-TPP could induce damage and apoptotic cell death efficiently. In particular, precise delivery of photosensitizers to mitochondria was proven by organelle localization.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Hongyue Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Zhiqiang Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Xiaodan Wu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yingxue Jin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
61
|
Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton Reaction-Assisted Photodynamic Therapy for Cancer with Multifunctional Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29579-29592. [PMID: 31359756 DOI: 10.1021/acsami.9b09671] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tumor hypoxia and the short half-life of reactive oxygen species (ROS) with small diffusion distance have greatly limited the therapeutic effect of photodynamic therapy (PDT). Here, a multifunctional nanoplatform is developed to enhance the PDT effect through increasing the oxygen concentration in tumor cells by the Fenton reaction and reducing the distance between the ROS and the target site by mitochondrial targeting. Fe3O4@Dex-TPP nanoparticles are first prepared by coprecipitation in the presence of triphenylphosphine (TPP)-grafted dextran (Dex-TPP) and Fe2+/Fe3+, which have a magnetic resonance imaging effect. Next, the photosensitizers of protoporphyrin IX (PpIX) and glutathione-responsive mPEG-ss-COOH are grafted on Fe3O4@Dex-TPP to form Fe3O4@Dex/TPP/PpIX/ss-mPEG nanoparticles. After the nanoparticles are internalized, part of Fe3O4 are decomposed into Fe2+/Fe3+ in the acidic lysosome and then Fe2+/Fe3+ diffused into the cytoplasm, and subsequently, Fe2+ reacted with the overproduced H2O2 to produce O2 and •OH. The undecomposed nanoparticles enter the cytoplasm by photoinduced internalization and targeted to the mitochondria, leading to ROS direct generation around the mitochondria. Simultaneously, the produced O2 by the Fenton reaction can serve as a raw material for PDT to continuously exert PDT effect. As a result, the Fenton reaction-assisted PDT can significantly improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Huabo Hou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Xuehui Huang
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Guoqing Wei
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Yi Wang
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| |
Collapse
|
62
|
Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26529-26558. [PMID: 31136142 DOI: 10.1021/acsami.9b01370] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
63
|
Chen Y, Ai W, Guo X, Li Y, Ma Y, Chen L, Zhang H, Wang T, Zhang X, Wang Z. Mitochondria-Targeted Polydopamine Nanocomposite with AIE Photosensitizer for Image-Guided Photodynamic and Photothermal Tumor Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902352. [PMID: 31183957 DOI: 10.1002/smll.201902352] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of treatment for tumors. Herein, a new aggregation-induced emission (AIE)gen (MeO-TPE-indo, MTi) is synthesized with a D-π-A conjugated structure. MTi, which has an electron donor and an acceptor on a tetraphenylethene (TPE) conjugated skeleton, can induce the effective generation of reactive oxygen species (ROS) for PDT. With the guide of the indolium group, MTi can target and image mitochondrion selectively. In order to get good dispersion in water and long-time retention in tumors, MTi is modified on the surface of polydopamine nanoparticles (PDA NPs) to form the nanocomposite (PDA-MeO-TPE-indo, PMTi) by π-π and hydrogen interactions. PMTi is a nanoscale composite for imaging-guided PDT and PTT in tumor treatment, which is constructed with AIEgens and PDA for the first time. The organic functional molecules are combined with nanomaterials for building a multifunctional diagnosis and treatment platform by utilizing the advantages of both sides.
Collapse
Affiliation(s)
- Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenting Ai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuan Guo
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yawen Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lifang Chen
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tongxin Wang
- College of Engineering and College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
64
|
Zhuang W, Yang L, Ma B, Kong Q, Li G, Wang Y, Tang BZ. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20715-20724. [PMID: 31144501 DOI: 10.1021/acsami.9b04813] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, photodynamic therapy (PDT) has drawn much attention as a noninvasive and safe cancer therapy method due to its fine controllability, good selectivity, low systemic toxicity, and minimal drug resistance in contrast to the conventional methods (for example, chemotherapy, radiotherapy, and surgery). However, some drawbacks still remain for the current organic photosensitizers such as low singlet oxygen (1O2) quantum yield, poor photostability, inability of absorption in the near-infrared (NIR) region, short excitation wavelength, and limited action radius of singlet oxygen, which will strongly limit the PDT treatment efficiency. As a consequence, the development of efficient photosensitizers with high singlet oxygen quantum yield, strong fluorescent emission in the aggregated state, excellent photostability, NIR excitation wavelength ranging in the biological transparency window, and highly specific targeting to mitochondria is still in great demand for the enhancement of PDT treatment efficiency. In this study, two new two-photon AIEgens TPPM and TTPM based on a rigid D-π-A skeleton have been designed and synthesized. Both AIEgens TPPM and TTPM show strong aggregation-induced emission (AIE) with the emission enhancement up to 290-folds, large two-photon absorption with the two-photon absorption cross section up to 477 MG, and highly specific targeting to mitochondria in living cells with good biocompatibility. They can serve as two-photon bioprobes for the cell and deep tissue bioimaging with a penetration depth up to 150 μm. Furthermore, high 1O2 generation efficiency with high 1O2 quantum yield under white light irradiation has been found for both TPPM and TTPM and high PDT efficiency to HeLa cells under white light irradiation has also been proven. To the best of our knowledge, AIEgens in this work constitute one of the strongest emission enhancements and one of the highest 1O2 generation efficiencies in the reported organic AIEgens so far. The great AIE feature, large two-photon absorption, high specificity to mitochondria in living cells, and high PDT efficiency to living cells as well as excellent photostability and biocompatibility of these novel AIEgens TPPM and TTPM reveal great potential in clinical applications of two-photon cell and tissue bioimaging and image-guided and mitochondria-targeted photodynamic cancer therapy.
Collapse
Affiliation(s)
- Weihua Zhuang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Li Yang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Boxuan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
65
|
Liu N, Lin T, Wu M, Luo HK, Huang SL, Hor TSA. Suite of Organoplatinum(II) Triangular Metallaprism: Aggregation-Induced Emission and Coordination Sequence Induced Emission Tuning. J Am Chem Soc 2019; 141:9448-9452. [PMID: 31150578 DOI: 10.1021/jacs.9b01283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of triangular metallaprisms with a kinetically inert Pt-N bond have been synthesized from the stepwise assembly of a Pt-corner, linear linker 4,4'-bipy (4,4'-bipy = 4,4'-bipyridine) and triangular ligand [tpb or tpt, tpb = tris(4-pyridyl)benzene, tpt = tris(4-pyridyl)triazine]. The use of an unsymmetrical [Pt(HL)]-corner (H2L = 2,6-diphenylpyridine) leads to novel isostructural products. Phenyl rotation at the metal-corners endows these complexes with good aggregation-induced emission (AIE) function, with varied activities across the isostructural complexes. The coordination sequence of electron-deficient ligand tpt also imparts significant influence on the complex emission. These organoplatinum triangular metallaprisms thus provide a good model to study the influence of building blocks and coordination sequence on the luminescence of supramolecules.
Collapse
Affiliation(s)
- Naifang Liu
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Tingting Lin
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore
| | - Mingda Wu
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore
| | - He-Kuan Luo
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way, Innovis , Singapore 138634 , Singapore
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - T S Andy Hor
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China
| |
Collapse
|
66
|
Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med Res Rev 2019; 40:27-53. [PMID: 31070260 DOI: 10.1002/med.21595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging is a promising visualization tool and possesses the advantages of in situ response and facile operation; thus, it is widely exploited for bioassays. However, traditional fluorophores suffer from concentration limits because they are always quenched when they aggregate, which impedes applications, especially for trace analysis and real-time monitoring. Recently, novel molecules with aggregation-induced emission (AIE) characteristics were developed to solve the problems encountered when using traditional organic dyes, because these new molecules exhibit weak or even no fluorescence when they are in free movement states but emit intensely upon the restriction of intramolecular motions. Inspired by the excellent performances of AIE molecules, a substantial number of AIE-based probes have been designed, synthesized, and applied to various fields to fulfill diverse detection tasks. According to numerous experiments, AIE probes are more practical than traditional fluorescent probes, especially when used in bioassays. To bridge bioimaging and materials engineering, this review provides a comprehensive understanding of the development of AIE bioprobes. It begins with a summary of mechanisms of the AIE phenomenon. Then, the strategies to realize accurate detection using AIE probes are discussed. In addition, typical examples of AIE-active materials applied in diagnosis, treatment, and nanocarrier tracking are presented. In addition, some challenges are put forward to inspire more ideas in the promising field of AIE-active materials.
Collapse
Affiliation(s)
- Meichen Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hang Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
67
|
Xie R, Lian S, Peng H, OuYang C, Li S, Lu Y, Cao X, Zhang C, Xu J, Jia L. Mitochondria and Nuclei Dual-Targeted Hollow Carbon Nanospheres for Cancer Chemophotodynamic Synergistic Therapy. Mol Pharm 2019; 16:2235-2248. [PMID: 30896172 DOI: 10.1021/acs.molpharmaceut.9b00259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dual-targeted nanoparticles are gaining increasing importance as a more effective anticancer strategy by attacking double key sites of tumor cells, especially in chemophotodynamic therapy. To retain the nuclei inhibition effect and enhance doxorubicin (DOX)-induced apoptosis by mitochondrial pathways simultaneously, we synthesized the novel nanocarrier (HKH) based on hollow carbon nitride nanosphere (HCNS) modified with hyaluronic acid (HA) and the mitochondrial localizing peptide D[KLAKLAK]2 (KLA). DOX-loaded HKH nanoparticles (HKHDs) showed satisfactory drug-loading efficiency, excellent solubility, and very low hemolytic effect. HA/CD44 binding and electrostatic attraction between positively charged KLA and A549 cells facilitated HKHD uptake via the endocytosis mechanism. Acidic microenvironment, hyaluronidase, and KLA targeting together facilitate doxorubicin toward the mitochondria and nuclei, resulting in apoptosis, DNA intercalation, cell-cycle arrest at the S phase, and light-induced reactive oxygen species production. Intravascular HKHD inhibited tumor growth in A549-implanted mice with good safety. The present study, for the first time, systemically reveals biostability, targetability, chemophotodynamics, and safety of the functionalized novel HKHD.
Collapse
Affiliation(s)
- Ruizhi Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Shu Lian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huayi Peng
- College of Pharmacy , Fujian Medical University , Fuzhou 350116 , China
| | - Changhe OuYang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Shuhui Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
- Institute of Oceanography , Minjiang University , Fuzhou , Fujian 350108 , China
| | - Xuning Cao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Chen Zhang
- Institute of Oceanography , Minjiang University , Fuzhou , Fujian 350108 , China
| | - Jianhua Xu
- College of Pharmacy , Fujian Medical University , Fuzhou 350116 , China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou , Fujian 350116 , China
- Institute of Oceanography , Minjiang University , Fuzhou , Fujian 350108 , China
| |
Collapse
|
68
|
Huaihong Zhang, Huang Z, Zhou T, Yu Q, Cai Z, Cang H. Polycarbonate-Based Nanoparticles with Aggregation-Induced Emission (AIE): Synthesis and Application for Cell Imaging. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419030187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Abstract
The field of nanomedicine has made substantial strides in the areas of therapeutic and diagnostic development. For example, nanoparticle-modified drug compounds and imaging agents have resulted in markedly enhanced treatment outcomes and contrast efficiency. In recent years, investigational nanomedicine platforms have also been taken into the clinic, with regulatory approval for Abraxane® and other products being awarded. As the nanomedicine field has continued to evolve, multifunctional approaches have been explored to simultaneously integrate therapeutic and diagnostic agents onto a single particle, or deliver multiple nanomedicine-functionalized therapies in unison. Similar to the objectives of conventional combination therapy, these strategies may further improve treatment outcomes through targeted, multi-agent delivery that preserves drug synergy. Also, similar to conventional/unmodified combination therapy, nanomedicine-based drug delivery is often explored at fixed doses. A persistent challenge in all forms of drug administration is that drug synergy is time-dependent, dose-dependent and patient-specific at any given point of treatment. To overcome this challenge, the evolution towards nanomedicine-mediated co-delivery of multiple therapies has made the potential of interfacing artificial intelligence (AI) with nanomedicine to sustain optimization in combinatorial nanotherapy a reality. Specifically, optimizing drug and dose parameters in combinatorial nanomedicine administration is a specific area where AI can actionably realize the full potential of nanomedicine. To this end, this review will examine the role that AI can have in substantially improving nanomedicine-based treatment outcomes, particularly in the context of combination nanotherapy for both N-of-1 and population-optimized treatment.
Collapse
Affiliation(s)
- Dean Ho
- Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|
70
|
Li K, Lin Y, Lu C. Aggregation-Induced Emission for Visualization in Materials Science. Chem Asian J 2019; 14:715-729. [PMID: 30629327 DOI: 10.1002/asia.201801760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation-caused quenching, which severely limits the visualization results. In contrast, aggregation-induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro-dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.
Collapse
Affiliation(s)
- Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| |
Collapse
|
71
|
Xu J, Yan B, Du X, Xiong J, Zhou M, Wang H, Du Z. Acidity-triggered zwitterionic prodrug nano-carriers with AIE properties and amplification of oxidative stress for mitochondria-targeted cancer theranostics. Polym Chem 2019. [DOI: 10.1039/c8py01518j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A TPE-based polyurethane prodrug has been established for mitochondria-targeting drug delivery and real-time monitoring.
Collapse
Affiliation(s)
- Junhuai Xu
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Bin Yan
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Xiaosheng Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Junjie Xiong
- Department of Pancreatic Surgery
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Mi Zhou
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Haibo Wang
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Zongliang Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| |
Collapse
|
72
|
Lin F, Bao YW, Wu FG. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules 2018; 23:E3016. [PMID: 30453692 PMCID: PMC6278291 DOI: 10.3390/molecules23113016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
Mitochondria-targeted cancer phototherapy (PT), which works by delivering photoresponsive agents specifically to mitochondria, is a powerful strategy to improve the phototherapeutic efficiency of anticancer treatments. Mitochondria play an essential role in cellular apoptosis, and are relevant to the chemoresistance of cancer cells. Furthermore, mitochondria are a major player in many cellular processes and are highly sensitive to hyperthermia and reactive oxygen species. Therefore, mitochondria serve as excellent locations for organelle-targeted phototherapy. In this review, we focus on the recent advances of mitochondria-targeting materials for mitochondria-specific PT. The combination of mitochondria-targeted PT with other anticancer strategies is also summarized. In addition, we discuss both the challenges currently faced by mitochondria-based cancer PT and the promises it holds.
Collapse
Affiliation(s)
- Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | |
Collapse
|
73
|
Abstract
BACKGROUND Interest in subcellular organelle-targeting theranostics is substantially increasing due to the significance of subcellular organelle-targeting drug delivery for maximizing therapeutic effects and minimizing side effects, as well as the significance of theranostics for delivering therapeutics at the correct locations and doses for diseases throughout diagnosis. Among organelles, mitochondria have received substantial attention due to their significant controlling functions in cells. MAIN BODY With the necessity of subcellular organelle-targeting drug delivery and theranostics, examples of mitochondria-targeting moieties and types of mitochondria-targeting theranostics were introduced. In addition, the current studies of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems were summarized. CONCLUSION With the current issues of mitochondria-targeting theranostic chemicals, chemical conjugates, and nanosystems, their potentials and alternatives are discussed.
Collapse
Affiliation(s)
- Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662 Republic of Korea
| |
Collapse
|
74
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
75
|
Cai X, Hu F, Feng G, Kwok RTK, Liu B, Tang BZ. Organic Mitoprobes based on Fluorogens with Aggregation-Induced Emission. Isr J Chem 2018. [DOI: 10.1002/ijch.201800031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|