51
|
Tian X, Cui X, Xiao Y, Chen T, Xiao X, Wang Y. Pt/MoS 2/Polyaniline Nanocomposite as a Highly Effective Room Temperature Flexible Gas Sensor for Ammonia Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9604-9617. [PMID: 36762895 DOI: 10.1021/acsami.2c20299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A Pt/MoS2/polyaniline (Pt/MoS2/PANI) nanocomposite is successfully synthesized by the hydrothermal process combined with the in situ polymerization method, and then Pt particles are decorated on its surface. The Pt/MoS2/PANI nanocomposite is deposited on a flexible Au-interdigitated electrode of a polyimide (PI) film. The flexible sensor exhibits a higher response value and fast response/recovery time to NH3 at room temperature (RT). It results in 2.32-fold and 1.13-fold improvement in the gas-sensing response toward 50 ppm NH3 compared to those of PANI and MoS2/PANI-based gas sensors. The detection limit is 250 ppb. The enhancement sensing mechanisms are attributed to the p-n heterojunction and the Schottky barrier between the three components, which has been confirmed by the current-voltage (I-V) curves. A satisfactory selectivity to NH3 against trimethylamine (TMA) and triethylamine (TEA) is obtained according to density functional theory (DFT), Bader's analysis, and differential charge density to illustrate the adsorption behavior and charge transfer of gas molecules on the surface of the sensing materials. The sensor retains the excellent sensing response value even under high relative humidity and sensing stability at higher bending angle/numbers to NH3 gas. Hence, Pt/MoS2/PANI can be regarded as a promising sensing material for high-performance NH3 detection at room temperature applied in flexible wearable electronics.
Collapse
Affiliation(s)
- Xu Tian
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming6500504, People's Republic of China
| | - Xiuxiu Cui
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming6500504, People's Republic of China
| | - Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming6500504, People's Republic of China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou215009, People's Republic of China
| | - Xuechun Xiao
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming6500504, People's Republic of China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming6500504, People's Republic of China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming650504, People's Republic of China
| |
Collapse
|
52
|
Highly Efficient, Remarkable Sensor Activity and energy storage properties of MXenes and Borophene nanomaterials. PROG SOLID STATE CH 2023. [DOI: 10.1016/j.progsolidstchem.2023.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
53
|
Tran VA, Tran NT, Doan VD, Nguyen TQ, Thi HHP, Vo GNL. Application Prospects of MXenes Materials Modifications for Sensors. MICROMACHINES 2023; 14:247. [PMID: 36837947 PMCID: PMC9959414 DOI: 10.3390/mi14020247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 06/01/2023]
Abstract
The first two-dimensional (2D) substance sparked a boom in research since this type of material showed potential promise for applications in field sensors. A class of 2D transition metal nitrides, carbides, and carbonitrides are referred to as MXenes. Following the 2011 synthesis of Ti3C2 from Ti3AlC2, much research has been published. Since these materials have several advantages over conventional 2D materials, they have been extensively researched, synthesized, and studied by many research organizations. To give readers a general understanding of these well-liked materials, this review examines the structures of MXenes, discusses various synthesis procedures, and analyzes physicochemistry properties, particularly optical, electronic, structural, and mechanical properties. The focus of this review is the analysis of modern advancements in the development of MXene-based sensors, including electrochemical sensors, gas sensors, biosensors, optical sensors, and wearable sensors. Finally, the opportunities and challenges for further study on the creation of MXenes-based sensors are discussed.
Collapse
Affiliation(s)
- Vy Anh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Quang Nguyen
- Department of External Relations and Project Development, Institute of Applied Science and Technology (IAST), Van Lang University, Ho Chi Minh City 700000, Vietnam
| | - Hai Ha Pham Thi
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Giang N. L. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
54
|
Khosla A, Sonu, Awan HTA, Singh K, Gaurav, Walvekar R, Zhao Z, Kaushik A, Khalid M, Chaudhary V. Emergence of MXene and MXene-Polymer Hybrid Membranes as Future- Environmental Remediation Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203527. [PMID: 36316226 PMCID: PMC9798995 DOI: 10.1002/advs.202203527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/20/2022] [Indexed: 07/26/2023]
Abstract
The continuous deterioration of the environment due to extensive industrialization and urbanization has raised the requirement to devise high-performance environmental remediation technologies. Membrane technologies, primarily based on conventional polymers, are the most commercialized air, water, solid, and radiation-based environmental remediation strategies. Low stability at high temperatures, swelling in organic contaminants, and poor selectivity are the fundamental issues associated with polymeric membranes restricting their scalable viability. Polymer-metal-carbides and nitrides (MXenes) hybrid membranes possess remarkable physicochemical attributes, including strong mechanical endurance, high mechanical flexibility, superior adsorptive behavior, and selective permeability, due to multi-interactions between polymers and MXene's surface functionalities. This review articulates the state-of-the-art MXene-polymer hybrid membranes, emphasizing its fabrication routes, enhanced physicochemical properties, and improved adsorptive behavior. It comprehensively summarizes the utilization of MXene-polymer hybrid membranes for environmental remediation applications, including water purification, desalination, ion-separation, gas separation and detection, containment adsorption, and electromagnetic and nuclear radiation shielding. Furthermore, the review highlights the associated bottlenecks of MXene-Polymer hybrid-membranes and its possible alternate solutions to meet industrial requirements. Discussed are opportunities and prospects related to MXene-polymer membrane to devise intelligent and next-generation environmental remediation strategies with the integration of modern age technologies of internet-of-things, artificial intelligence, machine-learning, 5G-communication and cloud-computing are elucidated.
Collapse
Affiliation(s)
- Ajit Khosla
- Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Sonu
- School Advanced of Chemical SciencesShoolini University of Biotechnology and Management SciencesBajholSolanHP173212India
| | - Hafiz Taimoor Ahmed Awan
- Graphene and Advanced 2D Materials Research Group (GAMRG)School of Engineering and TechnologySunway UniversityNo. 5Jalan UniversityBandar SunwayPetaling JayaSelangor47500Malaysia
| | - Karambir Singh
- School of Physics and Material scienceShoolini University of Biotechnology and Management SciencesBajholSolanHP173212India
| | - Gaurav
- Department of BotanyRamjas CollegeUniversity of DelhiDelhi110007India
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab)University of DelhiNew Delhi110072India
| | - Rashmi Walvekar
- Department of Chemical EngineeringSchool of New Energy and Chemical EngineeringXiamen University MalaysiaJalan Sunsuria, Bandar SunsuriaSepangSelangor43900Malaysia
| | - Zhenhuan Zhao
- Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Ajeet Kaushik
- NanoBioTech LaboratoryHealth System EngineeringDepartment of Environmental EngineeringFlorida Polytechnic UniversityLakelandFL33805USA
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG)School of Engineering and TechnologySunway UniversityNo. 5Jalan UniversityBandar SunwayPetaling JayaSelangor47500Malaysia
- Sunway Materials Smart Science and Engineering (SMS2E) Research ClusterSunway UniversityNo. 5Jalan UniversitiBandar SunwayPetaling JayaSelangor47500Malaysia
| | - Vishal Chaudhary
- Research Cell and Department of PhysicsBhagini Nivedita CollegeUniversity of DelhiNew DelhiIndia
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab)University of DelhiNew Delhi110072India
| |
Collapse
|
55
|
Huang B, Zhao Z, Chen P, Zhou B, Chen Z, Fu Y, Zhu H, Chen C, Zhang S, Wang A, Shi P, Shen X. Highly selective NH 3 gas sensor based on Co(OH) 2/Ti 3C 2T x nanocomposites operating at room temperature. RSC Adv 2022; 12:33056-33063. [PMID: 36425184 PMCID: PMC9672992 DOI: 10.1039/d2ra06367k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 09/08/2024] Open
Abstract
Ammonia (NH3) is a common air pollutant and is a biomarker for kidney disease. Therefore, the preparation of ammonia gas sensors with high sensitivity, good selectivity and low operating temperature is of great importance for health protection. Using the in situ electrostatic self-assembly approach, a chemoresistive gas sensor based on Co(OH)2/Ti3C2T x hybrid material was created in this study. The prepared samples were characterized by XRD, XPS, TEM, BET and other testing methods for structure, surface topography and elements. These samples were fabricated into sensors, and the gas sensing properties of the materials were investigated under different test conditions. The results show that the gas response value of the C/M-2 sensor is up to about 14.7%/100 ppm, which is three times the response value of the sensor made of pure MXene to NH3. In addition, the Co(OH)2/Ti3C2T x hybrid sensors exhibit excellent repeatability, high sensitivity under low concentration (less than 5 ppm), fast response/recovery time (29 s/49 s) and long-time stability, which indicates their promising utility in the IoT field.
Collapse
Affiliation(s)
- Bo Huang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 China
| | - Zhihua Zhao
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Pu Chen
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 China
| | - Baocang Zhou
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Zhuo Chen
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Yu Fu
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Hongyu Zhu
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Chen Chen
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Shuaiwen Zhang
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Anbiao Wang
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Pu Shi
- College of Mechanical and Electrical Engineering, Henan University of Technology Zhengzhou 450052 China
| | - Xiaoqing Shen
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
56
|
Li J, Miao C, Bian J, Seyedin S, Li K. MXene fibers for electronic textiles: Progress and perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
57
|
Oh T, Lee S, Kim H, Ko TY, Kim SJ, Koo CM. Fast and High-Yield Anhydrous Synthesis of Ti 3 C 2 T x MXene with High Electrical Conductivity and Exceptional Mechanical Strength. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203767. [PMID: 36069279 DOI: 10.1002/smll.202203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Indexed: 05/04/2023]
Abstract
2D transition metal carbides or nitrides (MXenes) have attracted considerable attention from materials scientists and engineers owing to their physicochemical properties. Currently, MXenes are synthesized from MAX-phase precursors using aqueous HF. Here, in order to enhance the production of MXenes, an anhydrous etching solution is proposed, consisting of dimethylsulfoxide as solvent with its high boiling point, NH4 HF2 as an etchant, CH3 SO3 H as an acid, and NH4 PF6 as an intercalant. The reaction temperature can be increased up to 100 °C to accelerate the etching and delamination of Ti3 AlC2 MAX crystals; in addition, the destructive side reaction of the produced Ti3 C2 Tx MXene is suppressed in the etchant. Consequently, the etching reaction is completed in 4 h at 100 °C and produces high-quality monolayer Ti3 C2 Tx with an electrical conductivity of 8200 S cm-1 and yield of over 70%. The Ti3 C2 Tx MXene fabricated via this modified synthesis exhibits different surface structures and properties arising from more F-terminations than those of Ti3 C2 Tx synthesized in aqueous HF2 T. The atypical surface structure of Ti3 C2 Tx MXene results in an exceptionally high ultimate tensile strength (167 ± 8 MPa), which is five times larger than those of Ti3 C2 Tx MXenes synthesized in aqueous HF solution (31.7 ± 7.8 MPa).
Collapse
Affiliation(s)
- Taegon Oh
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungjun Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyerim Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Tae Yun Ko
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seon Joon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chong Min Koo
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
58
|
Ahmad A, Tariq S, Zaman JU, Martin Perales AI, Mubashir M, Luque R. Recent trends and challenges with the synthesis of membranes: Industrial opportunities towards environmental remediation. CHEMOSPHERE 2022; 306:135634. [PMID: 35817181 DOI: 10.1016/j.chemosphere.2022.135634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The industrial and agricultural revolution has posed a serious and potential threat to environment. The industrial and agricultural pollutants are directly released into the environment. This issue has clinched the scientists to work on different materials in order to decontaminate the environment. Among all other techniques, the membrane filtration technology has fascinated researchers to overcome the pollution by its promising features. This review elaborated various membrane synthesis approaches along with their mechanism of filtration, their applications towards environmental remediation such as removal of heavy metals, degradation of dyes, pharma waste, organic pollutants, as well as gas sensing applications. The membrane synthesis using different sort of materials in which inorganic, carbon materials, polymers and metal organic framework (MOFs) are highlighted. These materials have been involved in synthesis of membrane to make it more cost effective and productive to remove such hazardous materials from wastewater. Based on the reported literature, it has been found that inorganic and polymer membranes are facing issues of brittleness and swelling prior to the industrial scale applications related to the high temperature and pressure which needs to be addressed to enhance the permeation performance.
Collapse
Affiliation(s)
- Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain.
| | - Sadaf Tariq
- Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan
| | - Jahid Uz Zaman
- Département de Chimie (UFR Sciences Fondamentales et Appliquées), Université de Poitiers, Poitiers, 86000, France
| | - Ana Isabel Martin Perales
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 5700, Kuala Lumpur, Malaysia
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain.
| |
Collapse
|
59
|
Wang Y, Li T, Li Y, Yang R, Zhang G. 2D-Materials-Based Wearable Biosensor Systems. BIOSENSORS 2022; 12:bios12110936. [PMID: 36354445 PMCID: PMC9687877 DOI: 10.3390/bios12110936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 05/24/2023]
Abstract
As an evolutionary success in life science, wearable biosensor systems, which can monitor human health information and quantify vital signs in real time, have been actively studied. Research in wearable biosensor systems is mainly focused on the design of sensors with various flexible materials. Among them, 2D materials with excellent mechanical, optical, and electrical properties provide the expected characteristics to address the challenges of developing microminiaturized wearable biosensor systems. This review summarizes the recent research progresses in 2D-materials-based wearable biosensors including e-skin, contact lens sensors, and others. Then, we highlight the challenges of flexible power supply technologies for smart systems. The latest advances in biosensor systems involving wearable wristbands, diabetic patches, and smart contact lenses are also discussed. This review will enable a better understanding of the design principle of 2D biosensors, offering insights into innovative technologies for future biosensor systems toward their practical applications.
Collapse
Affiliation(s)
- Yi Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tong Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yangfeng Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Rong Yang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
60
|
Zhan X, Liu Y, Wang F, Zhao D, Yang KL, Luo D. A highly sensitive fluorescent sensor for ammonia detection based on aggregation-induced emission luminogen-doped liquid crystals. SOFT MATTER 2022; 18:7662-7669. [PMID: 36172725 DOI: 10.1039/d2sm00568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a toxic substance, ammonia can cause serious irritation to the human respiratory system and lungs. Although many detection techniques have been reported, most of them have drawbacks, such as expensive devices and complex and time-consuming fabrication processes. Thus, it is important to develop a simple method for ammonia detection. In this paper, we demonstrate a highly sensitive fluorescent sensor for ammonia detection based on aggregation-induced emission luminogen-doped liquid crystals without the use of polarizers. The homeotropic orientation of the liquid crystals on a modified substrate can be disturbed by ammonia, resulting in the fluorescence intensity change of an aggregation-induced emission luminogen. This aggregation-induced emission luminogen-doped liquid crystal-based fluorescent sensor for ammonia detection exhibited a low detection limit of 5.4 ppm, which is 3 times lower than previously reported liquid crystal-based optical sensors. The detection range is also broad from 0 ppm to 1600 ppm. Meanwhile, this sensor can be applied to detect aqueous ammonia with a low limit of detection of 1.8 ppm. The proposed fluorescent sensor for ammonia detection based on an aggregation-induced emission luminogen-doped liquid crystal is highly sensitive, highly selective, simple, and low cost with wide potential applications in chemical and biological fields. This strategy of designing a liquid crystal fluorescent sensor provides an inspiring stage for other toxic chemical substrates by changing specific decorated molecules.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
| | - Fei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
| | - Dongyu Zhao
- School of Chemistry and Environment, Beihang University, Xueyuan Road 37, Beijing 100191, China.
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
61
|
Devaraj M, Rajendran S, Hoang TKA, Soto-Moscoso M. A review on MXene and its nanocomposites for the detection of toxic inorganic gases. CHEMOSPHERE 2022; 302:134933. [PMID: 35561780 DOI: 10.1016/j.chemosphere.2022.134933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In the search of the viable candidate for the sensing of pollutant gases, two-dimensional (2D) material transition metal carbides (MXenes) have attracted immense attention due to their outstanding physical and chemical properties for sensing purposes. The formation of unique 2D layered structure with high conductivity, large mechanical strength, and high adsorption properties furnish their strong interactions with gaseous molecules, which holds a promising place for developing ideal gas sensing devices. This review looks at recent achievements in diversified MXenes, with a focus gaining on in-depth understanding of MXene-based materials in room temperature inorganic gas sensors through both theoretical and experimental studies. In the first part of the review, the properties and advantages of sensing material (MXene) in comparison with other 2D materials are discussed. In the second part, the unique advantages of chemiresistive based sensors and the demerits of other detection methods are summarized in detail. This section is followed by the unique structural design of MXene bases materials for improving the sensing performance towards detection of inorganic gases. The interaction between MXene and the adsorbed gases on its surface is discussed, with a possible sensing mechanism. Finally, an overview of the current progress and opportunities for the demand of MXene is emphasized and perspectives for future improvement of the design of MXene in gas sensors are highlighted. Therefore, this review highlights the opportunities and the advancement in 2D material-based gas sensors which could provide a new avenue for rapid detection of toxic gases in the environment.
Collapse
Affiliation(s)
- Manoj Devaraj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | | |
Collapse
|
62
|
Alhajri F, Fadlallah MM, Alkhaldi A, Maarouf AA. Hybrid MXene-Graphene/Hexagonal Boron Nitride Structures: Electronic and Molecular Adsorption Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2739. [PMID: 36014604 PMCID: PMC9416010 DOI: 10.3390/nano12162739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in experimental techniques allow for the fabrication of hybrid structures. Here, we study the electronic and molecular adsorption properties of the graphene (G)/hexagonal boron nitride (h-BN)-MXenes (Mo2C) hybrid nanosheets. We use first-principles calculations to explore the structure and electronic properties of the hybrid structures of G-2H-Mo2C and h-BN-2H-Mo2C with two different oxygen terminations of the Mo2C surface. The embedding of G or h-BN patches creates structural defects at the patch-Mo2C border and adds new states in the vicinity of the Fermi energy. Since this can be utilized for molecular adsorption and/or sensing, we investigate the ability of the G-M-O1 and BN-M-O1 hybrid structures to adsorb twelve molecules. Generally, the adsorption on the hybrid systems is significantly higher than on the pristine systems, except for N2 and H2, which are weakly adsorbed on all systems. We find that OH, NO, NO2, and SO2 are chemisorbed on the hybrid systems. COOH may be chemisorbed, or it may dissociate depending on its location at the edge between the G/h-BN and the MXene. NH3 is chemisorbed/physisorbed on the BN/G-M-O1 systems. CO, H2S, CO2, and CH4 are physisorbed on the hybrid systems. Our results indicate that the studied hybrid systems can be used for molecular filtration/sensing and catalysis.
Collapse
Affiliation(s)
- Fawziah Alhajri
- Department of Physics, Science College, Imam Abdulrahman Bin Faisal University, Jubail 3196, Saudi Arabia
| | | | - Amal Alkhaldi
- Department of Physics, Science College, Imam Abdulrahman Bin Faisal University, Jubail 3196, Saudi Arabia
| | - Ahmed A. Maarouf
- Department of Physics, Faculty of Basic Sciences, German University in Cairo, New Cairo City 11835, Egypt
| |
Collapse
|
63
|
Lei G, Pan H, Mei H, Liu X, Lu G, Lou C, Li Z, Zhang J. Emerging single atom catalysts in gas sensors. Chem Soc Rev 2022; 51:7260-7280. [PMID: 35899763 DOI: 10.1039/d2cs00257d] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single atom catalysts (SACs) offer unprecedented opportunities for high-efficiency reactions taking place in many important fields of catalytic processes, electrochemistry, and photoreactions. Due to their maximized atomic utilization and unique electronic and chemical properties, SACs can provide high activity and excellent selectivity for gas adsorption and electron transport, leveraging SACs that enhance the detection sensitivity and selectivity to target gases. In the past few years, SACs including both noble (Pt, Pd, Au, etc.) and non-noble (Mn, Ni, Zn etc.) metals have been demonstrated to be very useful in optimizing sensing performances. However, a comprehensive review on this topic is still missing. Herein, we summarize the synthesis technologies of SACs that are applicable to gas sensors. The electronic and chemical interactions between SACs and host sensing materials, which are crucial to sensor functions, are discussed. Then, we highlight the application progress of various SACs in gas sensors. Prospects in the creation of new sensing materials with emerging SACs and versatile supports are also present. Finally, the challenges and prospects of SACs in the future development of sensors are analyzed.
Collapse
Affiliation(s)
- Guanglu Lei
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Hongyin Pan
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Houshan Mei
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Guocai Lu
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Chengming Lou
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Zishuo Li
- College of Physics, Qingdao University, Qingdao 266071, China.
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
64
|
Zhou M, Yao Y, Han Y, Xie L, Zhu Z. Cu 2O/Ti 3C 2T xnanocomposites for detection of triethylamine gas at room temperature. NANOTECHNOLOGY 2022; 33:415501. [PMID: 35785755 DOI: 10.1088/1361-6528/ac7dec] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Triethylamine gas is one of the harmful volatile organic compounds for human health and the ecological environment. Therefore, in order to prevent the detrimental effects of triethylamine gas, it has greatly requirement to be accurately detected. Unfortunately, Cu2O has a low triethylamine gas response and slow recovery. Because of this, we prepared Cu2O/Ti3C2Txnanocomposites by a facile ultrasonication technique. Cu2O is uniformly dispersed on the surface and interlayers of multilayer Ti3C2Txto form a stable hybrid heterostructure. The optimized Cu2O/Ti3C2Txnanocomposite sensor's response to 10 ppm triethylamine at room temperature is 181.6% (∣Rg-Ra∣/Ra × 100%). It is 3.5 times higher than the original Cu2O nanospheres (52.1%). Moreover, due to the characteristics of high carrier migration rate and excellent conductivity of Ti3C2Tx, the response recovery rate (1062 s/74 s) of Cu2O/Ti3C2Txcomposites is greatly improved than pristine Cu2O (3169 s/293 s). In addition, Cu2O/Ti3C2Txnanocomposites sensor also shows excellent repeatability, outstanding selectivity, and long-term stability. Thus, the Cu2O/Ti3C2Txnanocomposites sensor has broad application prospects for detecting triethylamine gas at room temperature.
Collapse
Affiliation(s)
- Ming Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
| | - Yu Yao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Lili Xie
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, People's Republic of China
| |
Collapse
|
65
|
Chang X, Li X, Xue Q. DFT insights into the selective NH 3sensing mechanism of two dimensional ZnTe monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:374002. [PMID: 35790174 DOI: 10.1088/1361-648x/ac7e9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Exploring novel NH3sensing materials is crucial in chemical industries, fertilizing plants and medical fields. Herein, for the first time, the NH3sensing behaviors and sensing mechanisms of two dimensional (2D) ZnTe monolayer are systematically investigated by density functional theory calculations. It is shown that 2D ZnTe monolayer exhibits excellent selective NH3sensing properties. (220) crystal facet of ZnTe possesses a higher NH3adsorption energy (-1.59 eV) and a larger charge transfer (0.195e) than (111) and (311) crystal facets. The positive charges could enhance NH3sensing while the negative charges could reduce NH3sensing. The NH3adsorption strengths are significantly improved in O2atmosphere while it is negligibly affected by N2atmosphere and H2O atmosphere. Moreover, the presence of Zn vacancy and Fe, Co, Ni doping could improve the NH3sensing of ZnTe. Additionally, the experimental results confirms that ZnTe possesses a low detection limit of 0.1 ppm NH3. These theoretical predictions and experimental results present a wide range of possibilities for the further development of ZnTe monolayer in NH3sensing fields.
Collapse
Affiliation(s)
- Xiao Chang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, People's Republic of China
| | - Qingzhong Xue
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, People's Republic of China
| |
Collapse
|
66
|
Huang H, Dong C, Feng W, Wang Y, Huang B, Chen Y. Biomedical engineering of two-dimensional MXenes. Adv Drug Deliv Rev 2022; 184:114178. [PMID: 35231544 DOI: 10.1016/j.addr.2022.114178] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
The emergence of two-dimensional (2D) transition metal carbides, carbonitrides and nitrides, referred to MXenes, with a general chemical formula of Mn+1XnTx have aroused considerable interest and shown remarkable potential applications in diverse fields. The unique ultrathin lamellar structure accompanied with charming electronic, optical, magnetic, mechanical and biological properties make MXenes as a kind of promising alternative biomaterials for versatile biomedical applications, as well as uncovering many new fundamental scientific discoveries. Herein, the current state-of-the-art advances of MXenes-related biomaterials are systematically summarized in this comprehensive review, especially focusing on the synthetic methodologies, design and surface engineering strategies, unique properties, biological effects, and particularly the property-activity-effect relationship of MXenes at the nano-bio interface. Furthermore, the elaborated MXenes for varied biomedical applications, such as biosensors and biodevices, antibacteria, bioimaging, therapeutics, theranostics, tissue engineering and regenerative medicine, are illustrated in detail. Finally, we discuss the current challenges and opportunities for future advancement of MXene-based biomaterials in-depth on the basis of the present situation, aiming to facilitate their early realization of practical biomedical applications.
Collapse
|
67
|
Abstract
Textile-based sensors in the form of a wearable computing device that can be attached to or worn on the human body not only can transmit information but also can be used as a smart sensing device to access the mobile internet. These sensors represent a potential platform for the next generation of human-computer interfaces. The continuous emergence of new conductive materials is one of the driving forces for the development of textile sensors. Recently, a two-dimensional (2D) MXene material with excellent performance has received extensive attention due to its high conductivity, processability, and mechanical stability. In this paper, the synthesis of MXene materials, the fabrication of conductive textiles, the structural design of textile sensors, and the application of MXene-based textile sensors in the wearable field are reviewed. Furthermore, from the perspective of MXene preparation, wearability, stability, and evaluation standards, the difficulties and challenges of MXene-based textile sensors in the field of wearable applications are summarized and prospected. This review attempts to strengthen the connection between wearable smart textiles and MXene materials and promote the rapid development of wearable MXene-based textile sensors.
Collapse
Affiliation(s)
- Chun Jin
- Human-Computer Interaction Design Lab, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
- Harbin Institute of Technology, Harbin, 150080, People’s Republic of China
| | - Ziqian Bai
- Human-Computer Interaction Design Lab, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| |
Collapse
|
68
|
Zhao Q, Jiang Y, Yuan Z, Duan Z, Zhang Y, Tai H. MXene复合气敏材料: 最新进展与未来挑战. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
Li X, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3028. [PMID: 35459012 PMCID: PMC9032468 DOI: 10.3390/s22083028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
The recent advances in wearable sensors and intelligent human-machine interfaces have sparked a great many interests in conductive fibers owing to their high conductivity, light weight, good flexibility, and durability. As one of the most impressive materials for wearable sensors, conductive fibers can be made from a variety of raw sources via diverse preparation strategies. Herein, to offer a comprehensive understanding of conductive fibers, we present an overview of the recent progress in the materials, the preparation strategies, and the wearable sensor applications related. Firstly, the three types of conductive fibers, including metal-based, carbon-based, and polymer-based, are summarized in terms of their principal material composition. Then, various preparation strategies of conductive fibers are established. Next, the primary wearable sensors made of conductive fibers are illustrated in detail. Finally, a robust outlook on conductive fibers and their wearable sensor applications are addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Zhong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (S.C.); (Y.P.); (Z.Z.); (J.L.)
| |
Collapse
|
70
|
Du L, Feng D, Xing X, Wang C, Gao Y, Sun S, Meng G, Yang D. Nanocomposite-Decorated Filter Paper as a Twistable and Water-Tolerant Sensor for Selective Detection of 5 ppb-60 v/v% Ammonia. ACS Sens 2022; 7:874-883. [PMID: 35245046 DOI: 10.1021/acssensors.1c02681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ammonia (NH3) sensors proposed for the simultaneous exhalation diagnosis, environmental pollution monitoring, and industrial leakage alarm require high flexibility, selectivity, stability, humidity tolerance, and wide-concentration-range detection; however, technical challenges still remain. Herein, twistable and water-tolerant paper-based sensors integrated over surgical masks have been developed for NH3 detection at room temperature, via decorating specially designed ternary nanocomposites (ternary-NCs) on the commercial filter paper. The NCs consist of a multiwalled carbon nanotube framework with a polypyrrole nanolayer and are further loaded with Pt nanodots. Benefiting from the synergy effect of ternary components, the ternary-NCs exhibit an ultrasensitive response to 5 ppb-60 v/v% NH3 and present high selectivity confirmed by the theory calculations. Remarkably, the filter-paper-based sensors possess outstanding stability against twisting 0-1080°, along with excellent cuttability and foldability. Critically, such paper-based sensors can be integrated over surgical masks for simulated exhaled diagnosis and display superior water tolerance even being immersed in water for 24 h. Practically, the detecting accuracy of the filter-paper-based sensor toward the simulated exhaled NH3, environmental NH3 pollution, and industrial NH3 leakage is validated using ion chromatography.
Collapse
Affiliation(s)
- Lingling Du
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Dongliang Feng
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaxia Xing
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Chen Wang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yang Gao
- Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Guowen Meng
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Dachi Yang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
71
|
Li DY, Liu LX, Wang QW, Zhang HB, Chen W, Yin G, Yu ZZ. Functional Polyaniline/MXene/Cotton Fabrics with Acid/Alkali-Responsive and Tunable Electromagnetic Interference Shielding Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12703-12712. [PMID: 35232019 DOI: 10.1021/acsami.2c00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although two-dimensional transition-metal carbides (MXenes) and intrinsic conductive polymers have been combined to produce functional electromagnetic interference (EMI) shielding composites, acid/alkali-responsive EMI shielding textiles have not been reported. Herein, electrically conductive polyaniline (PANI)/MXene/cotton fabrics (PMCFs) are fabricated by an efficient vacuum filtration-assisted spray-coating method for acid/alkali-responsive and tunable EMI shielding applications on the basis of the high electrical conductivity of MXene sheets and the acid/alkali doping/de-doping feature of PANI nanowires. The as-prepared PMCF exhibits a sensitive ammonia response of 19.6% at an ammonia concentration of 200 ppm. The high EMI shielding efficiency of ∼54 dB is achieved by optimizing the decorated structure of the PANI/MXene coating on the cotton fabrics. More importantly, the PMCF can act adaptively as a "switch" for EMI shielding between the efficient strong shielding of 24 dB and the inefficient weak shielding of 15 dB driven by the stimulation of hydrogen chloride and ammonia vapors. This multifunctional fabric would possess promising applications for intelligent garments, flexible electronic sensors, and smart electromagnetic wave response in special environments.
Collapse
Affiliation(s)
- Dan-Yang Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liu-Xin Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi-Wei Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Bin Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guang Yin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
72
|
Fu XY, Zhang YY, Ma CJ, Jiang HB. Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors. OPTICS LETTERS 2022; 47:1502-1505. [PMID: 35290349 DOI: 10.1364/ol.447221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The development of laser-induced graphene (LIG) has been regarded as an effective method for satisfying the substantial requirements for the scalable fabrication of graphene-based electrode materials. Despite the rapid progress in fabricating LIG-based supercapacitors, the incompatibility between material modification and the device planarization process remains a challenging problem to be resolved. In this study, we demonstrate the attributes of novel LIG-MXene (LIG-M) composite electrodes for flexible planar supercapacitors fabricated by direct laser writing (DLW) of MXene-coated polyimide (PI) films. During the DLW process, PI was transformed into LIG, while MXene was simultaneously introduced to produce LIG-M. Combining the porous structure of LIG and the high conductivity of MXene, the as-prepared LIG-M-based supercapacitor exhibited superior specific capacitance, five times higher than that of the pristine LIG-based supercapacitor. The enhanced capacitance of LIG-M also benefited from the pseudocapacitive performance of the abundant active sites offered by MXene. Moreover, the planar LIG-M-based device delivered excellent cycling stability and flexibility. No significant performance degradation was observed after bending tests. Arbitrary electrode patterns could be obtained using the DLW technique. The patterned in-series LIG-M supercapacitor was able to power a light-emitting diode, demonstrating significant potential for practical applications.
Collapse
|
73
|
Le VT, Vasseghian Y, Doan VD, Nguyen TTT, Thi Vo TT, Do HH, Vu KB, Vu QH, Dai Lam T, Tran VA. Flexible and high-sensitivity sensor based on Ti 3C 2-MoS 2 MXene composite for the detection of toxic gases. CHEMOSPHERE 2022; 291:133025. [PMID: 34848226 DOI: 10.1016/j.chemosphere.2021.133025] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 05/27/2023]
Abstract
It is vital to have high sensitivity in gas sensors to allow the exact detection of dangerous gases in the air and at room temperature. In this study, we used 2D MXenes and MoS2 materials to create a Ti3C2-MoS2 composite with high metallic conductivity and a wholly functionalized surface for a significant signal. At room temperature, the Ti3C2-MoS2 composite demonstrated clear signals, cyclic response curves to NO2 gas, and gas concentration-dependent. The sensitivities of the standard Ti3C2-MoS2 (TM_2) composite (20 wt% MoS2) rose dramatically to 35.8%, 63.4%, and 72.5% when increasing NO2 concentrations to 10 ppm, 50 ppm, and 100 ppm, respectively. In addition, the composite showed reaction signals to additional hazardous gases, such as ammonia and methane. Our findings suggest that highly functionalized metallic sensing channels could be used to construct multigas-detecting sensors that are very sensitive in air and at room temperature.
Collapse
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Natural Science, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Thi Thu Trang Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Thu-Thao Thi Vo
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ha Huu Do
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Khanh B Vu
- Department of Chemical Engineering, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Quang Hieu Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Viet Nam.
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam.
| | - Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
74
|
Xu Q, Zong B, Li Q, Fang X, Mao S, Ostrikov KK. H 2S sensing under various humidity conditions with Ag nanoparticle functionalized Ti 3C 2T x MXene field-effect transistors. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127492. [PMID: 34678565 DOI: 10.1016/j.jhazmat.2021.127492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/27/2023]
Abstract
Despite the critical need to monitor H2S, a hazardous gas, in environmental and medical settings, there are currently no reliable methods for rapid and sufficiently discriminative H2S detection in real-world humid environments. Herein, targeted hybridizing of Ti3C2Tx MXene with Ag nanoparticles on a field-effect transistor (FET) platform has led to a step change in MXene sensing performance down to ppb levels, and enabled the very high selectivity and fast response/recovery time under room temperature for H2S detection in humid conditions. For the first time, we present a novel relative humidity (RH) self-calibration strategy for the accurate detection of H2S. This strategy can eliminate the influence of humidity and enables the accurate quantitative detection of gas in the total RH range. We further elucidate that the superior H2S sensing performance is attributed to the electron and chemical sensitization effects. This study opens new avenues for the development of high-performance MXene-based sensors and offers a viable approach for addressing real-world humidity effect for gas sensors generally.
Collapse
Affiliation(s)
- Qikun Xu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xian Fang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
75
|
Sardana S, Kaur H, Arora B, Aswal DK, Mahajan A. Self-Powered Monitoring of Ammonia Using an MXene/TiO 2/Cellulose Nanofiber Heterojunction-Based Sensor Driven by an Electrospun Triboelectric Nanogenerator. ACS Sens 2022; 7:312-321. [PMID: 35029965 DOI: 10.1021/acssensors.1c02388] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Real-time monitoring of harmful gases is of great significance to identify the environmental hazards to people's lives. However, this application scenario requiring low-power consumption, superior sensitivity, portability, and self-driven operation of gas sensors remains a challenge. Herein, an electrospun triboelectric nanogenerator (TENG) is synthesized using highly electronegative and conducting MXene nanofibers (NFs) paired with biodegradable cellulose acetate NFs (CA-NFs) as triboelectric layers, which supports a sufficient power density (∼1361 mW/m2@2 MΩ) and shows a self-powered ability to operate the chemiresistive gas sensor fabricated in this work. Further, by using cellulose nanofibers (C-NFs) as a substrate, a new kind of MXene/TiO2/C-NFs heterojunction-based sensory component is developed for detection of NH3. This sensor exhibits excellent reproducibility, high selectivity, and sensitivity toward NH3 (1-100 ppm) along with a fast response/recovery time (76 s/62 s) at room temperature. Finally, a monitoring system comprising a TENG-powered sensor, an equivalent circuit, and an LED visualizer has been assembled and successfully demonstrated as a fully self-powered device for NH3 leakage detection. Thus, this work pushes forward the intelligent gas sensing network self-driven by human motion energy, dispensing the external battery dependence for environment monitoring to reduce the possible health effects.
Collapse
Affiliation(s)
- Sagar Sardana
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India
| | - Harpreet Kaur
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India
| | - Bindiya Arora
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India
| | - Dinesh Kumar Aswal
- Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Aman Mahajan
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
76
|
Nahirniak S, Saruhan B. MXene Heterostructures as Perspective Materials for Gas Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:972. [PMID: 35161718 PMCID: PMC8838671 DOI: 10.3390/s22030972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
This paper provides a summary of the recent developments with promising 2D MXene-related materials and gives an outlook for further research on gas sensor applications. The current synthesis routes that are provided in the literature are summarized, and the main properties of MXene compounds have been highlighted. Particular attention has been paid to safe and non-hazardous synthesis approaches for MXene production as 2D materials. The work so far on sensing properties of pure MXenes and MXene-based heterostructures has been considered. Significant improvement of the MXenes sensing performances not only relies on 2D production but also on the formation of MXene heterostructures with other 2D materials, such as graphene, and with metal oxides layers. Despite the limited number of research papers published in this area, recommendations on new strategies to advance MXene heterostructures and composites for gas sensing applications can be driven.
Collapse
Affiliation(s)
- Svitlana Nahirniak
- German Aerospace Center, Department of High-Temperature and Functional Coatings, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany;
| | | |
Collapse
|
77
|
Siebert JP, Hajra D, Tongay S, Birkel CS. The synthesis and electrical transport properties of carbon/Cr 2GaC MAX phase composite microwires. NANOSCALE 2022; 14:744-751. [PMID: 34940774 DOI: 10.1039/d1nr06780j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While MAX phases offer an exotic combination of ceramic and metallic properties, rendering them a unique class of materials, their applications remain virtually hypothetical. To overcome this shortcoming, a sol-gel based route is introduced that allows access to microwires in the range of tens of micrometers. Thorough structural characterization through XRD, SEM, EDS, and AFM demonstrates a successful synthesis of carbonaceous Cr2GaC wires, and advanced low temperature electronic transport measurements revealed resistivity behavior dominated by amorphous carbon. The tunability of electronic behavior of the obtained microwires is shown by a halide post-synthesis treatment, allowing purposeful engineering of the microwires' electrical conductivity. Raman studies revealed the polyanionic nature of the intercalated halides and a slow decrease in halide concentration was concluded from time-dependent conductivity measurements. Based on these findings, the process is considered a viable candidate for fabricating chemiresistive halogen gas sensors.
Collapse
Affiliation(s)
- Jan P Siebert
- School of Molecular Sciences, Arizona State University Tempe, AZ-85287, USA.
| | - Debarati Hajra
- Materials Science and Engineering, School for Engineering of Energy, Matter, and Transport, Tempe, AZ 85287, USA
| | - Sefaattin Tongay
- Materials Science and Engineering, School for Engineering of Energy, Matter, and Transport, Tempe, AZ 85287, USA
| | - Christina S Birkel
- School of Molecular Sciences, Arizona State University Tempe, AZ-85287, USA.
- Department of Chemistry and Biochemistry, Technische Univesität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
78
|
Shi L, Dai H, Ni Q, Qi X, Liu W, He R, Chi Z, Fu Y. Controllable assembly of continuous hollow graphene fibers with robust mechanical performance and multifunctionalities. NANOTECHNOLOGY 2022; 33:155602. [PMID: 34983037 DOI: 10.1088/1361-6528/ac47d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Macroscopic conformation of individual graphene sheets serves as the backbone of translating their intrinsic merits towards multifunctional practical applications. However, controllable and continuous assemblies of graphene-based nanomaterials to create stable macroscopic structural components are always in face of great challenge. We have developed a scalable converging-flow assisted wet-spinning methodology for continuously fabricating hollow graphene fibers (HGFs, the newest variation of solid graphene fibers) with high quality. The degradable silk thread is selectively utilized as the continuous hollow structure former that holds the coaxially stacked graphene sheets aligned through the converging-flow modulating process. For the first time, we have created the longest freestanding HGF in length of 2.1 m. The continuous HGFs are in an average diameter of 180μm and with 4-8μm adjustable wall thicknesses. The optimal HGF demonstrates an average tensile strength of 300 MPa and modulus of 2.49 GPa (comparable to typical solid graphene fibers, but the highest among the reported HGFs in literature) and an exceptional failure elongation of 10.8%. Additionally, our continuous HGFs exhibit spontaneous resistive response to thermal and strain stimuli (in form of large deformations and human motions), offering great potential for developing multifunctional sensors. We envision that this work demonstrates an effective and well-controlled macroscopic assembly methodology for the scaled-up mass production of HGFs.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Hongbo Dai
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qinqqing Ni
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiaoming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Wei Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Rui He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zhangyi Chi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Yaqin Fu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
79
|
Zhu S, Wang D, Li M, Zhou C, Yu D, Lin Y. Recent advances in flexible and wearable chemo- and bio-sensors based on two-dimensional transition metal carbides and nitrides (MXenes). J Mater Chem B 2022; 10:2113-2125. [DOI: 10.1039/d1tb02759j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their excellent hydrophilicity, outstanding conductivity, unique structures, and physicochemical properties, MXenes have become a potential candidate material for flexible and wearable chemo- and bio-sensors.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Di Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Mancai Li
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 102205, P. R. China
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
80
|
Navale S, Mirzaei A, Majhi SM, Kim HW, Kim SS. State-of-the-Art Research on Chemiresistive Gas Sensors in Korea: Emphasis on the Achievements of the Research Labs of Professors Hyoun Woo Kim and Sang Sub Kim. SENSORS (BASEL, SWITZERLAND) 2021; 22:61. [PMID: 35009604 PMCID: PMC8747108 DOI: 10.3390/s22010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
This review presents the results of cutting-edge research on chemiresistive gas sensors in Korea with a focus on the research activities of the laboratories of Professors Sang Sub Kim and Hyoun Woo Kim. The advances in the synthesis techniques and various strategies to enhance the gas-sensing performances of metal-oxide-, sulfide-, and polymer-based nanomaterials are described. In particular, the gas-sensing characteristics of different types of sensors reported in recent years, including core-shell, self-heated, irradiated, flexible, Si-based, glass, and metal-organic framework sensors, have been reviewed. The most crucial achievements include the optimization of shell thickness in core-shell gas sensors, decrease in applied voltage in self-heated gas sensors to less than 5 V, optimization of irradiation dose to achieve the highest response to gases, and the design of selective and highly flexible gas sensors-based WS2 nanosheets. The underlying sensing mechanisms are discussed in detail. In summary, this review provides an overview of the chemiresistive gas-sensing research activities led by the corresponding authors of this manuscript.
Collapse
Affiliation(s)
- Sachin Navale
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.N.); (S.M.M.)
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Korea
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Korea
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 715557-13876, Iran;
| | - Sanjit Manohar Majhi
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.N.); (S.M.M.)
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Korea
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.N.); (S.M.M.)
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
81
|
Zhou Y, Wang Y, Wang Y, Yu H, Zhang R, Li J, Zang Z, Li X. MXene Ti 3C 2T x-Derived Nitrogen-Functionalized Heterophase TiO 2 Homojunctions for Room-Temperature Trace Ammonia Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56485-56497. [PMID: 34787994 DOI: 10.1021/acsami.1c17429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, MXene Ti3C2Tx-derived nitrogen-functionalized heterophase TiO2 homojunctions (N-MXene) were prepared via the urea-involved solvothermal treatment with varying reaction time as the sensing layer to detect trace NH3 gas at room temperature (20 °C). Compared with no signal for the pristine MXene counterpart, the 18 h-treated sensors (N-MXene-18) achieved a detection limit of 200 ppb with an inspiring response that was 7.3% better than the existing MXene-involved reports thus far. Also, decent repeatability, stability, and selectivity were demonstrated. It is noteworthy that the N-MXene-18 sensors delivered a stronger response, more sufficient recovery, and quicker response/recovery speeds under a humid environment than those under dry conditions, proving the significance of humidity. Furthermore, to suppress the effect of the fluctuation of humidity on NH3 sensing during the tests, a commercial waterproof polytetrafluoroethylene (PTFE) membrane was anchored onto the sensing layer, eventually bringing about humidity-independent features. Both nitrogen doping and TiO2 homojunctions constituted by mixed anatase and rutile phases were primarily responsible for the performance improvement with respect to pristine MXene. This work showcases the enormous potential of N-MXene materials in trace NH3 detection and offers an alternative strategy to realize both heteroatom doping and partial oxidation of MXene that is applicable in future optoelectronic devices.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuhang Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Haochen Yu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ruijie Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
82
|
Qiu J, Xia X, Hu Z, Zhou S, Wang Y, Wang Y, Zhang R, Li J, Zhou Y. Molecular ammonia sensing of PEDOT:PSS/nitrogen doped MXene Ti 3C 2T xcomposite film at room temperature. NANOTECHNOLOGY 2021; 33:065501. [PMID: 34706350 DOI: 10.1088/1361-6528/ac33d3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 05/27/2023]
Abstract
The irrational NH3emission routinely poses a significant threat to human health and environmental protection even at low dose. In addition, high miniaturization and low power-consumption has been the critical requirements of Internet of Things. To meet these demands, it is greatly pressing to develop a novel gas sensor with the capability to detect trace NH3without external heating or light-irradiation elements. In this work, the organic conducting conjugated polymer PEDOT:PSS was combined with inorganic nitrogen-doped transition metal carbides and nitrides (N-MXene Ti3C2Tx) for chemiresistive NH3sensing at room temperature (20oC). By means of the organic-inorganicn-pheterojunctions via the synergistic effect, the results show that the composite film sensor with the optimal mass ratio of 1:0.5 between N-MXene and PEDOT:PSS components delivered favorable NH3sensing performance than individual N-MXene or PEDOT:PSS counterparts in terms of higher response and quicker response/recovery speeds under 20oC@36%RH air. Besides, decent repeatability, stability and selectivity were demonstrated. The incorporated N atoms served as excellent electron donors to promote the electron-transfer reactions and augment the sorption sites. Simultaneously, partial oxidation of MXene brought about some TiO2nanoparticles which acted as spacers to widen the interlayer spacing and probably suppress the MXene restacking during the film deposition, thus favoring the gas diffusion/penetration within the sensing layer and then a quick reaction kinetic. The modulation of consequent build-in field within the heterojunctions was responsible for the reversible NH3sensing. In addition, pre-adsorbed water molecules facilitated to establish a swift adsorption/desorption balance. The proposed strategy expanded the application range of MXene based composite materials and enrich the current sensing mechanisms of NH3gas sensors.
Collapse
Affiliation(s)
- Jiyu Qiu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xinglong Xia
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhihao Hu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sen Zhou
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401121, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuhang Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ruijie Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
83
|
Yang M, Au C, Deng G, Mathur S, Huang Q, Luo X, Xie G, Tai H, Jiang Y, Chen C, Cui Z, Liu X, He C, Su Y, Chen J. NiWO 4 Microflowers on Multi-Walled Carbon Nanotubes for High-Performance NH 3 Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52850-52860. [PMID: 34714039 DOI: 10.1021/acsami.1c10805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
NiWO4 microflowers with a large surface area up to 79.77 m2·g-1 are synthesized in situ via a facile coprecipitation method. The NiWO4 microflowers are further decorated with multi-walled carbon nanotubes (MWCNTs) and assembled to form composites for NH3 detection. The as-fabricated composite exhibits an excellent NH3 sensing response/recovery time (53 s/177 s) at a temperature of 460 °C, which is a 10-fold enhancement compared to that of pristine NiWO4. It also demonstrates a low detection limit of 50 ppm; the improved sensing performance is attributed to the porous structure of the material, the large specific surface area, and the p-n heterojunction formed between the MWNTs and NiWO4. The gas sensitivity of the sensor based on daisy-like NiWO4/MWCNTs shows that the sensor based on 10 mol % (MWN10) has the best gas sensitivity, with a sensitivity of 13.07 to 50 ppm NH3 at room temperature and a detection lower limit of 20 ppm. NH3, CO2, NO2, SO2, CO, and CH4 are used as typical target gases to construct the NiWO4/MWCNTs gas-sensitive material and study the research method combining density functional theory calculations and experiments. By calculating the morphology and structure of the gas-sensitive material NiWO4(110), the MWCNT load samples, the vacancy defects, and the influence law and internal mechanism of gas sensitivity were described.
Collapse
Affiliation(s)
- Min Yang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Christian Au
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Shaurya Mathur
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qiuping Huang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Xiaolan Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chunxu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng Cui
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
84
|
Ho DH, Choi YY, Jo SB, Myoung JM, Cho JH. Sensing with MXenes: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005846. [PMID: 33938600 DOI: 10.1002/adma.202005846] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/15/2020] [Indexed: 05/27/2023]
Abstract
Various fields of study consider MXene a revolutionary 2D material. Particularly in the field of sensors, the metal-like high electrical conductivity and large surface area of MXenes are desirable characteristics as an alternative sensor material that can transcend the boundaries of existing sensor technology. This critical review provides a comprehensive overview of recent advances in MXene-based sensor technology and a roadmap for commercializing MXene-based sensors. The existing sensors are systematically categorized as chemical, biological, and physical sensors. Each category is then classified into various subcategories depending on the electrical, electrochemical, structural, or optical sensing mechanism, which are the four fundamental working mechanisms of sensors. Representative structural and electrical approaches for boosting the performance of each category are presented. Finally, factors that hinder commercializing MXene-based sensors are discussed, and several breakthroughs in realizing commercially available MXene-based sensors are suggested. This review provides broad insights pertaining to previous and existing MXene-based sensor technology and perspectives on the future generation of low-cost, high-performance, and multimodal sensors for soft-electronics applications.
Collapse
Affiliation(s)
- Dong Hae Ho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Korea
| | - Yoon Young Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Korea
| | - Sae Byeok Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jae-Min Myoung
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
85
|
Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
86
|
Hermawan A, Amrillah T, Riapanitra A, Ong W, Yin S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv Healthc Mater 2021; 10:e2100970. [PMID: 34318999 DOI: 10.1002/adhm.202100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| | - Tahta Amrillah
- Department of Nanotechnology Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Anung Riapanitra
- Department of Chemistry Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto 53122 Indonesia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
87
|
Zhi H, Zhang X, Wang F, Wan P, Feng L. Flexible Ti 3C 2T x MXene/PANI/Bacterial Cellulose Aerogel for e-Skins and Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45987-45994. [PMID: 34523329 DOI: 10.1021/acsami.1c12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Flexible pressure sensors made of carbon materials have been used in electronic skins (e-skins), whose performance can be enhanced if composite sensing materials are used. Herein, an MXene/polyaniline/bacterial cellulose (MXene/PANI/BC) aerogel sensor has been fabricated through the self-assembly process between the MXene and one-dimensional active material. Combined with fewer-layer or single-layer MXenes, the as-fabricated aerogel could be used as the active layer of the pressure sensor, monitoring tiny motion signals of finger bending, wrist bending, and pulse beating. Bluetooth wireless transmission could also be realized to monitor the real-time spatial pressure distributions on the mobile phone, making the aerogel-based sensor an ideal candidate in e-skins. Meanwhile, the aerogel-based sensor is sensitive toward NH3 due to the unique three-dimensional (3D) structure of the aerogel and the abundant terminal groups (such as -O, -OH, and -F) of the MXene in the system that ensure efficient electronic transfer for the sensing process and create active sites for the absorption with the target gas. This work offers a versatile platform to develop MXenes to fabricate 3D composite aerogels for high-performance flexible multiple sensors.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Wan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
88
|
Echols IJ, An H, Yun J, Sarang KT, Oh JH, Habib T, Zhao X, Cao H, Holta DE, Radovic M, Green MJ, Lutkenhaus JL. Electronic and Optical Property Control of Polycation/MXene Layer-by-Layer Assemblies with Chemically Diverse MXenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11338-11350. [PMID: 34523932 DOI: 10.1021/acs.langmuir.1c01904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes, 2D nanomaterials derived from ceramic MAX phases, have drawn considerable interest in a wide variety of fields including energy storage, catalysis, and sensing. There are many possible MXene compositions due to the chemical and structural diversity of parent MAX phases, which can bear different possible metal atoms "M", number of layers, and carbon or nitrogen "X" constituents. Despite the potential variety in MXene types, the bulk of MXene research focuses upon the first MXene discovered, Ti3C2T. With the recent discovery of polymer/MXene multilayer assemblies as thin films and coatings, there is a need to broaden the accessible types of multilayers by including MXenes other than Ti3C2Tz; however, it is not clear how altering the MXene type influences the resulting multilayer growth and properties. Here, we report on the first use of MXenes other than Ti3C2Tz, specifically Ti2CTz and Nb2CTz, for the layer-by-layer (LbL) assembly of polycation/MXene multilayers. By comparing these MXenes, we evaluate both how changing M (Ti vs Nb) and "n" (Ti3C2Tzvs Ti2CTz) affect the growth and properties of the resulting multilayer. Specifically, the aqueous LbL assembly of each MXene with poly(diallyldimethylammonium) into films and coatings is examined. Further, we compare the oxidative stability, optoelectronic properties (refractive index, absorption coefficient, optical conductivity, and direct and indirect optical band gaps), and the radio frequency heating response of each multilayer. We observe that MXene multilayers with higher "n" are more electrically conductive and oxidatively stable. We also demonstrate that Nb2CTz containing films have lower optical band gaps and refractive indices at the cost of lower electrical conductivities as compared to their Ti2CTz counterparts. Our work demonstrates that the properties of MXene/polycation multilayers are highly dependent on the choice of constituent MXene and that the MXene type can be altered to suit specific applications.
Collapse
Affiliation(s)
- Ian J Echols
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hyosung An
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Junyeong Yun
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kasturi T Sarang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ju-Hyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Touseef Habib
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaofei Zhao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Dustin E Holta
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Miladin Radovic
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
89
|
Zhao Q, Sun D, Wang S, Duan Z, Yuan Z, Wei G, Xu JL, Tai H, Jiang Y. Enhanced Blocking Effect: A New Strategy to Improve the NO 2 Sensing Performance of Ti 3C 2T x by γ-Poly(l-glutamic acid) Modification. ACS Sens 2021; 6:2858-2867. [PMID: 34185511 DOI: 10.1021/acssensors.1c00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Titanium carbide (Ti3C2Tx) with a distinctive structure, abundant surface chemical groups, and good electrical conductivity has shown great potential in fabricating superior gas sensors, but several challenges, such as low response kinetics, poor reversibility, and serious baseline drift, still remain. In this work, γ-poly(l-glutamic acid) (γ-PGA) with a blocking effect is exploited to modify Ti3C2Tx, thereby stimulating the positive response behavior of Ti3C2Tx and improving its gas sensing performance. On account of the unique synergetic interaction between Ti3C2Tx and γ-PGA, the response of the flexible Ti3C2Tx/γ-PGA gas sensor to 50 ppm NO2has been improved to a large extent (average 1127.3%), which is 85 times that of Ti3C2Tx (only 13.2%). Moreover, the as-fabricated Ti3C2Tx/γ-PGA sensor not only exhibits a shorter response/recovery time (average 43.4/3 s) compared with the Ti3C2Tx-based sensor (∼18.5/18.3 min) but also shows good reversibility and repeatability (relative standard deviation (RSD) <1%) at room temperature within 50% relative humidity (RH). The improved gas sensing properties of the Ti3C2Tx/γ-PGA sensor can be attributed to the enhancement of effective adsorption and the blocking effect assisted by water molecules. Furthermore, the gas sensing response of the Ti3C2Tx/γ-PGA sensor is studied at different RHs, and humidity compensation of the sensor is carried out using the multiple regression method. This work demonstrates a novel strategy to enhance the gas sensing properties of Ti3C2Tx by γ-PGA modification and provides a new way to realize highly responsive gas detection at room temperature.
Collapse
Affiliation(s)
- Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Deming Sun
- Key University Laboratory of Sensing Technology and Control of Shandong Province, School of Information and Electronic Engineering, Shandong Technology and Business University (SDTBU), Yantai 264000, China
| | - Si Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Guangfen Wei
- Key University Laboratory of Sensing Technology and Control of Shandong Province, School of Information and Electronic Engineering, Shandong Technology and Business University (SDTBU), Yantai 264000, China
| | - Jian-Long Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
90
|
Song Y, Xu Y, Guo Q, Hua Z, Yin F, Yuan W. MXene-Derived TiO 2 Nanoparticles Intercalating between RGO Nanosheets: An Assembly for Highly Sensitive Gas Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39772-39780. [PMID: 34383470 DOI: 10.1021/acsami.1c12154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tight stacking between two-dimensional (2D) sheet-like materials, such as graphene, in the solid state is a major challenge hindering their applications, especially in the gas sensing field. Here, we report on a TiO2 nanoparticle-spaced reduced graphene oxide (RGO) assembly for the design of highly sensitive gas sensors. The TiO2 nanospacers are derived from a 2D MXene that is intercalated between RGO sheets. The produced TiO2-spaced RGO assembly exhibits a uniform nanoparticle distribution and highly wrinkled RGO sheets that interconnect in micrometer-scale pores. The space limitation between adjacent RGO sheets can restrict the particle growth and lead to the formation of TiO2 nanoparticles with uniform diameters of ca. 6.2 nm. The sensitivity of the TiO2-spaced RGO sensor to NO2 improved by over 400% in comparison with pure RGO due to the more available surface area and active adsorption sites. Furthermore, fast response and recovery, excellent selectivity and flexibility, and reliable workability in a humid environment (with the relative humidity ranging from 5 to 95%) were also simultaneously achieved, demonstrating great potential for next-generation wearable sensors.
Collapse
Affiliation(s)
- Yangyang Song
- School of Materials Science & Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanling Xu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qing Guo
- School of Materials Science & Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhongqiu Hua
- School of Materials Science & Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Fuxing Yin
- School of Materials Science & Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenjing Yuan
- School of Materials Science & Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
91
|
Abstract
Since MXene (a two-dimensional material) was discovered in 2011, it has been favored in all aspects due to its rich surface functional groups, large specific surface area, high conductivity, large porosity, rich organic bonds, and high hydrophilicity. In this paper, the preparation of MXene is introduced first. HF etching was the first etching method for MXene; however, HF is corrosive, resulting in the development of the in situ HF method (fluoride + HCl). Due to the harmful effects of fluorine terminal on the performance of MXene, a fluorine-free preparation method was developed. The increase in interlayer spacing brought about by adding an intercalator can affect MXene’s performance. The usual preparation methods render MXene inevitably agglomerate and the resulting yields are insufficient. Many new preparation methods were researched in order to solve the problems of agglomeration and yield. Secondly, the application of MXene-based materials in gas sensors was discussed. MXene is often regarded as a flexible gas sensor, and the detection of ppb-level acetone at room temperature was observed for the first time. After the formation of composite materials, the increasing interlayer spacing and the specific surface area increased the number of active sites of gas adsorption and the gas sensitivity performance improved. Moreover, this paper discusses the gas-sensing mechanism of MXene. The gas-sensing mechanism of metallic MXene is affected by the expansion of the lamellae and will be doped with H2O and oxygen during the etching process in order to become a p-type semiconductor. A p-n heterojunction and a Schottky barrier forms due to combinations with other semiconductors; thus, the gas sensitivities of composite materials are regulated and controlled by them. Although there are only several reports on the application of MXene materials to gas sensors, MXene and its composite materials are expected to become materials that can effectively detect gases at room temperature, especially for the detection of NH3 and VOC gas. Finally, the challenges and opportunities of MXene as a gas sensor are discussed.
Collapse
|
92
|
Fu X, Yang H, Li Z, Liu NC, Lee PS, Li K, Li S, Ding M, Ho JS, Li YCE, Lee IC, Chen PY. Cation-Induced Assembly of Conductive MXene Fibers for Wearable Heater, Wireless Communication, and Stem Cell Differentiation. ACS Biomater Sci Eng 2021; 9:2129-2139. [PMID: 34297522 DOI: 10.1021/acsbiomaterials.1c00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emerging wearable electronics, wireless communication, and tissue engineering require the development of conductive fiber-shaped electrodes and biointerfaces. Ti3C2Tx MXene nanosheets serve as promising building block units for the construction of highly conductive fibers with integrated functionalities, yet a facile and scalable fabrication scheme is highly required. Herein, a cation-induced assembly process is developed for the scalable fabrication of conductive fibers with MXene sheaths and alginate cores (abbreviated as MXene@A). The fabrication scheme of MXene@A fibers includes the fast extrusion of alginate fibers followed by electrostatic assembly of MXene nanosheets, enabling high-speed fiber production. When multiple fabrication parameters are optimized, the MXene@A fibers exhibit a superior electrical conductivity of 1083 S cm-1, which can be integrated as Joule heaters into textiles for wearable thermal management. By triggering reversible de/hydration of alginate cores upon heating, the MXene@A fibers can be repeatedly contracted and generate large contraction stress that is >40 times higher than the ones of mammalian skeletal muscle. Furthermore, the MXene@A springs demonstrate large contraction strains up to 65.5% and are then fabricated into a reconfigurable dipole antenna to wirelessly monitor the surrounding heat sources. In the end, with the biocompatibility of MXene nanosheets, the MXene@A fibers enable the guidance of neural stem/progenitor cells differentiation and the promotion of neurite outgrowth. With a cation-induced assembly process, our multifunctional MXene@A fibers exhibit high scalability for future manufacturing and hold the prospect to inspire other applications.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Haitao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhipeng Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nien-Che Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Pei-Shan Lee
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Kerui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shuo Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Meng Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - John S Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
93
|
Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. SMALL METHODS 2021; 5:e2100409. [PMID: 34927986 DOI: 10.1002/smtd.202100409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Indexed: 05/27/2023]
Abstract
With the advent of the era of intelligent manufacturing, sensors, with various detection objects, have set off a wave of enthusiasm and reached new heights in medical treatment, intelligent industry, daily life, and so on. MXene, as an emerging family of 2D transition metal carbides/nitrides, possesses impressive electrical conductivity, outstanding structural controllability, and satisfying universality with other substrates. Consequently, MXene-based sensors with various functions show a booming growth based on great research potential of MXene. To promote the orderly and efficient development of MXene application in sensors, and further accelerate market-scale application of ideal sensors, in this review, a full range research effort on current MXene-based sensors is summarized. Starting with various synthesis methods of the raw material MXene, a comprehensive summary work along with 1D, 2D, or 3D MXene-based sensors on most recent works is put forward, including the preparation method, characteristic structure, and potential sensing application of each type of MXene-based composite sensors. Ultimately, insights of the opportunities and challenges on the strength of the current reported MXene-based sensor are given.
Collapse
Affiliation(s)
- Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Xueyao Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Weiwei Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| |
Collapse
|
94
|
Cheng B, Wu P. Scalable Fabrication of Kevlar/Ti 3C 2T x MXene Intelligent Wearable Fabrics with Multiple Sensory Capabilities. ACS NANO 2021; 15:8676-8685. [PMID: 33978397 DOI: 10.1021/acsnano.1c00749] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fiber-based wearable electronics are highly desirable for wearable devices that are expected to be lightweight, easily prepared, durable, flexible, washable, and conformable. However, developing fiber-based fabric electronics to simulate human perceptual systems or even transcend the sensory capabilities of natural creatures is still a pivotal challenge. Herein, we present a Kevlar/MXene (KM) intelligent wearable fabric with multiple sensory capabilities using an ingenious strategy of continuous wet-spinning. The KM fibers can be washed, knitted, sewed, and fabricated into smart KM fabric sensory systems. An intelligent KM sensory mask is prepared to monitor human breathing in time to detect respiratory problems with high accuracy and portability. It provides an important reference for judging diseases and achieving remote diagnosis. Additionally, a smart temperature-responsive sensory glove is developed to help people make proper behavioral prejudgments and prevent potential injuries by sensing surrounding hazards beforehand. Moreover, this sensory system allows soft robotics to make a rough identification about the basic properties of unknown liquid molecules. Overall, by the virtue of the ultrafast responsiveness (90 ms), resilience (110 ms), and ultrasensitive capability in pressure responding, this KM sensory system offers a gentle approach for wireless detection in information encryption, transmission, and preservation by touching the sensory system with variable pressing time on the basis of the International Morse code principles, establishing a competitive and promising candidate for next generation wearable flexible fabric electronics.
Collapse
Affiliation(s)
- Baochang Cheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
95
|
Tan D, Jiang C, Cao X, Sun N, Li Q, Bi S, Song J. Recent advances in MXene-based force sensors: a mini-review. RSC Adv 2021; 11:19169-19184. [PMID: 35478618 PMCID: PMC9033571 DOI: 10.1039/d1ra02857j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
As an emerging two-dimensional (2D) material, MXene has excellent conductivity and abundant surface functional groups. Its unique layered structure, large surface area, and prominent hydrophilicity show remarkable performances, which allow abundant possibilities to work as the sensing element alone or combined with other auxiliary materials. As a senior member of MXenes, Ti3C2Tx has shown great potential in the development of force sensors. The research development of force sensors based on Ti3C2Tx MXene is reviewed in this paper, presenting the advanced development of force sensors in various forms and summaring their current preparation strategies and characteristics. In addition, the corresponding challenges and prospects of the MXene-based sensors are also discussed for future research. As an emerging two-dimensional (2D) material, MXene has excellent conductivity and abundant surface functional groups.![]()
Collapse
Affiliation(s)
- Dongchen Tan
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Chengming Jiang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Xuguang Cao
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Nan Sun
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Qikun Li
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Sheng Bi
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| | - Jinhui Song
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
96
|
Sun Y, Li Y. Potential environmental applications of MXenes: A critical review. CHEMOSPHERE 2021; 271:129578. [PMID: 33450420 DOI: 10.1016/j.chemosphere.2021.129578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Various environmental pollutants (e.g., air, water and solid pollutants) are discharged into environments with the rapid development of industrializations, which is presently at the forefront of global attention. The high efficient removal of these environmental pollutants is of important concern due to their potential threat to human health and eco-diversity. Advanced nanomaterials may play an important role in the elimination of pollutants from environmental media. MXenes as the new intriguing class of graphene-like 2D transition metal carbides and/or carbonitrides have been widely used in energy storage, environmental remediation benefitting from exceptional structural properties such as highly active sites, high chemical stability, hydrophilicity, large interlayer spacing, huge specific surface area, superior sorption-reduction capacity. However, the comprehensive investigation concerning the removal of various environmental pollutants on MXenes is yet not available up to date. In this review, we summarized the synthesis and properties of MXenes to demonstrate the key roles in ameliorating their adsorption performance; then the recent advances and achievements in environmental application of MXenes on the removal of gases, organics, heavy metals and radionuclides were comprehensively reviewed in details; Finally, the formidable challenges and further perspectives regarding utilizing MXene in environmental remediation were proposed. Hopefully, this review can provide the useful information for environmental scientists and material engineers on designing versatile MXenes in actual environmental applications.
Collapse
Affiliation(s)
- Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Ying Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
97
|
Guo X, Ding Y, Kuang D, Wu Z, Sun X, Du B, Liang C, Wu Y, Qu W, Xiong L, He Y. Enhanced ammonia sensing performance based on MXene-Ti 3C 2T x multilayer nanoflakes functionalized by tungsten trioxide nanoparticles. J Colloid Interface Sci 2021; 595:6-14. [PMID: 33813226 DOI: 10.1016/j.jcis.2021.03.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Low-power consumption and high sensitivity are highly desirable for a vast range of NH3 sensing applications. As a new type of two-dimension (2D) material, Ti3C2Tx is extensively studied for room temperature NH3 sensors recently. However, the Ti3C2Tx MXene based gas sensors suffer mainly from low sensitivity. Herein, we report a sensitive Ti3C2Tx/WO3 composite resistive sensor for NH3 detection. The Ti3C2Tx/WO3 composite consisting of WO3 nanoparticles anchored on Ti3C2Tx nanoflakes were synthesized successfully with a facile ultra-sonication technique. The composite sensor with optimized components exhibits a high sensitivity of 22.3% for 1 ppm NH3 at room temperature, which is 15.4 times higher than the pure Ti3C2Tx sensor. Furthermore, the composite sensor has excellent reproducibility, good long-term stability, and high selectivity to NH3. The relative humidity influence on NH3 gas sensing properties of the sensors was systematically studied. This research provides an efficient route for the preparation of novel MXene-based sensitive materials for high-performance NH3 sensors.
Collapse
Affiliation(s)
- Xuezheng Guo
- State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yanqiao Ding
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Delin Kuang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhilin Wu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xia Sun
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Bingsheng Du
- State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Chengyao Liang
- State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yingjie Wu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Weijie Qu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Lian Xiong
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
98
|
Pei Y, Zhang X, Hui Z, Zhou J, Huang X, Sun G, Huang W. Ti 3C 2T X MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS NANO 2021; 15:3996-4017. [PMID: 33705113 DOI: 10.1021/acsnano.1c00248] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sensors are becoming increasingly significant in our daily life because of the rapid development in electronic and information technologies, including Internet of Things, wearable electronics, home automation, intelligent industry, etc. There is no doubt that their performances are primarily determined by the sensing materials. Among all potential candidates, layered nanomaterials with two-dimensional (2D) planar structure have numerous superior properties to their bulk counterparts which are suitable for building various high-performance sensors. As an emerging 2D material, MXenes possess several advantageous features of adjustable surface properties, tunable bandgap, and excellent mechanical strength, making them attractive in various applications. Herein, we particularly focus on the recent research progress in MXene-based sensors, discuss the merits of MXenes and their derivatives as sensing materials for collecting various signals, and try to elucidate the design principles and working mechanisms of the corresponding MXene-based sensors, including strain/stress sensors, gas sensors, electrochemical sensors, optical sensors, and humidity sensors. In the end, we analyze the main challenges and future outlook of MXene-based materials in sensor applications.
Collapse
Affiliation(s)
- Yangyang Pei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Xiaoli Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Zengyu Hui
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Gengzhi Sun
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P.R. China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, P.R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P.R. China
| |
Collapse
|
99
|
Peng T, Sui Z, Huang Z, Xie J, Wen K, Zhang Y, Huang W, Mi W, Peng K, Dai X, Fang X. Point-of-care test system for detection of immunoglobulin-G and -M against nucleocapsid protein and spike glycoprotein of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 331:129415. [PMID: 33519091 DOI: 10.1016/j.snb.2020.129414] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic continues to ravage the world. In epidemic control, dealing with a large number of samples is a huge challenge. In this study, a point-of-care test (POCT) system was successfully developed and applied for rapid and accurate detection of immunoglobulin-G and -M against nucleocapsid protein (anti-N IgG/IgM) and receptor-binding domain in spike glycoprotein (anti-S-RBD IgG/IgM) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Any one of the IgG/IgM found in a sample was identified as positive. The POCT system contains colloidal gold-based lateral flow immunoassay test strips, homemade portable reader, and certified reference materials, which detected anti-N and anti-S-RBD IgG/IgM objectively in serum within 15 min. Receiver operating characteristic curve analysis was used to determine the optimal cutoff values, sensitivity, and specificity. It exhibited equal to or better performances than four approved commercial kits. Results of the system and chemiluminescence immunoassay kit detecting 108 suspicious samples had high consistency with kappa coefficient at 0.804 (P < 0.001). Besides, the levels and alterations of the IgG/IgM in an inpatient were primarily investigated by the POCT system. Those results suggested the POCT system possess the potential to contribute to rapid and accurate serological diagnosis and epidemiological survey of COVID-19.
Collapse
Affiliation(s)
- Tao Peng
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | | | - Jie Xie
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, 100193, Beijing, PR China
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Wenfeng Huang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Wei Mi
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Ke Peng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xinhua Dai
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Xiang Fang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, PR China
| |
Collapse
|
100
|
Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly Electroconductive and Mechanically Strong Ti 3C 2T x MXene Fibers Using a Deformable MXene Gel. ACS NANO 2021; 15:3320-3329. [PMID: 33497182 DOI: 10.1021/acsnano.0c10255] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Self-assembly of two-dimensional MXene sheets is used in various fields to create multiscale structures due to their electrical, mechanical, and chemical properties. In principle, MXene nanosheets are assembled by molecular interactions, including hydrogen bonds, electrostatic interactions, and van der Waals forces. This study describes how MXene colloid nanosheets can form self-supporting MXene hydrogels. Three-dimensional network structures of MXene gels are strengthened by reinforced electrostatic interactions between nanosheets. Stable gel networks are beneficial for fabricating highly aligned fibers because MXene gel can endure structural deformation. During wet spinning of highly concentrated MXene colloids in a coagulation bath, MXene sheets can be transformed into perfectly aligned fibers under a mechanical drawing force. Oriented MXene fibers exhibit a 1.5-fold increase in electrical conductivity (12 504 S cm-1) and Young's modulus (122 GPa) compared with other fibers. The oriented MXene fibers are expected to have widespread applications, including electrical wiring and signal transmission.
Collapse
Affiliation(s)
- Hwansoo Shin
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonsik Eom
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ki Hyun Lee
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woojae Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|