51
|
Mokgautsi N, Kuo YC, Huang YJ, Chen CH, Mukhopadhyay D, Wu ATH, Huang HS. Preclinical Evaluation of a Novel Small Molecule LCC-21 to Suppress Colorectal Cancer Malignancy by Inhibiting Angiogenic and Metastatic Signatures. Cells 2023; 12:cells12020266. [PMID: 36672201 PMCID: PMC9856425 DOI: 10.3390/cells12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, and it frequently metastasizes to the liver and lymph nodes. Despite major advances in treatment modalities, CRC remains a poorly characterized biological malignancy, with high reported cases of deaths globally. Moreover, cancer stem cells (CSCs) and their microenvironment have been widely shown to promote colon cancer development, progression, and metastasis. Therefore, an understanding of the underlying mechanisms that contribute to the maintenance of CSCs and their markers in CRC is crucial in efforts to treat cancer metastasis and develop specific therapeutic targets for augmenting current standard treatments. Herein, we applied computational simulations using bioinformatics to identify potential theranostic markers for CRC. We identified the overexpression of vascular endothelial growth factor-α (VEGFA)/β-catenin/matrix metalloproteinase (MMP)-7/Cluster of Differentiation 44 (CD44) in CRC to be associated with cancer progression, stemness, resistance to therapy, metastasis, and poor clinical outcomes. To further investigate, we explored in silico molecular docking, which revealed potential inhibitory activities of LCC-21 as a potential multitarget small molecule for VEGF-A/CTNNB1/MMP7/CD44 oncogenic signatures, with the highest binding affinities displayed. We validated these finding in vitro and demonstrated that LCC-21 inhibited colony and sphere formation, migration, and invasion, and these results were further confirmed by a Western blot analysis in HCT116 and DLD-1 cells. Thus, the inhibitory effects of LCC-21 on these angiogenic and onco-immunogenic signatures could be of translational relevance as potential CRC biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Hsin Chen
- Division of Colorectal Surgery, Department of Surgery, WanFang Hospital, Taipei Medical University, No. 111 Sec. 3 Xinglong Rd., Wenshan Dist., Taipei 11031, Taiwan
| | | | - Alexander T. H. Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11031, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| |
Collapse
|
52
|
Novel indolotacrine hybrids as acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and molecular docking studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
53
|
Lin CH, Hsieh YS, Sun YC, Huang WH, Chen SL, Weng ZK, Lin TH, Wu YR, Chang KH, Huang HJ, Lee GC, Hsieh-Li HM, Lee-Chen GJ. Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity. Biomol Ther (Seoul) 2023; 31:127-138. [PMID: 35790892 PMCID: PMC9810448 DOI: 10.4062/biomolther.2022.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Shao Hsieh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wun-Han Huang
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-Ling Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Zheng-Kui Weng
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Hsiu Mei Hsieh-Li
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| |
Collapse
|
54
|
Aporphine and isoquinoline derivatives block glioblastoma cell stemness and enhance temozolomide cytotoxicity. Sci Rep 2022; 12:21113. [PMID: 36477472 PMCID: PMC9729571 DOI: 10.1038/s41598-022-25534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common primary malignant brain tumor with limited available therapeutic approaches. Despite improvements in therapeutic options for GBM patients, efforts to develop new successful strategies remain as major unmet medical needs. Based on the cytotoxic properties of aporphine compounds, we evaluated the biological effect of 12 compounds obtained through total synthesis of ( ±)-apomorphine hydrochloride (APO) against GBM cells. The compounds 2,2,2-trifluoro-1-(1-methylene-3,4-dihydroisoquinolin-2(1H)-yl)ethenone (A5) and ( ±)-1-(10,11-dimethoxy-6a,7-dihydro-4H-dibenzo[de,g]quinolin-6(5H)-yl)ethenone (C1) reduced the viability of GBM cells, with 50% inhibitory concentration ranging from 18 to 48 μM in patient-derived GBM cultures. Our data show that APO, A5 or C1 modulate the expression of DNA damage and apoptotic markers, impair 3D-gliomasphere growth and reduce the expression of stemness markers. Potential activity and protein targets of A5, C1 or APO were predicted in silico based on PASS and SEA software. Dopamine receptors (DRD1 and 5), CYP2B6, CYP2C9 and ABCB1, whose transcripts were differentially expressed in the GBM cells, were among the potential A5 or C1 target proteins. Docking analyses (HQSAR and 3D-QSAR) were performed to characterize possible interactions of ABCB1 and CYP2C9 with the compounds. Notably, A5 or C1 treatment, but not temozolomide (TMZ), reduced significantly the levels of extracellular ATP, suggesting ABCB1 negative regulation, which was correlated with stronger cytotoxicity induced by the combination of TMZ with A5 or C1 on GBM cells. Hence, our data reveal a potential therapeutic application of A5 and C1 as cytotoxic agents against GBM cells and predicted molecular networks that can be further exploited to characterize the pharmacological effects of these isoquinoline-containing substances.
Collapse
|
55
|
Shih ML, Lee JC, Cheng SY, Lawal B, Ho CL, Wu CC, Tzeng DTW, Chen JH, Wu ATH. Transcriptomic discovery of a theranostic signature (SERPINE1/MMP3/COL1A1/SPP1) for head and neck squamous cell carcinomas and identification of antrocinol as a candidate drug. Comput Biol Med 2022; 150:106185. [PMID: 37859283 DOI: 10.1016/j.compbiomed.2022.106185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) are prevalent malignancies with a disappointing prognosis, necessitating the search for theranostic biomarkers for better management. Based on a meta-analysis of transcriptomic data containing ten clinical datasets of HNSCC and matched nonmalignant samples, we identified SERPINE1/MMP3/COL1A1/SPP1 as essential hub genes as the potential theranostic biomarkers. Our analysis suggests these hub genes are associated with the extracellular matrix, peptidoglycans, cell migration, wound-healing processes, complement and coagulation cascades, and the AGE-RAGE signaling pathway within the tumor microenvironment. Also, these hub genes were associated with tumor-immune infiltrating cells and immunosuppressive phenotypes of HNSCC. Further investigation of The Cancer Genome Atlas (TCGA) cohorts revealed that these hub genes were associated with staging, metastasis, and poor survival in HNSCC patients. Molecular docking simulations were performed to evaluate binding activities between the hub genes and antrocinol, a novel small-molecule derivative of an anticancer phytochemical antrocin previously discovered by our group. Antrocinol showed high affinities to MMP3 and COL1A1. Notably, antrocinol presented satisfactory drug-like and ADMET properties for therapeutic applications. These results hinted at the potential of antrocinol as an anti-HNSCC candidate via targeting MMP3 and COL1A1. In conclusion, we identified hub genes: SERPINE1/MMP3/COL1A1/SPP1 as potential diagnostic biomarkers and antrocinol as a potential new drug for HNSCC.
Collapse
Affiliation(s)
- Ming-Lang Shih
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, 325, Section 2, Chenggong Road, Taipei, 114, Taiwan
| | - Sheng-Yao Cheng
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, 325, Section 2, Chenggong Road, Taipei, 114, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ching-Liang Ho
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jia-Hong Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 110, Taiwan.
| |
Collapse
|
56
|
Hao Y, Chen M, Othman Y, Xie XQ, Feng Z. Virus-CKB 2.0: Viral-Associated Disease-Specific Chemogenomics Knowledgebase. ACS OMEGA 2022; 7:37476-37484. [PMID: 36312370 PMCID: PMC9609052 DOI: 10.1021/acsomega.2c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Transmissible and infectious viruses can cause large-scale epidemics around the world. This is because the virus can constantly mutate and produce different variants and subvariants to counter existing treatments. Therefore, a variety of treatments are urgently needed to keep up with the mutation of the viruses. To facilitate the research of such treatment, we updated our Virus-CKB 1.0 to Virus-CKB 2.0, which contains 10 kinds of viruses, including enterovirus, dengue virus, hepatitis C virus, Zika virus, herpes simplex virus, Andes orthohantavirus, human immunodeficiency virus, Ebola virus, Lassa virus, influenza virus, coronavirus, and norovirus. To date, Virus-CKB 2.0 archived at least 65 antiviral drugs (such as remdesivir, telaprevir, acyclovir, boceprevir, and nelfinavir) in the market, 178 viral-related targets with 292 available 3D crystal or cryo-EM structures, and 3766 chemical agents reported for these target proteins. Virus-CKB 2.0 is integrated with established tools for target prediction and result visualization; these include HTDocking, TargetHunter, blood-brain barrier (BBB) predictor, Spider Plot, etc. The Virus-CKB 2.0 server is accessible at https://www.cbligand.org/g/virus-ckb. By using the established chemogenomic tools and algorithms and newly developed tools, we can screen FDA-approved drugs and chemical compounds that may bind to these proteins involved in viral-associated disease regulation. If the virus strain mutates and the vaccine loses its effect, we can still screen drugs that can be used to treat the mutated virus in a fleeting time. In some cases, we can even repurpose FDA-approved drugs through Virus-CKB 2.0.
Collapse
Affiliation(s)
| | | | - Yasmin Othman
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical
Sciences and Computational Chemical Genomics Screening Center, School
of Pharmacy; National Center of Excellence for Computational Drug
Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
57
|
Chiu YJ, Lin TH, Chang KH, Lin W, Hsieh-Li HM, Su MT, Chen CM, Sun YC, Lee-Chen GJ. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Aβ-GFP SH-SY5Y cells against Aβ toxicity. Aging (Albany NY) 2022; 14:7568-7586. [PMID: 36170028 PMCID: PMC9550238 DOI: 10.18632/aging.204306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer’s disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aβ toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aβ-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aβ-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood–brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aβ cells, which may shed light on the potential application in therapeutics of AD.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
58
|
Arrué L, Cigna-Méndez A, Barbosa T, Borrego-Muñoz P, Struve-Villalobos S, Oviedo V, Martínez-García C, Sepúlveda-Lara A, Millán N, Márquez Montesinos JCE, Muñoz J, Santana PA, Peña-Varas C, Barreto GE, González J, Ramírez D. New Drug Design Avenues Targeting Alzheimer's Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics 2022; 14:1914. [PMID: 36145662 PMCID: PMC9503559 DOI: 10.3390/pharmaceutics14091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time due to their multifactorial character. Among these pathologies, Alzheimer's disease (AD) is of special relevance, and despite the existence of approved drugs for its treatment, there is still no efficient pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many physiological pathways involved, the most effective approach to modulate more than one of them in a relevant manner and without undesirable consequences is through polypharmacology. In this field, there has been significant progress in recent years in terms of pharmacoinformatics tools that allow the discovery of bioactive molecules with polypharmacological profiles without the need to spend a long time and excessive resources on complex experimental designs, making the drug design and development pipeline more efficient. In this review, we present from different perspectives how pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence and new trends, as well as different databases and software with their main results, emphasizing the importance of coupling wet and dry approaches in drug design and development processes.
Collapse
Affiliation(s)
- Lily Arrué
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile
| | - Alexandra Cigna-Méndez
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paola Borrego-Muñoz
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | - Silvia Struve-Villalobos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Victoria Oviedo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Claudia Martínez-García
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Sepúlveda-Lara
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Natalia Millán
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Juana Muñoz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paula A. Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
59
|
Jang BG, Choi B, Kim S, Lee DS, Lee J, Koh YH, Jo SA, Kim JE, Kang TC, Kim MJ. 2,4-Diacetylphloroglucinol Reduces Beta-Amyloid Production and Secretion by Regulating ADAM10 and Intracellular Trafficking in Cellular and Animal Models of Alzheimer's Disease. Cells 2022; 11:cells11162585. [PMID: 36010661 PMCID: PMC9406471 DOI: 10.3390/cells11162585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
There is currently no effective treatment against Alzheimer’s disease (AD), although many strategies have been applied to reduce beta-amyloid (Aβ) levels. Here, we investigated 2,4-diacetylphloroglucinol (DAPG) effects on Aβ levels and mechanisms of action. DAPG was the most effective phloroglucinol derivative for reducing Aβ levels, without being toxic, in various models including HEK293 cells overexpressing Swedish mutant amyloid precursor protein (APP) (293sw), primary astrocytes isolated from APPsw/PS1dE9 transgenic mice, and after intrahippocampal injection of DAPG in APPsw/PS1dE9 transgenic mice. DAPG-mediated Aβ reduction was associated with increased soluble APPα (sAPPα) levels mediated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) but not ADAM17. ADAM10 inhibition in DAPG-treated cells prevented the effects on sAPPα but only partly on intracellular and secreted Aβ. To identify regulators of sAPPα and Aβ secretion, various inhibitors of intracellular trafficking were administered with DAPG. Brefeldin A (BFA) reversed DAPG-mediated changes in Aβ secretion in 293sw cells, whereas golgicide A (GCA) and BFA were effective in primary astrocytes, indicating a cell type-specific regulation of the trafficking. Moreover, GCA or BFA effects on sAPPα, but not Aβ, levels in primary astrocytes resembled those of ADAM10 inhibition, indicating at least partly independent trafficking pathways for sAPPα and Aβ. In conclusion, DAPG might be a promising drug candidate against AD regulating ADAM10 and intracellular trafficking, but optimizing DAPG ability to cross the BBB will be needed.
Collapse
Affiliation(s)
- Bong-Geum Jang
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Boyoung Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Suyeon Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jisun Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju 28159, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Ji-Eun Kim
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min-Ju Kim
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2523; Fax: +82-33-256-2525
| |
Collapse
|
60
|
Lawal B, Sani S, Onikanni AS, Ibrahim YO, Agboola AR, Lukman HY, Olawale F, Jigam AA, Batiha GES, Babalola SB, Mostafa-Hedeab G, Lima CMG, Wu ATH, Huang HS, Conte-Junior CA. Preclinical anti-inflammatory and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats, and pharmacoinformatics of it major phytoconstituents. Biomed Pharmacother 2022; 152:113196. [PMID: 35667233 DOI: 10.1016/j.biopha.2022.113196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
The quest for novel anti-diabetic medication from medicinal plants is very important since they contain bioactive phytochemicals that offer better activity and safety compared to conventional therapy. In the present study, in vitro, in vivo and in silico approaches were explored to evaluate the anti-inflammatory, antioxidants, and hypoglycemic activities of the crude methanol extract of Azanza garckeana pulp. Our in vitro analysis revealed that the extract contains total phenols (260.80 ± 2.23 mg/100 g) and total flavonoids (10.28 ± 1.29 mg/100 g) contents, and demonstrated dose-dependent in vitro antioxidants activities in; DPPH (IC50 =141.30 ± 1.64 µg/mL), FRAP (IC50 =155.07 ± 1.03 µg/mL), LPO (IC50 =184.96 ± 2.01 µg/mL), and ABTS (IC50 =162.56 ± 1.14 µg/mL) assays; anti-inflammatory activities in: membrane stabilization (IC50 =141.34 ± 0.46 µg/mL), protein denaturation (IC50 =203.61 ± 2.35 µg/mL) and proteinase activities (IC50=f 171.35 ± 1.56 µg/mL) assays; and hypoglycemic activities in: α- amylase (IC50 277.85 ± 2.51 µg/mL), and glucose uptake by yeast cells assays. In vivo analysis revealed that the extract exhibited dose-dependent anti-inflammatory, hypoglycemic activities and improved the weight gain in STZ-induced diabetic rats. In addition, the extract attenuated oxidative stress and increased the activities of SOD, catalase, GSH while depleting the level of LPO in STZ induced diabetic rats. Consequently, the liquid chromatography mass spectrometry (LC-MS) characterization of A. garckeana pulp, revealed the presence of 2-Hexadecen-1-ol,3,7,11,15-tetramethyl-,(2E,7 R,11 R)-, nonyl flavanone, testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone. These compounds were subjected to pharmacoinformatics analysis among which testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone demonstrated the best drug-likeness, pharmacokinetics, and also exhibited potential hypoglycemic and anti-inflammatory properties. Altogether, the present study provides preclinical evidence of the antioxidant, anti-inflammatory and antidiabetic activities of A. garckeana extract suggesting its potential applications for the development of alternative therapy for diabetes and its associated inflammatory condition.
Collapse
Affiliation(s)
- Bashir Lawal
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Saidu Sani
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Federal University Ndufu-Alike Ikwo, P.M.B 1010, Abakaliki, Ebonyi State, Nigeria
| | - Amos S Onikanni
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria; College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taiwan
| | - Yunusa O Ibrahim
- Department of Biochemistry, Federal University of Technology, Minna Nigeria
| | - Abdulhakeem R Agboola
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar Nigeria
| | - Halimat Yusuf Lukman
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Summit University, Offa, PMB 4412, Nigeria
| | - Femi Olawale
- Nano gene and Drug Delivery Group, University of Kwazulu Natal, South Africa
| | - Ali A Jigam
- Department of Biochemistry, Federal University of Technology, Minna Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | | | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudai Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt
| | | | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan; PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
61
|
N-substituted arylhydroxamic acids as acetylcholinesterase reactivators. Chem Biol Interact 2022; 365:110078. [DOI: 10.1016/j.cbi.2022.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
|
62
|
Luteolin-Rich Extract of Thespesia garckeana F. Hoffm. (Snot Apple) Contains Potential Drug-Like Candidates and Modulates Glycemic and Oxidoinflammatory Aberrations in Experimental Animals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1215097. [PMID: 35941904 PMCID: PMC9356851 DOI: 10.1155/2022/1215097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022]
Abstract
The present study evaluated the polyphenolic contents and hypoglycemic, antioxidant, and anti-inflammatory effects of the diethyl ether fraction of Thespesia garckeana using various in vitro and in vivo models. Total phenol and flavonoid contents of the extract were
and
mg/100 g dry weight, respectively. The extract exhibited in vitro antioxidant activities against DPPH, FRAP, LPO, and ABTS with respective half-maximal inhibitory concentration (IC50) values of
,
,
, and
μg/mL. In vitro anti-inflammatory studies using membrane stabilization, protein denaturation, and proteinase activities revealed the effectiveness of the extract with respective IC50 values of
,
, and
μg/mL, while in vitro hypoglycemic analysis of the extract revealed inhibition of α-amylase (IC50
μg/mL) and enhancement of glucose uptake by yeast cells. Interestingly, the extract demonstrated in vivo hypoglycemic and anti-inflammatory effects in streptozotocin- (STZ-) induced diabetic and xylene-induced ear swelling models, respectively. In addition, the extract improved insulin secretion, attenuated pancreatic tissue distortion and oxidative stress, and increased the activities of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH), while reducing the concentration of LPO in the diabetic rats. A high-performance liquid chromatography (HPLC) analysis identified the presence of catechin (
ppm), rutin (
ppm), myricetin, apigenin (
ppm), and luteolin (15.09 ppm) with respective retention times (RTs) of 13.64, 24.269, 27.781, 29.58, and 32.23 min, and these were subjected to a pharmacoinformatics analysis, which revealed their drug-likeness and good pharmacokinetic properties. A docking analysis hinted at the potential of luteolin, the most abundant compound in the extract, for targeting glucose-metabolizing enzymes. Thus, the present study provides preclinical insights into the bioactive constituents of T. garckeana, its antioxidant and anti-inflammatory effects, and its potential for the treatment of diabetes.
Collapse
|
63
|
Razali NSC, Lam KW, Rajab NF, A Jamal AR, Kamaluddin NF, Chan KM. Curcumin piperidone derivatives induce anti-proliferative and anti-migratory effects in LN-18 human glioblastoma cells. Sci Rep 2022; 12:13131. [PMID: 35907913 PMCID: PMC9338982 DOI: 10.1038/s41598-022-16274-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
Curcumin has demonstrated potential cytotoxicity across various cell lines despite its poor bioavailability and rapid metabolism. Therefore, our group have synthesized curcuminoid analogues with piperidone derivatives, FLDP-5 and FLDP-8 to overcome these limitations. In this study, the analogues were assessed on LN-18 human glioblastoma cells in comparison to curcumin. Results from cytotoxicity assessment showed that FLDP-5 and FLDP-8 curcuminoid analogues caused death in LN-18 cells in a concentration-dependent manner after 24-h treatment with much lower IC50 values of 2.5 µM and 4 µM respectively, which were more potent compared to curcumin with IC50 of 31 µM. Moreover, a significant increase (p < 0.05) in the level of superoxide anion and hydrogen peroxide upon 2-h and 6-h treatment confirmed the oxidative stress involvement in the cell death process induced by these analogues. These analogues also showed potent anti-migratory effects through inhibition of LN-18 cells' migration and invasion. In addition, cell cycle analysis showed that these analogues are capable of inducing significant (p < 0.05) S-phase cell cycle arrest during the 24-h treatment as compared to untreated, which explained the reduced proliferation indicated by MTT assay. In conclusion, these curcuminoid analogues exhibit potent anti-cancer effects with anti-proliferative and anti-migratory properties towards LN-18 cells as compared to curcumin.
Collapse
Affiliation(s)
- Nur Syahirah Che Razali
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Kok Wai Lam
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - A Rahman A Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, 56000, Cheras, Malaysia
| | - Nurul Farahana Kamaluddin
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia.
- Institute for Environmental and Development, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
64
|
Lawal B, Kuo YC, Rachmawati Sumitra M, Wu ATH, Huang HS. Identification of a novel immune-inflammatory signature of COVID-19 infections, and evaluation of pharmacokinetics and therapeutic potential of RXn-02, a novel small-molecule derivative of quinolone. Comput Biol Med 2022; 148:105814. [PMID: 35841781 PMCID: PMC9272679 DOI: 10.1016/j.compbiomed.2022.105814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic and respiratory infection that has enormous damage to human lives and economies. It is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a non-pair-stranded positive-sense RNA virus. With increasing global threats and few therapeutic options, the discovery of new potential drug targets and the development of new therapy candidates against COVID-19 are urgently needed. Based on these premises, we conducted an analysis of transcriptomic datasets from SARS-CoV-2-infected patients and identified several SARS-CoV-2 infection signatures, among which TNFRSF5/PTPRC/IDO1/MKI67 appeared to be the most pertinent signature. Subsequent integrated bioinformatics analysis identified the signature as an important immunomodulatory and inflammatory signature of SARS-CoV-2 infection. It was suggested that this gene signature mediates the interplay of immune and immunosuppressive cells leading to infiltration-exclusion of effector memory T cells in the lungs, which is of translation relevance for developing novel SARS-CoV-2 drug and vaccine candidates. Consequently, we designed and synthesized a novel small-molecule quinoline derivative (RXn-02) and evaluated its pharmacokinetics in rats, revealing a peak plasma concentration (Cmax) and time to Cmax (Tmax) of 1.756 μg/mL and 0.6 h, respectively. Values of the area under the curve (AUC) (0–24 h) and AUC (0 h∼∞) were 18.90 and 71.20 μg h/mL, respectively. Drug absorption from the various regional segments revealed that the duodenum (49.84%), jejunum (47.885%), cecum (1.82%), and ileum (0.32%) were prime sites of RXn-02 absorption. No absorption was detected from the stomach, and the least was from the colon (0.19%). Interestingly, RXn-02 exhibited in vitro antiproliferative activities against hub gene hyper-expressing cell lines; A549 (IC50 = 48.1 μM), K-562 (IC50 = 100 μM), and MCF7 (IC50 = 0.047 μM) and against five cell lines originating from human lungs (IC50 range of 33.2–69.5 μM). In addition, RXn-02 exhibited high binding efficacies for targeting the TNFRSF5/PTPRC/IDO1/MK signature with binding affinities (ΔG) of −6.6, −6.0, −9.9, −6.9 kcal/mol respectively. In conclusion, our study identified a novel signature of SARS-CoV-2 pathogenesis. RXn-02 is a drug-like candidate with good in vivo pharmacokinetics and hence possesses great translational relevance worthy of further preclinical and clinical investigations for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, 11490, Taiwan; PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
65
|
Ceni C, Benko MJ, Mohamed KA, Poli G, Di Stefano M, Tuccinardi T, Digiacomo M, Valoti M, Laprairie RB, Macchia M, Bertini S. Novel Potent and Selective Agonists of the GPR55 Receptor Based on the 3-Benzylquinolin-2(1H)-One Scaffold. Pharmaceuticals (Basel) 2022; 15:ph15070768. [PMID: 35890067 PMCID: PMC9320067 DOI: 10.3390/ph15070768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55′s involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure–activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Costanza Ceni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Michael J Benko
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Miriana Di Stefano
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| |
Collapse
|
66
|
Lawal B, Wu ATH, Huang HS. Leveraging Bulk and Single-Cell RNA Sequencing Data of NSCLC Tumor Microenvironment and Therapeutic Potential of NLOC-15A, A Novel Multi-Target Small Molecule. Front Immunol 2022; 13:872470. [PMID: 35655775 PMCID: PMC9152008 DOI: 10.3389/fimmu.2022.872470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lung cancer poses a serious threat to human health and has recently been tagged the most common malignant disease with the highest incidence and mortality rate. Although epidermal growth factor (EGFR)-tyrosine kinase inhibitors (TKIs) have significantly improved the prognosis of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations, patients often develop resistance to these drugs. There is therefore a need to identify new drug candidates with multitarget potential for treating NSCLC. We hereby provide preclinical evidence of the therapeutic efficacy of NLOC-015A a multitarget small-molecule inhibitor of EGFR/mitogen-activated protein (MAP) kinase kinase 1 (MAP2K1)/mammalian target of rapamycin (mTOR)/yes-associated protein 1 (YAP1) for the treatment NSCLC. Our multi-omics analysis of clinical data from cohorts of NSCLC revealed that dysregulation of EGFR/MAP2K1/mTOR/YAP1 signaling pathways was associated with the progression, therapeutic resistance, immune-invasive phenotypes, and worse prognoses of NSCLC patients. Analysis of single-cell RNA sequencing datasets revealed that MAP2K1, mTOR, YAP1 and EGFR were predominantly located on monocytes/macrophages, Treg and exhaustive CD8 T cell, and are involved in M2 polarization within the TME of patients with primary and metastatic NSCLC which further implied gene’s role in remodeling the tumor immune microenvironment. A molecular-docking analysis revealed that NLOC-015A bound to YAP1, EGFR, MAP kinase/extracellular signal-related kinase kinase 1 (MEK1), and mTOR with strong binding efficacies ranging –8.4 to –9.50 kcal/mol. Interestingly, compared to osimertinib, NLOC-015 bound with higher efficacy to the tyrosine kinase (TK) domains of both T790M and T790M/C797S mutant-bearing EGFR. Our in vitro studies and sequencing analysis revealed that NLOC-015A inhibited the proliferation and oncogenic phenotypes of NSCLC cell lines with concomitant downregulation of expression levels of mTOR, EGFR, YAP1, and MEK1 signaling network. We, therefore, suggest that NLOC-015A might represent a new candidate for treating NSCLC via acting as a multitarget inhibitor of EGFR, mTOR/NF-κB, YAP1, MEK1 in NSCLC.
Collapse
Affiliation(s)
- Bashir Lawal
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
67
|
Wang C, Wang P, Chen W, Bai Y. Mechanisms of Gynostemma pentaphyllum against non-alcoholic fibre liver disease based on network pharmacology and molecular docking. J Cell Mol Med 2022; 26:3760-3771. [PMID: 35665440 PMCID: PMC9258700 DOI: 10.1111/jcmm.17410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/14/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
As a progressive chronic disease, the effective treatment for non‐alcoholic fibre liver disease (NAFLD) has not yet been thoroughly explored at the moment. The widespread use of Gynostemma pentaphyllum (Thunb) for its anti‐insulin resistance effect indicates that potential therapeutic value may be found in Thunb for NAFLD. Hence, this research aims to discover the latent mechanism of Thunb for NAFLD treatment. To achieve the goal of discovering the latent mechanism of Thunb for NAFLD treatment, molecular docking strategy integrated a network phamacology was adopted in the exploration. We acquire Thunb compounds with activeness from TCMSP database. We collect the putative targets of Thunb and NAFLD to generate the network. Key targets and mechanism are screened by PPI analysis, GO and KEGG pathway enrichment analyses. Molecular docking simulation is introduced into the study as assessment method. Through network analysis and virtual screening based on molecular docking, 2 targets (AKT 1 and GSK3B) are identified as key therapeutic targets with satisfying binding affinity. Main mechanism is believed to be the biological process and pathway related to insulin resistance according to the enrichment analyses outcomes. Particularly, the P13K–AKT signalling pathway is recognized as a key pathway of the mechanism. In conclusion, the study shows that Thunb could be a potential treatment against NAFLD and may suppress insulin resistance through the P13K–AKT signalling pathway. The result of the exploration provides a novel perspective for approaching experimental exploration.
Collapse
Affiliation(s)
- Cunzhi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Pengrui Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Wenbin Chen
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yanyan Bai
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
68
|
Markov AV, Ilyina AA, Salomatina OV, Sen’kova AV, Okhina AA, Rogachev AD, Salakhutdinov NF, Zenkova MA. Novel Soloxolone Amides as Potent Anti-Glioblastoma Candidates: Design, Synthesis, In Silico Analysis and Biological Activities In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15050603. [PMID: 35631429 PMCID: PMC9145754 DOI: 10.3390/ph15050603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
The modification of natural or semisynthetic triterpenoids with amines can be explored as a promising strategy for improving their pharmacological properties. Here, we report the design and synthesis of 11 novel amide derivatives of soloxolone methyl (SM), a cyano enone-bearing derivative of 18βH-glycyrrhetinic acid. Analysis of their bioactivities in vitro and in silico revealed their high toxicity against a panel of tumor cells (average IC50(24 h) = 3.7 µM) and showed that the formation of amide moieties at the C-30 position of soloxolone did not enhance the cytotoxicity of derivatives toward tumor cells compared to SM, though it can impart an ability to pass across the blood–brain barrier. Further HPLC–MS/MS and mechanistic studies verified significant brain accumulation of hit compound 12 (soloxolone tryptamide) in a murine model and showed its high anti-glioblastoma potential. It was found that 12 induced ROS-dependent and autophagy-independent death of U87 and U118 glioblastoma cells via mitochondrial apoptosis and effectively blocked their clonogenicity, motility and capacity to form vessel-like structures. Further in vivo study demonstrated that intraperitoneal injection of 12 at a dosage of 20 mg/kg effectively inhibited the growth of U87 glioblastoma in a mouse xenograft model, reducing the proliferative potential of the tumor and leading to a depletion of collagen content and normalization of blood vessels in tumor tissue. The obtained results clearly demonstrate that 12 can be considered as a promising leading compound for drug development in glioblastoma treatment.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Anna A. Ilyina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (A.A.O.); (A.D.R.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
| | - Alina A. Okhina
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (A.A.O.); (A.D.R.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Artem D. Rogachev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (A.A.O.); (A.D.R.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.A.I.); (O.V.S.); (A.V.S.); (M.A.Z.)
| |
Collapse
|
69
|
Kryl'skii ED, Chupandina EE, Popova TN, Shikhaliev KS, Medvedeva SM, Verevkin AN, Popov SS, Mittova VO. 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline exerts a neuroprotective effect and normalises redox homeostasis in a rat model of cerebral ischemia/reperfusion. Metab Brain Dis 2022; 37:1271-1282. [PMID: 35201554 DOI: 10.1007/s11011-022-00928-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Ischemia is one of the main etiological factors of stroke and is associated with the development of energy deficiency, oxidative stress, and inflammation. An abrupt restoration of blood flow, called reperfusion, can worsen the effects of ischemia. In our study, we assessed the neuroprotective potential of 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) in cerebral ischemia/reperfusion (CIR) in rats. Wistar rats, divided into 4 groups were used in the study: sham-operated animals; animals with CIR caused by occlusion of the common carotid arteries and subsequent removal of the occlusions; rats treated with BHDQ at a dose of 50 mg/kg in the presence of pathology; sham-operated animals treated with BHDQ. The analysis of the state of energy metabolism in the brain, the level of the S100B protein and the histological assessment of the brain tissue were carried out. The antioxidant potential of BHDQ was assessed by measuring biochemiluminescence parameters, analysing the level of 8-isoprostane, products of lipid and protein oxidation, concentration of α-tocopherol and citrate, and aconitate hydratase activity during CIR in rats. A study of the effect of BHDQ on the regulation of the enzymatic antioxidant system and the inflammatory processes was performed. We demonstrated that BHDQ has a neuroprotective effect in CIR, reducing histopathological changes in the brain, normalizing pyruvate and lactate concentrations, and the transcripts level of Hif-1α gene. The positive effect of BHDQ was probably due to its antioxidant and anti-inflammatory activity, manifested in a decrease in the parameters of the oxidative stress, decreased mRNA of proinflammatory cytokines and NF-κB factor genes. In addition, BHDQ reduced the load on antioxidant protection enzymes, contributing to a change in their activities, decreased the level of antioxidant gene transcripts and expression of Nrf2 and Foxo1 factors toward control. Thus, BHDQ exhibited a neuroprotective effect due to a decrease in the level of oxidative stress and inflammation and the normalization of redox homeostasis on CIR in rats.
Collapse
Affiliation(s)
- E D Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia.
| | - E E Chupandina
- Department of Pathological Anatomy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - T N Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - Kh S Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - S M Medvedeva
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - A N Verevkin
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - S S Popov
- Department of Organization of Pharmaceutical Business, Clinical Pharmacy and Pharmacognosy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - V O Mittova
- Department of Clinical laboratory Diagnostics, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| |
Collapse
|
70
|
D'Agostino I, Mathew GE, Angelini P, Venanzoni R, Angeles Flores G, Angeli A, Carradori S, Marinacci B, Menghini L, Abdelgawad MA, Ghoneim MM, Mathew B, Supuran CT. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem 2022; 37:986-993. [PMID: 35322729 PMCID: PMC8956313 DOI: 10.1080/14756366.2022.2055009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1–9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1–9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
71
|
Evaluation of Blood-Brain-Barrier Permeability, Neurotoxicity, and Potential Cognitive Impairment by Pseudomonas aeruginosa’s Virulence Factor Pyocyanin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3060579. [PMID: 35340215 PMCID: PMC8948603 DOI: 10.1155/2022/3060579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 12/04/2022]
Abstract
Pyocyanin (PCN) is a redox-active secondary metabolite produced by Pseudomonas aeruginosa as its primary virulence factor. Several studies have reported the cytotoxic potential of PCN and its role during infection establishment and progression. Considering its ability to diffuse through biological membranes, it is hypothesized that PCN can gain entry into the brain and induce oxidative stress across the blood-brain barrier (BBB), ultimately contributing towards reactive oxygen species (ROS) mediated neurodegeneration. Potential roles of PCN in the central nervous system (CNS) have never been evaluated, hence the study aimed to evaluate PCN's probable penetration into CNS through blood-brain barrier (BBB) using both in silico and in vivo (Balb/c mice) approaches and the impact of ROS generation via commonly used tests: Morris water maze test, novel object recognition, elevated plus maze test, and tail suspension test. Furthermore, evidence for ROS generation in the brain was assessed using glutathione S-transferase assay. PCN demonstrated BBB permeability albeit in minute quantities. A significant hike was observed in ROS generation (P < 0.0001) along with changes in behavior indicating PCN permeability across BBB and potentially affecting cognitive functions. This is the first study exploring the potential role of PCN in influencing the cognitive functions of test animals.
Collapse
|
72
|
Exploring the pharmacological components and effective mechanism of Mori Folium against periodontitis using network pharmacology and molecular docking. Arch Oral Biol 2022; 139:105391. [DOI: 10.1016/j.archoralbio.2022.105391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
|
73
|
Taheri M, Aslani S, Ghafouri H, Mohammadi A, Akbary Moghaddam V, Moradi N, Naeimi H. Synthesis, in vitro biological evaluation and molecular modelling of new 2-chloro-3-hydrazinopyrazine derivatives as potent acetylcholinesterase inhibitors on PC12 cells. BMC Chem 2022; 16:7. [PMID: 35193649 PMCID: PMC8864858 DOI: 10.1186/s13065-022-00799-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background The loss of cholinergic neurotransmission in Alzheimer's disease (AD) patients' brain is accompanied by a reduced concentration of Acetylcholine (ACh) within synaptic clefts. Thus, the use of acetylcholinesterase inhibitors (AChEIs) to block the cholinergic degradation of ACh is a promising approach for AD treatment. In the present study, a series of 2-chloro-3-hydrazinopyrazine derivatives (CHP1-5) were designed, synthesized, and biologically evaluated as potential multifunctional anti-AD agents. Methods In addition, the chemical structures and purity of the synthesized compounds were elucidated through using IR, 1H and 13C NMR, and elemental analyses. Further, the intended compounds were assessed in vitro for their AChE inhibitory and neuroprotective effects. Furthermore, DPPH, FRAP and ABTS assays were utilized to determine their antioxidant activity. The statistical analysis was performed using one-way ANOVA. Results Based on the results, CHP4 and CHP5 exhibited strong AChE inhibitory effects with the IC50 values of 3.76 and 4.2 µM compared to the donepezil (0.53 µM), respectively. The study examined the effect and molecular mechanism of CHP4 on the Ab1–42-induced cytotoxicity in differentiated PC12 cells. At concentrations of 0–100 μM, CHP4 was non-toxic in PC12. Additionally, Ab1–42 significantly stimulated tau hyperphosphorylation and induced differentiated PC12 cell death. Further, CHP4 resulted in diminishing the Ab1–42-induced toxicity in PC12 cell significantly. CHP4 at 30 μM concentration significantly increased the Ab1–42-induced HSP70 expression and decreased tau hyperphosphorylation. Conclusions According to the results of our studies CHP4 can be considered as safe and efficient AChEI and employed as a potential multifunctional anti-AD agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00799-w.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samira Aslani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran. .,Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Nastarn Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hananeh Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
74
|
Spînu N, Cronin MT, Lao J, Bal-Price A, Campia I, Enoch SJ, Madden JC, Mora Lagares L, Novič M, Pamies D, Scholz S, Villeneuve DL, Worth AP. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 21:100206. [PMID: 35211661 PMCID: PMC8857173 DOI: 10.1016/j.comtox.2021.100206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
In a century where toxicology and chemical risk assessment are embracing alternative methods to animal testing, there is an opportunity to understand the causal factors of neurodevelopmental disorders such as learning and memory disabilities in children, as a foundation to predict adverse effects. New testing paradigms, along with the advances in probabilistic modelling, can help with the formulation of mechanistically-driven hypotheses on how exposure to environmental chemicals could potentially lead to developmental neurotoxicity (DNT). This investigation aimed to develop a Bayesian hierarchical model of a simplified AOP network for DNT. The model predicted the probability that a compound induces each of three selected common key events (CKEs) of the simplified AOP network and the adverse outcome (AO) of DNT, taking into account correlations and causal relations informed by the key event relationships (KERs). A dataset of 88 compounds representing pharmaceuticals, industrial chemicals and pesticides was compiled including physicochemical properties as well as in silico and in vitro information. The Bayesian model was able to predict DNT potential with an accuracy of 76%, classifying the compounds into low, medium or high probability classes. The modelling workflow achieved three further goals: it dealt with missing values; accommodated unbalanced and correlated data; and followed the structure of a directed acyclic graph (DAG) to simulate the simplified AOP network. Overall, the model demonstrated the utility of Bayesian hierarchical modelling for the development of quantitative AOP (qAOP) models and for informing the use of new approach methodologies (NAMs) in chemical risk assessment.
Collapse
Key Words
- ADMET, Absorption, distribution, metabolism, excretion, and toxicity
- AO, Adverse outcome
- AOP, Adverse outcome pathway
- Adverse Outcome Pathway
- BBB, Blood-brain-barrier
- BDNF, Brain-derived neurotrophic factor
- Bayesian hierarchical model
- CAS RN, Chemical Abstracts Service Registry Number
- CI, Credible interval CKE, Common key event
- CNS, Central nervous system
- CRA, Chemical risk assessment
- Common Key Event
- DAG, Directed acyclic graph
- DNT, Developmental neurotoxicity
- DTXSID, The US EPA Comptox Chemical Dashboard substance identifier
- Developmental Neurotoxicity
- EC, Effective concentration
- HDI, Highest density interval
- IATA, Integrated Approaches to Testing and Assessment
- KE, Key event
- KER, Key event relationship
- LDH, Lactate dehydrogenase
- MCMC, Markov chain Monte Carlo
- MIE, Molecular initiating event
- NAM, New approach methodology
- New Approach Methodology
- OECD, Organisation for Economic Cooperation and Development
- P-gp, P-glycoprotein
- PBK, Physiologically-based kinetic
- QSAR, Quantitative structure-activity relationship
- SMILES, Simplified molecular input line entry system
- qAOP, Quantitative adverse outcome pathway
Collapse
Affiliation(s)
- Nicoleta Spînu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Junpeng Lao
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Steven J. Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Judith C. Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Liadys Mora Lagares
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Marjana Novič
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Vaud, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Stefan Scholz
- Helmholtz-Centre for Environmental Research − UFZ, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, MN, USA
| | - Andrew P. Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
75
|
Pascual Alonso I, Valiente PA, Valdés-Tresanco ME, Arrebola Y, Almeida García F, Díaz L, García G, Guirola O, Pastor D, Bergado G, Sánchez B, Charli JL. Discovery of tight-binding competitive inhibitors of dipeptidyl peptidase IV. Int J Biol Macromol 2022; 196:120-130. [PMID: 34920066 DOI: 10.1016/j.ijbiomac.2021.12.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) is an abundant serine aminopeptidase that preferentially cleaves N-terminal Xaa-Pro or Xaa-Ala dipeptides from oligopeptides. Inhibitors of DPP-IV activity are used for treating type 2 diabetes mellitus and other diseases. DPP-IV is also involved in tumor progression. We identified four new non-peptide tight-binding competitive inhibitors of porcine DPP-IV by virtual screening and enzymatic assays. Molecular docking simulations supported the competitive behavior, and the selectivity of one of the compounds in the DPP-IV family. Since three of these inhibitors are also aminopeptidase N (APN) inhibitors, we tested their impact on APN+/DPP-IV+ and DPP-IV+ human tumor cells' viability. Using kinetic assays, we determined that HL-60 tumor cells express both APN and DPP-IV activities and that MDA-MB-231 tumor cells express DPP-IV activity. The inhibitors had a slight inhibitory effect on human HEK-293 cell viability but reduced the viability of APN+/DPP-IV+ and DPP-IV+ human tumor cells more potently. Remarkably, the intraperitoneal injection of these compounds inhibited DPP-IV activity in rat brain, liver, and pancreas. In silico studies suggested inhibitors binding to serum albumin contribute to blood-brain barrier crossing. The spectrum of action of some of these compounds may be useful for niche applications.
Collapse
Affiliation(s)
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Canada.
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Yarini Arrebola
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | - Lisset Díaz
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Gabriela García
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Osmany Guirola
- Centro de Ingeniería Genética y Biotecnología, BioCubafarma, Cuba
| | - Daniel Pastor
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
76
|
Li Z, Jiang X, Wang Y, Kim Y. Applied machine learning in Alzheimer's disease research: omics, imaging, and clinical data. Emerg Top Life Sci 2021; 5:765-777. [PMID: 34881778 PMCID: PMC8786302 DOI: 10.1042/etls20210249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) remains a devastating neurodegenerative disease with few preventive or curative treatments available. Modern technology developments of high-throughput omics platforms and imaging equipment provide unprecedented opportunities to study the etiology and progression of this disease. Meanwhile, the vast amount of data from various modalities, such as genetics, proteomics, transcriptomics, and imaging, as well as clinical features impose great challenges in data integration and analysis. Machine learning (ML) methods offer novel techniques to address high dimensional data, integrate data from different sources, model the etiological and clinical heterogeneity, and discover new biomarkers. These directions have the potential to help us better manage the disease progression and develop novel treatment strategies. This mini-review paper summarizes different ML methods that have been applied to study AD using single-platform or multi-modal data. We review the current state of ML applications for five key directions of AD research: disease classification, drug repurposing, subtyping, progression prediction, and biomarker discovery. This summary provides insights about the current research status of ML-based AD research and highlights potential directions for future research.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A
| | - Xiaoqian Jiang
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, U.S.A
| | - Yizhuo Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A
| | - Yejin Kim
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, U.S.A
| |
Collapse
|
77
|
Novel Synthetic Coumarin-Chalcone Derivative (E)-3-(3-(4-(Dimethylamino)Phenyl)Acryloyl)-4-Hydroxy-2 H-Chromen-2-One Activates CREB-Mediated Neuroprotection in A β and Tau Cell Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3058861. [PMID: 34812274 PMCID: PMC8605905 DOI: 10.1155/2021/3058861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Abnormal accumulations of misfolded Aβ and tau proteins are major components of the hallmark plaques and neurofibrillary tangles in the brains of Alzheimer's disease (AD) patients. These abnormal protein deposits cause neurodegeneration through a number of proposed mechanisms, including downregulation of the cAMP-response-element (CRE) binding protein 1 (CREB) signaling pathway. Using CRE-GFP reporter cells, we investigated the effects of three coumarin-chalcone derivatives synthesized in our lab on CREB-mediated gene expression. Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells were used to evaluate these agents for possible antiaggregative, antioxidative, and neuroprotective effects. Blood-brain barrier (BBB) penetration was assessed by pharmacokinetic studies in mice. Of the three tested compounds, (E)-3-(3-(4-(dimethylamino)phenyl)acryloyl)-4-hydroxy-2H-chromen-2-one (LM-021) was observed to increase CREB-mediated gene expression through protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and extracellular signal-regulated kinase (ERK) in CRE-GFP reporter cells. LM-021 exhibited antiaggregative, antioxidative, and neuroprotective effects mediated by the upregulation of CREB phosphorylation and its downstream brain-derived neurotrophic factor and BCL2 apoptosis regulator genes in Aβ-GFP- and ΔK280 tauRD-DsRed-expressing SH-SY5Y cells. Blockage of the PKA, CaMKII, or ERK pathway counteracted the beneficial effects of LM-021. LM-021 also exhibited good BBB penetration ability, with brain to plasma ratio of 5.3%, in in vivo pharmacokinetic assessment. Our results indicate that LM-021 works as a CREB enhancer to reduce Aβ and tau aggregation and provide neuroprotection. These findings suggest the therapeutic potential of LM-021 in treating AD.
Collapse
|
78
|
Mahía A, Peña-Díaz S, Navarro S, José Galano-Frutos J, Pallarés I, Pujols J, Díaz-de-Villegas MD, Gálvez JA, Ventura S, Sancho J. Design, synthesis and structure-activity evaluation of novel 2-pyridone-based inhibitors of α-synuclein aggregation with potentially improved BBB permeability. Bioorg Chem 2021; 117:105472. [PMID: 34775206 DOI: 10.1016/j.bioorg.2021.105472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023]
Abstract
The treatment of Parkinson's disease (PD), the second most common neurodegenerative human disorder, continues to be symptomatic. Development of drugs able to stop or at least slowdown PD progression would benefit several million people worldwide. SynuClean-D is a low molecular weight 2-pyridone-based promising drug candidate that inhibits the aggregation of α-synuclein in human cultured cells and prevents degeneration of dopaminergic neurons in a Caenorhabditis elegans model of PD. Improving SynuClean-D pharmacokinetic/pharmacodynamic properties, performing structure/activity studies and testing its efficacy in mammalian models of PD requires the use of gr-amounts of the compound. However, not enough compound is on sale, and no synthetic route has been reported until now, which hampers the molecule progress towards clinical trials. To circumvent those problems, we describe here an efficient and economical route that enables the synthesis of SynuClean-D with good yields as well as the synthesis of SynuClean-D derivatives. Structure-activity comparison of the new compounds with SynuClean-D reveals the functional groups of the molecule that can be disposed of without activity loss and those that are crucial to interfere with α-synuclein aggregation. Several of the derivatives obtained retain the parent's compound excellent in vitro anti-aggregative activity, without compromising its low toxicity. Computational predictions and preliminary testing indicate that the blood brain barrier (BBB) permeability of SynuClean-D is low. Importantly, several of the newly designed and obtained active derivatives are predicted to display good BBB permeability. The synthetic route developed here will facilitate their synthesis for BBB permeability determination and for efficacy testing in mammalian models of PD.
Collapse
Affiliation(s)
- Alejandro Mahía
- Departamento de Química Orgánica, Facultad de Ciencias, University of Zaragoza, 50009 Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain
| | - Samuel Peña-Díaz
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Susanna Navarro
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Juan José Galano-Frutos
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, 50009 Zaragoza, Spain
| | - Irantzu Pallarés
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Pujols
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María D Díaz-de-Villegas
- Departamento de Química Orgánica, Facultad de Ciencias, University of Zaragoza, 50009 Zaragoza, Spain; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-University of Zaragoza, 50009 Zaragoza, Spain
| | - José A Gálvez
- Departamento de Química Orgánica, Facultad de Ciencias, University of Zaragoza, 50009 Zaragoza, Spain; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-University of Zaragoza, 50009 Zaragoza, Spain.
| | - Salvador Ventura
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; ICREA, 08010 Barcelona, Spain.
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, 50009 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain.
| |
Collapse
|
79
|
Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021; 11:1692. [PMID: 34827690 PMCID: PMC8615418 DOI: 10.3390/biom11111692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari Bd., 020021 Bucharest, Romania
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| |
Collapse
|
80
|
Multi-Target Effects of Novel Synthetic Coumarin Derivatives Protecting Aβ-GFP SH-SY5Y Cells against Aβ Toxicity. Cells 2021; 10:cells10113095. [PMID: 34831318 PMCID: PMC8619673 DOI: 10.3390/cells10113095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease presenting with progressive memory and cognitive impairments. One of the pathogenic mechanisms of AD is attributed to the aggregation of misfolded amyloid β (Aβ), which induces neurotoxicity by reducing the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TRKB) and increasing oxidative stress, caspase-1, and acetylcholinesterase (AChE) activities. Here, we have found the potential of two novel synthetic coumarin derivatives, ZN014 and ZN015, for the inhibition of Aβ and neuroprotection in SH-SY5Y neuroblastoma cell models for AD. In SH-SY5Y cells expressing the GFP-tagged Aβ-folding reporter, both ZN compounds reduced Aβ aggregation, oxidative stress, activities of caspase-1 and AChE, as well as increased neurite outgrowth. By activating TRKB-mediated extracellular signal-regulated kinase (ERK) and AKT serine/threonine kinase 1 (AKT) signaling, these two ZN compounds also upregulated the cAMP-response-element binding protein (CREB) and its downstream BDNF and anti-apoptotic B-cell lymphoma 2 (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of ZN014 and ZN015. A parallel artificial membrane permeability assay showed that ZN014 and ZN015 could be characterized as blood-brain barrier permeable. Our results suggest ZN014 and ZN015 as novel therapeutic candidates for AD and demonstrate that ZN014 and ZN015 reduce Aβ neurotoxicity via pleiotropic mechanisms.
Collapse
|
81
|
Yeh YC, Lawal B, Hsiao M, Huang TH, Huang CYF. Identification of NSP3 ( SH2D3C) as a Prognostic Biomarker of Tumor Progression and Immune Evasion for Lung Cancer and Evaluation of Organosulfur Compounds from Allium sativum L. as Therapeutic Candidates. Biomedicines 2021; 9:1582. [PMID: 34829812 PMCID: PMC8615911 DOI: 10.3390/biomedicines9111582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The novel SH2-containing protein 3 (NSP3) is an oncogenic molecule that has been concomitantly associated with T cell trafficking. However, its oncological role in lung cancer and whether it plays a role in modulating the tumor immune microenvironment is not properly understood. In the present in silico study, we demonstrated that NSP3 (SH2D3C) is associated with advanced stage and poor prognoses of lung cancer cohorts. Genetic alterations of NSP3 (SH2D3C) co-occurred inversely with Epidermal Growth Factor Receptor (EGFR) alterations and elicited its pathological role via modulation of various components of the immune and inflammatory pathways in lung cancer. Our correlation analysis suggested that NSP3 (SH2D3C) promotes tumor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms in lung cancer patients. NSP3 (SH2D3C) demonstrated a high predictive value and association with therapy resistance in lung cancer, hence serving as an attractive target for therapy exploration. We evaluated the in silico drug-likeness and NSP3 (SH2D3C) target efficacy of six organosulfur small molecules from Allium sativum using a molecular docking study. We found that the six organosulfur compounds demonstrated selective cytotoxic potential against cancer cell lines and good predictions for ADMET properties, drug-likeness, and safety profile. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, allicin, and S-allyl-cysteine docked well into the NSP3 (SH2D3C)-binding cavity with binding affinities ranging from −3.5~−6.70 Ă and random forest (RF) scores ranging from 4.31~5.26 pKd. In conclusion, our study revealed that NSP3 is an important onco-immunological biomarker encompassing the tumor microenvironment, disease staging and prognosis in lung cancer and could serve as an attractive target for cancer therapy. The organosulfur compounds from A. sativum have molecular properties to efficiently interact with the binding site of NSP3 and are currently under vigorous preclinical study in our laboratory.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan;
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department & Graduate Institute of Chemical Engineering & Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
82
|
Franco Pinto J, Fillion A, Duchambon P, Bombard S, Granzhan A. Acridine-O 6-benzylguanine hybrids: Synthesis, DNA binding, MGMT inhibition and antiproliferative activity. Eur J Med Chem 2021; 227:113909. [PMID: 34731767 DOI: 10.1016/j.ejmech.2021.113909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
O6-Methylguanine-DNA-methyltransferase (MGMT) is a key DNA repair enzyme involved in chemoresistance to DNA-alkylating anti-cancer drugs such as Temozolomide (TMZ) through direct repair of drug-induced O6-methylguanine residues in DNA. MGMT substrate analogues, such as O6-benzylguanine (BG), efficiently inactivate MGMT in vitro and in cells; however, these drugs failed to reach the clinic due to adverse side effects. Here, we designed hybrid drugs combining a BG residue covalently linked to a DNA-interacting moiety (6-chloro-2-methoxy-9-aminoacridine). Specifically, two series of hybrids, encompassing three compounds each, were obtained by varying the position of the attachment point of BG (N9 of guanine vs. the benzyl group) and the length and nature of the linker. UV/vis absorption and fluorescence data indicate that all six hybrids adopt an intramolecularly stacked conformation in aqueous solutions in a wide range of temperatures. All hybrids interact with double-stranded DNA, as clearly evidenced by spectrophotometric titrations, without intercalation of the acridine ring and do not induce thermal stabilization of the duplex. All hybrids, as well as the reference DNA intercalator (6-chloro-2-methoxy-9-aminoacridine 8), irreversibly inhibit MGMT in vitro with variable efficiency, comparable to that of BG. In a multidrug-resistant glioblastoma cell line T98G, benzyl-linked hybrids 7a-c and the N9-linked hybrid 19b are moderately cytotoxic (GI50 ≥ 15 μM after 96 h), while N9-linked hybrids 19a and 19c are strongly cytotoxic (GI50 = 1-2 μM), similarly to acridine 8 (GI50 = 0.6 μM). Among all compounds, hybrids 19a and 19c, similarly to BG, display synergic cytotoxic effect upon co-treatment with subtoxic doses of TMZ, with combination index (CI) values as low as 0.2-0.3. In agreement with in vitro results, compound 19a inactivates cellular MGMT but, unlike BG, does not induce significant levels of DNA damage, either alone or in combination with TMZ, as indicated by the results of γH2AX immunostaining experiments. Instead, and unlike BG, compound 19a alone induces significant apoptosis of T98G cells, which is not further increased in a combination with TMZ. These results indicate that molecular mechanisms underlying the cytotoxicity of 19a and its combination with TMZ are distinct from that of BG. The strongly synergic properties of this combination represent an interesting therapeutic opportunity in treating TMZ-resistant cancers.
Collapse
Affiliation(s)
- Jaime Franco Pinto
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France
| | - Alexandra Fillion
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France
| | - Patricia Duchambon
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France
| | - Sophie Bombard
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France.
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405, Orsay, France; CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405, Orsay, France.
| |
Collapse
|
83
|
Cheonggukjang-Specific Component 1,3-Diphenyl-2-Propanone as a Novel PPARα/γ Dual Agonist: An In Vitro and In Silico Study. Int J Mol Sci 2021; 22:ijms221910884. [PMID: 34639224 PMCID: PMC8509681 DOI: 10.3390/ijms221910884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Cheonggukjang is a traditional fermented soybean paste that is mostly consumed in Korea. However, the biological activities of Cheonggukjang specific compounds have not been studied. Thus, we aimed to discover a novel dual agonist for PPARα/γ from dietary sources such as Cheonggukjang specific volatile compounds and explore the potential role of PPARα/γ dual agonists using in vitro and in silico tools. Methods: A total of 35 compounds were selected from non-fermented and fermented soybean products cultured with Bacillus subtilis, namely Cheonggukjang, for analysis by in vitro and in silico studies. Results: Molecular docking results showed that 1,3-diphenyl-2-propanone (DPP) had the lowest docking score for activating PPARα (1K7L) and PPARγ (3DZY) with non-toxic effects. Moreover, DPP significantly increased the transcriptional activities of both PPARα and PPARγ and highly activated its expression in Ac2F liver cells, in vitro. Here, we demonstrated for the first time that DPP can act as a dual agonist of PPARα/γ using in vitro and in silico tools. Conclusions: The Cheonggukjang-specific compound DPP could be a novel PPARα/γ dual agonist and it is warranted to determine the therapeutic potential of PPARα/γ activation by dietary intervention and/or supplementation in the treatment of metabolic disorders without causing any adverse effects.
Collapse
|
84
|
Multiomics Identification of Potential Targets for Alzheimer Disease and Antrocin as a Therapeutic Candidate. Pharmaceutics 2021; 13:pharmaceutics13101555. [PMID: 34683848 PMCID: PMC8539161 DOI: 10.3390/pharmaceutics13101555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the development and progression of dementia remain poorly understood. Therefore, identifying essential genes and molecular pathways that are associated with this disease’s pathogenesis will help uncover potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (ATP6V1A), BCL2 interacting protein 3 (BNIP3), calmodulin-dependent protein kinase IV (CAMK4), TOR signaling pathway regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 (TOMM70) as upregulated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific gene co-expression clustering with OPA1, ITFG1, OXCT1, ATP2A2, MAPK1, CDK14, MAP2K4, YWHAB, PARK2, CMAS, HSPA12A, and RGS17. Taking the mean relative expression levels of this geneset in different brain regions into account, we found that the frontal cortex (BA9) exhibited significantly (p < 0.05) higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved in the pathogenesis of AD. Finally, our blood–brain barrier (BBB) predictions using the support vector machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is permeable to the BBB and exhibits robust ligand–receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties, drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS) Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a potential therapeutic agent. Further investigation is warranted.
Collapse
|
85
|
Lawal B, Wang YC, Wu ATH, Huang HS. Pro-Oncogenic c-Met/EGFR, Biomarker Signatures of the Tumor Microenvironment are Clinical and Therapy Response Prognosticators in Colorectal Cancer, and Therapeutic Targets of 3-Phenyl-2H-benzo[e][1,3]-Oxazine-2,4(3H)-Dione Derivatives. Front Pharmacol 2021; 12:691234. [PMID: 34512327 PMCID: PMC8429938 DOI: 10.3389/fphar.2021.691234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic and environmental factors play important roles in cancer progression, metastasis, and drug resistance. Herein, we used a multiomics data analysis to evaluate the predictive and prognostic roles of genetic and epigenetic modulation of c-MET (hepatocyte growth factor receptor)/epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). First, we found that overexpressions of c-MET/EGFR were associated with the infiltration of tumor immune cells and cancer-associated fibroblasts, and were of prognostic relevance in CRC cohorts. We also observed that genetic alterations of c-MET/EGFR in CRC co-occurred with other gene alterations and were associated with overexpression of messenger (m)RNA of some cancer hallmark proteins. More specifically, DNA-methylation and somatic copy number alterations of c-MET/EGFR were associated with immune infiltration, dysfunctional T-cell phenotypes, and poor prognoses of the cohorts. Moreover, we describe two novel gefitinib-inspired small molecules derivatives of 3-phenyl-2H-benzo[e] [1,3]-oxazine-2,4(3H)-dione, NSC777205 and NSC777207, which exhibited wide-spectrum antiproliferative activities and selective cytotoxic preference for drug-sensitive and multidrug-resistant melanoma, renal, central nervous system, colon, and non-small cell lung cancer cell lines. We further provided in silico mechanistic evidence implicating c-MET/EGFR/phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibition in anticancer activities of those compounds. Our overall structure-activity relationship study revealed that the addition of an –OCH3 group to salicylic core of NSC777207 was not favorable, as the added moiety led to overall less-favorable drug properties as well as weaker anticancer activities compared to the properties and activities demonstrated by NSC777205 that has no –OCH3 substituent group. Further in vitro and in vivo analyses in tumor-bearing mice are ongoing in our lab to support this claim and to unravel the full therapeutic efficacies of NSC777205 and NSC777207 in CRC.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
86
|
A Preclinical Investigation of GBM-N019 as a Potential Inhibitor of Glioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells 2021; 10:cells10092391. [PMID: 34572040 PMCID: PMC8471927 DOI: 10.3390/cells10092391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.
Collapse
|
87
|
Identifying Active Compounds and Mechanism of Camellia nitidissima Chi on Anti-Colon Cancer by Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7169211. [PMID: 34484402 PMCID: PMC8413042 DOI: 10.1155/2021/7169211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Camellia nitidissima Chi (CNC) is a traditional Chinese medicine (TCM) with anticancer property. However, its underlying mechanisms of anti-colon cancer (CC) remain unknown. Therefore, a systematic approach is proposed in the present study to elucidate the anticancer mechanisms of CNC based on network pharmacology and experimental validation. Initially, the potential active ingredients of CNC were verified via the TCMSP database based on the oral bioavailability (OB) and drug-likeness (DL) terms. Hub targets of CNC were acquired from SwissTarget prediction and TCMSP databases, and target genes related to CC were gathered from GeneCards and OMIM databases. Cytoscape was used to establish the compound-target networks. Next, the hub target genes collected from the CNC and CC were parsed via GO and KEGG analysis. Results of GO and KEGG analysis reveal that quercetin and luteolin in CNC, VEGFA and AKT1 targets, and PI3K-Akt pathway were associated with the suppression of CC. Besides, the result of molecular docking unveils that VEGFA demonstrates the most powerful binding affinity among the binding outcomes. This finding was successfully validated using in vitro HCT116 cell model experiment. In conclusion, this study proved the usefulness of integrating network pharmacology with in vitro experiments in the elucidation of underlying molecular mechanisms of TCM.
Collapse
|
88
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
89
|
Shin HK, Lee S, Oh HN, Yoo D, Park S, Kim WK, Kang MG. Development of blood brain barrier permeation prediction models for organic and inorganic biocidal active substances. CHEMOSPHERE 2021; 277:130330. [PMID: 33780678 DOI: 10.1016/j.chemosphere.2021.130330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 05/04/2023]
Abstract
Biocidal products are broadly used in homes and industries. However, the safety of biocidal active substances (BASs) is not yet fully understood. In particular, the neurotoxic action of BASs needs to be studied as diverse epidemiological studies have reported associations between exposure to BASs and neural diseases. In this study, we developed in silico models to predict the blood-brain barrier (BBB) permeation of organic and inorganic BASs. Due to a lack of BBB data for BASs, the chemical space of BASs and BBB dataset were compared in order to select BBB data that were structurally similar to BASs. In silico models to predict log-scaled BBB penetration were developed using support vector regression for organic BASs and multiple linear regression for inorganic BASs. The model for organic BASs was developed with 231 compounds (training set: 153 and test set: 78) and achieved good prediction accuracy on an external test set (R2 = 0.64), and the model outperformed the model for pharmaceuticals. The model for inorganic BASs was developed with 11 compounds (R2 = 0.51). Applicability domain (AD) analysis of the models clarified molecular structures reliably predicted by the models. Therefore, the models developed in this study can be used for predicting BBB permeable BASs in human. These models were developed according to the Quantitative Structure-Activity Relationship validation principles proposed by the Organization for Economic Cooperation and Development.
Collapse
Affiliation(s)
- Hyun Kil Shin
- Toxicoinformatics group, Department of predictive toxicology, Korea institute of toxicology, Daejeon 34114, Republic of Korea
| | - Sangwoo Lee
- Bio-system Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ha-Na Oh
- Bio-system Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Donggon Yoo
- Bio-system Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seungmin Park
- Bio-system Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Woo-Keun Kim
- Bio-system Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Myung-Gyun Kang
- Toxicoinformatics group, Department of predictive toxicology, Korea institute of toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
90
|
Chitranshi N, Kumar A, Sheriff S, Gupta V, Godinez A, Saks D, Sarkar S, Shen T, Mirzaei M, Basavarajappa D, Abyadeh M, Singh SK, Dua K, Zhang KYJ, Graham SL, Gupta V. Identification of Novel Cathepsin B Inhibitors with Implications in Alzheimer's Disease: Computational Refining and Biochemical Evaluation. Cells 2021; 10:cells10081946. [PMID: 34440715 PMCID: PMC8391575 DOI: 10.3390/cells10081946] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
- Correspondence: (N.C.); (V.G.); Tel.: +61-(02)-9850-2804 (N.C.)
| | - Ashutosh Kumar
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan; (A.K.); (K.Y.J.Z.)
| | - Samran Sheriff
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Veer Gupta
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia;
| | - Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Danit Saks
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Soumalya Sarkar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Ting Shen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Sachin K. Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kam Y. J. Zhang
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan; (A.K.); (K.Y.J.Z.)
| | - Stuart L. Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
- Correspondence: (N.C.); (V.G.); Tel.: +61-(02)-9850-2804 (N.C.)
| |
Collapse
|
91
|
Zhang B, Zhao J, Guo P, Wang Z, Xu L, Liu A, Du G. Effects of Naodesheng tablets on amyloid beta-induced dysfunction: A traditional Chinese herbal formula with novel therapeutic potential in Alzheimer's disease revealed by systems pharmacology. Biomed Pharmacother 2021; 141:111916. [PMID: 34328103 DOI: 10.1016/j.biopha.2021.111916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
Naodesheng (NDS) tablets have been widely used to treat ischemic stroke clinically. NDS relieves neurological function impairment and improve learning and memory in rats with focal cerebral ischemia, suggesting that NDS has potential for Alzheimer's disease (AD) treatment. However, there are no studies about its effective material basis and possible mechanisms. In this study, a systems pharmacology method was applied to reveal the potential molecular mechanism of NDS in the treatment of AD. First, we obtained 360 NDS candidate constituents through ADMET filter analysis. Then, 115 AD-related targets were uncovered by pharmacophore model prediction via mapping the predicted targets against AD-related proteins. In addition, compound-target and target-function networks were established to suggest potential synergistic effects among the candidate constituents. Furthermore, potential targets regulated by NDS were integrated into AD-related pathways to demonstrate the therapeutic mechanism of NDS in AD treatment. Subsequently, a validation experiment proved the therapeutic effect of NDS on cognitive dysfunction in rats with intracerebroventricular injection of Aβ. We found that administration of NDS tablets regulates β-amyloid metabolism, improves synaptic plasticity, inhibits neuroinflammation and improves learning and memory function. In conclusion, this is the first study to provide a comprehensive systems pharmacology approach to elucidate the potential therapeutic mechanism of NDS tablets for AD treatment. We suggest that the protective effects of NDS in neurodegenerative conditions could be partly attributed to its role in improving synaptic plasticity and inhibiting neuroinflammation via NF-κB signaling pathway inhibition and cAMP/PKA/CREB signaling pathway activation.
Collapse
Affiliation(s)
- Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lvjie Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
92
|
Pathania A, Kumar R, Sandhir R. Hydroxytyrosol as anti-parkinsonian molecule: Assessment using in-silico and MPTP-induced Parkinson's disease model. Biomed Pharmacother 2021; 139:111525. [PMID: 33882412 DOI: 10.1016/j.biopha.2021.111525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
3-Hydroxytyrosol (HXT) is a natural polyphenol present in extra virgin olive oil. It is a key component of Mediterranean diet and is known for its strong antioxidant activity. The present study evaluated the potential of HXT as an anti-parkinsonian molecule in terms of its ability to inhibit MAO-B and thereby maintaining dopamine (DA) levels in Parkinson's disease (PD). In-silico molecular docking study followed by MMGBSA binding free energy calculation revealed that HXT has a strong binding affinity for MAO-B in comparison to MAO-A. Moreover, rasagiline and HXT interacted with the similar binding sites and modes of interactions. Additionally, molecular dynamics simulation studies revealed stable nature of HXT-MAO-B interaction and also provided information about the amino acid residues involved in binding. Moreover, in vitro studies revealed that HXT inhibited MAO-B in human platelets with IC50 value of 7.78 μM. In vivo studies using MPTP-induced mouse model of PD revealed increase in DA levels with concomitant decrease in DA metabolites (DOPAC and HVA) on HXT treatment. Furthermore, MAO-B activity was also inhibited on HXT administration to PD mice. In addition, HXT treatment prevented MPTP-induced loss of DA neurons in substantia nigra and their nerve terminals in the striatum. HXT also attenuated motor impairments in PD mice assessed by catalepsy bar, narrow beam walk and open field tests. Thus, the present findings reveal HXT as a potential inhibitor of MAO-B, which may be used as a lead molecule for the development of therapeutics for PD.
Collapse
Affiliation(s)
- Anjana Pathania
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
93
|
Discovery of a Novel Acetylcholinesterase Inhibitor by Fragment-Based Design and Virtual Screening. Molecules 2021; 26:molecules26072058. [PMID: 33916760 PMCID: PMC8038331 DOI: 10.3390/molecules26072058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Despite extensive and intensive research efforts in recent decades, there is still no effective treatment for neurodegenerative diseases. On this background, the use of drugs inhibiting the enzyme acetylcholinesterase (AChE) remains an eternal evergreen in the symptomatic treatment of mild to moderate cognitive impairments. Even more, the cholinergic hypothesis, somewhat forgotten in recent years due to the shift in focus on amyloid cascade, is back to life, and the search for new, more effective AChE inhibitors continues. We generated a fragment-based library containing aromatic moieties and linkers originating from a set of novel AChE inhibitors. We used this library to design 1220 galantamine (GAL) derivatives following the model GAL (binding core) - linker (L) - aromatic fragment (Ar). The newly designed compounds were screened virtually for blood–brain barrier (BBB) permeability and binding to AChE. Among the top 10 best-scored compounds, a representative lead molecule was selected and tested for anti-AChE activity and neurotoxicity. It was found that the selected compound was a powerful non-toxic AChE inhibitor, 68 times more active than GAL, and could serve as a lead molecule for further optimization and development.
Collapse
|
94
|
Feng Z, Chen M, Liang T, Shen M, Chen H, Xie XQ. Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research. Brief Bioinform 2021; 22:882-895. [PMID: 32715315 PMCID: PMC7454273 DOI: 10.1093/bib/bbaa155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for medicines that can help before vaccines are available. In this study, we present a viral-associated disease-specific chemogenomics knowledgebase (Virus-CKB) and apply our computational systems pharmacology-target mapping to rapidly predict the FDA-approved drugs which can quickly progress into clinical trials to meet the urgent demand of the COVID-19 outbreak. Virus-CKB reuses the underlying platform of our DAKB-GPCRs but adds new features like multiple-compound support, multi-cavity protein support and customizable symbol display. Our one-stop computing platform describes the chemical molecules, genes and proteins involved in viral-associated diseases regulation. To date, Virus-CKB archived 65 antiviral drugs in the market, 107 viral-related targets with 189 available 3D crystal or cryo-EM structures and 2698 chemical agents reported for these target proteins. Moreover, Virus-CKB is implemented with web applications for the prediction of the relevant protein targets and analysis and visualization of the outputs, including HTDocking, TargetHunter, BBB predictor, NGL Viewer, Spider Plot, etc. The Virus-CKB server is accessible at https://www.cbligand.org/g/virus-ckb.
Collapse
Affiliation(s)
- Zhiwei Feng
- School of Pharmacy, University of Pittsburgh
| | - Maozi Chen
- South China Agricultural University, China
| | | | | | - Hui Chen
- School of Pharmacy, University of Pittsburgh
| | - Xiang-Qun Xie
- School of Pharmacy and a Professor of Pharmaceutical Sciences
| |
Collapse
|
95
|
Feng Z, Chen M, Xue Y, Liang T, Chen H, Zhou Y, Nolin TD, Smith RB, Xie XQ. MCCS: a novel recognition pattern-based method for fast track discovery of anti-SARS-CoV-2 drugs. Brief Bioinform 2021; 22:946-962. [PMID: 33078827 PMCID: PMC7665328 DOI: 10.1093/bib/bbaa260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, or 2019-nCoV), there is an urgent need to identify therapeutics that are effective against COVID-19 before vaccines are available. Since the current rate of SARS-CoV-2 knowledge acquisition via traditional research methods is not sufficient to match the rapid spread of the virus, novel strategies of drug discovery for SARS-CoV-2 infection are required. Structure-based virtual screening for example relies primarily on docking scores and does not take the importance of key residues into consideration, which may lead to a significantly higher incidence rate of false-positive results. Our novel in silico approach, which overcomes these limitations, can be utilized to quickly evaluate FDA-approved drugs for repurposing and combination, as well as designing new chemical agents with therapeutic potential for COVID-19. As a result, anti-HIV or antiviral drugs (lopinavir, tenofovir disoproxil, fosamprenavir and ganciclovir), antiflu drugs (peramivir and zanamivir) and an anti-HCV drug (sofosbuvir) are predicted to bind to 3CLPro in SARS-CoV-2 with therapeutic potential for COVID-19 infection by our new protocol. In addition, we also propose three antidiabetic drugs (acarbose, glyburide and tolazamide) for the potential treatment of COVID-19. Finally, we apply our new virus chemogenomics knowledgebase platform with the integrated machine-learning computing algorithms to identify the potential drug combinations (e.g. remdesivir+chloroquine), which are congruent with ongoing clinical trials. In addition, another 10 compounds from CAS COVID-19 antiviral candidate compounds dataset are also suggested by Molecular Complex Characterizing System with potential treatment for COVID-19. Our work provides a novel strategy for the repurposing and combinations of drugs in the market and for prediction of chemical candidates with anti-COVID-19 potential.
Collapse
|
96
|
Chen X, Pan L, Wei J, Zhang R, Yang X, Song J, Bai RY, Fu S, Pierson CR, Finlay JL, Li C, Lin J. LLL12B, a small molecule STAT3 inhibitor, induces growth arrest, apoptosis, and enhances cisplatin-mediated cytotoxicity in medulloblastoma cells. Sci Rep 2021; 11:6517. [PMID: 33753770 PMCID: PMC7985203 DOI: 10.1038/s41598-021-85888-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor and an oncogene product, which plays a pivotal role in tumor progression. Therefore, targeting persistent STAT3 signaling directly is an attractive anticancer strategy. The aim of this study is to test the efficacy of a novel STAT3 small molecule inhibitor, LLL12B, in suppressing medulloblastoma cells in vitro and tumor growth in vivo. LLL12B selectively inhibited the induction of STAT3 phosphorylation by interleukin-6 but not induction of STAT1 phosphorylation by INF-γ. LLL12B also induced apoptosis in human medulloblastoma cells. In addition, LLL12B exhibited good oral bioavailability in vivo and potent suppressive activity in tumor growth of medulloblastoma cells in vivo. Besides, combining LLL12B with cisplatin showed greater inhibition of cell viability and tumorsphere formation as well as induction of apoptosis comparing to single agent treatment in medulloblastoma cells. Furthermore, LLL12B and cisplatin combination exhibited greater suppression of medulloblastoma tumor growth than monotherapy in vivo. The present study supported that LLL12B is a novel therapeutic agent for medulloblastoma and the combination of LLL12B with a chemotherapeutic agent cisplatin may be an effective approach for medulloblastoma therapy.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Li Pan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jia Wei
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruijie Zhang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Jinhua Song
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Ren-Yuan Bai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Shengling Fu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Department of Pathology and Department of Biomedical Education and Anatomy, The College of Medicine, The Ohio State University, Columbus, OH, 43205, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology and BMT, Department of Pediatrics, College of Medicine, The Research Institute At Nationwide Children's Hospital, The Ohio State University, Columbus, OH, 43205, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA.
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
97
|
Chakravarty M, Ganguli P, Murahari M, Sarkar RR, Peters GJ, Mayur YC. Study of Combinatorial Drug Synergy of Novel Acridone Derivatives With Temozolomide Using in-silico and in-vitro Methods in the Treatment of Drug-Resistant Glioma. Front Oncol 2021; 11:625899. [PMID: 33791212 PMCID: PMC8006935 DOI: 10.3389/fonc.2021.625899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is one of the critical challenges faced in the treatment of Glioma. There are only limited drugs available in the treatment of Glioma and among them Temozolomide (TMZ) has shown some effectiveness in treating Glioma patients, however, the rate of recovery remains poor due to the inability of this drug to act on the drug resistant tumor sub-populations. Hence, in this study three novel Acridone derivative drugs AC2, AC7, and AC26 have been proposed. These molecules when combined with TMZ show major tumor cytotoxicity that is effective in suppressing growth of cancer cells in both drug sensitive and resistant sub-populations of a tumor. In this study a novel mathematical model has been developed to explore the various drug combinations that may be useful for the treatment of resistant Glioma and show that the combinations of TMZ and Acridone derivatives have a synergistic effect. Also, acute toxicity studies of all three acridone derivatives were carried out for 14 days and were found safe for oral administration of 400 mg/kg body weight on albino Wistar rats. Molecular Docking studies of acridone derivatives with P-glycoprotein (P-gp), multiple resistant protein (MRP), and O6-methylguanine-DNA methyltransferase (MGMT) revealed different binding affinities to the transporters contributing to drug resistance. It is observed that while the Acridone derivatives bind with these drug resistance causing proteins, the TMZ can produce its cytotoxicity at a much lower concentration leading to the synergistic effect. The in silico analysis corroborate well with our experimental findings using TMZ resistant (T-98) and drug sensitive (U-87) Glioma cell lines and we propose three novel drug combinations (TMZ with AC2, AC7, and AC26) and dosages that show high synergy, high selectivity and low collateral toxicity for the use in the treatment of drug resistant Glioma, which could be future drugs in the treatment of Glioblastoma.
Collapse
Affiliation(s)
- Malobika Chakravarty
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Godefridus Johannes Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Laboratory Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Amsterdam, Netherlands
| | - Y C Mayur
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
98
|
Kong Z, Sun D, Jiang Y, Hu Y. Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B. J Enzyme Inhib Med Chem 2021; 35:1513-1523. [PMID: 32705910 PMCID: PMC7470127 DOI: 10.1080/14756366.2020.1797711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The inhibition of monoamine oxidase B (MAO-B) could be an effective approach for the treatment of various neurological disorders. In this study, a series of 1, 4-benzodioxan-substituted chalcone derivatives were designed, synthesised and evaluated for their inhibitory activity against human MAO-B (hMAO-B). The majority of these compounds showed inhibitory activity and high selectivity. The most potent compound, (E)-1-(3-bromo-4-fluorophenyl)-3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)prop-2-en-1-one (22), exhibited an IC50 of 0.026 µM with a selectivity index greater than 1538. Kinetics and reversibility studies confirmed that the representative active compounds acted as competitive and reversible inhibitors of hMAO-B. The enzyme-inhibitor interactions were investigated by molecular docking studies and the rationale was provided. As these potent hMAO-B inhibitors exhibited low neurotoxicity and possessed promising drug-like properties, we believe that these active compounds could be further investigated as potential drug candidates for future in vivo studies.
Collapse
Affiliation(s)
- Zhuo Kong
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Demeng Sun
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yanmei Jiang
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yun Hu
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
99
|
Manzoor S, Prajapati SK, Majumdar S, Raza MK, Gabr MT, Kumar S, Pal K, Rashid H, Kumar S, Krishnamurthy S, Hoda N. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer's action: Design, synthesis, crystal structure and in-vitro biological evaluation. Eur J Med Chem 2021; 215:113224. [PMID: 33582578 DOI: 10.1016/j.ejmech.2021.113224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is multifactorial, progressive neurodegeneration with impaired behavioural and cognitive functions. The multitarget-directed ligand (MTDL) strategies are promising paradigm in drug development, potentially leading to new possible therapy options for complex AD. Herein, a series of novel MTDLs phenylsulfonyl-pyrimidine carboxylate (BS-1 to BS-24) derivatives were designed and synthesized for AD treatment. All the synthesized compounds were validated by 1HNMR, 13CNMR, HRMS, and BS-19 were structurally validated by X-Ray single diffraction analysis. To evaluate the plausible binding affinity of designed compounds, molecular docking study was performed, and the result revealed their significant interaction with active sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The synthesized compounds displayed moderate to excellent in vitro enzyme inhibitory activity against AChE and BuChE at nanomolar (nM) concentration. Among 24 compounds (BS-1 to BS-24), the optimal compounds (BS-10 and BS-22) displayed potential inhibition against AChE; IC50 = 47.33 ± 0.02 nM and 51.36 ± 0.04 nM and moderate inhibition against BuChE; IC50 = 159.43 ± 0.72 nM and 153.3 ± 0.74 nM respectively. In the enzyme kinetics study, the compound BS-10 displayed non-competitive inhibition of AChE with Ki = 8 nM. Respective compounds BS-10 and BS-22 inhibited AChE-induced Aβ1-42 aggregation in thioflavin T-assay at 10 μM and 20 μM, but BS-10 at 10 μM and 20 μM concentrations are found more potent than BS-22. In addition, the aggregation properties were determined by the dynamic light scattering (DLS) and was found that BS-10 and BS-22 could significantly inhibit self-induced as well as AChE-induced Aβ1-42 aggregation. The effect of compounds (BS-10 and BS-22) on the viability of MC65 neuroblastoma cells and their capability to cross the blood-brain barrier (BBB) in PAMPA-BBB were further studied. Further, in silico approach was applied to analyze physicochemical and pharmacokinetics properties of the designed compounds via the SwissADME and PreADMET server. Hence, the novel phenylsulfonyl-pyrimidine carboxylate derivatives can act as promising leads in the development of AChE inhibitors and Aβ disaggregator for the treatment of AD.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA, 94305, United States
| | - Shivani Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi, 110078, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Haroon Rashid
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Suresh Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi, 110078, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
100
|
方 迎, 苏 振, 司 文, 刘 圆, 李 洁, 曾 鹏. [Network pharmacology-based study of the therapeutic mechanism of resveratrol for Alzheimer's disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:10-19. [PMID: 33509748 PMCID: PMC7867487 DOI: 10.12122/j.issn.1673-4254.2021.01.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the therapeutic mechanism of resveratrol (RES) for Alzheimer's disease (AD) in light of network pharmacology. METHODS We searched PubChem, BATMAN-TCM, Genecards, AD, TTD, String 11.0, AlzData, SwissTargetPrediction, Metascape and other databases for the therapeutic targets of RES and human AD-related targets. The intersection was determined using Venny 2.1 to obtain the therapeutic targets of RES for AD. The protein-protein interaction (PPI) network was constructed, the gene ontology (GO) was enriched and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG pathway) were analyzed. Cytoscape 3.7.1 software was used to construct a target-signaling pathway network of RES in the treatment of AD. Molecular docking verification was carried out on SwissDock (http://www.swissdock.ch/docking). We examined a 293Tau cell model of AD for changes in protein levels of pS396, pS199, Tau5, CDK5, glycogen synthase kinase 3β (GSK3β) and p-GSK3β in response to RES treatment using Western blotting. RESULTS We obtained 182 targets of RES, 525 targets related to AD, and 36 targets of RES for AD treatment, among which 34.6% of the targets were protein-modifying enzymes, 27.7% were metabolite invertase, 13.8% were gene-specific transcriptional regulators, and 10.3% were transporters. The core key targets of RES in the treatment of AD included INS, APP, ESR1, MMP9, IGF1R, CACNA1C, MAPT (microtubule- associated protein Tau), MMP2, TGFB1 and GSK3B. Enrichment analysis of GO biological process suggested that the biological function of RES in AD treatment mainly involved the response to β-amyloid protein, positive regulation of transferase activity, the transmembrane receptor protein tyrosine kinase signaling pathway, regulation of behavior, learning or memory, aging, and transmembrane transport. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathways were AD pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and MAPK signaling pathway. Molecular docking results showed that RES had strong binding with ESR1, GSK3B, MMP9, IGF1R, APP and INS. In the cell model of AD, treatment with 50 μmol/L RES for 12 h significantly reduced the levels of pS396 and pS199 by regulating CDK5 and GSK3β activity (P < 0.001). CONCLUSIONS RES produces therapeutic effects on AD by acting on multiple targets and affecting multiple signaling pathways and improves AD-associated pathologies via a direct action on Aβ and Tau pathological processes.
Collapse
Affiliation(s)
- 迎艳 方
- 湖北理工学院医学院基础医学部,湖北 黄石 435003Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - 振宏 苏
- 湖北理工学院医学院基础医学部,湖北 黄石 435003Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - 文霞 司
- 湖北理工学院医学院基础医学部,湖北 黄石 435003Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - 圆呈 刘
- 华中科技大学同济医学院基础医学院病理学与病理生 理学系,湖北 武汉 430030Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - 洁 李
- 华中科技大学同济医学院基础医学院病理学与病理生 理学系,湖北 武汉 430030Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - 鹏 曾
- 华中科技大学同济医学院基础医学院病理学与病理生 理学系,湖北 武汉 430030Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|