51
|
Patil NA, Quek JP, Schroeder B, Morewood R, Rademann J, Luo D, Nitsche C. 2-Cyanoisonicotinamide Conjugation: A Facile Approach to Generate Potent Peptide Inhibitors of the Zika Virus Protease. ACS Med Chem Lett 2021; 12:732-737. [PMID: 34055219 PMCID: PMC8155238 DOI: 10.1021/acsmedchemlett.0c00657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid generation and modification of macrocyclic peptides in medicinal chemistry is an ever-growing area that can present various synthetic challenges. The reaction between N-terminal cysteine and 2-cyanoisonicotinamide is a new biocompatible click reaction that allows rapid access to macrocyclic peptides. Importantly, 2-cyanoisonicotinamide can be attached to different linkers directly during solid-phase peptide synthesis. The synthesis involves only commercially available precursors, allowing for a fully automated process. We demonstrate the approach for four cyclic peptide ligands of the Zika virus protease NS2B-NS3. Although all peptides display the substrate recognition motif, the activity strongly depends on the linker length, with the shortest cyclization linker corresponding to highest activity (K i = 0.64 μM). The most active cyclic peptide displays affinity 78 times higher than that of its linear analogue. We solved a crystal structure of the proteolytically cleaved ligand and synthesized it by applying the presented chemistry to peptide ligation.
Collapse
Affiliation(s)
- Nitin A. Patil
- Biomedicine
Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jun-Ping Quek
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Barbara Schroeder
- Pharmaceutical
and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard Morewood
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| | - Jörg Rademann
- Pharmaceutical
and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Dahai Luo
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
| | - Christoph Nitsche
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
52
|
Kühl N, Leuthold MM, Behnam MAM, Klein CD. Beyond Basicity: Discovery of Nonbasic DENV-2 Protease Inhibitors with Potent Activity in Cell Culture. J Med Chem 2021; 64:4567-4587. [PMID: 33851839 DOI: 10.1021/acs.jmedchem.0c02042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The viral serine protease NS2B-NS3 is one of the promising targets for drug discovery against dengue virus and other flaviviruses. The molecular recognition preferences of the protease favor basic, positively charged moieties as substrates and inhibitors, which leads to pharmacokinetic liabilities and off-target interactions with host proteases such as thrombin. We here present the results of efforts that were aimed specifically at the discovery and development of noncharged, small-molecular inhibitors of the flaviviral proteases. A key factor in the discovery of these compounds was a cellular reporter gene assay for the dengue protease, the DENV2proHeLa system. Extensive structure-activity relationship explorations resulted in novel benzamide derivatives with submicromolar activities in viral replication assays (EC50 0.24 μM), selectivity against off-target proteases, and negligible cytotoxicity. This structural class has increased drug-likeness compared to most of the previously published active-site-directed flaviviral protease inhibitors and includes promising candidates for further preclinical development.
Collapse
Affiliation(s)
- Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila M Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mira A M Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
53
|
Facile Synthesis and In Vitro Activity of N-Substituted 1,2-Benzisothiazol-3(2 H)-ones against Dengue Virus NS2BNS3 Protease. Pathogens 2021; 10:pathogens10040464. [PMID: 33921368 PMCID: PMC8070447 DOI: 10.3390/pathogens10040464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Several new N-substituted 1,2-benzisothiazol-3(2H)-ones (BITs) were synthesised through a facile synthetic route for testing their anti-dengue protease inhibition. Contrary to the conventional multistep synthesis, we achieved structurally diverse BITs with excellent yields using a two-step, one-pot reaction strategy. All the synthesised compounds were prescreened for drug-like properties using the online Swiss Absorption, Distribution, Metabolism and Elimination (SwissADME) model, indicating their favourable pharmaceutical properties. Thus, the synthesised BITs were tested for inhibitory activity against the recombinant dengue virus serotype-2 (DENV-2) NS2BNS3 protease. Dose–response experiments and computational docking analyses revealed that several BITs bind to the protease in the vicinity of the catalytic triad with IC50 values in the micromolar range. The DENV2 infection assay showed that two BITs, 2-(2-chlorophenyl)benzo[d]isothiazol-3(2H)-one and 2-(2,6-dichlorophenyl)benzo[d]isothiazol-3(2H)-one, could suppress DENV replication and virus infectivity. These results indicate the potential of BITs for developing new anti-dengue therapeutics.
Collapse
|
54
|
Nie S, Yao Y, Wu F, Wu X, Zhao J, Hua Y, Wu J, Huo T, Lin YL, Kneubehl AR, Vogt MB, Ferreon J, Rico-Hesse R, Song Y. Synthesis, Structure-Activity Relationships, and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. J Med Chem 2021; 64:2777-2800. [PMID: 33596380 DOI: 10.1021/acs.jmedchem.0c02070] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 130 nM. Their structure-activity relationships are discussed. The ZVpro inhibitors also inhibit homologous proteases of dengue and West Nile viruses, and their inhibitory activities are correlated. The most potent compounds 47 and 103 potently inhibited Zika virus replication in cells with EC68 values of 300-600 nM and in a mouse model of Zika infection. These compounds represent novel pharmacological leads for drug development against Flavivirus infections.
Collapse
Affiliation(s)
- Shenyou Nie
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Xiaowei Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Jidong Zhao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Yuanda Hua
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Jingyu Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Tong Huo
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Yi-Lun Lin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Alexander R Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Megan B Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States.,Intragrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Josephine Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
55
|
Molecular docking and QSAR theoretical model for prediction of phthalazinone derivatives as new class of potent dengue virus inhibitors. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00073-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dengue fever is a key public health unease in various tropical and sub-tropical regions. The improvement of existing agents that can inhibit the dengue virus is therefore of utmost importance. In this work, the QSAR study was carried out on 25 molecules of phthalazinone derivatives which have been reported to possess excellent dengue virus inhibitory activity. Density functional computational technique was used in the optimisation of the molecules with the basis set at theory level (B3LYP, 6-31G*) respectively. The multiple linear regression (MLR) model was built using genetic function approximation (GFA) in the material studio software package. Also, in this study, molecular docking simulation was carried between dengue virus serotype 2 protease (PDB CODE: 6mol) and some selected phthalazinone derivatives (compounds 1, 2, 7, 11, and 21).
Results
The model was robust as evidenced by validation and robustness statistical parameter which include predicted R2pred., adjusted R2adj., cross-validated Q2 and R2 regression coefficient, etc (R2pred. = 0.71922, R2adj. = 0.939699, Q2CV = 0.905909, R2 = 0.955567) respectively. The molecular docking studies conducted in this study have outlined the binding affinities of the selected compounds (1, 2, 7 11, and 21) which are all in good correlation with their respective pIC50 values. The free binding affinities of the selected compounds were found to be (− 8.7, − 8.8, − 8.7, − 8.3, and − 8.9 kcal/mol) respectively, compound 21 with the binding affinity of − 8.9 kcal/mol had the best binding free energy with the protease relative to other compounds under consideration.
Conclusion
The MLR-GFA model study alongside with the molecular docking analysis has essentially provided a valuable and in-depth understanding as well as knowledge for the development of novel chemical compounds with enhanced inhibitory potential against the dengue virus serotype 2 (DNV-2). Hence, the developed model can be applicable in predicting the anti-dengue activity of a new set of chemical compounds that fall within its applicability domain.
Collapse
|
56
|
Morewood R, Nitsche C. A biocompatible stapling reaction for in situ generation of constrained peptides. Chem Sci 2020; 12:669-674. [PMID: 34163798 PMCID: PMC8178976 DOI: 10.1039/d0sc05125j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Constrained peptides are promising next-generation therapeutics. Peptide stapling is a particularly attractive technique to generate constrained macrocycles with improved biological activity and metabolic stability. We introduce a biocompatible two-component stapling approach based on the reagent 2,6-dicyanopyridine and a pseudo-cysteine amino acid. Stapling can proceed either directly on-resin during solid-phase synthesis or following isolation of the linear peptide. The stapling reaction is orthogonal to natural amino acid side chains and completes in aqueous solution at physiological pH, enabling its direct use in biochemical assays. We performed a small screening campaign of short peptides targeting the Zika virus protease NS2B-NS3, allowing the direct comparison of linear with in situ stapled peptides. A stapled screening hit showed over 28-fold stronger inhibition than its linear analogue, demonstrating the successful identification of constrained peptide inhibitors. A synthetically straightforward and biocompatible peptide-stapling strategy that can be used directly in biochemical assays to identify constrained enzyme inhibitors.![]()
Collapse
Affiliation(s)
- Richard Morewood
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
57
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
58
|
Braun NJ, Quek JP, Huber S, Kouretova J, Rogge D, Lang‐Henkel H, Cheong EZK, Chew BLA, Heine A, Luo D, Steinmetzer T. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem 2020; 15:1439-1452. [PMID: 32501637 PMCID: PMC7497253 DOI: 10.1002/cmdc.202000237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/06/2022]
Abstract
A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.
Collapse
Affiliation(s)
- Niklas J. Braun
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jun P. Quek
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
| | - Simon Huber
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jenny Kouretova
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dorothee Rogge
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Heike Lang‐Henkel
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Ezekiel Z. K. Cheong
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Bing L. A. Chew
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- Institute of Health TechnologiesInterdisciplinary Graduate ProgrammeNanyang Technological University61 Nanyang Dr.Singapore637335Singapore
| | - Andreas Heine
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dahai Luo
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Torsten Steinmetzer
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| |
Collapse
|
59
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
60
|
Kühl N, Graf D, Bock J, Behnam MAM, Leuthold MM, Klein CD. A New Class of Dengue and West Nile Virus Protease Inhibitors with Submicromolar Activity in Reporter Gene DENV-2 Protease and Viral Replication Assays. J Med Chem 2020; 63:8179-8197. [DOI: 10.1021/acs.jmedchem.0c00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Dominik Graf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Josephine Bock
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mira A. M. Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila-Mareen Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
61
|
Behnam MA, Klein CD. Conformational selection in the flaviviral NS2B-NS3 protease. Biochimie 2020; 174:117-125. [DOI: 10.1016/j.biochi.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
|
62
|
Agback P, Woestenenk E, Agback T. Probing contacts of inhibitor locked in transition states in the catalytic triad of DENV2 type serine protease and its mutants by 1H, 19F and 15 N NMR spectroscopy. BMC Mol Cell Biol 2020; 21:38. [PMID: 32450796 PMCID: PMC7249419 DOI: 10.1186/s12860-020-00283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Background Detailed structural knowledge of enzyme-inhibitor complexes trapped in intermediate state is the key for a fundamental understanding of reaction mechanisms taking place in enzymes and is indispensable as a structure-guided drug design tool. Solution state NMR uniquely allows the study of active sites of enzymes in equilibrium between different tautomeric forms. In this study 1H, 19F and 15 N NMR spectroscopy has been used to probe the interaction contacts of inhibitors locked in transition states of the catalytic triad of a serine protease. It was demonstrated on the serotype II Dengue virus NS2B:NS3pro serine protease and its mutants, H51N and S135A, in complex with high-affinity ligands containing trifluoromethyl ketone (tfk) and boronic groups in the C-terminal of tetra-peptides. Results Monitoring 19F resonances, shows that only one of the two isomers of the tfk tetra-peptide binds with NS2B:NS3pro and that access to the bulk of the active site is limited. Moreover, there were no bound water found in proximity of the active site for any of the ligands manifesting in a favorable condition for formation of low barrier hydrogen bonds (LBHB) in the catalytic triad. Based on this data we were able to identify a locked conformation of the protein active site. The data also indicates that the different parts of the binding site most likely act independently of each other. Conclusions Our reported findings increases the knowledge of the detailed function of the catalytic triad in serine proteases and could facilitate the development of rational structure based inhibitors that can selectively target the NS3 protease of Dengue type II (DENV2) virus. In addition the results shows the usefulness of probing active sites using 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden.
| | - Esmeralda Woestenenk
- Protein Expression and Characterization Drug Discovery and Development Platform, Science for Life Laboratory, Solna, Sweden
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| |
Collapse
|
63
|
Klein P, Barthels F, Johe P, Wagner A, Tenzer S, Distler U, Le TA, Schmid P, Engel V, Engels B, Hellmich UA, Opatz T, Schirmeister T. Naphthoquinones as Covalent Reversible Inhibitors of Cysteine Proteases-Studies on Inhibition Mechanism and Kinetics. Molecules 2020; 25:molecules25092064. [PMID: 32354191 PMCID: PMC7248907 DOI: 10.3390/molecules25092064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
The facile synthesis and detailed investigation of a class of highly potent protease inhibitors based on 1,4-naphthoquinones with a dipeptidic recognition motif (HN-l-Phe-l-Leu-OR) in the 2-position and an electron-withdrawing group (EWG) in the 3-position is presented. One of the compound representatives, namely the acid with EWG = CN and with R = H proved to be a highly potent rhodesain inhibitor with nanomolar affinity. The respective benzyl ester (R = Bn) was found to be hydrolyzed by the target enzyme itself yielding the free acid. Detailed kinetic and mass spectrometry studies revealed a reversible covalent binding mode. Theoretical calculations with different density functionals (DFT) as well as wavefunction-based approaches were performed to elucidate the mode of action.
Collapse
Affiliation(s)
- Philipp Klein
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany;
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, 55128 Mainz, Germany; (F.B.); (P.J.)
| | - Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, 55128 Mainz, Germany; (F.B.); (P.J.)
| | - Annika Wagner
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität, Johann-Joachim Becherweg 30, 55128 Mainz, Germany; (A.W.); (U.A.H.)
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (S.T.); (U.D.)
| | - Ute Distler
- Institute of Immunology, University Medical Center, Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (S.T.); (U.D.)
| | - Thien Anh Le
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany; (T.A.L.); (P.S.); (V.E.); (B.E.)
| | - Paul Schmid
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany; (T.A.L.); (P.S.); (V.E.); (B.E.)
| | - Volker Engel
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany; (T.A.L.); (P.S.); (V.E.); (B.E.)
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany; (T.A.L.); (P.S.); (V.E.); (B.E.)
| | - Ute A. Hellmich
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität, Johann-Joachim Becherweg 30, 55128 Mainz, Germany; (A.W.); (U.A.H.)
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60323 Frankfurt, Germany
| | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany;
- Correspondence: (T.O.); (T.S.); Tel.: +49-(0)6131-39-22272 (T.O.); +49-(0)6131-39-25742 (T.S.)
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Staudingerweg 5, 55128 Mainz, Germany; (F.B.); (P.J.)
- Correspondence: (T.O.); (T.S.); Tel.: +49-(0)6131-39-22272 (T.O.); +49-(0)6131-39-25742 (T.S.)
| |
Collapse
|
64
|
New Cysteine Protease Inhibitors: Electrophilic (Het)arenes and Unexpected Prodrug Identification for the Trypanosoma Protease Rhodesain. Molecules 2020; 25:molecules25061451. [PMID: 32210166 PMCID: PMC7145299 DOI: 10.3390/molecules25061451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 01/05/2023] Open
Abstract
Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the SNAr addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (Ki = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the SNAr reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation.
Collapse
|
65
|
Hamdani SS, Khan BA, Hameed S, Batool F, Saleem HN, Mughal EU, Saeed M. Synthesis and evaluation of novel S-benzyl- and S-alkylphthalimide- oxadiazole -benzenesulfonamide hybrids as inhibitors of dengue virus protease. Bioorg Chem 2020; 96:103567. [PMID: 32062063 DOI: 10.1016/j.bioorg.2020.103567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Direct acting antiviral drugs (DAADs) are becoming therapeutics of choice for the treatment of viral infections. Successful development of anti HIV and HCV drugs by targeting the viral proteases has provided impetus for discovering newer DAADs. Dengue virus (DENV) protease, which is composed of two nonstructural proteins, NS2B and NS3pro, can be likewise exploited for discovering new anti-dengue therapeutics. In this study, we have linked together two pharmaceutically interesting motifs, namely 1,3,4-oxadiazole and benzenesulfonamide in two alternative series to develop novel S-benzylated and S-alkylphthalimidated hybrids. For the first series of hybrids, 4-aminobenzoic acid (1) was reacted with substituted benzenesulfonyl chlorides via its amino group, whereas the carboxylic acid side was elaborated to sulfonamido-1,3,4-oxadiazole-2-thiols (6a/b) in three steps. At this stage, the intermediates 6a/b were bifurcated to either S-alkylphthalimidated (8a-j) or S-benzylated (9a-c) hybrids by reacting with corresponding halides. For the alternative series of hybrids, the carboxylic acid group of probenecid (10) was similarly elaborated to sulfonamido-1,3,4-oxadiazole-2-thiols (13), and diverged to S-alkylphthalimidated (14a-f) and S-benzylated hybrids (15a-e). Bioactivity assays demonstrated that 8g and 8h are the most potent inhibitors among the synthesized analogs, exhibiting the IC50 values of 13.9 μM and 15.1 μM, respectively. Computational assessment predicted the binding of the inhibitors at an allosteric site developed in the open conformation of DENV2 NS2B/NS3pro. Taken together these findings point out that the synthesized hybrid inhibitors possess a great potential for further antiviral drug development.
Collapse
Affiliation(s)
- Syeda Shamila Hamdani
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad 13100 AJK, Pakistan; Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad 13100 AJK, Pakistan.
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Farwa Batool
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792 Pakistan
| | - Hafiza Nosheen Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792 Pakistan
| | | | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792 Pakistan.
| |
Collapse
|
66
|
Rut W, Groborz K, Zhang L, Modrzycka S, Poreba M, Hilgenfeld R, Drag M. Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Res 2020; 175:104731. [PMID: 32014497 DOI: 10.1016/j.antiviral.2020.104731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) and Dengue virus (DENV) are mosquito-borne pathogenic flaviviruses. The NS2B-NS3 proteases found in these viruses are responsible for polyprotein processing and are therefore considered promising medical targets. Another ortholog of these proteases is found in Zika virus (ZIKV). In this work, we applied a combinatorial chemistry approach - Hybrid Combinatorial Substrate Library (HyCoSuL), to compare the substrate specificity profile at the P4-P1 positions of the NS2B-NS3 proteases found in all three viruses. The obtained data demonstrate that Zika and West Nile virus NS2B-NS3 proteases display highly overlapping substrate specificity in all binding pockets, while the Dengue ortholog has slightly different preferences toward natural and unnatural amino acids at the P2 and P4 positions. We used this information to extract specific peptide sequences recognized by the Dengue NS2B-NS3 protease. Next, we applied this knowledge to design a selective substrate and activity-based probe for the Dengue NS2B-NS3 protease. Our work provides a structural framework for the design of inhibitors, which could be used as a lead structure for drug development efforts.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Linlin Zhang
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
67
|
Identification and structural characterization of small molecule fragments targeting Zika virus NS2B-NS3 protease. Antiviral Res 2020; 175:104707. [PMID: 31953156 DOI: 10.1016/j.antiviral.2020.104707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/23/2022]
Abstract
Zika virus (ZIKV) NS2B-NS3 protease is a validated antiviral target as it is essential for maturation of viral proteins. However, its negatively charged active site hinders the development of orthosteric small-molecule inhibitors. Fragment-based drug discovery (FBDD) is a powerful tool to generate novel chemical starting points against difficult drug targets. In this study, we scre ened a fragment compound library against the Zika protease using a primary thermal shift assay and identified twenty-two fragments which (bind to and) stabilize the protease. We then determined the X-ray crystal structures of two hits from different classes, all of which bind to the S1 pocket of the protease. We confirmed that these two fragments bind to the protease without inducing significant conformational changes using solution NMR spectroscopy. These fragment scaffolds serve as the starting point for subsequent lead compound development.
Collapse
|
68
|
Voss S, Nitsche C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg Med Chem Lett 2020; 30:126965. [PMID: 31980339 DOI: 10.1016/j.bmcl.2020.126965] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/09/2023]
Abstract
In recent years, the Zika virus has emerged from a neglected flavivirus to a health-threatening pathogen that causes epidemic outbreaks associated with neurological disorders and congenital malformations. In addition to vaccine development, the discovery of specific antiviral agents has been pursued intensely. The Zika virus protease NS2B-NS3 catalyses the processing of the viral precursor polyprotein as an essential step during viral replication. Since the epidemic Zika virus outbreak in the Americas, several inhibitors of this protease have been reported. Substrate-derived peptides revealed important structural information about the active site, whilst more drug-like small molecules have been discovered as allosteric inhibitors.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
69
|
Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of Dengue and West Nile Virus NS2B-NS3 Protease Display Two Distinct Binding Modes. J Med Chem 2019; 63:140-156. [DOI: 10.1021/acs.jmedchem.9b00759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tonko Dražić
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sara Kopf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - James Corridan
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila M. Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
70
|
Peptide derivatives as inhibitors of NS2B-NS3 protease from Dengue, West Nile, and Zika flaviviruses. Bioorg Med Chem 2019; 27:3963-3978. [DOI: 10.1016/j.bmc.2019.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
|
71
|
Xu J, Xie X, Ye N, Zou J, Chen H, White MA, Shi PY, Zhou J. Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5- b]pyridine-7,3'-indoline]-2',5(3 H)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. J Med Chem 2019; 62:7941-7960. [PMID: 31403780 DOI: 10.1021/acs.jmedchem.9b00698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of substituted 4,6-dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3'-indoline]-2',5(3H)-dione analogues were synthesized and evaluated as potent dengue virus inhibitors. Throughout a structure-activity relationship exploration on the amide of the indolone moiety, a wide range of substitutions were found to be well tolerated for chemical optimization at this position. Among these compounds, 15 (JMX0254) displayed the most potent and broad inhibitory activities, effective against DENV-1 to -3 with EC50 values of 0.78, 0.16, and 0.035 μM, respectively, while compounds 16, 21, 27-29, 47, and 70 exhibited relatively moderate to high activities with low micromolar to nanomolar potency against all four serotypes. The biotinylated compound 73 enriched NS4B protein from cell lysates in pull-down studies, and the findings together with the mutation investigations further validated dengue NS4B protein as the target of this class of compounds. More importantly, compound 15 exhibited good in vivo pharmacokinetic properties and efficacy in the A129 mouse model, indicating its therapeutic potential against the dengue virus infection as a drug candidate for further preclinical development.
Collapse
|
72
|
Synthesis and structure-activity relationships of small-molecular di-basic esters, amides and carbamates as flaviviral protease inhibitors. Eur J Med Chem 2019; 176:187-194. [DOI: 10.1016/j.ejmech.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022]
|
73
|
Nitsche C, Onagi H, Quek JP, Otting G, Luo D, Huber T. Biocompatible Macrocyclization between Cysteine and 2-Cyanopyridine Generates Stable Peptide Inhibitors. Org Lett 2019; 21:4709-4712. [DOI: 10.1021/acs.orglett.9b01545] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jun-Ping Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
74
|
Majerová T, Novotný P, Krýsová E, Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie 2019; 166:132-141. [PMID: 31077760 DOI: 10.1016/j.biochi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Zika and Dengue viruses have attracted substantial attention from researchers in light of recent outbreaks of Dengue fever and increases in cases of congenital microcephaly in areas with Zika incidence. This review summarizes the current state of knowledge about Zika and Dengue proteases. These enzymes have several interesting features: 1) NS3 serine protease requires the activating co-factor NS2B, which is anchored in the membrane of the endoplasmic reticulum; 2) NS2B displays extensive conformational dynamics; 3) NS3 is a multidomain protein with proteolytic, NTPase, RNA 5' triphosphatase and helicase activity and has many protein-protein interaction partners; 4) NS3 is autoproteolytically released from its precursor. Attempts to design tight-binding and specific active-site inhibitors are complicated by the facts that the substrate pocket of the NS2B-NS3 protease is flat and the active-site ligands are charged. The ionic character of potential active-site inhibitors negatively influences their cell permeability. Possibilities to block cis-autoprocessing of the protease precursor have recently been considered. Additionally, potential allosteric sites on NS2B-NS3 proteases have been identified and allosteric compounds have been designed to impair substrate binding and/or block the NS2B-NS3 interaction. Such compounds could be specific to viral proteases, without off-target effects on host serine proteases, and could have favorable pharmacokinetic profiles. This review discusses various groups of inhibitors of these proteases according to their mechanisms of action and chemical structures.
Collapse
Affiliation(s)
- Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic
| | - Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Eliška Krýsová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic.
| |
Collapse
|
75
|
Yao Y, Huo T, Lin YL, Nie S, Wu F, Hua Y, Wu J, Kneubehl AR, Vogt MB, Rico-Hesse R, Song Y. Discovery, X-ray Crystallography and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. J Am Chem Soc 2019; 141:6832-6836. [PMID: 31017399 DOI: 10.1021/jacs.9b02505] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.
Collapse
|
76
|
Nutho B, Mulholland AJ, Rungrotmongkol T. Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations Support a Concerted Reaction Mechanism for the Zika Virus NS2B/NS3 Serine Protease with Its Substrate. J Phys Chem B 2019; 123:2889-2903. [PMID: 30845796 DOI: 10.1021/acs.jpcb.9b02157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) is mainly transmitted to humans by Aedes species mosquitoes and is associated with serious pathological disorders including microcephaly in newborns and Guillain-Barré syndrome in adults. Currently, there is no vaccine or anti-ZIKV drug available for preventing or controlling ZIKV infection. An attractive drug target for ZIKV treatment is a two-compartment (NS2B/NS3) serine protease that processes viral polyprotein during infection. Here, conventional molecular dynamics simulations of the ZIKV protease in complex with peptide substrate (TGKRS) sequence at the C-terminus of NS2B show that the substrate is in the active conformation for the cleavage reaction by ZIKV protease. Hybrid quantum mechanics/molecular mechanics (QM/MM) umbrella sampling simulations (PM6/ff14SB) of acylation results reveal that proton transfer from S135 to H51 and nucleophilic attack on the substrate by S135 are concerted. The rate-limiting step involves the formation of a tetrahedral intermediate. In addition, the single-point energy QM/MM calculations, precisely at the level of coupled cluster theory (LCCSD(T)/(aug)-cc-pVTZ), were performed to correct the potential energy profiles for the first step of the acylation process. The average computed activation barrier at this level of theory is 16.3 kcal mol-1. Therefore, the computational approaches presented here are helpful for further designing of NS2B/NS3 inhibitors based on transition-state analogues.
Collapse
Affiliation(s)
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , U.K
| | | |
Collapse
|
77
|
Nitsche C. Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019; 11:157-165. [PMID: 30806881 DOI: 10.1007/s12551-019-00508-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Proteases from flaviviruses have gained substantial interest as potential drug targets to combat infectious diseases caused by dengue, West Nile, Zika and related viruses. Despite nearly two decades of drug discovery campaigns, promising lead compounds for clinical trials have not yet been identified. The main challenges for successful lead compound development are associated with limited drug-likeness of inhibitors and structural ambiguity of the protease target. This brief review focuses on the available information on the structure of flavivirus proteases and their interactions with inhibitors and attempts to point the way forward for successful identification of future lead compounds.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
78
|
Nitsche C, Passioura T, Varava P, Mahawaththa MC, Leuthold MM, Klein CD, Suga H, Otting G. De Novo Discovery of Nonstandard Macrocyclic Peptides as Noncompetitive Inhibitors of the Zika Virus NS2B-NS3 Protease. ACS Med Chem Lett 2019; 10:168-174. [PMID: 30783498 PMCID: PMC6378662 DOI: 10.1021/acsmedchemlett.8b00535] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
The Zika virus presents a major public health concern due to severe fetal neurological disorders associated with infections in pregnant women. In addition to vaccine development, the discovery of selective antiviral drugs is essential to combat future epidemic Zika virus outbreaks. The Zika virus NS2B-NS3 protease, which performs replication-critical cleavages of the viral polyprotein, is a promising drug target. We report the first macrocyclic peptide-based inhibitors of the NS2B-NS3 protease, discovered de novo through in vitro display screening of a genetically reprogrammed library including noncanonical residues. Six compounds were selected, resynthesized, and isolated, all of which displayed affinities in the low nanomolar concentration range. Five compounds showed significant protease inhibition. Two of these were validated as hits with submicromolar inhibition constants and selectivity toward Zika over the related proteases from dengue and West Nile viruses. The compounds were characterized as noncompetitive inhibitors, suggesting allosteric inhibition.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Toby Passioura
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Paul Varava
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mithun C. Mahawaththa
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Mila M. Leuthold
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D. Klein
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gottfried Otting
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| |
Collapse
|
79
|
Kumar A, Liang B, Aarthy M, Singh SK, Garg N, Mysorekar IU, Giri R. Hydroxychloroquine Inhibits Zika Virus NS2B-NS3 Protease. ACS OMEGA 2018; 3:18132-18141. [PMID: 30613818 PMCID: PMC6312647 DOI: 10.1021/acsomega.8b01002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/05/2018] [Indexed: 05/30/2023]
Abstract
Zika virus is a mosquito-transmitted flavivirus that causes devastating fetal outcomes in the context of maternal infection during pregnancy. An important target for drugs combatting Zika virus pathogenicity is NS2B-NS3 protease, which plays an essential role in hydrolysis and maturation of the flavivirus polyprotein. We identify hydroxychloroquine, a drug that already has approved uses in pregnancy, as a possible inhibitor of NS2B-NS3 protease by using a Food and Drug Administration-approved drug library, molecular docking, and molecular dynamics simulations. Further, to gain insight into its inhibitory potential toward NS2B-NS3 protease, we performed enzyme kinetic studies, which revealed that hydroxychloroquine inhibits protease activity with an inhibition constant (K i) of 92.34 ± 11.91 μM. Additionally, hydroxychloroquine significantly decreases Zika virus infection in placental cells.
Collapse
Affiliation(s)
- Ankur Kumar
- Indian
Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Brooke Liang
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, and Department of
Pathology and Immunology, Washington University
School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United
States
| | - Murali Aarthy
- Department
of Bioinformatics, Computer Aided Drug Design and Molecular Modeling
Laboratory, Alagappa University, Science Block, Karaikudi 630003, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department
of Bioinformatics, Computer Aided Drug Design and Molecular Modeling
Laboratory, Alagappa University, Science Block, Karaikudi 630003, Tamil Nadu, India
| | - Neha Garg
- Indian
Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
- BioX Center, Indian Institute
of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, and Department of
Pathology and Immunology, Washington University
School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United
States
| | - Rajanish Giri
- Indian
Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
- BioX Center, Indian Institute
of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
80
|
Hill ME, Yildiz M, Hardy JA. Cysteine Disulfide Traps Reveal Distinct Conformational Ensembles in Dengue Virus NS2B-NS3 Protease. Biochemistry 2018; 58:776-787. [PMID: 30472839 DOI: 10.1021/acs.biochem.8b00978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dengue virus protease (NS2B-NS3pro) plays a critical role in the dengue viral life cycle, making it an attractive drug target for dengue-related pathologies, including dengue hemorrhagic fever. A number of studies indicate that NS2B-NS3pro undergoes a transition between two widely different conformational states: an "open" (inactive) conformation and a "closed" (active) conformation. For the past several years, the equilibrium between these states and the resting conformation of NS2B-NS3pro have been debated, although a strong consensus is emerging. To investigate the importance of such conformational states, we developed versions of NS2B-NS3pro that allow us to trap the enzyme in various distinct conformations. Our data from these variants suggest that the enzymatic activity appears to be dependent on the movement of NS2B and may rely on the flexibility of the protease core. Locking the enzyme into the "closed" conformation dramatically increased activity, strongly suggesting that the "closed" conformation is the active conformation. The observed resting state of the enzyme depends largely on the construct used to express the NS2B-NS3pro complex. In an "unlinked" construct, in which the NS2B and NS3 regions exist as independent, co-expressed polypeptides, the enzyme rests predominantly in a "closed", active conformation. In contrast, in a "linked" construct, in which NS2B and NS3 are attached by a nine-amino acid linker, NS2B-NS3pro adopts a more relaxed, alternative conformation. Nevertheless, even the unlinked construct samples both the "closed" and other alternative conformations. Given our findings, and the more realistic resemblance of NS2B-NS3pro to the native enzyme, these data strongly suggest that studies should focus on the "unlinked" constructs moving forward. Additionally, the results from these studies provide a more detailed understanding of the various poses of the dengue virus NS2B-NS3 protease and should help guide future drug discovery efforts aimed at this enzyme.
Collapse
Affiliation(s)
- Maureen E Hill
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Muslum Yildiz
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Jeanne A Hardy
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
81
|
Chen J, Jiang H, Li F, Hu B, Wang Y, Wang M, Wang J, Cheng M. Computational insight into dengue virus NS2B-NS3 protease inhibition: A combined ligand- and structure-based approach. Comput Biol Chem 2018; 77:261-271. [DOI: 10.1016/j.compbiolchem.2018.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023]
|
82
|
Qadir A, Riaz M, Saeed M, Shahzad-Ul-Hussan S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur J Med Chem 2018; 156:444-460. [PMID: 30015077 DOI: 10.1016/j.ejmech.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Continuously increasing number of reports of Zika virus (ZIKV) infections and associated severe clinical manifestations, including autoimmune abnormalities and neurological disorders such as neonatal microcephaly and Guillain-Barré syndrome have created alarming situation in various countries. To date, no specific antiviral therapy or vaccine is available against ZIKV. This review provides a comprehensive insight into the potential therapeutic targets and describes viral epitopes of broadly neutralizing antibodies (bNAbs) in vaccine design perspective. Interactions between ZIKV envelope glycoprotein E and cellular receptors mediate the viral fusion and entry to the target cell. Blocking these interactions by targeting cellular receptors or viral structural proteins mediating these interactions or viral surface glycans can inhibit viral entry to the cell. Similarly, different non-structural proteins of ZIKV and un-translated regions (UTRs) of its RNA play essential roles in viral replication cycle and potentiate for therapeutic interventions. Structure based vaccine design requires identity and structural description of the epitopes of bNAbs. We have described different conserved bNAb epitopes present in the ZIKV envelope as potential targets for structure based vaccine design. This review also highlights successes, unanswered questions and future perspectives in relation to therapeutic and vaccine development against ZIKV.
Collapse
Affiliation(s)
- Amina Qadir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Riaz
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
83
|
Yavari I, Naeimabadi M, Halvagar MR. A diastereoselective synthesis of functionalized bis-spirorhodanine-linked cyclopentanes via C(sp 3 )–H activation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Strategies Towards Protease Inhibitors for Emerging Flaviviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:175-186. [PMID: 29845533 PMCID: PMC7121277 DOI: 10.1007/978-981-10-8727-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infections with flaviviruses are a continuing public health threat. In addition to vaccine development and vector control, the search for antiviral agents that alleviate symptoms in patients are of considerable interest. Among others, the flaviviral protease NS2B-NS3 is a promising drug target to inhibit viral replication. Flaviviral proteases share a high degree of structural similarity and substrate-recognition profile, which may facilitate a strategy towards development of pan-flaviviral protease inhibitors. However, the success of various drug discovery attempts during the last decade has been limited by the nature of the viral enzyme as well as a lack of robust structural templates. Small-molecular, structurally diverse protease inhibitors have been reported to reach affinities in the lower micromolar range. Peptide-based, substrate-derived compounds are often nanomolar inhibitors, however, with highly compromised drug-likeness. With some exceptions, the antiviral cellular activity of most of the reported compounds have been patchy and insufficient for further development. Recent progress has been made in the elucidation of inhibitor binding using different structural methods. This will hopefully lead to more rational attempts for the identification of various lead compounds that may be successful in cellular assays, animal models and ultimately translated to patients.
Collapse
|
85
|
Gopala Reddy SB, Chin WX, Shivananju NS. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem Pharmacol 2018; 154:54-63. [PMID: 29674002 DOI: 10.1016/j.bcp.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022]
Abstract
Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design.
Collapse
Affiliation(s)
- Sindhoora Bhargavi Gopala Reddy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India
| | - Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India.
| |
Collapse
|
86
|
Structural Insights into the Inhibition of Zika Virus NS2B-NS3 Protease by a Small-Molecule Inhibitor. Structure 2018. [DOI: 10.1016/j.str.2018.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
87
|
Becker W, Adams LA, Graham B, Wagner GE, Zangger K, Otting G, Nitsche C. Trimethylsilyl tag for probing protein-ligand interactions by NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:211-218. [PMID: 29564580 DOI: 10.1007/s10858-018-0173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Protein-ligand titrations can readily be monitored with a trimethylsilyl (TMS) tag. Owing to the intensity, narrow line shape and unique chemical shift of a TMS group, dissociation constants can be determined from straightforward 1D 1H-NMR spectra not only in the fast but also in the slow exchange limit. The tag is easily attached to cysteine residues and a sensitive reporter of ligand binding also at sites where it does not interfere with ligand binding or catalytic efficiency of the target protein. Its utility is demonstrated for the Zika virus NS2B-NS3 protease and the human prolyl isomerase FK506 binding protein.
Collapse
Affiliation(s)
- Walter Becker
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Luke A Adams
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
88
|
Gibbs AC, Steele R, Liu G, Tounge BA, Montelione GT. Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes. Biochemistry 2018; 57:1591-1602. [PMID: 29447443 DOI: 10.1021/acs.biochem.7b01127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19F and 1H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.
Collapse
Affiliation(s)
- Alan C Gibbs
- Janssen Research and Development LLC , Welsh & McKean Roads , Spring House , Pennsylvania 19477 , United States
| | - Ruth Steele
- Janssen Research and Development LLC , Welsh & McKean Roads , Spring House , Pennsylvania 19477 , United States
| | - Gaohua Liu
- Nexomics Biosciences, Inc. , 1200 Florence Columbus Road , Bordentown , New Jersey 08505 , United States
| | - Brett A Tounge
- Janssen Research and Development LLC , Welsh & McKean Roads , Spring House , Pennsylvania 19477 , United States
| | - Gaetano T Montelione
- Nexomics Biosciences, Inc. , 1200 Florence Columbus Road , Bordentown , New Jersey 08505 , United States
| |
Collapse
|
89
|
Mahawaththa MC, Lee MD, Giannoulis A, Adams LA, Feintuch A, Swarbrick JD, Graham B, Nitsche C, Goldfarb D, Otting G. Small neutral Gd(iii) tags for distance measurements in proteins by double electron–electron resonance experiments. Phys Chem Chem Phys 2018; 20:23535-23545. [DOI: 10.1039/c8cp03532f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small Gd(iii) tags based on DO3A deliver narrow and readily predictable distances by double electron–electron resonance (DEER) measurements.
Collapse
Affiliation(s)
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Angeliki Giannoulis
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Luke A. Adams
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Akiva Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Christoph Nitsche
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Gottfried Otting
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
90
|
Huang YW, Lee CT, Wang TC, Kao YC, Yang CH, Lin YM, Huang KS. The Development of Peptide-based Antimicrobial Agents against Dengue Virus. Curr Protein Pept Sci 2018; 19:998-1010. [PMID: 29852867 PMCID: PMC6446661 DOI: 10.2174/1389203719666180531122724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Dengue fever has become an imminent threat to international public health because of global warming and climate change. The World Health Organization proclaimed that more than 50% of the world's population is at risk of dengue virus (DENV) infection. Therefore, developing a clinically approved vaccine and effective therapeutic remedy for treating dengue fever is imperative. Peptide drug development has become a novel pharmaceutical research field. This article reviews various peptidesbased antimicrobial agents targeting three pathways involved in the DENV lifecycle. Specifically, they are peptide vaccines from immunomodulation, peptide drugs that inhibit virus entry, and peptide drugs that interfere with viral replication. Many antiviral peptide studies against DENV have been conducted in animal model trials, and progression to clinical trials for these promising peptide drugs is anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keng-Shiang Huang
- Address correspondence to this author at the School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan;, Tel: +886-988-399-979; E-mail:
| |
Collapse
|
91
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
92
|
Kang C, Keller TH, Luo D. Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol 2017; 25:797-808. [PMID: 28789826 DOI: 10.1016/j.tim.2017.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
Abstract
The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis way, Nanos, #03-01, 138669, Singapore.
| | - Thomas H Keller
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis way, Nanos, #03-01, 138669, Singapore.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, 636921, Singapore.
| |
Collapse
|
93
|
Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017; 16:565-586. [PMID: 28473729 PMCID: PMC5925760 DOI: 10.1038/nrd.2017.33] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infections with flaviviruses, such as dengue, West Nile virus and the recently re-emerging Zika virus, are an increasing and probably lasting global risk. This Review summarizes and comments on the opportunities for broad-spectrum agents that are active against multiple flaviviruses. Broad-spectrum activity is particularly desirable to prepare for the next flaviviral epidemic, which could emerge from as-yet unknown or neglected viruses. Potential molecular targets for broad-spectrum antiflaviviral compounds include viral proteins, such as the viral protease or polymerase, and host targets that are exploited by these viruses during entry and replication, including α-glucosidase and proteins involved in nucleoside biosynthesis. Numerous compounds with broad-spectrum antiviral activity have already been identified by target-specific or phenotypic assays. For other compounds, broad-spectrum activity can be anticipated because of their mode of action and molecular targets.
Collapse
Affiliation(s)
- Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry of the Academy of Sciences of Moldova, Academiei 3, 2028 Chisinau, Moldova
| | - Mira A. M. Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nikos Vasilakis
- Dept. of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, 2.138D Keiller Bldg, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555–0609, USA
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
94
|
Li Y, Phoo WW, Loh YR, Zhang Z, Ng EY, Wang W, Keller TH, Luo D, Kang C. Structural characterization of the linked NS2B-NS3 protease of Zika virus. FEBS Lett 2017; 591:2338-2347. [PMID: 28675775 DOI: 10.1002/1873-3468.12741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023]
Abstract
The Zika virus (ZIKV) NS2B-NS3 protease is an important drug target. The conventional flaviviral protease constructs used for structural studies contain the NS2B cofactor region linked to the NS3 protease domain via a glycine-rich flexible linker. Here, we examined the structural dynamics of this conventional Zika protease (gZiPro) using NMR spectroscopy. Although the glycine-rich linker in gZiPro does not alter the overall folding of the protease in solution, gZiPro is not homogenous in ion exchange chromatography. Compared to the unlinked protease construct, the artificial linker affects the chemical environment of many residues including H51 in the catalytic triad. Our study provides a direct comparison of ZIKV protease constructs with and without an artificial linker.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Wint Wint Phoo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ying Ru Loh
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Zhenzhen Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Elizabeth Yihui Ng
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Weiling Wang
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Thomas H Keller
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
95
|
Mahawaththa MC, Pearce BJ, Szabo M, Graham B, Klein CD, Nitsche C, Otting G. Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease. Antiviral Res 2017; 142:141-147. [DOI: 10.1016/j.antiviral.2017.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 01/28/2023]
|
96
|
Takagi Y, Matsui K, Nobori H, Maeda H, Sato A, Kurosu T, Orba Y, Sawa H, Hattori K, Higashino K, Numata Y, Yoshida Y. Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg Med Chem Lett 2017; 27:3586-3590. [PMID: 28539222 DOI: 10.1016/j.bmcl.2017.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
Abstract
NS2B-NS3 protease is an essential enzyme for the replication of dengue virus (DENV), which continues to be a serious threat to worldwide public health. We designed and synthesized a series of cyclic peptides mimicking the substrates of this enzyme, and assayed their activity against the DENV-2 NS2B-NS3 protease. The introduction of aromatic residues at the appropriate positions and conformational restriction generated the most promising cyclic peptide with an IC50 of 0.95μM against NS2B-NS3 protease. Cyclic peptides with proper positioning of additional arginines and aromatic residues exhibited antiviral activity against DENV. Furthermore, replacing the C-terminal amide bond of the polybasic amino acid sequence with an amino methylene moiety stabilized the cyclic peptides against hydrolysis by NS2B-NS3 protease, while maintaining their enzyme inhibitory activity and antiviral activity.
Collapse
Affiliation(s)
- Youhei Takagi
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Haruaki Nobori
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Haruka Maeda
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Akihiko Sato
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takeshi Kurosu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo 001-0020, Japan
| | - Kazunari Hattori
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kenichi Higashino
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yoshito Numata
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Yutaka Yoshida
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
97
|
Tambunan USF, Nasution MAF, Azhima F, Parikesit AA, Toepak EP, Idrus S, Kerami D. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation. Drug Target Insights 2017; 11:1177392817701726. [PMID: 28469408 PMCID: PMC5404899 DOI: 10.1177/1177392817701726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world's population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S-adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2'OH, resulting in S-adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔGbinding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.
Collapse
Affiliation(s)
- Usman Sumo Friend Tambunan
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | | | - Fauziah Azhima
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Arli Aditya Parikesit
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Erwin Prasetya Toepak
- Bioinformatics Research Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Syarifuddin Idrus
- Industrial Standardization Laboratory, Ministry of Industrial Affair, Ambon, Indonesia
| | - Djati Kerami
- Mathematics Computation Research Group, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| |
Collapse
|
98
|
Kouretova J, Hammamy MZ, Epp A, Hardes K, Kallis S, Zhang L, Hilgenfeld R, Bartenschlager R, Steinmetzer T. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. J Enzyme Inhib Med Chem 2017; 32:712-721. [PMID: 28385094 PMCID: PMC6445162 DOI: 10.1080/14756366.2017.1306521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11 µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.
Collapse
Affiliation(s)
- Jenny Kouretova
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| | - M Zouhir Hammamy
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Anton Epp
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Kornelia Hardes
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany
| | - Stephanie Kallis
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Linlin Zhang
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Rolf Hilgenfeld
- d Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Lübeck , Germany.,e German Center for Infection Research (DZIF) , University of Lübeck , Lübeck , Germany
| | - Ralf Bartenschlager
- c Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,f German Center for Infection Research (DZIF) , Heidelberg University , Heidelberg , Germany
| | - Torsten Steinmetzer
- a Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University , Marburg , Germany.,b German Center for Infection Research (DZIF) , University of Marburg , Marburg , Germany
| |
Collapse
|
99
|
Aguilera-Pesantes D, Robayo LE, Méndez PE, Mollocana D, Marrero-Ponce Y, Torres FJ, Méndez MA. Discovering key residues of dengue virus NS2b-NS3-protease: New binding sites for antiviral inhibitors design. Biochem Biophys Res Commun 2017; 492:631-642. [PMID: 28343993 DOI: 10.1016/j.bbrc.2017.03.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/01/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Abstract
The NS2B-NS3 protease is essential for the Dengue Virus (DENV) replication process. This complex constitutes a target for efficient antiviral discovery because a drug could inhibit the viral polyprotein processing. Furthermore, since the protease is highly conserved between the four Dengue virus serotypes, it is probable that a drug would be equally effective against all of them. In this article, a strategy is reported that allowed us to identify influential residues on the function of the Dengue NS2b-NS3 Protease. Moreover, this is a strategy that could be applied to virtually any protein for the search of alternative influential residues, and for non-competitive inhibitor development. First, we incorporated several features derived from computational alanine scanning mutagenesis, sequence, structure conservation, and other structure-based characteristics. Second, these features were used as variables to obtain a multilayer perceptron model to identify defined groups (clusters) of key residues as possible candidate pockets for binding sites of new leads on the DENV protease. The identified residues included: i) amino acids close to the beta sheet-loop-beta sheet known to be important in its closed conformation for NS2b ii) residues close to the active site, iii) several residues evenly spread on the NS2b-NS3 contact surface, and iv) some inner residues most likely related to the overall stability of the protease. In addition, we found concordance on our list of residues with previously identified amino acids part of a highly conserved peptide studied for vaccine development.
Collapse
Affiliation(s)
- D Aguilera-Pesantes
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - L E Robayo
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - P E Méndez
- Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - D Mollocana
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - Y Marrero-Ponce
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av.Interoceánica Km 12 ½ y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador
| | - F J Torres
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - M A Méndez
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av.Interoceánica Km 12 ½ y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador.
| |
Collapse
|
100
|
Aguilera-Pesantes D, Méndez MA. Structure and sequence based functional annotation of Zika virus NS2b protein: Computational insights. Biochem Biophys Res Commun 2017; 492:659-667. [PMID: 28188791 DOI: 10.1016/j.bbrc.2017.02.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023]
Abstract
While Zika virus (ZIKV) outbreaks are a growing concern for global health, a deep understanding about the virus is lacking. Here we report a contribution to the basic science on the virus- a detailed computational analysis of the non structural protein NS2b. This protein acts as a cofactor for the NS3 protease (NS3Pro) domain that is important on the viral life cycle, and is an interesting target for drug development. We found that ZIKV NS2b cofactor is highly similar to other virus within the Flavivirus genus, especially to West Nile Virus, suggesting that it is completely necessary for the protease complex activity. Furthermore, the ZIKV NS2b has an important role to the function and stability of the ZIKV NS3 protease domain even when presents a low conservation score. In addition, ZIKV NS2b is mostly rigid, which could imply a non dynamic nature in substrate recognition. Finally, by performing a computational alanine scanning mutagenesis, we found that residues Gly 52 and Asp 83 in the NS2b could be important in substrate recognition.
Collapse
Affiliation(s)
- Daniel Aguilera-Pesantes
- Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica, Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - Miguel A Méndez
- Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica, Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av. Interoceánica Km 12 ½; y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador.
| |
Collapse
|