51
|
Kwon B, Kho Y, Kim PG, Ji K. Thyroid endocrine disruption in male zebrafish following exposure to binary mixture of bisphenol AF and sulfamethoxazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:168-174. [PMID: 27794274 DOI: 10.1016/j.etap.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 05/27/2023]
Abstract
Thyroid endocrine disruption by bisphenol AF (BPAF) alone or in combination with sulfamethoxazole (SMX) exposure was evaluated in adult male zebrafish. Changes in thyroid gene transcription were examined using microarrays and were linked to effects on thyroxine hormone production and transcription of genes related to the hypothalamic-pituitary-thyroid axis. BPAF alone or in combination with SMX affected genes related to thyroid hormone production and receptor activity, thyroid gland development, and deiodinase activity. Increases in thyroxine levels, and gene transcription were more pronounced in the BPAF and SMX mixture group than in the BPAF group. Significant down-regulation of trh and tshβ genes in the brain suggested a negative feedback response resulting in increased thyroxine levels. The present study indicated that BPAF exposure alone alters transcription of genes associated with the thyroid endocrine system, and combination with SMX could increase the endocrine disrupting effect of BPAF.
Collapse
Affiliation(s)
- Bareum Kwon
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea; CRI Global Institute of Toxicology, Croen Research Inc., Suwon, 16614, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Pan-Gyi Kim
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
52
|
Tingaud-Sequeira A, Raldúa D, Lavie J, Mathieu G, Bordier M, Knoll-Gellida A, Rambeau P, Coupry I, André M, Malm E, Möller C, Andreasson S, Rendtorff ND, Tranebjærg L, Koenig M, Lacombe D, Goizet C, Babin PJ. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC. Neurobiol Dis 2016; 98:36-51. [PMID: 27890673 DOI: 10.1016/j.nbd.2016.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/25/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid pathways, its precise functional role(s) leading to PHARC disease had not previously been characterized. Cell and zebrafish models were designed to demonstrate the causal link between an identified new missense mutation p.T253R, characterized in ABHD12 from a young patient, the previously characterized p.T202I and p.R352* mutations, and the associated PHARC. Measuring ABHD12 monoacylglycerol lipase activity in transfected HEK293 cells demonstrated inhibition with mutated isoforms. Both the expression pattern of zebrafish abhd12 and the phenotype of specific antisense morpholino oligonucleotide gene knockdown morphants were consistent with human PHARC hallmarks. High abhd12 transcript levels were found in the optic tectum and tract, colocalized with myelin basic protein, and in the spinal cord. Morphants have myelination defects and concomitant functional deficits, characterized by progressive ataxia and motor skill impairment. A disruption of retina architecture and retinotectal projections was observed, together with an inhibition of lens clarification and a low number of mechanosensory hair cells in the inner ear and lateral line system. The severe phenotypes in abhd12 knockdown morphants were rescued by introducing wild-type human ABHD12 mRNA, but not by mutation-harboring mRNAs. Zebrafish may provide a suitable vertebrate model for ABHD12 insufficiency and the study of functional impairment and potential therapeutic rescue of this rare, neurodegenerative disease.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | | | - Julie Lavie
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Guilaine Mathieu
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Magali Bordier
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | - Anja Knoll-Gellida
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Pierre Rambeau
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Isabelle Coupry
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Michèle André
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Eva Malm
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Claes Möller
- School of Medicine and Health, Örebro University, Sweden
| | - Sten Andreasson
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Nanna D Rendtorff
- Department Audiology, Bispebjerg Hospital/Rigshospitalet, Department of Clinical Genetics, Rigshospitalet/The Kennedy Center, University of Copenhagen, Institute for Clinical Medicine Copenhagen, Denmark
| | - Lisbeth Tranebjærg
- Department Audiology, Bispebjerg Hospital/Rigshospitalet, Department of Clinical Genetics, Rigshospitalet/The Kennedy Center, University of Copenhagen, Institute for Clinical Medicine Copenhagen, Denmark
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire et unité INSERM UMR_S827, IURC, Montpellier, France
| | - Didier Lacombe
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | - Cyril Goizet
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | - Patrick J Babin
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France.
| |
Collapse
|
53
|
Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. The Next Generation of Risk Assessment Multi-Year Study-Highlights of Findings, Applications to Risk Assessment, and Future Directions. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1671-1682. [PMID: 27091369 PMCID: PMC5089888 DOI: 10.1289/ehp233] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.
Collapse
Affiliation(s)
- Ila Cote
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
- Address correspondence to I. Cote, U.S. Environmental Protection Agency, Region 8, Room 8152, 1595 Wynkoop St., Denver, CO 80202-1129 USA. Telephone: (202) 288-9539. E-mail:
| | | | - Gerald T. Ankley
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Duluth, Minnesota, USA
| | - Stanley Barone
- Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, District of Columbia, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Frederic Y. Bois
- Unité Modèles pour l’Écotoxicologie et la Toxicologie, Institut National de l’Environnement Industriel et des Risques, Verneuil en Halatte, France
| | - Lyle D. Burgoon
- U.S. Army Engineer Research and Development Center, Research Triangle Park, North Carolina, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael DeVito
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Robert B. Devlin
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Dale Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | - Derek Knight
- European Chemicals Agency, Annankatu, Helsinki, Finland
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason Lambert
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Elizabeth Anne Maull
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Donna Mendrick
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Chirag Jagdish Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward J. Perkins
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Gerald Poje
- Grant Consulting Group, Washington, District of Columbia, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Paul A. Schulte
- Education and Information Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Kristina A. Thayer
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Reuben Thomas
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Raymond R. Tice
- National Institute of Environmental Health Sciences, and
- National Toxicology Program, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - John J. Vandenberg
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| | - Daniel L. Villeneuve
- National Health and Environmental Effects Research Laboratory, U.S. EPA, Duluth, Minnesota, USA
| | - Scott Wesselkamper
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Maurice Whelan
- Systems Toxicology Unit, European Commission Joint Research Centre, Ispra, Italy
| | - Christine Whittaker
- Education and Information Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Ronald White
- Center for Effective Government, Washington, District of Columbia, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California EPA, Oakland, California, USA
| | - Jay Zhao
- National Center for Environmental Assessment, U.S. EPA, Cincinnati, Ohio, USA
| | - Robert S. DeWoskin
- National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Washington, District of Columbia, USA
| |
Collapse
|
54
|
Zebrafish is a predictive model for identifying compounds that protect against brain toxicity in severe acute organophosphorus intoxication. Arch Toxicol 2016; 91:1891-1901. [PMID: 27655295 PMCID: PMC5364264 DOI: 10.1007/s00204-016-1851-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included “standard therapy” drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-d-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC50)] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.
Collapse
|
55
|
Dang TT, Biard PF, Couvert A. Assessment of a Stirred-Cell Reactor Operated Semicontinuously for the Kinetic Study of Fast Direct Ozonation Reactions by Reactive Absorption. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thom Thi Dang
- École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Pierre-François Biard
- École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Annabelle Couvert
- École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| |
Collapse
|
56
|
Campos B, Rivetti C, Kress T, Barata C, Dircksen H. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6000-6007. [PMID: 27128505 DOI: 10.1021/acs.est.6b00826] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Claudia Rivetti
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Timm Kress
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| |
Collapse
|
57
|
Haselman JT, Sakurai M, Watanabe N, Goto Y, Onishi Y, Ito Y, Onoda Y, Kosian PA, Korte JJ, Johnson RD, Iguchi T, Degitz SJ. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure inXenopus laevisfrom embryo to juvenile. J Appl Toxicol 2016; 36:1651-1661. [DOI: 10.1002/jat.3336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jonathan T. Haselman
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Maki Sakurai
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Naoko Watanabe
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yasushi Goto
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yuta Onishi
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yuki Ito
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yu Onoda
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Patricia A. Kosian
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Joseph J. Korte
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Rodney D. Johnson
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Sigmund J. Degitz
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| |
Collapse
|
58
|
Nelson KR, Schroeder AL, Ankley GT, Blackwell BR, Blanksma C, Degitz SJ, Flynn KM, Jensen KM, Johnson RD, Kahl MD, Knapen D, Kosian PA, Milsk RY, Randolph EC, Saari T, Stinckens E, Vergauwen L, Villeneuve DL. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:204-217. [PMID: 26818709 DOI: 10.1016/j.aquatox.2015.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 05/09/2023]
Abstract
In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted. Specifically, at 14dpf, approximately 50% of fish exposed to 1mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid-independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection.
Collapse
Affiliation(s)
- Krysta R Nelson
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L Schroeder
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA; University of Minnesota-Twin Cities, Water Resources Center, 1985 Lower Buford Circle, St. Paul, MN 55108, USA.
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Brett R Blackwell
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Chad Blanksma
- Badger Technical Services, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kevin M Flynn
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kathleen M Jensen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rodney D Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Michael D Kahl
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Patricia A Kosian
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rebecca Y Milsk
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Eric C Randolph
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Travis Saari
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
59
|
Baumann L, Ros A, Rehberger K, Neuhauss SCF, Segner H. Thyroid disruption in zebrafish (Danio rerio) larvae: Different molecular response patterns lead to impaired eye development and visual functions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:44-55. [PMID: 26765085 DOI: 10.1016/j.aquatox.2015.12.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 05/09/2023]
Abstract
The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.
Collapse
Affiliation(s)
- Lisa Baumann
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| | - Albert Ros
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| | - Kristina Rehberger
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| | - Stephan C F Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Helmut Segner
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
60
|
Huang GM, Tian XF, Fang XD, Ji FJ. Waterborne exposure to bisphenol F causes thyroid endocrine disruption in zebrafish larvae. CHEMOSPHERE 2016; 147:188-194. [PMID: 26766355 DOI: 10.1016/j.chemosphere.2015.12.080] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
While bisphenol F (BPF) has been frequently detected in various environmental compartments, limited information is available on its effect on thyroid endocrine system. In the present study, zebrafish (Danio rerio) embryos were exposed to 0.2, 2, 20, and 200 μg/L of BPF from 2 h post-fertilization (hpf) to 144 hpf. The whole-body content of thyroid hormones, thyroid-stimulating hormone (TSH), and transcription of genes belonging to the hypothalamic-pituitary-thyroid (HPT) axis were investigated. BPF exposure resulted in alterations of both T3 and T4 contents, increased the ratios of T3/T4, demonstrating thyroid endocrine disruption. Moreover, TSH content was significantly induced in a concentration-dependent manner after exposure to BPF. The increased gene transcription of dio2 might assist to degrade increased T3 contents. Treatment with BPF also significantly increased transcription of genes involved in thyroid hormone regulation (crh) and synthesis (nis and tg) as a compensatory mechanism for the decrease of T4 contents. However, the gene encoding protein involved in TH transport (ttr) was transcriptionally significantly down-regulated after exposure to BPF. Taken together, these results suggest that BPF alters the transcription of genes involved in the HPT axis as well as changes whole-body contents of thyroid hormones and TSH in zebrafish embryos/larvae, thus causing an endocrine disruption of the thyroid system.
Collapse
Affiliation(s)
- Guo-min Huang
- Department of General Surgery, the China-Japan Union Hospital of Jilin University, China
| | - Xiao-feng Tian
- Department of General Surgery, the China-Japan Union Hospital of Jilin University, China
| | - Xue-dong Fang
- Department of General Surgery, the China-Japan Union Hospital of Jilin University, China
| | - Fu-jian Ji
- Department of General Surgery, the China-Japan Union Hospital of Jilin University, China.
| |
Collapse
|
61
|
Sharma P, Grabowski TB, Patiño R. Thyroid endocrine disruption and external body morphology of Zebrafish. Gen Comp Endocrinol 2016; 226:42-9. [PMID: 26723187 DOI: 10.1016/j.ygcen.2015.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
This study examined the effects thyroid-active compounds during early development on body morphology of Zebrafish (Danio rerio). Three-day postfertilization (dpf) larvae were exposed to goitrogen [methimazole (MZ, 0.15mM)], combination of MZ (0.15mM) and thyroxine (T4, 2nM), T4 (2nM), or control (reconstituted water) treatments until 33dpf and subsequently maintained in reconstituted water until 45dpf. Samples were taken at 33 and 45dpf for multivariate analysis of geometric distances between selected homologous landmarks placed on digital images of fish, and for histological assessment of thyrocytes. Body mass, standard length, and pectoral fin length were separately measured on remaining fish at 45dpf. Histological analysis confirmed the hypothyroid effect (increased thyrocyte height) of MZ and rescue effect of T4 co-administration. Geometric distance analysis showed that pectoral and pelvic fins shifted backward along the rostrocaudal axis under hypothyroid conditions at 45dpf and that T4 co-treatment prevented this shift. Pectoral fin length at 45dpf was reduced by exposure to MZ and rescued by co-administration of T4, but it was not associated with standard length. Methimazole caused a reduction in body mass and length at 45dpf that could not be rescued by T4 co-administration, and non-thyroidal effects of MZ on body shape were also recognized at 33 and 45dpf. Alterations in the length and position of paired fins caused by exposure to thyroid-disrupting chemicals during early development, as shown here for Zebrafish, could affect physical aspects of locomotion and consequently other important organismal functions such as foraging, predator avoidance, and ultimately survival and recruitment into the adult population. Results of this study also suggest the need to include rescue treatments in endocrine disruption studies that rely on goitrogens as reference for thyroid-mediated effects.
Collapse
Affiliation(s)
- Prakash Sharma
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Timothy B Grabowski
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA.
| |
Collapse
|
62
|
Colin N, Porte C, Fernandes D, Barata C, Padrós F, Carrassón M, Monroy M, Cano-Rocabayera O, de Sostoa A, Piña B, Maceda-Veiga A. Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:307-323. [PMID: 26148426 DOI: 10.1016/j.scitotenv.2015.06.099] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Mediterranean rivers are probably one of the most singular and endangered ecosystems worldwide due to the presence of many endemic species and a long history of anthropogenic impacts. Besides a conservation value per se, biodiversity is related to the services that ecosystems provide to society and the ability of these to cope with stressors, including climate change. Using macro-invertebrates and fish as sentinel organisms, this overview presents a synthesis of the state of the art in the application of biomarkers (stress and enzymatic responses, endocrine disruptors, trophic tracers, energy and bile metabolites, genotoxic indicators, histopathological and behavioural alterations, and genetic and cutting edge omic markers) to determine the causes and effects of anthropogenic stressors on the biodiversity of European Mediterranean rivers. We also discuss how a careful selection of sentinel species according to their ecological traits and the food-web structure of Mediterranean rivers could increase the ecological relevance of biomarker responses. Further, we provide suggestions to better harmonise ecological realism with experimental design in biomarker studies, including statistical analyses, which may also deliver a more comprehensible message to managers and policy makers. By keeping on the safe side the health status of populations of multiple-species in a community, we advocate to increase the resilience of fluvial ecosystems to face present and forecasted stressors. In conclusion, this review provides evidence that multi-biomarker approaches detect early signs of impairment in populations, and supports their incorporation in the standardised procedures of the Water Frame Work Directive to better appraise the status of European water bodies.
Collapse
Affiliation(s)
- Nicole Colin
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain.
| | - Cinta Porte
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Denise Fernandes
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Francesc Padrós
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain
| | - Maite Carrassón
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain
| | - Mario Monroy
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain
| | - Oriol Cano-Rocabayera
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain
| | - Adolfo de Sostoa
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain
| | - Benjamín Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Alberto Maceda-Veiga
- Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Estación Biológica de Doñana (EBD-CSIC), ES-41092 Sevilla, Spain
| |
Collapse
|
63
|
Viganò L, De Flora S, Gobbi M, Guiso G, Izzotti A, Mandich A, Mascolo G, Roscioli C. Exposing native cyprinid (Barbus plebejus) juveniles to river sediments leads to gonadal alterations, genotoxic effects and thyroid disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:223-239. [PMID: 26580918 DOI: 10.1016/j.aquatox.2015.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Juveniles (50 days post hatch) of a native cyprinid fish (Barbus plebejus) were exposed for 7 months to sediments from the River Lambro, a polluted tributary impairing the quality of the River Po for tens of kilometers from their confluence. Sediments were collected upstream of the city of Milan and downstream at the closure of the drainage basin of the River Lambro. Chemical analyses revealed the presence of a complex mixture of bioavailable endocrine-active chemicals, with higher exposure levels in the downstream section of the tributary. Mainly characterized by brominated flame retardants, alkylphenols, polychlorinated biphenyls, and minor co-occurring personal care products and natural hormones, the sediment contamination induced reproductive disorders, as well as other forms of endocrine disruption and toxicity. In particular, exposed male barbel exhibited higher biliary PAH-like metabolites, overexpression of the cyp1a gene, vitellogenin production in all specimens, the presence of oocytes (up to 22% intersex), degenerative alterations in their testis, liver fat vacuolization, a marked depression of total thyroxine (T4) and triiodothyronine (T3) plasma levels, and genotoxic damages determined as hepatic DNA adducts. These results clearly demonstrate that Lambro sediments alone are responsible for recognizable changes in the structure and function of the reproductive and, in general, the endocrine system of a native fish species. In the real environment, exposure to waterborne and food-web sources of chemicals are responsible for additional toxic loads, and the present findings thus provide evidence for a causal role of this tributary in the severe decline observed in barbel in recent decades and raise concern that the fish community of the River Po is exposed to endocrine-mediated health effects along tens of kilometres of its course.
Collapse
Affiliation(s)
- Luigi Viganò
- Water Research Institute, National Research Council, Via del Mulino 19, 20861 Brugherio, MB, Italy.
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, IRCCS, Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156 Milan, Italy
| | - Giovanna Guiso
- Laboratory of Pharmacodynamics and Pharmacokinetics, IRCCS, Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156 Milan, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Alberta Mandich
- Department of Earth, Environment, and Life Sciences, University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy; Consorzio Interuniversitario Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Giuseppe Mascolo
- Water Research Institute, National Research Council, Via De Blasio 5, 70132 Bari, Italy
| | - Claudio Roscioli
- Water Research Institute, National Research Council, Via del Mulino 19, 20861 Brugherio, MB, Italy
| |
Collapse
|
64
|
Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol 2015; 57:10-20. [DOI: 10.1016/j.reprotox.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
65
|
Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R. The fish embryo test (FET): origin, applications, and future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16247-61. [PMID: 25395325 DOI: 10.1007/s11356-014-3814-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/03/2014] [Indexed: 05/06/2023]
Abstract
Originally designed as an alternative for the acute fish toxicity test according to, e.g., OECD TG 203, the fish embryo test (FET) with the zebrafish (Danio rerio) has been optimized, standardized, and validated during an OECD validation study and adopted as OECD TG 236 as a test to assess toxicity of embryonic forms of fish. Given its excellent correlation with the acute fish toxicity test and the fact that non-feeding developmental stages of fish are not categorized as protected stages according to the new European Directive 2010/63/EU on the protection of animals used for scientific purposes, the FET is ready for use not only for range-finding but also as a true alternative for the acute fish toxicity test, as required for a multitude of national and international regulations. If-for ethical reasons-not accepted as a full alternative, the FET represents at least a refinement in the sense of the 3Rs principle. Objections to the use of the FET have mainly been based on the putative lack of biotransformation capacity and the assumption that highly lipophilic and/or high molecular weight substances might not have access to the embryo due to the protective role of the chorion. With respect to bioactivation, the only substance identified so far as not being activated in the zebrafish embryo is allyl alcohol; all other biotransformation processes that have been studied in more detail so far were found to be present, albeit, in some cases, at lower levels than in adult fish. With respect to larger molecules, the extension of the test duration to 96 h (i.e., beyond hatch) has-at least for the substances tested so far-compensated for the reduced access to the embryo; however, more research is necessary to fully explore the applicability of the FET to substances with a molecular weight >3 kDa as well as substances with a neurotoxic mode of action. An extension of the endpoints to also cover sublethal endpoints makes the FET a powerful tool for the detection of teratogenicity, dioxin-like activity, genotoxicity and mutagenicity, neurotoxicity, as well as various forms of endocrine disruption.
Collapse
Affiliation(s)
- Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| | - Britta Kais
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Eva Lammer
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jens Otte
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Katharina Schneider
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Ruben Strecker
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
66
|
Faria M, Garcia-Reyero N, Padrós F, Babin PJ, Sebastián D, Cachot J, Prats E, Arick Ii M, Rial E, Knoll-Gellida A, Mathieu G, Le Bihanic F, Escalon BL, Zorzano A, Soares AMVM, Raldúa D. Zebrafish Models for Human Acute Organophosphorus Poisoning. Sci Rep 2015; 5:15591. [PMID: 26489395 PMCID: PMC4614985 DOI: 10.1038/srep15591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.
Collapse
Affiliation(s)
- Melissa Faria
- Department of Biology and CESAM, University of Aveiro, Portugal.,IDÆA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA.,Institute for Genomics, Biocomputing &Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Francesc Padrós
- Pathological Diagnostic Service in Fish, Universitat Autònoma de Barcelona, 08190 Bellaterra, Spain
| | - Patrick J Babin
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Jérôme Cachot
- EPOC, UMR CNRS 5805, Université de Bordeaux, 33405 Talence, France
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Mark Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, CIB-CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
| | - Anja Knoll-Gellida
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - Guilaine Mathieu
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | | | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | | | | |
Collapse
|
67
|
Massei R, Vogs C, Renner P, Altenburger R, Scholz S. Differential sensitivity in embryonic stages of the zebrafish (Danio rerio): The role of toxicokinetics for stage-specific susceptibility for azinphos-methyl lethal effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015. [PMID: 26210375 DOI: 10.1016/j.aquatox.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The occasionally observed differential chemical sensitivity in embryonic life stages of fish is still poorly understood and could represent an important issue for understanding the time course of toxicity and the toxic modes of action of chemicals. In this study we analyzed the toxicity of the acetylcholinesterase inhibitor azinphos-methyl (APM) in different life-stages of zebrafish embryos. To this end, the LC50 of three 48h-exposure windows were determined (12μM for 0-48, no mortality observed for 24-72 and 72-120hpf up to a concentration of 79μM). We hypothesized that the differential sensitivity of the stage-specific embryos may be related to differences in uptake of the compound and/or internal concentrations. Therefore, internal concentrations were determined using HPLC. Similar levels and time courses of internal concentrations for all three exposure windows were observed. Bioconcentration amounted to a factor of about 30. Short-term exposure windows for a concentration 4-fold above the calculated LC50 (47μM) identified the period of 0-4hpf as the most sensitive time window for APM toxicity. Our results indicate that the differential sensitivity of APM in the embryos is not related to differences in internal concentrations but related to a stage specific mechanisms of toxicity.
Collapse
Affiliation(s)
- Riccardo Massei
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Carolina Vogs
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Patrick Renner
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
68
|
Lievens A, Petrillo M, Querci M, Patak A. Genetically modified animals: Options and issues for traceability and enforcement. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
69
|
Jarque S, Piña B. Deiodinases and thyroid metabolism disruption in teleost fish. ENVIRONMENTAL RESEARCH 2014; 135:361-375. [PMID: 25462686 DOI: 10.1016/j.envres.2014.09.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Many xenobiotic compounds with endocrine disrupting activity have been described since the late eighties. These compounds are able to interact with natural hormone systems and potentially induce deleterious effects in wildlife, notably piscine species. However, while the characterization of endocrine disruptors with "dioxin-like", estrogenic or androgenic activities is relatively well established, little is known about environmentally relevant pollutants that may act at thyroid system level. Iodothyronine deiodinases, the key enzymes in the activation and inactivation of thyroid hormones, have been suggested as suitable biomarkers for thyroid metabolism disruption. The present article reviews the biotic and abiotic factors that are able to modulate deiodinases in teleosts, a representative model organism for vertebrates. Data show that deiodinases are highly sensitive to several physiological and physical variables, so they should be taken into account to establish natural basal deiodination patterns to further understand responses under chemical exposure. Among xenobiotic compounds, brominated flame retardants are postulated as chemicals of major concern because of their similar structure shared with thyroid hormones. More ambiguous results are shown for the rest of compounds, i.e. polychlorinated biphenyls, perfluorinated chemicals, pesticides, metals and synthetic drugs, in part due to the limited information available. The different mechanisms of action still remain unknown for most of those compounds, although several hypothesis based on observed effects are discussed. Future tasks are also suggested with the aim of moving forward in the full characterization of chemical compounds with thyroid disrupting activity.
Collapse
Affiliation(s)
- Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, CZ62500 Brno, Czech Republic.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
70
|
Tollefsen KE, Scholz S, Cronin MT, Edwards SW, de Knecht J, Crofton K, Garcia-Reyero N, Hartung T, Worth A, Patlewicz G. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regul Toxicol Pharmacol 2014; 70:629-40. [PMID: 25261300 DOI: 10.1016/j.yrtph.2014.09.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/13/2023]
Abstract
Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Stefan Scholz
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Mark T Cronin
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, UK.
| | - Stephen W Edwards
- U.S. Environmental Protection Agency, Office of Research and Development (ORD), Research Triangle Park (RTP), NC 2771, USA.
| | - Joop de Knecht
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), 2 rue André Pascal, 75775 Paris Cedex 16, France.
| | - Kevin Crofton
- U.S. Environmental Protection Agency, Office of Research and Development (ORD), Research Triangle Park (RTP), NC 2771, USA.
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA.
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), 615 N Wolfe St, Baltimore, MD 21205, USA.
| | - Andrew Worth
- European Commission-Joint Research Centre, Institute for Health & Consumer Protection, Systems Toxicology Unit, Via E. Fermi, Ispra, Varese, Italy.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Stine-Haskell 320/212, 1090 Elkton Road, Newark, DE 19711, USA.
| |
Collapse
|
71
|
Reider M, Connaughton VP. Effects of low-dose embryonic thyroid disruption and rearing temperature on the development of the eye and retina in zebrafish. ACTA ACUST UNITED AC 2014; 101:347-54. [PMID: 25250784 DOI: 10.1002/bdrb.21118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 11/09/2022]
Abstract
Thyroid hormones are required for vertebrate development, and disruption of the thyroid system in developing embryos can result in a large range of morphologic and physiologic changes, including in the eye and retina. In this study, our anatomic analyses following low-dose, chronic thyroid inhibition reveal that both methimazole (MMI) exposure and rearing temperature affect eye development in a time- and temperature-dependent fashion. Maximal sensitivity to MMI for external eye development occurred at 65 hr postfertilization (hpf) for zebrafish reared at 28°C, and at 69 hpf for those reared at 31°C. Changes in eye diameter corresponded to changes in thickness of two inner retinal layers: the ganglion cell layer and the inner plexiform layer, with irreversible MMI-induced decreases in layer thickness observed in larvae treated with MMI until 66 hpf at 28°C. We infer that maximal sensitivity to MMI between 65 and 66 hpf at 28°C indicates a critical period of thyroid-dependent eye and retinal development. Furthermore, our results support previous work that shows spontaneous escape from MMI-induced effects potentially due to embryonic compensatory actions, as our data show that embryos treated beyond the critical period generally resemble controls.
Collapse
Affiliation(s)
- Masha Reider
- Department of Biology, American University, Washington, District of Columbia
| | | |
Collapse
|
72
|
Scholz S, Ortmann J, Klüver N, Léonard M. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories. Regul Toxicol Pharmacol 2014; 69:572-9. [PMID: 24929227 DOI: 10.1016/j.yrtph.2014.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos.
Collapse
Affiliation(s)
- Stefan Scholz
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Julia Ortmann
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nils Klüver
- UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marc Léonard
- L'ORÉAL Advanced Research, Environmental Research Department, 1 avenue Eugène Schueller, 93601 Aulnay sous Bois, France
| |
Collapse
|
73
|
Huang MY, Duan RY, Ji X. Chronic effects of environmentally-relevant concentrations of lead in Pelophylax nigromaculata tadpoles: Threshold dose and adverse effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:310-316. [PMID: 24726944 DOI: 10.1016/j.ecoenv.2014.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Lead (Pb) is a common heavy metal in the natural environment, but its concentration has been increasing alongside widespread industrial and agricultural development in China. The dark-spotted frog Pelophylax (formerly Rana) nigromaculata (Anura: Ranidae) is distributed across East Asia and inhabits anthropogenic habitats such as farmland. Here, P. nigromaculata tadpoles (Gosner stage 19-46) were exposed to Pb at different concentrations (0, 40, 80, 160, 320, 640 and 1280µg/L) and Pb-induced survival, metamorphosis time, development, malformations, mobility and gonad structure were monitored. The results showed that above the threshold concentration of Pb, adverse effects were obvious. As the concentration of Pb increased, the adverse effects on different traits followed different patterns: the effects on hindlimb length, survival rate, metamorphosis rate, total malformation rate, swimming speed and jumping speed largely exhibited a linear pattern; the effects on snout-vent length, body mass and forelimb length largely exhibited a bimodal pattern. Sex ratio and gonadal histology were not affected by Pb, suggesting that Pb is not strongly estrogenic in P. nigromaculata.
Collapse
Affiliation(s)
- Min-Yi Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China; College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Ren-Yan Duan
- College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China.
| |
Collapse
|
74
|
Zhai W, Huang Z, Chen L, Feng C, Li B, Li T. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP). PLoS One 2014; 9:e92465. [PMID: 24658602 PMCID: PMC3962405 DOI: 10.1371/journal.pone.0092465] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
Phthalates are extensively used as plasticizers in a variety of daily-life products, resulting in widespread distribution in aquatic environments. However, limited information is available on the endocrine disrupting effects of phthalates in aquatic organisms. The aim of the present study was to examine whether exposure to mono-(2-ethylhexyl) phthalate (MEHP), the hydrolytic metabolite of di-(2-ethylhexyl) phthalate (DEHP) disrupts thyroid endocrine system in fish. In this study, zebrafish (Danio rerio) embryos were exposed to different concentrations of MEHP (1.6, 8, 40, and 200 μg/L) from 2 h post-fertilization (hpf) to 168 hpf. The whole-body content of thyroid hormone and transcription of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis were examined. Treatment with MEHP significantly decreased whole-body T4 contents and increased whole-body T3 contents, indicating thyroid endocrine disruption. The upregulation of genes related to thyroid hormone metabolism (Dio2 and UGT1ab) might be responsible for decreased T4 contents. Elevated gene transcription of Dio1 was also observed in this study, which might assist to degrade increased T3 contents. Exposure to MEHP also significantly induced transcription of genes involved in thyroid development (Nkx2.1 and Pax8) and thyroid hormone synthesis (TSHβ, NIS and TG). However, the genes encoding proteins involved in TH transport (transthyretin, TTR) was transcriptionally significantly down-regulated after exposure to MEHP. Overall, these results demonstrate that acute exposure to MEHP alters whole-body contents of thyroid hormones in zebrafish embryos/larvae and changes the transcription of genes involved in the HPT axis, thus exerting thyroid endocrine toxicity.
Collapse
Affiliation(s)
- Wenhui Zhai
- Department of Emergency, Chinese PLA General Hospital, Beijing, P.R. China
- Department of Emergency, the 305 Hospital of PLA, Beijing, P.R. China
| | - Zhigang Huang
- Department of Emergency, the 305 Hospital of PLA, Beijing, P.R. China
| | - Li Chen
- Department of Emergency, Chinese PLA General Hospital, Beijing, P.R. China
| | - Cong Feng
- Department of Emergency, Chinese PLA General Hospital, Beijing, P.R. China
| | - Bei Li
- Department of Emergency, Chinese PLA General Hospital, Beijing, P.R. China
| | - Tanshi Li
- Department of Emergency, Chinese PLA General Hospital, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
75
|
Abstract
INTRODUCTION Off-target effects represent one of the major concerns in the development of new pharmaceuticals, requiring large-scale animal toxicity testing. Faster, cheaper and more reliable assays based on zebrafish embryos (ZE) are being developed as major tools for assessing toxicity of chemicals during the drug-discovery process. AREAS COVERED This paper reviews techniques aimed to the analysis of in vivo sublethal toxic effects of drugs on major physiological functions, including the cardiovascular, nervous, neuromuscular, gastrointestinal and thyroid systems among others. Particular emphasis is placed on high-throughput screening techniques (HTS), including robotics, imaging technologies and image-analysis software. EXPERT OPINION The analysis of off-target effects of candidate drugs requires systemic analyses, as they often involve the complete organism rather than specific, tissue- or cell-specific targets. The unique physical and physiological characteristics of ZE make this system an essential tool for drug discovery and toxicity assessment. Different HTS methodologies applicable to ZE allow the screening of large numbers of different chemicals for many diverse and relevant toxic endpoints.
Collapse
Affiliation(s)
- Demetrio Raldúa
- IDAEA-CSIC, Environmental Chemistry , Jordi Girona 18, 08034 Barcelona , Spain +34 93400 6157 ; +34 93204 5904 ;
| | | |
Collapse
|
76
|
Downs CA, Kramarsky-Winter E, Fauth JE, Segal R, Bronstein O, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Kushmaro A, Loya Y. Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:175-91. [PMID: 24352829 DOI: 10.1007/s10646-013-1161-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2013] [Indexed: 05/26/2023]
Abstract
Benzophenone-2 (BP-2) is an additive to personal-care products and commercial solutions that protects against the damaging effects of ultraviolet light. BP-2 is an "emerging contaminant of concern" that is often released as a pollutant through municipal and boat/ship wastewater discharges and landfill leachates, as well as through residential septic fields and unmanaged cesspits. Although BP-2 may be a contaminant on coral reefs, its environmental toxicity to reefs is unknown. This poses a potential management issue, since BP-2 is a known endocrine disruptor as well as a weak genotoxicant. We examined the effects of BP-2 on the larval form (planula) of the coral, Stylophora pistillata, as well as its toxicity to in vitro coral cells. BP-2 is a photo-toxicant; adverse effects are exacerbated in the light versus in darkness. Whether in darkness or light, BP-2 induced coral planulae to transform from a motile planktonic state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of BP-2. BP-2 is a genotoxicant to corals, exhibiting a strong positive relationship between DNA-AP lesions and increasing BP-2 concentrations. BP-2 exposure in the light induced extensive necrosis in both the epidermis and gastro dermis. In contrast, BP-2 exposure in darkness induced autophagy and autophagic cell death.The LC50 of BP-2 in the light for an 8 and 24 hour exposure was 120 parts per million (ppm) and 165 parts per billion (ppb), respectively. The LC50s for BP-2 in darkness for the same time points were 144 parts per million and 548 parts per billion [corrected].
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA, 24533, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Garcia-Reyero N, Escalon BL, Prats E, Stanley JK, Thienpont B, Melby NL, Barón E, Eljarrat E, Barceló D, Mestres J, Babin PJ, Perkins EJ, Raldúa D. Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. ENVIRONMENT INTERNATIONAL 2014; 63:216-23. [PMID: 24317228 DOI: 10.1016/j.envint.2013.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers are compounds widely used as flame-retardants, which are of increasing environmental concern due to their persistence, and potential adverse effects. This study had two objectives. First, we assessed if BDE-209 in sediment was bioavailable and bioaccumulated into zebrafish embryos. Secondly, we assessed the potential impact on human and environmental health of bioavailable BDE-209 using human in vitro cell assays and zebrafish embryos. Zebrafish were exposed from 4h to 8days post-fertilization to sediments spiked with 12.5mg/kg of BDE-209. Zebrafish larvae accumulated ten fold more BDE-209 than controls in unspiked sediment after 8days. BDE-209 impacted expression of neurological pathways and altered behavior of larvae, although BDE-209 had no visible affect on thyroid function or motoneuron and neuromast development. Zebrafish data and in silico predictions suggested that BDE-209 would also interact with key human transcription factors and receptors. We therefore tested these predictions using mammalian in vitro assays. BDE-209 activated human aryl hydrocarbon receptor, peroxisome proliferator activating receptors, CF/b-cat, activator protein 1, Oct-MLP, and the estrogen receptor-related alpha (ERRα) receptor in cell-based assays. BDE-209 also inhibited human acetylcholinesterase activity. The observation that BDE-209 can be bioaccumulated from contaminated sediment highlights the need to consider this as a potential environmental exposure route. Once accumulated, our data also show that BDE-209 has the potential to cause impacts on both human and environmental health.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA.
| | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Eva Prats
- Centro de Investigación y Desarrollo, CID-CSIC, Barcelona, Catalonia, Spain
| | - Jacob K Stanley
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Benedicte Thienpont
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Nicolas L Melby
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Enrique Barón
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemotargets, IMIM-Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patrick J Babin
- Maladies Rares: Génétique et Métabolism, Université Bordeaux, Talence, France
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Demetrio Raldúa
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| |
Collapse
|
78
|
Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, García-Franco M, Guinea J, Klüver N, Schirmer K, Tanneberger K, Tobor-Kapłon M, Witters H, Belanger S, Benfenati E, Creton S, Cronin MT, Eggen RI, Embry M, Ekman D, Gourmelon A, Halder M, Hardy B, Hartung T, Hubesch B, Jungmann D, Lampi MA, Lee L, Léonard M, Küster E, Lillicrap A, Luckenbach T, Murk AJ, Navas JM, Peijnenburg W, Repetto G, Salinas E, Schüürmann G, Spielmann H, Tollefsen KE, Walter-Rohde S, Whale G, Wheeler JR, Winter MJ. A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Pharmacol 2013; 67:506-30. [DOI: 10.1016/j.yrtph.2013.10.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
|
79
|
Perkins EJ, Ankley GT, Crofton KM, Garcia-Reyero N, LaLone CA, Johnson MS, Tietge JE, Villeneuve DL. Current perspectives on the use of alternative species in human health and ecological hazard assessments. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1002-10. [PMID: 23771518 PMCID: PMC3764090 DOI: 10.1289/ehp.1306638] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/12/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND Traditional animal toxicity tests can be time and resource intensive, thereby limiting the number of chemicals that can be comprehensively tested for potential hazards to humans and/or to the environment. OBJECTIVE We compared several types of data to demonstrate how alternative models can be used to inform both human and ecological risk assessment. METHODS We reviewed and compared data derived from high throughput in vitro assays to fish reproductive tests for seven chemicals. We investigated whether human-focused assays can be predictive of chemical hazards in the environment. We examined how conserved pathways enable the use of nonmammalian models, such as fathead minnow, zebrafish, and Xenopus laevis, to understand modes of action and to screen for chemical risks to humans. RESULTS We examined how dose-dependent responses of zebrafish embryos exposed to flusilazole can be extrapolated, using pathway point of departure data and reverse toxicokinetics, to obtain human oral dose hazard values that are similar to published mammalian chronic toxicity values for the chemical. We also examined how development/safety data for human health can be used to help assess potential risks of pharmaceuticals to nontarget species in the environment. DISCUSSION Using several examples, we demonstrate that pathway-based analysis of chemical effects provides new opportunities to use alternative models (nonmammalian species, in vitro tests) to support decision making while reducing animal use and associated costs. CONCLUSIONS These analyses and examples demonstrate how alternative models can be used to reduce cost and animal use while being protective of both human and ecological health.
Collapse
Affiliation(s)
- Edward J Perkins
- US Army Engineer Research and Development Center, Vicksburg, Mississippi, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Heijlen M, Houbrechts AM, Darras VM. Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development. Gen Comp Endocrinol 2013; 188:289-96. [PMID: 23603432 DOI: 10.1016/j.ygcen.2013.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/21/2022]
Abstract
To unravel the role of thyroid hormones (THs) in vertebrate development it is important to have suitable animal models to study the mechanisms regulating TH availability and activity. Zebrafish (Danio rerio), with its rapidly and externally developing transparent embryo has been a widely used model in developmental biology for some time. To date many of the components of the zebrafish thyroid axis have been identified, including the TH transporters MCT8, MCT10 and OATP1C1, the deiodinases D1, D2 and D3, and the receptors TRα and TRβ. Their structure and function closely resemble those of higher vertebrates. Interestingly, due to a whole genome duplication in the early evolution of ray-finned fishes, zebrafish possess two genes for D3 (dio3 and dio3a) and for TRα (thraa and thrab). Transcripts of all identified genes are present during embryonic development and several of them show dynamic spatio-temporal distribution patterns. Transient morpholino-knockdown of D2, D3 or MCT8 expression clearly disturbs embryonic development, confirming the importance of each of these regulators during early life stages. The recently available tools for targeted stable gene knockout will further increase the value of zebrafish to study the role of peripheral TH metabolism in pre- and post-hatch/post-natal vertebrate development.
Collapse
Affiliation(s)
- Marjolein Heijlen
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
81
|
Thienpont B, Barata C, Raldúa D. Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo. Toxicol Appl Pharmacol 2013; 269:169-75. [DOI: 10.1016/j.taap.2013.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/26/2013] [Indexed: 12/30/2022]
|
82
|
Zebrafish embryos as an alternative model for screening of drug-induced organ toxicity. Arch Toxicol 2013; 87:767-9. [PMID: 23543011 DOI: 10.1007/s00204-013-1044-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
|
83
|
Scholz S, Renner P, Belanger SE, Busquet F, Davi R, Demeneix BA, Denny JS, Léonard M, McMaster ME, Villeneuve DL, Embry MR. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption. Crit Rev Toxicol 2012. [PMID: 23190036 DOI: 10.3109/10408444.2012.737762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.
Collapse
Affiliation(s)
- S Scholz
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Raldúa D, Thienpont B, Babin PJ. Zebrafish eleutheroembryos as an alternative system for screening chemicals disrupting the mammalian thyroid gland morphogenesis and function. Reprod Toxicol 2012; 33:188-97. [DOI: 10.1016/j.reprotox.2011.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/16/2011] [Accepted: 09/08/2011] [Indexed: 01/09/2023]
|
85
|
Pelayo S, Oliveira E, Thienpont B, Babin PJ, Raldúa D, André M, Piña B. Triiodothyronine-induced changes in the zebrafish transcriptome during the eleutheroembryonic stage: implications for bisphenol A developmental toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:114-122. [PMID: 22281776 DOI: 10.1016/j.aquatox.2011.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
Thyroid disruption during early development is a current matter of concern due to its significant human health implications. We present here a transcriptome analysis of thyroid hormone-regulated genes in zebrafish during the eleutheroembryonic stage (days 2-5 post fertilization) to detect potential markers of thyroid disruption. Exposure to 3,5,3'-triiodo-l-thyroxine (T3, 50 nM) induced changes in a minor portion (less than 2%) of the zebrafish transcriptome, with a significant fraction of genes involved in the haematopoietic system, eye formation, and ossification/skeletal system, including the thyroid receptor thra gene. Some of the transcriptomic changes were reflected macroscopically, as an allometric decrease of eye size and an increase on thra hybridization signal in the skeletal tissue. Using this information, changes on transcription of three genes (adult alpha globin gene si:ch211-5 k11.6, embryonic globin gene hbae3, and long wavelength cone opsin gene opn1/w1) were analyzed to monitor the effect of the suspected thyroid disrupter bisphenol A (BPA) on the thyroid system during this period of development of zebrafish. BPA acted as a weak T3 agonist when tested alone, but it strongly enhanced the effect of subsaturating concentrations of T3. In thyroxine immunofluorescence quantitative disruption tests (TIQDT), BPA did not prevent the ability of thyroid follicles to synthesize thyroxine, a landmark for direct goitrogens. Our results suggest that BPA potentiates the effect of endogenous T3 in early development and demonstrate the requirement for the use of in vivo, multi-endpoint methods to evaluate thyroid disruption hazards on early developmental processes in vertebrates.
Collapse
Affiliation(s)
- Sergi Pelayo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
86
|
Schmidt F, Schnurr S, Wolf R, Braunbeck T. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:47-58. [PMID: 22204988 DOI: 10.1016/j.aquatox.2011.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
The increasing pollution of aquatic habitats with anthropogenic compounds has led to various test strategies to detect hazardous chemicals. However, information on effects of pollutants in the thyroid system in fish, which is essential for growth, development and parts of reproduction, is still scarce. Other vertebrate groups such as amphibians or mammals are well-studied; so the need for further knowledge especially in fish as a favored vertebrate model test organism is evident. Modified early life-stage tests were carried out with zebrafish exposed to the known thyroid inhibitor potassium perchlorate (0, 62.5, 125, 250, 500 and 5000 μg/L) to identify adverse effects on the hypothalamic-pituitary-thyroid axis. Especially higher perchlorate concentrations led to conspicuous alterations in thyroidal tissue architecture and to effects in the pituitary. In the thyroid, severe hyperplasia at concentrations ≥ 500 μg/L together with an increase in follicle number could be detected. The most sensitive endpoint was the colloid, which showed alterations at ≥ 250 μg/L. The tinctorial properties and the texture of the colloid changed dramatically. Interestingly, effects on epithelial cell height were minor. The pituitary revealed significant proliferations of TSH-producing cells resulting in alterations in the ratio of adeno- to neurohypophysis. The liver as the main site of T4 deiodination showed severe glycogen depletion at concentrations ≥ 250 μg/L. In summary, the thyroid system in zebrafish showed effects by perchlorate from concentrations ≥ 250 μg/L, thus documenting a high sensitivity of the zebrafish thyroid gland for goitrogens. In the future, such distinct alterations could lead to a better understanding and identification of potential thyroid-disrupting chemicals.
Collapse
Affiliation(s)
- Florian Schmidt
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|