51
|
Causes, Factors, and Control Measures of Opportunistic Premise Plumbing Pathogens—A Critical Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review critically analyses the chemical and physical parameters that influence the occurrence of opportunistic pathogens in the drinking water distribution system, specifically in premise plumbing. A comprehensive literature review reveals significant impacts of water age, disinfectant residual (type and concentration), temperature, pH, and pipe materials. Evidence suggests that there is substantial interplay between these parameters; however, the dynamics of such relationships is yet to be elucidated. There is a correlation between premise plumbing system characteristics, including those featuring water and energy conservation measures, and increased water quality issues and public health concerns. Other interconnected issues exacerbated by high water age, such as disinfectant decay and reduced corrosion control efficiency, deserve closer attention. Some common features and trends in the occurrence of opportunistic pathogens have been identified through a thorough analysis of the available literature. It is proposed that the efforts to reduce or eliminate their incidence might best focus on these common features.
Collapse
|
52
|
Bédard E, Trigui H, Liang J, Doberva M, Paranjape K, Lalancette C, Allegra S, Faucher SP, Prévost M. Local Adaptation of Legionella pneumophila within a Hospital Hot Water System Increases Tolerance to Copper. Appl Environ Microbiol 2021; 87:e00242-21. [PMID: 33674435 PMCID: PMC8117758 DOI: 10.1128/aem.00242-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
In large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental isolates from hot water system biofilm and water and from cooling tower water. After a 1-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/liter) for over 672 h. Complete loss of culturability was observed for three isolates following copper exposure to 5 mg/liter for 672 h. Two sequence type 1427 (ST1427)-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, maintained higher culturability. The expression of the copper resistance gene copA evaluated by reverse transcription-quantitative PCR (RT-qPCR) was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole-genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a health care facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone.IMPORTANCELegionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In health care facilities, copper levels in water can vary, depending on water quality, plumbing materials, and age. This study evaluated the impact of the isolation site (water versus biofilm, hot water system versus cooling tower) within building water systems. Closely related strains isolated from a health care facility hot water system exhibited variable tolerance to copper stress, shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressors such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Hana Trigui
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Jeffrey Liang
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Margot Doberva
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Cindy Lalancette
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Séverine Allegra
- University of Lyon, UJM-Saint-Etienne, UMR 5600 CNRS, EVS-ISTHME, Saint-Etienne, France
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
53
|
Fu Y, Peng H, Liu J, Nguyen TH, Hashmi MZ, Shen C. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142851. [PMID: 33097267 DOI: 10.1016/j.scitotenv.2020.142851] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Waterborne pathogens have been found in biofilms grown in drinking water distribution system (DWDS). However, there is a lack of quantitative study on the culturability of pathogens in biofilms from metropolitan DWDS. In this study, we quantified culturable and viable but non-culturable (VBNC) Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and Vibrio cholerae in biofilms collected from five kinds of pipes (galvanized steel pipe, steel pipe, stainless steel clad pipe, ductile cast iron pipe and polyethylene pipe) and associated drinking water at an actual chlorinated DWDS in use from China. The results of these comprehensive analyses revealed that pipe material is a significant factor influencing the culturability of pathogen and microbial communities. Network analysis of the culturable pathogens and 16S rRNA gene inferred potential interactions between microbiome and culturability of pathogens. Although the water quality met the Chinese national standard of drinking water, however, VBNC pathogens were detected in both biofilms and water from the DWDS. This investigation suggests that stainless steel clad pipe (SSCP) was a better choice for pathogen control compared with other metal pipes. To our knowledge, this is the first study on culturable and VBNC pathogens in biofilms of different pipe materials in metropolitan DWDS.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongxi Peng
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingqing Liu
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
54
|
Song P, Xiao Y, Ren ZJ, Brooks JP, Lu L, Zhou B, Zhou Y, Freguia S, Liu Z, Zhang N, Li Y. Electrochemical biofilm control by reconstructing microbial community in agricultural water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123616. [PMID: 32781280 DOI: 10.1016/j.jhazmat.2020.123616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 05/14/2023]
Abstract
Biofilm causes considerable technical challenges in agricultural water distribution systems. Electrochemical treatment (ECT) is a potential technique for controlling biofilm in the systems. Given the limited information on how ECT performance changes of irrigation systems and microbial biofilm community shifts. In this study, the effect of anti-biofilm was assessed. Illumina Miseq high-throughput sequencing, combined with molecular ecological network analysis, were applied to detect the effects of ECT on attached biofilm microbial communities. We found that ECT effectively mitigated biofilm formation with the fixed-biofilm biomass reduced by 37.5 %-79.9 %. ECT significantly shifted the bacterial community structures in the biofilm, reduced the communities' diversity, and changed the dominant species. Molecular ecological network analysis showed that the complexity and size of bacterial networks were destabilized under ECT and decreased the interactions among bacterial species. The reconstruction in bacterial community and networks were responsible for the decline in extracellular polymer substances and biofilm biomass. However, chlorine-resistant bacteria were found increased after ECT, and higher relative abundance and low biofilm removal was identified in continuous ECT as compared with intermittent ECT. These results aimed to highlight the opportunity for biofouling mitigation by ECT for irrigation systems, and reveal the potential anti-biofilm microbial mechanisms of ECT.
Collapse
Affiliation(s)
- Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States
| | - John P Brooks
- Genetics and Sustainable Agricultural Research Unit, United States Department of Agriculture, Starkville, MS 39762, USA
| | - Lu Lu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Stefano Freguia
- Advanced Water Management Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhidan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
55
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
56
|
The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol 2021; 37:36. [PMID: 33507414 DOI: 10.1007/s11274-021-03008-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.
Collapse
|
57
|
Zhang G, Guan Y, Zhao R, Feng J, Huang J, Ma L, Li B. Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123170. [PMID: 32590136 DOI: 10.1016/j.jhazmat.2020.123170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 05/08/2023]
Abstract
Metagenomic and network analyses were applied to decipher the profiles and co-occurrence of resistome and microbial taxa in the reclaimed wastewater distribution system, including reclaimed wastewater and two types of biofilms, i.e., surface layer biofilms and inner layer biofilms. The effects of chlorination, UV irradiation and no disinfection treatment on ARG relative abundance and composition were systemically investigated. The reclaimed wastewater possesses more diverse and abundant ARGs than biofilms and total ARG relative abundance followed the order of reclaimed wastewater samples > surface layer biofilms > inner layer biofilms. Multidrug, bacitracin, sulfonamide, aminoglycoside, beta-lactam, and macrolide-lincosamide-streptogramin resistance genes were the six most dominant ARG types and their sum accounted for 90.1 %-96.0 % of the total ARG relative abundance in different samples. Beta-lactam resistance gene was the discriminative ARG type for reclaimed wastewater. Bacitracin resistance gene and bacA were the discriminative ARG type and subtype for biofilms. Chlorination significantly reduced ARG relative abundance in the reclaimed wastewater. Nevertheless, it could not reduce ARG relative abundance in biofilms. Regarding to the total ARG profiles, there were no obvious increasing or decreasing trends over time during one year period. Co-occurrence results revealed twenty-six genera were deduced as the potential hosts of twenty-two ARG subtypes.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
58
|
Vavourakis CD, Heijnen L, Peters MCFM, Marang L, Ketelaars HAM, Hijnen WAM. Spatial and Temporal Dynamics in Attached and Suspended Bacterial Communities in Three Drinking Water Distribution Systems with Variable Biological Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14535-14546. [PMID: 33135888 DOI: 10.1021/acs.est.0c04532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial presence and regrowth in drinking water distribution systems (DWDSs) is routinely monitored to assess the biological stability of drinking water without a residual disinfectant, but the conventional microbiological culture methods currently used target only a very small fraction of the complete DWDS microbiome. Here, we sequenced 16S rRNA gene amplicons to elucidate the attached and suspended prokaryotic community dynamics within three nonchlorinated DWDSs with variable regrowth conditions distributing similarly treated surface water from the same source. One rural location, with less regrowth related issues, differed most strikingly from the other two urban locations by the exclusive presence of Pseudonocardia (Actinobacteria) in the biofilm and the absence of Limnobacter (Betaproteobacteriales) in the water and loose deposits during summer. There was a dominant seasonal effect on the drinking water microbiomes at all three locations. For one urban location, it was established that the most significant changes in the microbial community composition on a spatial scale occurred shortly after freshly treated water entered the DWDS. However, summerly regrowth of Limnobacter, one of the dominant genera in the distributed drinking water, already occurred in the clean water reservoir at the treatment plant before further distribution. The highlighted bacterial lineages within these highly diverse DWDS communities might be important new indicators for undesirable regrowth conditions affecting the final drinking water quality.
Collapse
Affiliation(s)
| | - Leo Heijnen
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, The Netherlands
| | | | - Leonie Marang
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| | - Henk A M Ketelaars
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| | - Wim A M Hijnen
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| |
Collapse
|
59
|
Santos GAC, Dropa M, Rocha SM, Peternella FAS, Razzolini MTP. Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) in drinking water fountains in urban parks. JOURNAL OF WATER AND HEALTH 2020; 18:654-664. [PMID: 33095190 DOI: 10.2166/wh.2020.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The presence of Staphylococcus aureus in drinking water is a concern because of its potential to cause human infection and also because of its multiple antimicrobial resistance. This study evaluated the water quality of drinking water fountains and mist makers in four municipal parks of São Paulo for 13 months. Although all samples met bacteriological water quality criteria according to Brazilian regulations, the absence of residual chlorine (<0.1 mg/L) was observed. These data were significantly correlated with the frequency of S. aureus that was found in 25.2% of the samples. The mecA gene was detected in 36.7% of the isolates demonstrating its potential for resistance to several antimicrobials. Furthermore, 27.3% isolates carrying the mecA gene had methicillin-resistant Staphylococcus aureus (MRSA) phenotypic potential. The presence of S. aureus with characteristics of microbial resistance in water for human consumption is an unprecedented finding. Hence, conducting surveillance for opportunistic bacteria, such as staphylococci in drinking water, is reasonable to take control measures and to protect human health, especially in public places with high attendance.
Collapse
Affiliation(s)
- Geyse A C Santos
- School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil E-mail: ; NARA - Center for Research in Environmental Risk Assessment, Department of Environmental Health, School of Public Health of University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil
| | - Milena Dropa
- School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil E-mail:
| | - Solange M Rocha
- School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil E-mail:
| | - Francisca A S Peternella
- School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil E-mail:
| | - Maria Tereza Pepe Razzolini
- School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil E-mail: ; NARA - Center for Research in Environmental Risk Assessment, Department of Environmental Health, School of Public Health of University of São Paulo, Av. Dr Arnaldo, 715 - 1o andar 01246-904, São Paulo, Brazil
| |
Collapse
|
60
|
Unchartered waters: the unintended impacts of residual chlorine on water quality and biofilms. NPJ Biofilms Microbiomes 2020; 6:34. [PMID: 32978404 PMCID: PMC7519676 DOI: 10.1038/s41522-020-00144-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Disinfection residuals in drinking water protect water quality and public heath by limiting planktonic microbial regrowth during distribution. However, we do not consider the consequences and selective pressures of such residuals on the ubiquitous biofilms that persist on the vast internal surface area of drinking water distribution systems. Using a full scale experimental facility, integrated analyses were applied to determine the physical, chemical and biological impacts of different free chlorine regimes on biofilm characteristics (composition, structure and microbiome) and water quality. Unexpectedly, higher free chlorine concentrations resulted in greater water quality degredation, observable as elevated inorganic loading and greater discolouration (a major cause of water quality complaints and a mask for other failures). High-chlorine concentrations also reduced biofilm cell concentrations but selected for a distinct biofilm bacterial community and inorganic composition, presenting unique risks. The results challenge the assumption that a measurable free chlorine residual necessarily assures drinking water safety.
Collapse
|
61
|
Shen Z, Wang Y, Chen W, Xu H, Zhang L, Lin C, Lin T, Tao H, Mei C, Lu C. Investigation of nitrogen pollutants transformation and its pathways along the long-distance prechlorinated raw water distribution system. CHEMOSPHERE 2020; 255:126833. [PMID: 32387724 DOI: 10.1016/j.chemosphere.2020.126833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the transformation pattern of nitrogen (N) pollutants and its pathways in the prechlorinated raw water distribution system (PRWDS) is vital for controlling the stablitiy and safety of raw water qulity. This study investigated the N transformation, N functional genes and their correlations to find the N transformation pathways along the PRWDS. Results suggested that simultaneous nitrification, anaerobic ammonium oxidation and denitrification (SNAD) contribute to the N transformationin the PRWDS. Along the pipeline, anammox 16S rRNA (9.18 × 107-8.41 × 108 copies/g), limited by prechlorination, was the most abundant N functional genes and anammox process was the main pathway of ammonia nitrogen (NH4+-N). The decreasing NH4+-N was connected with Planctomycetes, Nitrospira and abundance of nxrA attributing to the joint effort of anammox and declined nitrification. The concentration of nitrate (NO3--N) increasing at first and then decreasing, was correlated positively with Sphingomonas. because of the declined nitritication and increased denitrification. Besides, the NO3--N→NO2--N process was considered to be primary NO3--N transformation pathways. Increases in the concentration of dissolved organic nitrogen (DON) and nitrite (NO2--N) observed in the PRWDS had positive correlation with relative abundance of Pseudomonas. We believe that prechlorination shaped the particular bacterialcharacteristics in biofilms and influenced the N transformation pathways indirectly, resulting in the varying N transformation rules in PRWDSs. Moreover, systematic and extended research is particularly vital for determining the effects of changes in source water quality and environmental conditions on bacterial community structure and N conversion along PRWDSs.
Collapse
Affiliation(s)
- Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China; Wanjiang University of Technology, Maanshan, 243031, China.
| | - Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Lei Zhang
- College of Civil and Architechure Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, China.
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hui Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Caihua Mei
- College of Civil and Architechure Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, China.
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China.
| |
Collapse
|
62
|
Novak Babič M, Gostinčar C, Gunde-Cimerman N. Microorganisms populating the water-related indoor biome. Appl Microbiol Biotechnol 2020; 104:6443-6462. [PMID: 32533304 PMCID: PMC7347518 DOI: 10.1007/s00253-020-10719-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Modernisation of our households created novel opportunities for microbial growth and thus changed the array of microorganisms we come in contact with. While many studies have investigated microorganisms in the air and dust, tap water, another major input of microbial propagules, has received far less attention. The quality of drinking water in developed world is strictly regulated to prevent immediate danger to human health. However, fungi, algae, protists and bacteria of less immediate concern are usually not screened for. These organisms can thus use water as a vector of transmission into the households, especially if they are resistant to various water treatment procedures. Good tolerance of unfavourable abiotic conditions is also important for survival once microbes enter the household. Limitation of water availability, high or low temperatures, application of antimicrobial chemicals and other measures are taken to prevent indoor microbial overgrowth. These conditions, together with a large number of novel chemicals in our homes, shape the diversity and abundance of indoor microbiota through constant selection of the most resilient species, resulting in a substantial overlap in diversity of indoor and natural extreme environments. At least in fungi, extremotolerance has been linked to human pathogenicity, explaining why many species found in novel indoor habitats (such as dishwasher) are notable opportunistic pathogens. As a result, microorganisms that often enter our households with water and are then enriched in novel indoor habitats might have a hitherto underestimated impact on the well-being of the increasingly indoor-bound human population. KEY POINTS: Domestic environment harbours a large diversity of microorganisms. Microbiota of water-related indoor habitats mainly originates from tap water. Bathrooms, kitchens and household appliances select for polyextremotolerant species. Many household-related microorganisms are human opportunistic pathogens.
Collapse
Affiliation(s)
- Monika Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
63
|
The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl Microbiol Biotechnol 2020; 104:7673-7688. [DOI: 10.1007/s00253-020-10777-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
|
64
|
Cruz MC, Woo Y, Flemming HC, Wuertz S. Nitrifying niche differentiation in biofilms from full-scale chloraminated drinking water distribution system. WATER RESEARCH 2020; 176:115738. [PMID: 32259683 DOI: 10.1016/j.watres.2020.115738] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Tropical conditions favour the auto-decomposition of monochloramine (MCA) leading to disinfectant decay and free ammonia in drinking water distribution systems (DWDS); thus, they promote the growth of nitrifiers and the development of biofilms on the inner-pipe surface. Biofilms can adversely impact the provision of safe and biologically stable water. Moreover, there is a general lack of understanding of the role of microbial communities in DWDS in regions with warm temperatures and no distinct seasons. Here, we report a survey on biofilms from full-scale monochloraminated DWDS in a highly urbanised metropolis using next generation sequencing tools. The monitoring campaign consisted of sampling biofilms and bulk waters from 21 in-service pipes. We characterized the microbial community with emphasis on nitrifying bacteria and archaea using 16S rRNA gene amplicon sequencing and potential nitrification activity. Samples grouped into two clusters, characterized by their low (Cluster LD) and high (Cluster HD) α-diversity. Both clusters harbour microorganisms related to nitrification: i) Nitrosomonas (24.9-68.8%), an ammonia oxidising bacterium (AOB) that dominated Cluster LD, and ii) a co-aggregation of genus Nitrospira (9.8-32.5%), a nitrite oxidising bacterium (NOB), and Thaumarchaeota (1.4-10.9%), chemolithotrophic ammonia oxidising (AOA) archaea that were among the most abundant OTUs in Cluster HD. Activity tests performed with fresh biofilm samples confirmed that these two clusters represent distinctive biofilm niches performing different stages of the nitrification process. Cluster LD correlated with a high concentration of MCA, which caused dysbiosis and resulted in high unevenness of the cluster. In cluster HD, with more biomass, chemical reactions involving nitrite increased the MCA demand, releasing ammonia and allowing more nitrifiers to grow, like AOA and NOB. From this study, we conclude that an MCA residual gradient along the DWDS drives and shapes the microbial community assembly and should be considered when designing effective disinfection strategies.
Collapse
Affiliation(s)
- Mercedes Cecilia Cruz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, Nanyang Technological University, 637551, Singapore
| | - Yissue Woo
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, Nanyang Technological University, 637551, Singapore
| | - Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, Nanyang Technological University, 637551, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, 50 Nanyang Ave, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
65
|
Chen J, Shi Y, Cheng D, Jin Y, Hutchins W, Liu J. Survey of pathogenic bacteria of biofilms in a metropolitan drinking water distribution system. FEMS Microbiol Lett 2020; 366:5614495. [PMID: 31697369 DOI: 10.1093/femsle/fnz225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/06/2019] [Indexed: 11/12/2022] Open
Abstract
Bacteria, especially pathogenic bacteria, were detected in order to estimate the safety of drinking water distribution systems (DWDSs). Sixteen biofilms and 12 water samples (six retained and six flowing) were collected from a city DWDS in eastern China. Biofilms were observed using scanning electron microscopy. Cultivable bacteria of biofilms were counted by heterotrophic plate counts, ranging from 3.61 × 101 to 1.67 × 106 CFU·cm-2. Coliforms, Salmonella, Shigella, Vibrio and Legionella were separated by Eosin-Methylene Blue (EMB) agar, Salmonella chromogenic medium, Shigella chromogenic medium, Thiosulfate Citrate Bile Salts Sucrose (TCBS) agar and Buffered Charcoal Yeast Extract (BCYE) agar and 13/16, 8/16, 7/16, 6/16, 0/16 biofilm samples were found to be positive, respectively. Retained and flowing water samples were collected to estimate the influence of hydrodynamic conditions on biofilm detachment. All six retained water samples were positive for bacteria, the count ranged from 1.2 × 103 to 2.8 × 104 CFU·mL-1 and 2/6, 3/6, 2/6, 0/6, 0/6 samples were positive for coliforms, Salmonella, Shigella, Legionella and Vibrio, respectively. While only three of six flowing water samples were bacteria positive, the counts ranged from 102 to 103 CFU·mL-1, 2/6 were coliform positive and no pathogens were detected under testing. The results show that there are pathogens in DWDS biofilms, which can cause health-related problems if detached from their surfaces.
Collapse
Affiliation(s)
- Jiang Chen
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Ya Shi
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Dongqing Cheng
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yan Jin
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - William Hutchins
- Department of Biological Sciences, University of Wisconsin-Milwaukee 53211, U.S.A
| | - Jingqing Liu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
66
|
Liu G, Zhang Y, Liu X, Hammes F, Liu WT, Medema G, Wessels P, van der Meer W. 360-Degree Distribution of Biofilm Quantity and Community in an Operational Unchlorinated Drinking Water Distribution Pipe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5619-5628. [PMID: 32259432 PMCID: PMC7203839 DOI: 10.1021/acs.est.9b06603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, triplicate rings of 360° pipe surfaces of an operational drinking water distribution pipe were swabbed. Each ring was equally divided into 16 parts for swabbing. The collected swabs were grouped into 3 sections and compared with the biofilm samples sampled by sonication of specimens from the same pipe. The results showed that the biofilm is unevenly distributed over the 16 parts and the 3 sections of the pipe surface. Both the active biomass and the number of observed OTUs increased as the measurements proceeded from the top to the bottom of the pipe. The bacterial community was dominated in all sections by Proteobacteria. At the genus level, Nitrospira spp., Terrimonas spp., and Hyphomicrobium spp. were dominant in all sections. Gaiella spp. and Vicinamibacter spp. dominated in S-I, Blastopirellula spp. and Pirellula spp. dominated in S-II, while Holophaga spp. and Phaeodactylibacter spp. dominated in S-III. When swabbing and pipe specimen sonication were compared, the results showed that the sampling strategy significantly influences the obtained biofilm bacterial community. A consistent multisectional swabbing strategy is proposed for future biofilm sampling; it involves collecting swabs from all sections and comparing the swabs from the same position/section across locations.
Collapse
Affiliation(s)
- Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing, 100085, P. R. China
- Oasen
Drinkwater, P.O. Box
122, 2801SB, Gouda, The Netherlands
- Sanitary
Engineering, Department of Water Management, Faculty of Civil Engineering
and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA Delft, The Netherlands
- Phone: 0086 17600879707; e-mail: ,
| | - Ya Zhang
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xinlei Liu
- Catalysis
Engineering, Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Frederik Hammes
- Eawag,
Swiss
Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Wen-Tso Liu
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gertjan Medema
- Sanitary
Engineering, Department of Water Management, Faculty of Civil Engineering
and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA Delft, The Netherlands
- KWR
Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Peter Wessels
- Oasen
Drinkwater, P.O. Box
122, 2801SB, Gouda, The Netherlands
| | - Walter van der Meer
- Oasen
Drinkwater, P.O. Box
122, 2801SB, Gouda, The Netherlands
- Science
and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| |
Collapse
|
67
|
Chen PF, Zhang RJ, Huang SB, Shao JH, Cui B, Du ZL, Xue L, Zhou N, Hou B, Lin C. UV dose effects on the revival characteristics of microorganisms in darkness after UV disinfection: Evidence from a pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136582. [PMID: 31954256 DOI: 10.1016/j.scitotenv.2020.136582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 05/03/2023]
Abstract
Ultraviolet (UV) disinfection during water supply treatment aims to reduce the number of bacteria. Although UV disinfection is effective at inactivating most microorganisms, some microbe species may be entirely impervious. A pilot study was conducted to compare the quantity and community component of bacteria in surface water collected from filtration effluent before UV disinfection with different doses of UV, and those 1 and 2 days afterwards, in darkness. The aim was to elucidate the relationship between the UV dose and the total revived microorganisms in darkness after UV disinfection. In the filtration effluent samples, Gammaproteobacteria, Bacilli, Actinobacteria, and Alphaproteobacteria were the predominant classes. After storage in the dark at a constant temperature of 19 °C, the UV-disinfected samples showed a considerable increase in Bacilli, while Gammaproteobacteria remained the predominant population. Genera such as Exiguobacterium, Citrobacter, Acinetobacter, and Pseudomonas presented a selective advantage in terms of revival in darkness after UV disinfection, irrespective of the UV dose and storage time. The lowest rate of microbial revival (5% day-1) was noted at a UV dose of 266.10 mJ m-2 (with an average UV illumination time of 124.4 s and an average intensity of 86.61 W m-2). Our results suggest that higher UV intensity and lower illumination time are key factors in minimizing the revival of microorganisms in darkness.
Collapse
Affiliation(s)
- Peng-Fei Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Rui-Jian Zhang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, PR China.
| | - Shao-Bin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jun-Hua Shao
- School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Bin Cui
- School of Civil Engineering, Guangzhou University, Guangzhou 510060, PR China
| | - Zhi-Li Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Liang Xue
- Guangdong Institute of Microbiology, Guangzhou 510060, PR China
| | - Na Zhou
- School of Environment and Safety Engineering, North University of China, Taiyuan 030000, PR China
| | - Bin Hou
- School of Environment and Safety Engineering, North University of China, Taiyuan 030000, PR China
| | - Chong Lin
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510006, PR China
| |
Collapse
|
68
|
Paniagua AT, Paranjape K, Hu M, Bédard E, Faucher SP. Impact of temperature on Legionella pneumophila, its protozoan host cells, and the microbial diversity of the biofilm community of a pilot cooling tower. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136131. [PMID: 31931228 DOI: 10.1016/j.scitotenv.2019.136131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Legionella pneumophila is a waterborne bacterium known for causing Legionnaires' Disease, a severe pneumonia. Cooling towers are a major source of outbreaks, since they provide ideal conditions for L. pneumophila growth and produce aerosols. In such systems, L. pneumophila typically grow inside protozoan hosts. Several abiotic factors such as water temperature, pipe material and disinfection regime affect the colonization of cooling towers by L. pneumophila. The local physical and biological factors promoting the growth of L. pneumophila in water systems and its spatial distribution are not well understood. Therefore, we built a lab-scale cooling tower to study the dynamics of L. pneumophila colonization in relationship to the resident microbiota and spatial distribution. The pilot was filled with water from an operating cooling tower harboring low levels of L. pneumophila. It was seeded with Vermamoeba vermiformis, a natural host of L. pneumophila, and then inoculated with L. pneumophila. After 92 days of operation, the pilot was disassembled, the water was collected, and biofilm was extracted from the pipes. The microbiome was studied using 16S rRNA and 18S rRNA genes amplicon sequencing. The communities of the water and of the biofilm were highly dissimilar. The relative abundance of Legionella in water samples reached up to 11% whereas abundance in the biofilm was extremely low (≤0.5%). In contrast, the host cells were mainly present in the biofilm. This suggests that L. pneumophila grows in host cells associated with biofilm and is then released back into the water following host cell lysis. In addition, water temperature shaped the bacterial and eukaryotic community of the biofilm, indicating that different parts of the systems may have different effects on Legionella growth.
Collapse
Affiliation(s)
- Adriana Torres Paniagua
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Kiran Paranjape
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Mengqi Hu
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Emilie Bédard
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada; Department of Civil Engineering, Polytechnique Montreal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada.
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
69
|
De Sotto R, Tang R, Bae S. Biofilms in premise plumbing systems as a double-edged sword: microbial community composition and functional profiling of biofilms in a tropical region. JOURNAL OF WATER AND HEALTH 2020; 18:172-185. [PMID: 32300090 DOI: 10.2166/wh.2020.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand distributions of opportunistic premise plumbing pathogens (OPPPs) and microbial community structures governed by sample location, pipe materials, water temperature, age of property and type of house, 29 biofilm samples obtained from faucets, pipes, and shower heads in different households in Singapore were examined using next-generation sequencing technology. Predictive functional profiling of the biofilm communities was also performed to understand the potential of uncultivated microorganisms in premise plumbing systems and their involvement in various metabolic pathways. Microbial community analysis showed Proteobacteria, Bacteroidetes, Acidobacteria, Nitrospira, and Actinobacteria to be the most abundant phyla across the samples which was found to be significantly different when grouped by age of the properties, location, and the type of house. Meanwhile, opportunistic premise plumbing pathogens such as Mycobacterium, Citrobacter, Pseudomonas, Stenotrophomonas, and Methylobacterium were observed from the samples at 0.5% of the total reads. Functional prediction using 16S gene markers revealed the involvement of the biofilm communities in different metabolic pathways like nitrogen metabolism, biodegradation of xenobiotics, and bacterial secretion implying diverse functionalities that are yet to be studied in this environment. This study serves as a preliminary survey on the microbial communities harboring premise plumbing systems in a tropical region like Singapore.
Collapse
Affiliation(s)
- Ryan De Sotto
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| | - Rena Tang
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| |
Collapse
|
70
|
Paduano S, Marchesi I, Casali ME, Valeriani F, Frezza G, Vecchi E, Sircana L, Romano Spica V, Borella P, Bargellini A. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital hot Water Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2158. [PMID: 32213901 PMCID: PMC7143765 DOI: 10.3390/ijerph17062158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was to study under real-life conditions the microbial community associated with different chemical (monochloramine, hydrogen peroxide, chlorine dioxide) and non-chemical (hyperthermia) treatments, continuously applied since many years in four hot water networks of the same hospital. Municipal cold water, untreated secondary, and treated hot water were analysed for microbiome characterization by 16S amplicon sequencing. Cold waters had a common microbial profile at genera level. The hot water bacterial profiles differed according to treatment. Our results confirm the effectiveness of disinfection strategies in our hospital for controlling potential pathogens such as Legionella, as the investigated genera containing opportunistic pathogens were absent or had relative abundances ≤1%, except for non-tuberculous mycobacteria, Sphingomonas, Ochrobactrum and Brevundimonas. Monitoring the microbial complexity of healthcare water networks through 16S amplicon sequencing is an innovative and effective approach useful for Public Health purpose in order to verify possible modifications of microbiota associated with disinfection treatments.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Maria Elisabetta Casali
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Elena Vecchi
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Luca Sircana
- University Hospital Policlinico of Modena, 41124 Modena, Italy; (E.V.); (L.S.)
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome ‘Foro Italico’, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Paola Borella
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.P.); (I.M.); (M.E.C.); (G.F.); (P.B.)
| |
Collapse
|
71
|
Dai Z, Sevillano-Rivera MC, Calus ST, Bautista-de Los Santos QM, Eren AM, van der Wielen PWJJ, Ijaz UZ, Pinto AJ. Disinfection exhibits systematic impacts on the drinking water microbiome. MICROBIOME 2020; 8:42. [PMID: 32197656 PMCID: PMC7085177 DOI: 10.1186/s40168-020-00813-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 05/06/2023]
Abstract
Limiting microbial growth during drinking water distribution is achieved either by maintaining a disinfectant residual or through nutrient limitation without using a disinfectant. The impact of these contrasting approaches on the drinking water microbiome is not systematically understood. We use genome-resolved metagenomics to compare the structure, metabolic traits, and population genomes of drinking water microbiome samples from bulk drinking water across multiple full-scale disinfected and non-disinfected drinking water systems. Microbial communities cluster at the structural- and functional potential-level based on the presence/absence of a disinfectant residual. Disinfectant residual alone explained 17 and 6.5% of the variance in structure and functional potential of the drinking water microbiome, respectively, despite including multiple drinking water systems with variable source waters and source water communities and treatment strategies. The drinking water microbiome is structurally and functionally less diverse and variable across disinfected compared to non-disinfected systems. While bacteria were the most abundant domain, archaea and eukaryota were more abundant in non-disinfected and disinfected systems, respectively. Community-level differences in functional potential were driven by enrichment of genes associated with carbon and nitrogen fixation in non-disinfected systems and γ-aminobutyrate metabolism in disinfected systems likely associated with the recycling of amino acids. Genome-level analyses for a subset of phylogenetically-related microorganisms suggests that disinfection selects for microorganisms capable of using fatty acids, presumably from microbial decay products, via the glyoxylate cycle. Overall, we find that disinfection exhibits systematic selective pressures on the drinking water microbiome and may select for microorganisms able to utilize microbial decay products originating from disinfection-inactivated microorganisms. Video abstract.
Collapse
Affiliation(s)
- Zihan Dai
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | | | - Szymon T Calus
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | | | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Paul W J J van der Wielen
- KWR Watercycle Research Institute, Nieuwegein, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
72
|
Li W, Tan Q, Zhou W, Chen J, Li Y, Wang F, Zhang J. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing. CHEMOSPHERE 2020; 242:125310. [PMID: 31896192 DOI: 10.1016/j.chemosphere.2019.125310] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The bacterial composition of biofilms in drinking water distribution systems is significantly impacted by the disinfection regime and substrate material. However, studies that have addressed the changes in the biofilm community during the early stage of formation (less than 10 weeks) were not yet adequate. Here, we explore the effects of the substrate materials (cast iron, stainless steel, copper, polyvinyl chloride, and high density polyethylene) and different disinfectants (chlorine and chloramine) on the community composition and function of young biofilm by using 16S rDNA sequencing. The results showed that Alphaproteobacteria (39.14%-80.87%) and Actinobacteria (5.90%-40.03%) were the dominant classes in chlorine-disinfection samples, while Alphaproteobacteria (17.46%-74.18%) and Betaproteobacteria (3.79%-68.50%) became dominant in a chloraminated group. The infrequently discussed genus Phreatobacter became predominant in the chlorinated samples, but it was inhibited by chloramine and copper ions. The key driver of the community composition was indicated as different disinfectants according to principle coordination analysis (PCoA) and Permutational multivariate analysis of variance (Adonis test), and the bacterial community changed significantly over time. Communities of biofilms grown on cast iron showed a great distance from the other materials according to Bray-Curtis dissimilarity, and they had a unique dominant genus, Dechloromonas. A metagenomics prediction based on 16S rDNA was used to detect the functional pathways of antibiotic biosynthesis and beta-lactam resistance, and it revealed that several pathways were significantly different in terms of their chlorinated and chloraminated groups.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qiaowen Tan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Wang
- Institute of Water Environment Technology, MCC Huatian Engineering and Technology Corporation, Nanjing, Jiangsu, 210019, China
| | - Junpeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
73
|
Paranjape K, Bédard É, Whyte LG, Ronholm J, Prévost M, Faucher SP. Presence of Legionella spp. in cooling towers: the role of microbial diversity, Pseudomonas, and continuous chlorine application. WATER RESEARCH 2020; 169:115252. [PMID: 31726393 DOI: 10.1016/j.watres.2019.115252] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 05/25/2023]
Abstract
Legionnaires' disease (LD) is a severe pneumonia caused by several species of the genus Legionella, most frequently by Legionella pneumophila. Cooling towers are the most common source for large community-associated outbreaks. Colonization, survival, and proliferation of L. pneumophila in cooling towers are necessary for outbreaks to occur. These steps are affected by the chemical and physical parameters of the cooling tower environment. We hypothesize that the bacterial community residing in the cooling tower could also affect the presence of L. pneumophila. A 16S rRNA gene targeted amplicon sequencing approach was used to study the bacterial community of cooling towers and its relationship with the Legionella spp. and L. pneumophila communities. The results indicated that the water source shaped the bacterial community of cooling towers. Several taxa were enriched and positively correlated with Legionella spp. and L. pneumophila. In contrast, Pseudomonas showed a strong negative correlation with Legionella spp. and several other genera. Most importantly, continuous chlorine application reduced microbial diversity and promoted the presence of Pseudomonas creating a non-permissive environment for Legionella spp. This suggests that disinfection strategies as well as the resident microbial population influences the ability of Legionella spp. to colonize cooling towers.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
74
|
Ma X, Li G, Chen R, Yu Y, Tao H, Zhang G, Shi B. Revealing the changes of bacterial community from water source to consumers tap: A full-scale investigation in eastern city of China. J Environ Sci (China) 2020; 87:331-340. [PMID: 31791506 DOI: 10.1016/j.jes.2019.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.
Collapse
Affiliation(s)
- Xu Ma
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guiwei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Tao
- College of Environmental Science and Engineering, Hohai University, Nanjing 210098, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
75
|
Ibekwe AM, Murinda SE. Linking Microbial Community Composition in Treated Wastewater with Water Quality in Distribution Systems and Subsequent Health Effects. Microorganisms 2019; 7:microorganisms7120660. [PMID: 31817873 PMCID: PMC6955928 DOI: 10.3390/microorganisms7120660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
The increases in per capita water consumption, coupled in part with global climate change have resulted in increased demands on available freshwater resources. Therefore, the availability of safe, pathogen-free drinking water is vital to public health. This need has resulted in global initiatives to develop sustainable urban water infrastructure for the treatment of wastewater for different purposes such as reuse water for irrigation, and advanced waste water purification systems for domestic water supply. In developed countries, most of the water goes through primary, secondary, and tertiary treatments combined with disinfectant, microfiltration (MF), reverse osmosis (RO), etc. to produce potable water. During this process the total bacterial load of the water at different stages of the treatment will decrease significantly from the source water. Microbial diversity and load may decrease by several orders of magnitude after microfiltration and reverse osmosis treatment and falling to almost non-detectable levels in some of the most managed wastewater treatment facilities. However, one thing in common with the different end users is that the water goes through massive distribution systems, and the pipes in the distribution lines may be contaminated with diverse microbes that inhabit these systems. In the main distribution lines, microbes survive within biofilms which may contain opportunistic pathogens. This review highlights the role of microbial community composition in the final effluent treated wastewater, biofilms formation in the distribution systems as the treated water goes through, and the subsequent health effects from potential pathogens associated with poorly treated water. We conclude by pointing out some basic steps that may be taken to reduce the accumulation of biofilms in the water distribution systems.
Collapse
Affiliation(s)
- Abasiofiok Mark Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
- Correspondence: ; Tel.: +951-369-4828
| | - Shelton E. Murinda
- Animal and Veterinary Sciences Department, Center for Antimicrobial Research and Food Safety, California State Polytechnic University, Pomona, CA 91768, USA;
| |
Collapse
|
76
|
Neu L, Proctor CR, Walser JC, Hammes F. Small-Scale Heterogeneity in Drinking Water Biofilms. Front Microbiol 2019; 10:2446. [PMID: 31736893 PMCID: PMC6828615 DOI: 10.3389/fmicb.2019.02446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilm heterogeneity has been characterized on various scales for both natural and engineered ecosystems. This heterogeneity has been attributed to spatial differences in environmental factors. Understanding their impact on localized biofilm heterogeneity in building plumbing systems is important for both management and representative sampling strategies. We assessed heterogeneity within the confined engineered ecosystem of a shower hose by high-resolution sampling (200 individual biofilm sections per hose) on varying scales (μm to m). We postulated that a biofilm grown on a single material under uniform conditions should be homogeneous in its structure, bacterial numbers, and community composition. A biofilm grown for 12 months under controlled laboratory conditions, showed homogeneity on large-scale. However, some small-scale heterogeneity was clearly observed. For example, biofilm thickness of cm-sections varied up to 4-fold, total cell concentrations (TCC) 3-fold, and relative abundance of dominant taxa up to 5-fold. A biofilm grown under real (i.e., uncontrolled) use conditions developed considerably more heterogeneity in all variables which was attributed to more discontinuity in environmental conditions. Interestingly, biofilm communities from both hoses showed comparably low diversity, with <400 taxa each, and only three taxa accounting for 57%, respectively, 73% of the community. This low diversity was attributed to a strong selective pressure, originating in migrating carbon from the flexible hoses as major carbon source. High-resolution sampling strategy enabled detailed analysis of spatial heterogeneity within an individual drinking water biofilm. This study gives insight into biofilm structure and community composition on cm-to m-scale and is useful for decision-making on sampling strategies in biofilm research and monitoring.
Collapse
Affiliation(s)
- Lisa Neu
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Caitlin R. Proctor
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Schools of Civil, Environmental and Ecological, Materials, and Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | | | - Frederik Hammes
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
77
|
Physicochemical and Biological Effects on Activated Sludge Performance and Activity Recovery of Damaged Sludge by Exposure to CeO 2 Nanoparticles in Sequencing Batch Reactors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204029. [PMID: 31640233 PMCID: PMC6843984 DOI: 10.3390/ijerph16204029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
Recently, the growing release of CeO2 nanoparticles (CeO2 NPs) into sewage systems has attracted great concern. Several studies have extensively explored CeO2 NPs' potential adverse impacts on wastewater treatment plants; however, the impaired activated sludge recovery potentials have seldom been addressed to date. To explore the physicochemical and biological effects on the activated sludge performance and activity recovery of damaged sludge by exposure to CeO2 NPs in sequencing batch reactors (SBRs), four reactors and multiple indicators including water quality, key enzymes, microbial metabolites, the microbial community structure and toxicity were used. Results showed that 10-week exposure to higher CeO2 NP concentration (1, 10 mg/L) resulted in a sharp decrease in nitrogen and phosphorus removal efficiencies, which were consistent with the tendencies of key enzymes. Meanwhile, CeO2 NPs at concentrations of 0.1, 1, and 10 mg/L decreased the secretion of tightly bound extracellular polymeric substances to 0.13%, 3.14%, and 28.60%, respectively, compared to the control. In addition, two-week recovery period assays revealed that the functional bacteria Proteobacteria, Nitrospirae and Planctomycetes recovered slightly at the phyla level, as analyzed through high-throughput sequencing, which was consistent with the small amount of improvement of the effluent performance of the system. This reflected the small possibility of the activity recovery of damaged sludge.
Collapse
|
78
|
Zhou X, Zhang K, Zhang T, Yang Y, Ye M, Pan R. Formation of odorant haloanisoles and variation of microorganisms during microbial O-methylation in annular reactors equipped with different coupon materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:1-11. [PMID: 31078770 DOI: 10.1016/j.scitotenv.2019.04.329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Taste and odor (T & O) issues in drinking water have become serious problems which cannot be ignored by customers. Several studies have confirmed that microbes in water can biotransform halophenols (HPs) to haloanisoles (HAs) with earthy and musty flavors via microbial O-methylation. In this paper, the formation of 2-chloroanisole (2-CA), 2,4-dichloroanisole (2,4-DCA), 2,4,6-trichloroanisole (2,4,6-TCA), 2,3,6-trichloroanisole (2,3,6-TCA) and 2,4,6-tribromoanisole (2,4,6-TBA), and the microbial variation during the microbial O-methylation were investigated in annular reactors (ARs) with three coupon materials. For precursors, 42.5% of 2-CP and 68.9% of 2,4-DCP decayed during the reaction. Among the five HAs, the formation rate constant followed an order of 2,4,6-TCA > 2-CA > 2,4,6-TBA > 2,4-DCA ~ 2,3,6-TCA, while [HA]max followed a totally opposite one. The simulated flow velocity had no significant effect (p > 0.05) on HA formation. Ductile iron (DI) AR could produce more HAs than stainless steel (SS) and polyvinyl chloride (PVC) ARs. The final HA molar concentration followed an order of 2,3,6-TCA > 2,4-DCA > 2,4,6-TBA ~ 2,4,6-TCA > 2-CA, which might be explained by multiple factors including HP's dissociation degree, halogen atom's steric hindrance and specificity of HP O-methyltransferases. During the reaction, the microbial biomass dramatically increased 6.8-9.0 times in bulk water but dropped significantly on coupon biofilms. The effect of HPs significantly changed the bacterial communities on coupon in terms of composition and diversity, and declined the relative abundance of HA-producing bacteria, while fungi and their HA-producing genus showed better resistance ability towards HPs. By using Pearson correlation analysis, a significant correlation (p = 0.0003) was found between [HA]max and initial coupon biofilm biomass. Finally, a linear relationship was established between initial total biomass and HA formation potential.
Collapse
Affiliation(s)
- Xinyan Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yulong Yang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Miaomiao Ye
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Renjie Pan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
79
|
Inkinen J, Jayaprakash B, Siponen S, Hokajärvi AM, Pursiainen A, Ikonen J, Ryzhikov I, Täubel M, Kauppinen A, Paananen J, Miettinen IT, Torvinen E, Kolehmainen M, Pitkänen T. Active eukaryotes in drinking water distribution systems of ground and surface waterworks. MICROBIOME 2019; 7:99. [PMID: 31269979 PMCID: PMC6610866 DOI: 10.1186/s40168-019-0715-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/20/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Eukaryotes are ubiquitous in natural environments such as soil and freshwater. Little is known of their presence in drinking water distribution systems (DWDSs) or of the environmental conditions that affect their activity and survival. METHODS Eukaryotes were characterized by Illumina high-throughput sequencing targeting 18S rRNA gene (DNA) that estimates the total community and the 18S rRNA gene transcript (RNA) that is more representative of the active part of the community. DWDS cold water (N = 124), hot water (N = 40), and biofilm (N = 16) samples were collected from four cities in Finland. The sampled DWDSs were from two waterworks A-B with non-disinfected, recharged groundwater as source water and from three waterworks utilizing chlorinated water (two DWDSs of surface waterworks C-D and one of ground waterworks E). In each DWDS, samples were collected from three locations during four seasons of 1 year. RESULTS A beta-diversity analysis revealed that the main driver shaping the eukaryotic communities was the DWDS (A-E) (R = 0.73, P < 0.001, ANOSIM). The kingdoms Chloroplastida (green plants and algae), Metazoa (animals: rotifers, nematodes), Fungi (e.g., Cryptomycota), Alveolata (ciliates, dinoflagellates), and Stramenopiles (algae Ochrophyta) were well represented and active-judging based on the rRNA gene transcripts-depending on the surrounding conditions. The unchlorinated cold water of systems (A-B) contained a higher estimated total number of taxa (Chao1, average 380-480) than chlorinated cold water in systems C-E (Chao1 ≤ 210). Within each DWDS, unique eukaryotic communities were identified at different locations as was the case also for cold water, hot water, and biofilms. A season did not have a consistent impact on the eukaryotic community among DWDSs. CONCLUSIONS This study comprehensively characterized the eukaryotic community members within the DWDS of well-maintained ground and surface waterworks providing good quality water. The study gives an indication that each DWDS houses a unique eukaryotic community, mainly dependent on the raw water source and water treatment processes in place at the corresponding waterworks. In particular, disinfection as well as hot water temperature seemed to represent a strong selection pressure that controlled the number of active eukaryotic species.
Collapse
Affiliation(s)
- Jenni Inkinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | - Sallamaari Siponen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna Pursiainen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jenni Ikonen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ivan Ryzhikov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Martin Täubel
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ari Kauppinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ilkka T. Miettinen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Eila Torvinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Mikko Kolehmainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Tarja Pitkänen
- Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| |
Collapse
|
80
|
Li M, Liu Z, Chen Y, Zhang M. Identifying effects of pipe material, hydraulic condition, and water composition on elemental accumulation in pipe corrosion scales. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19906-19914. [PMID: 31090008 DOI: 10.1007/s11356-019-05401-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Identification of the accumulation mechanism of major elements on pipe surface is essential to investigate the development of corrosion scales and co-occurrence of trace inorganic contaminants. In this study, corrosion scale samples were collected from old, corroded iron pipes made of different materials and exposed to different water qualities and operation conditions. Elemental composition of these scales was determined by energy dispersive X-ray spectroscopy (EDS). Cumulative occurrence analysis, Q-style hierarchical cluster analysis (CA), and principal component analysis (PCA) were conducted to ascertain major elements typical for corrosion scales and to estimate the dominant influencing factor to each elemental constituent. The major elements in the examined scales are Fe, C, Zn, Si, Ca, Al, and S in the descending prevalence. Their occurrences are influenced by an interactive effect. Pipe material imposes a significant effect on the accumulation of Fe, Zn, and Ca in corrosion scales; water composition can account for the presence of Si, Al, and S in this study; hydraulic condition is identified as the primary factor influencing the occurrence of C and Ca. Q-style CA and PCA are verified practicable for data interpretation and identification of dominant factors influencing scale characteristics.
Collapse
Affiliation(s)
- Manjie Li
- State Key Laboratory Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhaowei Liu
- State Key Laboratory Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yongcan Chen
- State Key Laboratory Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China
- Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, China
| | - Mingdong Zhang
- School of Software, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
81
|
König L, Wentrup C, Schulz F, Wascher F, Escola S, Swanson MS, Buchrieser C, Horn M. Symbiont-Mediated Defense against Legionella pneumophila in Amoebae. mBio 2019; 10:e00333-19. [PMID: 31088922 PMCID: PMC6520448 DOI: 10.1128/mbio.00333-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.
Collapse
Affiliation(s)
- Lena König
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Cecilia Wentrup
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Biologie des Bactéries Intracellulaires, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Frederik Schulz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Florian Wascher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sarah Escola
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Buchrieser
- Biologie des Bactéries Intracellulaires, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
82
|
Zhu J, Liu R, Cao N, Yu J, Liu X, Yu Z. Mycobacterial metabolic characteristics in a water meter biofilm revealed by metagenomics and metatranscriptomics. WATER RESEARCH 2019; 153:315-323. [PMID: 30739073 DOI: 10.1016/j.watres.2019.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/27/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Mycobacteria represent one of the most persistent bacterial populations in drinking water distribution system (DWDS) biofilm communities; however, mycobacterial in situ metabolic profiles are largely unknown. In this study, the metabolic characteristics of mycobacteria in a household water meter biofilm were unveiled using a coupled metagenomic/metatranscriptomic approach. The water meter biofilm appeared to express nitrogenase genes (nifDKH) and a full complement of genes coding for several carbon-fixation pathways, especially the Calvin cycle, suggesting the CO2 sequestration and dinitrogen fixation potential of the biofilm. These findings indicate that it may be difficult to prevent the formation of DWDS biofilms simply by controlling the availability of organic carbon or nitrogen. The composite genome of mycobacteria (CG-M) was reconstructed based on the obtained omics data. CG-M shared similar genome phylogeny and virulence-factor profiles with Mycobacterium avium complex, suggesting that population CG-M might represent a member of mycobacteria with pathogenicity. According to the gene expression patterns, population CG-M showed the metabolic potential to assimilate CO2 via the Calvin cycle and/or anaplerotic reactions, and even to grow autotrophically with CO as the sole carbon and energy source. This suggests that organic carbon may not be a limiting factor for mycobacterial growth in DWDSs. Moreover, our results suggest that mycobacterial aromatic degradation is primarily achieved through the catechol meta-cleavage pathway, and biofilm mycobacteria could prefer phosphate as the phosphorus source.
Collapse
Affiliation(s)
- Junge Zhu
- University of Chinese Academy of Sciences, Beijing, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- University of Chinese Academy of Sciences, Beijing, China.
| | - Nan Cao
- Beijing Waterworks Group, Beijing, China
| | - Jianwei Yu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xinchun Liu
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhisheng Yu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
83
|
Liu L, Xing X, Hu C, Wang H, Lyu L. Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. CHEMOSPHERE 2019; 219:971-980. [PMID: 30682762 DOI: 10.1016/j.chemosphere.2018.12.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Drinking water distribution systems (DWDS) may be a "Trojan Horse" for some waterborne diseases caused by opportunistic pathogens (OPs). In this study, two simulated DWDS inoculated with groundwater were treated with chlorine (Cl2) and ultraviolet/chlorine (UV/Cl2) respectively to compare their effects on the OPs distributed in four different phases (bulk water, biofilms, corrosion products, and loose deposits) of DWDS. 16S rRNA genes sequencing and qPCR were used to profile microbial community and quantify target genes of OPs, respectively. Results showed that UV/Cl2 was more effective than single Cl2 to control the regrowth of OPs in the water with the same residual chlorine concentration. However, the OPs inhabiting the biofilms, corrosion products, and loose deposits seemed to be tolerant to UV/Cl2 and Cl2, demonstrating that OPs residing in these phases were resistant to the disinfection processes. Some significant microbial correlations between OPs and Acanthamoeba were found by Spearman correlative analysis (p < 0.05), demonstrating that the ecological interactions may exist in the DWDS. 16S rRNA genes sequencing of water samples revealed a significant different microbial community structure between UV/Cl2 and Cl2. This study may give some implications for controlling the OPs in the DWDS disinfected with UV/Cl2.
Collapse
Affiliation(s)
- Lizhong Liu
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, China; School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, China
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Chun Hu
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Haibo Wang
- Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
84
|
Wang H, Hu C, Shen Y, Shi B, Zhao D, Xing X. Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. CHEMOSPHERE 2019; 218:197-204. [PMID: 30471500 DOI: 10.1016/j.chemosphere.2018.11.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Effects of sulfadiazine and ciprofloxacin on microorganisms in biofilm of drinking water distribution systems (DWDSs) were studied. The results verified that the increases of 16S rRNA for total bacteria and bacterial genus Hyphomicrobium were related to the promotion of antibiotic resistance genes (ARGs) and class 1 integrons (int1) in DWDSs with sulfadiazine and ciprofloxacin. Moreover, the bacteria showed higher enzymatic activities in DWDSs with sulfadiazine and ciprofloxacin, which resulted in more production of extracellular polymeric substances (EPS). The higher contents of EPS proteins and secondary structure β-sheet promoted bacterial aggregation and adsorption onto surface of pipelines to form biofilm. EPS can serve as a barrier for the microorganisms in biofilm. Therefore, the biofilm bacterial communities shifted and the 16S rRNA for total bacteria increased in DWDSs with antibiotics, which also drove the ARGs promotion. Furthermore, the two antibiotics exhibited stronger combined effects than that caused by sulfadiazine and ciprofloxacin alone.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| | - Yi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Xueci Xing
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
85
|
Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes 2019; 5:9. [PMID: 30820334 PMCID: PMC6385293 DOI: 10.1038/s41522-019-0082-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Safe drinking water is delivered to the consumer through kilometres of pipes. These pipes are lined with biofilm, which is thought to affect water quality by releasing bacteria into the drinking water. This study describes the number of cells released from this biofilm, their cellular characteristics, and their identity as they shaped a drinking water microbiome. Installation of ultrafiltration (UF) at full scale in Varberg, Sweden reduced the total cell count to 1.5 × 103 ± 0.5 × 103 cells mL−1 in water leaving the treatment plant. This removed a limitation of both flow cytometry and 16S rRNA amplicon sequencing, which have difficulties in resolving small changes against a high background cell count. Following installation, 58% of the bacteria in the distributed water originated from the pipe biofilm, in contrast to before, when 99.5% of the cells originated from the treatment plant, showing that UF shifts the origin of the drinking water microbiome. The number of bacteria released from the biofilm into the distributed water was 2.1 × 103 ± 1.3 × 103 cells mL−1 and the percentage of HNA (high nucleic acid) content bacteria and intact cells increased as it moved through the distribution system. DESeq2 analysis of 16S rRNA amplicon reads showed increases in 29 operational taxonomic units (OTUs), including genera identified as Sphingomonas, Nitrospira, Mycobacterium, and Hyphomicrobium. This study demonstrated that, due to the installation of UF, the bacteria entering a drinking water microbiome from a pipe biofilm could be both quantitated and described.
Collapse
|
86
|
Liu D, Jin J, Liang S, Zhang J. Characteristics of water quality and bacterial communities in three water supply pipelines. RSC Adv 2019; 9:4035-4047. [PMID: 35518077 PMCID: PMC9060443 DOI: 10.1039/c8ra08645a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022] Open
Abstract
Many cities in China have implemented urban water supply pipe network renovation projects; however, at the beginning of new pipeline replacements, customers often complain about water quality problems, such as red water, odour and other water quality problems. To overcome these frequent water quality problems, this study selected a commonly used ductile cast iron (DCI) pipe, stainless steel (SS) pipe and high-density polyethylene (HDPE) pipe for laboratory simulations of the water quality regularity of new pipes, the variations in pipe inner walls, and the presence of microbial communities. Based on the research results, combined with actual water sample analysis, the stabilisation time of the interaction between the tubings inner walls and bulk water was determined, to allow pipeline cleaning and water quality maintenance. The results showed that the water quality change in the DCI was the most significant, while the SS and the HDPE pipes showed consistent changes with severe initial deterioration, then later stabilisation to meet the required standard. The DCI inner wall changed from a loose porous particle shape to a relatively dense and irregular three-dimensional shape, with the constituent elements mainly being O and Ca. The SS inner wall had a uniform structure in the early stage, but are obvious spherical balls of different sizes formed later, with the elemental composition here mainly being C and O. The HDPE inner wall was smooth and had small perforations in the early stage, while the perforation in the middle and late stages increased to become rough and scale-like at a much later stage. The proportion of Proteobacteria in effluents (72.82% to 86.87%) was significantly increased compared with the influent (48.45%), while the proportion of Proteobacteria (86.87%) in the DCI was significantly higher than in the SS (74.28%) and HDPE pipes (81.68%). Moreover, compared with the influent (23.33%), the Bacteroidetes (2.79% to 3.32%) levels in the effluents were significantly reduced, indicating that the pipe material affects the microbial abundance in water. Factory water interacts with pipelines resulting in water quality deterioration. To stop this happening and to improve the selection of water supply pipes, it is important to study the water quality, the inner wall of the pipeline, and the microbial community.![]()
Collapse
Affiliation(s)
- Dongpo Liu
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- School of Civil Engineering
- Guangzhou
| | - Juntao Jin
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- Cooperative Research and Education Centre for Environment Technology of Tsinghua
- Kyoto University
| | - Sichen Liang
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- Harbin Institute of Technology
- Harbin
| | - Jinsong Zhang
- Shenzhen Water (Group) Co., Ltd
- Shenzhen
- China
- School of Civil Engineering
- Guangzhou
| |
Collapse
|
87
|
Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13077-13088. [PMID: 30351033 DOI: 10.1021/acs.est.8b02607] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vast majority of bacteria in drinking water distribution systems (DWDSs) reside in biofilms on the interior walls of water mains. Little is known about how water quality conditions affect water-main biofilms because of the inherent limitations in experimenting with drinking water supplies and accessing the water mains for sampling. Bench-scale reactors permit experimentation and ease of biofilm sampling, yet questions remain as to how well biofilms in laboratory reactors represent those on water mains. In this study, the effects of DWDS pipe materials and chloramine residual on biofilms were investigated by cultivating biofilms on cement, polyvinyl chloride, and high density polyethylene coupons in CDC reactors for up to 28 months in the presence of chloraminated or dechlorinated tap water. The bench-scale biofilm microbiomes were then compared with the microbiome on a water main from the full-scale system that supplied the water to the reactors. The presence of a chloramine residual (1.74 ± 0.21 mg/L) suppressed biofilm accumulation and selected for Mycobacterium-like and Sphingopyxis-like operational taxonomic units (OTUs) while the destruction of the chloramine residual resulted in a significant increase in biomass quantity and a shift toward a more diverse community dominated by Nitrospira-like OTUs, which, our results suggest, may be complete ammonia oxidizers (comammox). Coupon material, however, had a relatively minor effect on the abundance and community composition of the biofilm bacteria. Although biofilm communities from the chloraminated water reactor and the water mains shared some dominant populations (namely, Mycobacterium- and Nitrosomonas-like OTUs), the communities were significantly different. This manuscript provides novel insights into the effects of dechlorination and pipe material on biofilm community composition. Furthermore, to our knowledge, it is the first study to compare biofilm in a tap water-fed, bench-scale simulated distribution system to biofilm on water mains from the full-scale system supplying the tap water.
Collapse
Affiliation(s)
- Srijan Aggarwal
- Department of Civil and Environmental Engineering , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - C Kimloi Gomez-Smith
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Youchul Jeon
- Department of Civil and Environmental Engineering , University of Toledo , Toledo , Ohio 43606-339 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael B Waak
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
88
|
Fish KE, Boxall JB. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front Microbiol 2018; 9:2519. [PMID: 30459730 PMCID: PMC6232884 DOI: 10.3389/fmicb.2018.02519] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Biofilms are the dominant form of microbial loading (and organic material) within drinking water distribution systems (DWDS), yet our understanding of DWDS microbiomes is focused on the more easily accessible bulk-water. Disinfectant residuals are commonly provided to manage planktonic microbial activity in DWDS to safeguard water quality and public health, yet the impacts on the biofilm microbiome are largely unknown. We report results from a full-scale DWDS facility used to develop biofilms naturally, under one of three chlorine concentrations: Low, Medium, or High. Increasing the chlorine concentration reduced the bacterial concentration within the biofilms but quantities of fungi were unaffected. The chlorine regime was influential in shaping the community structure and composition of both taxa. There were microbial members common to all biofilms but the abundance of these varied such that at the end of the Growth phase the communities from each regime were distinct. Alpha-, Beta-, and Gamma-proteobacteria were the most abundant bacterial classes; Sordariomycetes, Leotiomycetes, and Microbotryomycetes were the most abundant classes of fungi. Mechanical cleaning was shown to immediately reduce the bacterial and fungal concentrations, followed by a lag effect on the microbiome with continued decreases in quantity and ecological indices after cleaning. However, an established community remained, which recovered such that the microbial compositions at the end of the Re-growth and initial Growth phases were similar. Interestingly, the High-chlorine biofilms showed a significant elevation in bacterial concentrations at the end of the Re-growth (after cleaning) compared the initial Growth, unlike the other regimes. This suggests adaptation to a form a resilient biofilm with potentially equal or greater risks to water quality as the other regimes. Overall, this study provides critical insights into the interaction between chlorine and the microbiome of DWDS biofilms representative of real networks, implications are made for the operation and maintenance of DWDS disinfectant and cleaning strategies.
Collapse
Affiliation(s)
- Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom.,NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
89
|
Bertelli C, Courtois S, Rosikiewicz M, Piriou P, Aeby S, Robert S, Loret JF, Greub G. Reduced Chlorine in Drinking Water Distribution Systems Impacts Bacterial Biodiversity in Biofilms. Front Microbiol 2018; 9:2520. [PMID: 30405577 PMCID: PMC6205969 DOI: 10.3389/fmicb.2018.02520] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
In drinking water distribution systems (DWDS), a disinfectant residual is usually applied to limit bacterial regrowth. However, delivering water with no or reduced chlorine residual could potentially decrease the selection for antimicrobial resistant microorganisms, favor bacterial regrowth and result in changes in bacterial populations. To evaluate the feasibility of water reduction in local DWDS while ensuring water safety, water quality was measured over 2 months in two different networks, each of them harboring sub-areas with normal and reduced chlorine. Water quality remained good in chlorine reduced samples, with limited development of total flora and absence of coliforms. Furthermore, 16S rRNA amplicon-based metagenomics was used to investigate the diversity and the composition of microbial communities in the sub-networks. Taxonomic classification of sequence reads showed a reduced bacterial diversity in sampling points with higher chlorine residuals. Chlorine disinfection created more homogeneous bacterial population, dominated by Pseudomonas, a genus that contains some major opportunistic pathogens such as P. aeruginosa. In the absence of chlorine, a larger and unknown biodiversity was unveiled, also highlighted by a decreased rate of taxonomic classification to the genus and species level. Overall, this experiment in a functional DWDS will facilitate the move toward potable water delivery systems without residual disinfectants and will improve water taste for consumers.
Collapse
Affiliation(s)
- Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | - Marta Rosikiewicz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | - Sébastien Aeby
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
90
|
El-Chakhtoura J, Saikaly PE, van Loosdrecht MCM, Vrouwenvelder JS. Impact of Distribution and Network Flushing on the Drinking Water Microbiome. Front Microbiol 2018; 9:2205. [PMID: 30283424 PMCID: PMC6157312 DOI: 10.3389/fmicb.2018.02205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/29/2018] [Indexed: 11/30/2022] Open
Abstract
We sampled the tap water of seven unique, full-scale drinking water distribution systems at different locations as well as the corresponding treatment plant effluents to evaluate the impact of distribution and the potential presence of a core drinking water microbiome. The water was also sampled during network flushing to examine its effect on the microbial ecology. While a core microbiome dominated by Gammaproteobacteria was found using 16S rRNA gene pyrosequencing, an increase in biomass was detected in the networks, especially during flushing. Water age did not significantly impact the microbiology. Irrespective of differences in treatment plants, tap water bacterial communities in the distinct networks converged and highly resembled the flushed water communities. Piping biofilm and sediment communities therefore largely determine the final tap water microbial quality, attenuating the impact of water source and treatment strategy and highlighting the fundamental role of local physicochemical conditions and microbial processes within infrastructure micro-niches.
Collapse
Affiliation(s)
- Joline El-Chakhtoura
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands.,Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Johannes S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands.,Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
91
|
Potgieter S, Pinto A, Sigudu M, du Preez H, Ncube E, Venter S. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes. WATER RESEARCH 2018; 139:406-419. [PMID: 29673939 DOI: 10.1016/j.watres.2018.03.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 05/19/2023]
Abstract
Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However, temporal variations were consistently stronger as compared to spatial changes at individual sampling locations and demonstrated seasonality. This study emphasises the need for long-term studies to comprehensively understand the temporal patterns that would otherwise be missed in short-term investigations. Furthermore, systematic long-term investigations are particularly critical towards determining the impact of changes in source water quality, environmental conditions, and process operations on the changes in microbial community composition in the drinking water distribution system.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, USA
| | | | - Hein du Preez
- Scientific Services, Rand Water, Vereeniging, South Africa
| | - Esper Ncube
- Scientific Services, Rand Water, Vereeniging, South Africa
| | - Stephanus Venter
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
92
|
Physico-chemical Characteristics of Corrosion Scales from Different Pipes in Drinking Water Distribution Systems. WATER 2018. [DOI: 10.3390/w10070931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Corrosion scales formed on iron pipe surfaces are an important factor defining water quality in drinking water distribution systems, since they would release contaminants and cause water discoloration at transient hydrodynamic regimes. Consequently, characterization of corrosion scales is indispensable to water quality protection. In this study, corrosion products were carefully collected from three old, corroded iron pipes made of different materials and exposed to different water qualities and operation conditions. Physico-chemical characteristics of these scales were determined using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Testing results show that scale characteristics, including micromorphology, porosity and composition, vary significantly due to different pipe materials, water qualities and hydraulic conditions. Zinc coatings in galvanized pipes contribute to metal corrosion prevention, while attention should be paid to zinc release. High corrosive surface water facilitates the formation of developed corrosion tubercles, in which the compact shell-like layer conduces to maintain the structural stability of corrosion scales under disturbance. Structural breaks and low-velocity zones in water distribution systems might be in high potential of contaminant release, since the inhomogeneous materials and unusual hydraulic conditions would result in unstable scale characteristics.
Collapse
|
93
|
Liu G, Zhang Y, van der Mark E, Magic-Knezev A, Pinto A, van den Bogert B, Liu W, van der Meer W, Medema G. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints. WATER RESEARCH 2018; 138:86-96. [PMID: 29573632 DOI: 10.1016/j.watres.2018.03.043] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 05/10/2023]
Abstract
The general consensus is that the abundance of tap water bacteria is greatly influenced by water purification and distribution. Those bacteria that are released from biofilm in the distribution system are especially considered as the major potential risk for drinking water bio-safety. For the first time, this full-scale study has captured and identified the proportional contribution of the source water, treated water, and distribution system in shaping the tap water bacterial community based on their microbial community fingerprints using the Bayesian "SourceTracker" method. The bacterial community profiles and diversity analyses illustrated that the water purification process shaped the community of planktonic and suspended particle-associated bacteria in treated water. The bacterial communities associated with suspended particles, loose deposits, and biofilm were similar to each other, while the community of tap water planktonic bacteria varied across different locations in distribution system. The microbial source tracking results showed that there was not a detectable contribution of source water to bacterial community in the tap water and distribution system. The planktonic bacteria in the treated water was the major contributor to planktonic bacteria in the tap water (17.7-54.1%). The particle-associated bacterial community in the treated water seeded the bacterial community associated with loose deposits (24.9-32.7%) and biofilm (37.8-43.8%) in the distribution system. In return, the loose deposits and biofilm showed a significant influence on tap water planktonic and particle-associated bacteria, which were location dependent and influenced by hydraulic changes. This was revealed by the increased contribution of loose deposits to tap water planktonic bacteria (from 2.5% to 38.0%) and an increased contribution of biofilm to tap water particle-associated bacteria (from 5.9% to 19.7%) caused by possible hydraulic disturbance from proximal to distal regions. Therefore, our findings indicate that the tap water bacteria could possibly be managed by selecting and operating the purification process properly and cleaning the distribution system effectively.
Collapse
Affiliation(s)
- Gang Liu
- Oasen Water Company, P.O. Box 122, 2800AC, Gouda, The Netherlands; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, The Netherlands.
| | - Ya Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL, 61801, United States
| | - Ed van der Mark
- Dunea Water Company, P.O. Box 756, 2700 AT, Zoetermeer, The Netherlands
| | | | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, United States
| | | | - Wentso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL, 61801, United States
| | - Walter van der Meer
- Oasen Water Company, P.O. Box 122, 2800AC, Gouda, The Netherlands; Science and Technology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| |
Collapse
|
94
|
Li W, Zhang J, Wang F, Qian L, Zhou Y, Qi W, Chen J. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system. CHEMOSPHERE 2018; 202:586-597. [PMID: 29597176 DOI: 10.1016/j.chemosphere.2018.03.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Public health is threatened by deteriorated water quality due to bacterial regrowth and uncontrolled growth-related problems in drinking water distribution systems (DWDSs). To investigate the scope of this problem, a two-year field study was conducted in south China. The amount of assimilable organic carbon (AOC), total cell concentrations (TCC), and intact cell concentrations (ICC) of water samples were determined by flow cytometry. The results indicated that ICC was significantly correlated to AOC concentration when the chlorine concentration was less than 0.15 mg/L, and ICC was lower at chlorine concentrations greater than 0.15 mg/L, suggesting that free chlorine level had effect on AOC and ICC. To further analyze the effect of disinfectant on AOC and bacterial growth, we designed an orthogonal experiment with different dosages of two commonly used disinfectants, chlorine and chloramine. The results demonstrated that high concentrations of free chlorine (>0.15 mg/L) and chloramine (>0.4 mg/L) were associated with relatively low proportions of intact cells and cultivable bacteria. Compared with chlorine, chloramine tended to cause lower AOC level and intact cells, likely because the chlorinated disinfection byproducts (DBPs) were more easily absorbed by bacteria than the chloraminated DBPs. Based on the statistical analysis of 240 water samples, ICC was limited when AOC concentration was less than 135 μg/L, while temperature and the number of small-size particles showed positive effects on ICC (P<0.05). We conclude that the use of chloramine and controlling particle numbers should be suitable strategies to limit bacterial regrowth.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Junpeng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lin Qian
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yanyan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wanqi Qi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiping Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
95
|
Zhang J, Li W, Chen J, Qi W, Wang F, Zhou Y. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. CHEMOSPHERE 2018; 203:368-380. [PMID: 29627603 DOI: 10.1016/j.chemosphere.2018.03.143] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
There is growing awareness of the antibiotic-resistance crisis and its implications for public health among clinicians, researchers, politicians, and the public. We studied bacterial antibiotic resistance transition and the role of biofilms in a drinking water distribution system (DWDS). We tracked several different antibiotic resistant bacteria (ARB) with resistance to tetracycline, sulfamethoxazole, clindamycin, and norfloxacin for one year in a DWDS. The results indicated that the amount of ARB increased in tap water, presumably due to biofilm detachment. The effect of biofilm detachment on the transmission of antibiotic resistance from biofilms to tap water was explored by using a bacterial annular reactor. The percentage of ARB of inlet water, outlet water, and biofilms ranged from 0.26% to 9.85%, 1.08%-16.29%, and 0.52%-29.97%, respectively in a chlorinated system, and from 0.23% to 9.89%, 0.84%-16.84%, and 0.35%-17.77%, respectively, in a chloraminated system. The relative abundances of antibiotic resistance Acinetobacter, Sphingomonas, and Bradyrhizobium were higher in outlet water than in inlet water, as determined by high throughout sequencing. The amount of ARB percentage varied with the concentration of viable but non-culturable (VBNC) cells (r = 0.21, n = 160, P < 0.05) in biofilm, suggesting a higher antibiotic resistance mutation rate in VBNC cells. Our results suggest that biofilm detachment was promoted by disinfectant and affected the overall bacterial antibiotic resistance of microbes in tap water.
Collapse
Affiliation(s)
- Junpeng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Jiping Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wanqi Qi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yanyan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
96
|
Chen J, Li N, Xie S, Chen C. Biofilm and planktonic bacterial communities in a drinking water distribution system supplied with untreated groundwater. Arch Microbiol 2018; 200:1323-1331. [DOI: 10.1007/s00203-018-1546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022]
|
97
|
Hamilton KA, Prussin AJ, Ahmed W, Haas CN. Outbreaks of Legionnaires' Disease and Pontiac Fever 2006-2017. Curr Environ Health Rep 2018; 5:263-271. [PMID: 29744757 DOI: 10.1007/s40572-018-0201-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW The global importance of Legionnaires' disease (LD) and Pontiac fever (PF) has grown in recent years. While sporadic cases of LD and PF do not always provide contextual information for evaluating causes and drivers of Legionella risks, analysis of outbreaks provides an opportunity to assess these factors. RECENT FINDINGS A review was performed and provides a summary of LD and PF outbreaks between 2006 and 2017. Of the 136 outbreaks, 115 were LD outbreaks, 4 were PF outbreaks, and 17 were mixed outbreaks of LD and PF. Cooling towers were implicated or suspected in the a large portion of LD or PF outbreaks (30% total outbreaks, 50% confirmed outbreak-associated cases, and 60% outbreak-associated deaths) over this period of time, while building water systems and pools/spas were also important contributors. Potable water/building water system outbreaks seldom identify specific building water system or fixture deficiencies. The outbreak data summarized here provides information for prioritizing and targeting risk analysis and mitigation strategies.
Collapse
Affiliation(s)
- K A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - A J Prussin
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, QLD, 4102, Australia
| | - C N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
98
|
Zhang K, Cao C, Zhou X, Zheng F, Sun Y, Cai Z, Fu J. Pilot investigation on formation of 2,4,6-trichloroanisole via microbial O-methylation of 2,4,6-trichlorophenol in drinking water distribution system: An insight into microbial mechanism. WATER RESEARCH 2018; 131:11-21. [PMID: 29258001 DOI: 10.1016/j.watres.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Taste & odor (T&O) problems in drinking water are always complained by customers. Recent studies have indicated biofilms in drinking water distribution system (DWDS) are always ignored as potential sources of T&O compounds. In this paper, the formation of 2,4,6-trichloroanisole (2,4,6-TCA), one of the dominant T&O compounds, was investigated in a pilot-scale DWDS. The addition of precursor 2,4,6-trichlorophenol (2,4,6-TCP) of 0.2 mg/L induced the formation of 2,4,6-TCA with a maximum yield of ∼400 ng/L, and the formation kinetics can be described by a pseudo-first-order kinetic model. Effects of water distribution factors such as pipe material, temperature, flow velocity, and residual chlorine on the formation of 2,4,6-TCA were evaluated, and the pipe material was found to have the most remarkable effect. Ductile iron and stainless steel pipes produced much more 2,4,6-TCA than polyethylene (PE) pipe. The biofilm microbial communities on the three types of pipe walls were then comprehensively analyzed by heterotrophic plate count and 16S rRNA/ITS1 genes high throughput sequencing. The links between the 2,4,6-TCA formation potential and the microbial activity in genus and enzymatic levels in DWDS have been revealed for the first time. According to the characteristics of microbial assemblages of producing 2,4,6-TCA, quorum-sensing (QS) bacterial signaling system and extracellular DNA (eDNA) may be two promising targets for biofilm treatment and 2,4,6-TCA control in DWDS.
Collapse
Affiliation(s)
- Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cong Cao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xinyan Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Feifei Zheng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Youmin Sun
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhengqing Cai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Jie Fu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
99
|
Montoya-Pachongo C, Douterelo I, Noakes C, Camargo-Valero MA, Sleigh A, Escobar-Rivera JC, Torres-Lozada P. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:345-354. [PMID: 29126052 DOI: 10.1016/j.scitotenv.2017.10.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation.
Collapse
Affiliation(s)
- Carolina Montoya-Pachongo
- Institute for Public Health and Environmental Engineering (iPHEE), School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Isabel Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, The University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Catherine Noakes
- Institute for Public Health and Environmental Engineering (iPHEE), School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Miller Alonso Camargo-Valero
- Institute for Public Health and Environmental Engineering (iPHEE), School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia
| | - Andrew Sleigh
- Institute for Public Health and Environmental Engineering (iPHEE), School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | | | - Patricia Torres-Lozada
- Grupo de Investigación Estudio y Control de la Contaminación Ambiental (ECCA), Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| |
Collapse
|
100
|
Wang H, Shen Y, Hu C, Xing X, Zhao D. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:71-78. [PMID: 29161575 DOI: 10.1016/j.envpol.2017.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 05/19/2023]
Abstract
Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Sciences and Engineering, Guangzhou University, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| |
Collapse
|