51
|
Fabris D. A role for the MS analysis of nucleic acids in the post-genomics age. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1-13. [PMID: 19897384 DOI: 10.1016/j.jasms.2009.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
The advances of mass spectrometry in the analysis of nucleic acids have tracked very closely the exciting developments of instrumentation and ancillary technologies, which have taken place over the years. However, their diffusion in the broader life sciences community has been and will be linked to the ever evolving focus of biomedical research and its changing demands. Before the completion of the Human Genome Project, great emphasis was placed on sequencing technologies that could help accomplish this project of exceptional scale. After the publication of the human genome, the emphasis switched toward techniques dedicated to the exploration of sequences not coding for actual protein products, which amount to the vast majority of transcribed elements. The broad range of capabilities offered by mass spectrometry is rapidly advancing this platform to the forefront of the technologies employed for the structure-function investigation of these noncoding elements. Increasing focus on the characterization of functional assemblies and their specific interactions has prompted a re-evaluation of what has been traditionally construed as nucleic acid analysis by mass spectrometry. Inspired by the accelerating expansion of the broader field of nucleic acid research, new applications to fundamental biological studies and drug discovery will help redefine the evolving role of MS-analysis of nucleic acids in the post-genomics age.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA.
| |
Collapse
|
52
|
The 3D structures of G-Quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase. J Mol Model 2009; 16:645-57. [DOI: 10.1007/s00894-009-0592-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
53
|
Chiang CK, Lin YW, Hu CC, Chang HT. Using electrospray ionization mass spectrometry to explore the interactions among polythymine oligonucleotides, ethidium bromide, and mercury ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1834-1840. [PMID: 19640731 DOI: 10.1016/j.jasms.2009.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 05/28/2023]
Abstract
We have used electrospray ionization mass spectrometry (ESI-MS) and fluorescence and circular dichroism (CD) spectroscopy to explore the binding of ethidium bromide (EthBr) to non-self-complementary polythymine (polyT) strands in the absence and presence of Hg2+ ions. In the gas phase, ESI-MS revealed that Hg2+ ions have greater affinity, through T-Hg2+-T coordination, toward polyT strands than do other metal ions. These findings are consistent with our fluorescence and CD results obtained in solution; they revealed that more T33-EthBr-Hg2+ complexes existed upon increasing the concentrations of Hg2+ ions (from 0 to 50 microM). Surprisingly, the ESI-MS data indicated that the Hg2+ concentration dependence of the interaction between T33 and EthBr is biphasic. Our ESI-MS data revealed that the T33-EthBr-Hg2+ complexes formed with various stoichiometries depending on their relative concentrations of the components and the length of the DNA strand. When the concentrations of T33/EthBr/Hg2+ were 5/5/2.5 microM and 5/10/7.5 microM, 1:1:1 and 1:1:2 T33-EthBr-Hg2+ complexes were predominantly formed, respectively. Thus, Hg2+-induced DNA conformational changes clearly affect the interactions between DNA and EthBr.
Collapse
|
54
|
Smith S, Guziec FS, Guziec L, Brodbelt JS. Interactions of sulfur-containing acridine ligands with DNA by ESI-MS. Analyst 2009; 134:2058-66. [PMID: 19768213 PMCID: PMC2892893 DOI: 10.1039/b905071j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkylating proficiency of sulfur-containing mustards may be increased by using an acridine moiety to guide the sulfur mustard to its cellular target. In this study, the interactions of a new series of sulfur-containing acridine ligands, some that also function as alkylating mustards, with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/acridine mixtures. The extent of binding observed for the series of sulfur-containing acridines was similar, presumably because the intercalating acridine moiety was identical. Upon infrared multi-photon dissociation (IRMPD) of the resulting oligonucleotide/sulfur-containing acridine complexes, ejection of the ligand was the dominant pathway for most of the complexes. However, for AS4, an acridine sulfide mustard, and AN1, an acridine nitrogen mustard, strand separation with the ligand remaining on one of the single strands was observed. At higher irradiation times, a variety of sequence ions were observed, some retaining the AS4/AN1 ligand, which was indicative of covalent binding.
Collapse
Affiliation(s)
- Suncerae Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| | - Frank S. Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX 79626
| | - Lynn Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX 79626
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
55
|
An L, Wang S. Conjugated Polyelectrolytes as New Platforms for Drug Screening. Chem Asian J 2009; 4:1196-206. [DOI: 10.1002/asia.200900148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Li H, Liu Y, Lin S, Yuan G. Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene. Chemistry 2009; 15:2445-52. [PMID: 19156807 DOI: 10.1002/chem.200801922] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study has demonstrated the formation of the G-quadruplex structure from the G-rich sequence in the promoter region of the bcl-2 oncogene; the formation could be induced by addition of NH(4)(+) or K(+) ions. The binding affinity and stoichiometry of seven small molecules with the G-quadruplex were examined by using ESI-MS, as well as CD and UV spectroscopy. The binding-affinity order was determined to be P1 approximately = P5 > P2 > P3 approximately = P4 > P7 > P6. In particular, the small-molecule induction of the structural transition between the G-quadruplex and duplex DNA forms in this promoter region was investigated by ESI-MS. We directly observed specific binding of dehydrocorydaline (P7) and cationic porphyrin (P5) in one system consisting of the G-quadruplex and the duplex DNA, respectively. The results indicate that P7 selectively stabilizes the G-quadruplex and shifts the equilibrium toward G-quadruplex formation of the bcl-2 promoter, whereas P5 converts the G-quadruplex into the duplex DNA, which results in strong and selective binding to the duplex form. Therefore, P5 and P7 with their attractive binding specificities could be considered as precursors for pathway-specific drug design for regulation of bcl-2 oncogene transcription.
Collapse
Affiliation(s)
- Huihui Li
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
57
|
Kerman K, Vestergaard M, Tamiya E. Electrochemical DNA biosensors: protocols for intercalator-based detection of hybridization in solution and at the surface. Methods Mol Biol 2009; 504:99-113. [PMID: 19159093 DOI: 10.1007/978-1-60327-569-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An electrochemical DNA biosensor is a device that utilizes the inherent ability of two complementary strands of nucleic acids to form a double helix. The specificity of this reaction, namely hybridization, is used in the detection of target DNA sequences with a view toward developing point-of-care devices. Since the early 1990s, great progress has been made in this field, but there are still numerous challenges to overcome. This chapter describes the components of an electrochemical DNA biosensor for researchers new to the field, paying particular attention to intercalator-based DNA biosensors. We will use a well-defined electro-active DNA intercalator Hoechst 33258, as our running example. Two of the most classic DNA sensing methods: solution-based and surface-immobilized methods are discussed, along with guiding notes that would help identify and overcome possible problems in a typical electrochemical DNA biosensor experiment.
Collapse
Affiliation(s)
- Kagan Kerman
- Department of Chemistry, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
58
|
Vale N, Matos J, Moreira R, Gomes P. Electrospray ionization mass spectrometry as a valuable tool in the characterization of novel primaquine peptidomimetic derivatives. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:627-640. [PMID: 19679943 DOI: 10.1255/ejms.1011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel primaquine-derived antimalarials have been extensively characterized by electrospray ionization-ion trap mass spectrometry (ESI-MS). Experiments by in-source collision-induced dissociation (CID) in the nozzle- skimmer region (NSR) or by tandem-MS are shown to be most valuable tools for the physicochemical characterization of these 8-aminoquinolinic drugs that also bear the biologically relevant imidazolidin-4-one scaffold. It was possible to find parallelism between compound stability in the NSR and its reactivity towards hydrolysis at physiological pH and T. Moreover, tandem-MS fragmentation patterns were characteristic for each family, providing a means for structural distinction of isomers and allowing to find interesting correlations between the relative abundance of particular fragments and relevant structure-activity determinants, such as Charton steric parameter, v. In conclusion, this work provides solid grounds to establish ESI-MS as a key tool for the physicochemical characterization of biopharmaceuticals bearing the 8-aminoquinoline and/or the imidazolidin-4-one moieties.
Collapse
Affiliation(s)
- Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
59
|
Lin MM, Shorokhov D, Zewail AH. Structural ultrafast dynamics of macromolecules: diffraction of free DNA and effect of hydration. Phys Chem Chem Phys 2009; 11:10619-32. [DOI: 10.1039/b910794k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
60
|
Wan C, Guo X, Song F, Liu Z, Liu S. Interactions of mitoxantrone with duplex and triplex DNA studied by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:4043-8. [PMID: 19012354 DOI: 10.1002/rcm.3793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have examined interactions between mitoxantrone (MXT) and DNA duplexes or triplexes with different base compositions by using electrospray ionization mass spectrometry (ESI-MS), respectively. MXT interacts preferentially with DNA duplexes compared to the triplexes. In the mass spectrum of the duplex-MXT mixture, the complex peaks dominated in the ratios of duplex/MXT of 1:1, 1:2 and 1:3, and the 1:2 duplex/MXT peak was the most abundant. In contrast, only 1:1 triplex-MXT complexes were observed in the mass spectrum of the triplex-MXT mixture, and the most intensive peak was a free triplex ion without MXT. Moreover, no sequence selectivity of MXT to different DNA duplexes was found while MXT showed greater affinity to the triplexes that have adjacent TAT or C(+)GC sequences. In the course of sustained off-resonance irradiation collision-induced dissociation (SORI-CID), the MXT-duplex complexes generated two separated strands, and the MXT remained on the purine strand side. UV/Vis spectra showed that MXT interacted with DNA by intercalation. Compared with emodin (a duplex intercalator) and napthylquinoline (a triplex binder), we found that the side chain of MXT might play a role in the binding of MXT to the duplexes and the triplexes. ESI-MS shows an advantage in speed and straightforwardness for the study of drug interactions with nucleic acids.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | | | | | | | | |
Collapse
|
61
|
Xu Y, Afonso C, Wen R, Tabet JC. Investigation of double-stranded DNA/drug interaction by ESI/FT ICR: orientation of dissociations relates to stabilizing salt bridges. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1531-1544. [PMID: 18521852 DOI: 10.1002/jms.1430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Noncovalent complexes of DNA and Hoechst 33258 were investigated by ESI-FT/ICR MS in various activation modes (collision-induced dissociation (CID), sustained off-resonance irradiation collision-induced dissociation (SORI-CID), infrared multiphoton dissociation (IRMPD) and electron detachment dissociation (EDD)). The binding selectivity of Hoechst 33258 was confirmed by the comparative study of its noncovalent association with different DNA sequences. The CID spectra of [ds + HO - 5H](5-) obtained with a linear hexapole ion trap resulted in unzipping of the strands. This outcome is a clue to the drug-binding mode, shading light on the localization of the binding sites of Hoechst 33258 to the DNA sequence. The IRMPD and SORI-CID experiments mainly gave DNA backbone cleavages and internal fragment ions. From this result, information on the localization of the binding sites of Hoechst 33258 in the DNA sequence was obtained. No sodium cationization was observed on the DNA sequence ions although they were present on fragmentation of the duplex, indicating that the backbone cleavages were generated from the single strand associated with the Hoechst 33258 where the number of alkali cation is restricted. Under electron detachment (ED) conditions, multiple EDs were achieved for the [ds + HO - 5H](5-) ion without any significant dissociation. The presence of drug appears to enhance the stability of the multiply charged system. It was proposed that the studied noncovalent complex involved the formation of zwitterions and consequently strong salt-bridge interactions between DNA and drug.
Collapse
Affiliation(s)
- Ying Xu
- Université Pierre et Marie Curie-Paris 6, UMR 7613 Synthèse, Structure et Fonction de Molécules Bioactives, Paris, F-75005, France
| | | | | | | |
Collapse
|
62
|
Bai LP, Cai Z, Zhao ZZ, Nakatani K, Jiang ZH. Site-specific binding of chelerythrine and sanguinarine to single pyrimidine bulges in hairpin DNA. Anal Bioanal Chem 2008; 392:709-16. [DOI: 10.1007/s00216-008-2302-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/02/2008] [Accepted: 07/17/2008] [Indexed: 11/30/2022]
|
63
|
Feil SW, Koyanagi GK, Anichina J, Bohme DK. Chemical stability and reactivity of deprotonated oligonucleotides (DNA) in the gas phase: protonation and solvation with hydrogen bromide. J Phys Chem B 2008; 112:10375-81. [PMID: 18651764 DOI: 10.1021/jp804193u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selected deprotonated oligodeoxynucleotides generated by electrospray ionization were exposed to a variety of neutral molecules in the gas phase at room temperature in flowing helium gas at 0.35 Torr. Single-stranded [AGTCTG-nH]n- and single- and double-stranded [GCATGC-nH]n- anions were found to be remarkably unreactive with strong oxidants (O3, O2, N2O) and potential intercalators (benzene, pyridine, toluene, and quinoxaline). Hydration also was observed to be inefficient. However, [AGTCTG-nH]n- anions with n=2, 3, 4, and 5 were seen to be sequentially protonated and/or hydrobrominated with HBr (but not damaged) and displayed an interesting "end effect" against protonation. Measurements are provided for the rate coefficients of reaction and the efficiencies of protonation. These experimental results point toward the exciting prospect of measuring the intrinsic chemistry of other bare DNA-like anions, including double-stranded oligonucleotide anions in the gas phase at room temperature.
Collapse
Affiliation(s)
- Stefan W Feil
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
64
|
Wang Z, Cui M, Song F, Lu L, Liu Z, Liu S. Evaluation of flavonoids binding to DNA duplexes by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:914-922. [PMID: 18467117 DOI: 10.1016/j.jasms.2008.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 05/26/2023]
Abstract
In this study, electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding interactions of ten flavonoid aglycones and ten flavonoid glycosides with DNA duplexes. Relative binding affinities of the flavonoids toward DNA duplexes were estimated based on the fraction of bound DNA. The results revealed that the 4'-OH group of flavonoid aglycones was essential for their DNA-binding properties. Flavonoid glycosides with sugar chain linked on ring A or ring B showed enhanced binding toward the duplexes over their aglycone counterparts, whereas glycosylation of the flavonol quercetin on ring C exhibited a less pronounced effect. The aglycone skeletons and other hydroxyl substitutions on the aglycone also have an effect on the fractions of bound DNA. Upon collision-induced dissociation, the complexes containing flavonoid aglycones underwent the predominant ejection of a neutral ligand molecule, suggesting an intercalative DNA-binding mode. However, for complexes containing flavonoid glycosides, the loss of nucleobase increased to different extents, indicating a stronger binding or different binding mode. The results may provide not only a deeper insight into the DNA-binding properties of flavonoids but also a useful guideline for the design of efficient DNA-binding agents for chemotherapy.
Collapse
Affiliation(s)
- Zhaofu Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun, 130022, PR China
| | | | | | | | | | | |
Collapse
|
65
|
Rosu F, De Pauw E, Gabelica V. Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 2008; 90:1074-87. [DOI: 10.1016/j.biochi.2008.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/11/2008] [Indexed: 12/27/2022]
|
66
|
Pierce SE, Sherman CL, Jayawickramarajah J, Lawrence CM, Sessler JL, Brodbelt JS. ESI-MS characterization of a novel pyrrole-inosine nucleoside that interacts with guanine bases. Anal Chim Acta 2008; 627:129-35. [PMID: 18790136 DOI: 10.1016/j.aca.2008.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/03/2008] [Accepted: 04/08/2008] [Indexed: 11/27/2022]
Abstract
Based on binding studies undertaken by electrospray ionization-mass spectrometry, a synthetic pyrrole-inosine nucleoside, 1, capable of forming an extended three-point Hoogsteen-type hydrogen-bonding interaction with guanine, is shown to form specific complexes with two different quadruplex DNA structures [dTG(4)T](4) and d(T(2)G(4))(4) as well as guanine-rich duplex DNA. The binding interactions of two other analogs were evaluated in order to unravel the structural features that contribute to specific DNA recognition. The importance of the Hoogsteen interactions was confirmed through the absence of specific binding when the pyrrole NH hydrogen-bonding site was blocked or removed. While 2, with a large blocking group, was not found to interact with virtually any form of DNA, 3, with the pyrrole functionality missing, was found to interact non-specifically with several types of DNA. The specific binding of 1 to guanine-rich DNA emphasizes the necessity of careful ligand design for specific sequence recognition.
Collapse
Affiliation(s)
- Sarah E Pierce
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712-1167, United States
| | | | | | | | | | | |
Collapse
|
67
|
Li H, Yuan G, Du D. Investigation of formation, recognition, stabilization, and conversion of dimeric G-quadruplexes of HIV-1 integrase inhibitors by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:550-559. [PMID: 18313939 DOI: 10.1016/j.jasms.2008.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/27/2008] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
The dimeric G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (S1) and d(GTGGTGGGTGGGTGGGT) (S2), the potent nanomolar HIV-1 integrase inhibitors, were detected by electrospray ionization mass spectrometry (ESI-MS) for the first time. The formation and conversion of the dimers were induced by NH(4)(+), DNA concentration, pH, and the binding molecules. We directly observed the specific binding of a perylene derivative (Tel03) and ImImImbetaDp in one system consisting of the intramolecular and the dimeric G-quadruplexes of the HIV-1 integrase inhibitor, which suggested that Tel03 could shift the equilibrium to the dimeric G-quadruplex formation, while ImImImbetaDp induces preferentially a structural change from the dimer to the intramolecular G-quadruplex. The results of this study indicated that Tel03 and ImImImbetaDp favor the stabilization of the dimeric G-quadruplex structures.
Collapse
Affiliation(s)
- Huihui Li
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | |
Collapse
|
68
|
Investigation of the Interaction between ssDNA and 2-Aminophenoxazine-3-one and Development of an Electrochemical DNA Biosensor. Oligonucleotides 2008; 18:73-80. [DOI: 10.1089/oli.2007.0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
69
|
Wang Z, Guo X, Liu Z, Cui M, Song F, Liu S. Studies on alkaloids binding to GC-rich human survivin promoter DNA using positive and negative ion electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:327-335. [PMID: 17968851 DOI: 10.1002/jms.1320] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode. Only the 1 : 1 complex with berbamine was observed with lower abundance in the positive ion mass spectrum while complexes with the other alkaloids were absolutely absent. Collision-induced dissociation (CID) experiments indicate that the complexes with the protoberberine alkaloids (berberine, jatrorrhizine, and palmatine) dissociate via base loss and covalent cleavage. In contrast, product ion spectra of the complexes with the alkaloids reserpine, berbamine, and tetrandrine show the predominant loss of a neutral alkaloid molecule, accompanied by base loss and covalent cleavage to a lesser extent. A comparison of the gas-phase behaviors of complexes with the alkaloids to those with the traditional DNA binders has suggested an intercalative binding mode of these alkaloids to the target DNA duplexes.
Collapse
Affiliation(s)
- Zhaofu Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun, 130022, P R China
| | | | | | | | | | | |
Collapse
|
70
|
Wan C, Guo X, Liu Z, Liu S. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:164-72. [PMID: 17828803 DOI: 10.1002/jms.1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mM NH(4) (+) (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase. Other triplexes showed the same order, CTCT > CCTT > CTT, of ion abundances in mass spectra and T(m) values in solution. The more stable triplexes are those that contained higher percentage of C(+).GC triplets and an alternating CT sequence. However, the CCTT with the same C(+).GC triplets as the CTCT showed a higher stability than the latter during the gas-phase dissociation. Furthermore, a biphasic triplex-to-duplex-to-single transition was detected in the gas phase, while a monophasic triplex-to-single dissociation was observed in solution. The present results reveal that hydrogen bonds and electrostatic interactions dominate in the gas phase, while base stacking and hydrophobic interactions dominate in solution to stabilize the triplexes. Moreover, weak acidic conditions (pH 5-6) promote the formation of the parallel triplexes.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | | | | | | |
Collapse
|
71
|
Mazzitelli CL, Rodriguez M, Kerwin SM, Brodbelt JS. Evaluation of metal-mediated DNA binding of benzoxazole ligands by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:209-18. [PMID: 17583529 PMCID: PMC2277474 DOI: 10.1016/j.jasms.2007.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/04/2007] [Accepted: 05/16/2007] [Indexed: 05/15/2023]
Abstract
The binding of a series of benzoxazole analogs with different amide- and ester-linked side chains to duplex DNA in the absence and presence of divalent metal cations is examined. All ligands were found to form complexes with Ni2+, Cu2+, and Zn2+, with 2:1 ligand/metal cation binding stoichiometries dominating for ligands containing shorter side chains (2, 6, 7, and 8), while 1:1 complexes were the most abundant for ligands with long side chains (9, 10, and 11). Ligand binding with duplex DNA in the absence of metal cations was assessed, and the long side-chain ligands were found to form low abundance complexes with 1:1 ligand/DNA binding stoichiometries. The ligands with the shorter side chains only formed DNA complexes in the presence of metal cations, most notably for 7 and 8 binding to DNA in the presence of Cu2+. The binding of long side-chain ligands was enhanced by Cu2+ and to a lesser degree by Ni2+ and Zn2+. The cytotoxicities of all of the ligands against the A549 lung cancer and MCF7 breast cancer cell lines were also examined. The ligands exhibiting the most dramatic metal-enhanced DNA binding also demonstrated the greatest cytotoxic activity. Both 7 and 8 were found to be the most cytotoxic against the A549 lung cancer cell line and 8 demonstrated moderate cytotoxicity against MCF7 breast cancer cells. Metal ions also enhanced the DNA binding of the ligands with the long side chains, especially for 9, which also exhibited the highest level of cytotoxicity of the long side-chain compounds.
Collapse
Affiliation(s)
- Carolyn L Mazzitelli
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
72
|
Zhou LX, Du JT, Zeng ZY, Wu WH, Zhao YF, Kanazawa K, Ishizuka Y, Nemoto T, Nakanishi H, Li YM. Copper (II) modulates in vitro aggregation of a tau peptide. Peptides 2007; 28:2229-34. [PMID: 17919778 DOI: 10.1016/j.peptides.2007.08.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/12/2007] [Accepted: 08/23/2007] [Indexed: 12/20/2022]
Abstract
Copper (II) has been implicated in the pathology of Alzheimer's disease (AD) for the impaired homeostatic mechanism found in the brains of AD patients. Here we studied the binding properties of Cu(II) with the first microtubule-binding repeat, encompassing residues 256-273 of the human tau441 sequence. Additionally, the effect of Cu(II) on the assembly of this repeat was also investigated. Our results indicate that Cu(II) can bind to this repeat with His(268) involved and has an inhibiting effect on the in vitro aggregation of this repeat. This work provides new insight into the role of Cu(II) in Alzheimer's disease.
Collapse
Affiliation(s)
- Lian-Xiu Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Evans SE, Mendez MA, Turner KB, Keating LR, Grimes RT, Melchoir S, Szalai VA. End-stacking of copper cationic porphyrins on parallel-stranded guanine quadruplexes. J Biol Inorg Chem 2007; 12:1235-49. [PMID: 17786488 DOI: 10.1007/s00775-007-0292-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/12/2007] [Indexed: 12/16/2022]
Abstract
Nucleic acids that contain multiple sequential guanines assemble into guanine quadruplexes (G-quadruplexes). Drugs that induce or stabilize G-quadruplexes are of interest because of their potential use as therapeutics. Previously, we reported on the interaction of the Cu(2+) derivative of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine (CuTMpyP4), with the parallel-stranded G-quadruplexes formed by d(T(4)G( n )T(4)) (n = 4 or 8) (Keating and Szalai in Biochemistry 43:15891-15900, 2004). Here we present further characterization of this system using a series of guanine-rich oligonucleotides: d(T(4)G( n )T(4)) (n = 5-10). Absorption titrations of CuTMpyP4 with all d(T(4)G( n )G(4)) quadruplexes produce approximately the same bathochromicity (8.3 +/- 2 nm) and hypochromicity (46.2-48.6%) of the porphyrin Soret band. Induced emission spectra of CuTMpyP4 with d(T(4)G( n )T(4))(4) quadruplexes indicate that the porphyrin is protected from solvent. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry revealed a maximum porphyrin to quadruplex stoichiometry of 2:1 for the shortest (n = 4) and longest (n = 10) quadruplexes. Electron paramagnetic resonance spectroscopy shows that bound CuTMpyP4 occupies magnetically noninteracting sites on the quadruplexes. Consistent with our previous model for d(T(4)G(4)T(4)), we propose that two CuTMpyP4 molecules are externally stacked at each end of the run of guanines in all d(T(4)G( n )T(4)) (n = 4-10) quadruplexes.
Collapse
Affiliation(s)
- Sarah E Evans
- Department of Chemistry and Biochemistry, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Zhou J, Yuan G. Specific recognition of human telomeric G-quadruplex DNA with small molecules and the conformational analysis by ESI mass spectrometry and circular dichroism spectropolarimetry. Chemistry 2007; 13:5018-23. [PMID: 17373004 DOI: 10.1002/chem.200601605] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the binding affinity and stoichiometry of small molecules with human telomeric G-quadruplex DNA. The binding-affinity order obtained for the (AGGGTT)(4) quadruplex was: Tel01>ImImImbetaDp>>PyPyPygammaImImImbetaDp. The specific binding of Tel01 and PyPyPygammaImImImbetaDp in one system consisting of human telomeric G-quadruplex and duplex DNA was observed directly for the first time. This revealed that PyPyPygammaImImImbetaDp has a binding specificity for the duplex DNA, whereas Tel01 selectively recognizes the G-quadruplex DNA. Moreover, both ESI-MS and circular dichroism (CD) spectra indicated that Tel01 favored the formation and stabilization of the antiparallel G-quadruplex, and a structural transition of the (AGGGTT)(4) sequence from a coexistence of parallel and antiparallel G-quadruplexes to a parallel G-quadruplex induced by annealing.
Collapse
Affiliation(s)
- Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
75
|
Ishikawa Y, Yamakawa N, Uno T. Synthetic control of interchromophoric interaction in cationic bis-porphyrins toward efficient DNA photocleavage and singlet oxygen production in aqueous solution. Bioorg Med Chem 2007; 15:5230-8. [PMID: 17513112 DOI: 10.1016/j.bmc.2007.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 11/21/2022]
Abstract
We have synthesized cationic bis-porphyrins and their zinc(II) complexes with two TMPyP-like chromophores bridged by p- or m-xylylenediamine to develop effective DNA photocleaving agents. The xylylene linkers and zinc ion were introduced to control interchromophoric interaction that should be involved in photosensitization of the cationic bis-porphyrins. The molar absorptivities of all the bis-porphyrins in aqueous solution remained unchanged over a wide range of concentrations, indicating the absence of self-aggregation property. In particular, the molar absorptivity of the zinc(II) complex of the p-xylylenediamine-linked bis-porphyrin in aqueous solution was 2.0 times as large as that of unichromophoric ZnTMPyP, suggesting the absence of both intermolecular and intramolecular interchromophoric interaction. The metal-free p-xylylenediamine-linked bis-porphyrin showed the more efficient conversion ability of supercoiled to nicked circular pUC18 plasmid DNA by photosensitization than the metal-free m-xylylenediamine-linked one. Furthermore, the zinc complexes of the bis-porphyrins exhibited the more potent DNA photocleavage than did the metal-free bis-porphyrins. Singlet oxygen productivity of the four cationic bis-porphyrins was determined by measuring the decomposition rate of 1,3-diphenylisobenzofuran. The amount of singlet oxygen generated by photosensitization of the zinc(II) complex of the p-xylylenediamine-linked bis-porphyrin in aqueous solution was 2.1 times as large as ZnTMPyP, indicating the full singlet oxygen productivity. A significant relationship between the DNA photocleaving abilities and the singlet oxygen productivities of the cationic porphyrins in aqueous solution was found. Hence, the degree of the intramolecular interchromophoric interaction, the DNA photocleaving ability, and the singlet oxygen productivity of the cationic bis-porphyrins in aqueous solution were successfully controlled by means of the introduction of the appropriate linker and metal ion.
Collapse
Affiliation(s)
- Yoshinobu Ishikawa
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto, Japan.
| | | | | |
Collapse
|
76
|
Rosu F, Nguyen CH, De Pauw E, Gabelica V. Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1052-62. [PMID: 17459721 DOI: 10.1016/j.jasms.2007.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and binding mode, molecular modeling was used to calculate relative ligand binding energies in different binding sites and binding modes. For duplex DNA binding, the ligand-DNA interaction energies are roughly correlated with the experimental CE(50), with the two benzopyridoindole ligands more tightly bound than the benzopyridoquinoxaline ligands. There is, however, no marked AT versus GC base preference in binding, as supported both by the ESI-MS and the calculated ligand binding energies. Product ion spectra of the complexes with triplex DNA show only loss of neutral ligand for the benzopyridoquinoxalines, and loss of the third strand for the benzopyridoindoles, the ligand remaining on the duplex part. This indicates a higher binding energy of the benzopyridoindoles, and also shows that the ligands interact with the triplex via the duplex. The ranking of the ligand interaction energies compared with the CE(50) values obtained by MS/MS on the complexes with the triplex clearly indicates that the ligands intercalate via the minor groove of the Watson-Crick duplex. Regarding triplex versus duplex selectivity, our experiments have demonstrated that the most selective drugs for triplex share the same heteroaromatic core.
Collapse
Affiliation(s)
- Frédéric Rosu
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
77
|
Smith SI, Guziec LJ, Guziec FS, Hasinoff BB, Brodbelt JS. Evaluation of relative DNA binding affinities of anthrapyrazoles by electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:681-8. [PMID: 17405184 DOI: 10.1002/jms.1205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Binding interactions of a new series of anthrapyrazoles (APs) with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/anthrapyrazole mixtures, and they show a correlation to the shift in melting point of the DNA measured from a previous study. Minimal sequence specificity was observed for the series of anthrapyrazoles. Upon collisionally activated dissociation of the duplex/anthrapyrazole complexes, typically ejection of the ligand was the dominant pathway for most of the complexes. However, for complexes containing AP2 or mitoxantrone, strand separation with the ligand remaining on one of the single strands was observed, indicative of a different binding mode or stronger binding.
Collapse
Affiliation(s)
- Suncerae I Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
78
|
Dong X, Xu Y, Afonso C, Jiang W, Laronze JY, Wen R, Tabet JC. Non-covalent complexes between bis-β-carbolines and double-stranded DNA: A study by electrospray ionization FT-ICR mass spectrometry (I). Bioorg Med Chem Lett 2007; 17:2549-53. [PMID: 17368899 DOI: 10.1016/j.bmcl.2007.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/31/2007] [Accepted: 02/05/2007] [Indexed: 11/23/2022]
Abstract
The non-covalent complexes of five bis-beta-carbolines alkaloids with three different double-stranded oligodeoxynucleotides d(GCGCGATCGCGC)(2), d(GCGCAATTGCGC)(2), and d(GCGAAATTTCGC)(2) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. These five antitumor compounds all showed DNA-binding abilities. Binding affinities in the order of 2>3, 4>5, and 1 with double-stranded DNA were obtained, which mean that the length of the linkage chain between two beta-carbolines has a remarkable effect on the formation of the non-covalent complexes. Additionally, the preliminary results indicated that bis-beta-carbolines had no notable sequence selectivities.
Collapse
Affiliation(s)
- Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
79
|
Yin Q, Zhang Z, Zhao YF. Studies of interaction between a new synthesized minor-groove targeting artificial nuclease and DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 66:904-8. [PMID: 16876466 DOI: 10.1016/j.saa.2006.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/29/2006] [Accepted: 05/03/2006] [Indexed: 05/11/2023]
Abstract
Nuclease plays an important role in molecular biology, such as DNA sequencing. Synthetic polyamide conjugates can be considered as new tool in the selective inhibition of gene expression and as potential drugs in anticancer or antiviral chemotherapy. In this paper, a new synthesized minor-groove targeting artificial nuclease, oligopyrrol-containing peptide, was reported. It was found that this new compound can bind DNA in AT-riched minor groove with high affinity and site specificity. DNA binding behavior was determined by UV-vis and circular dichroism (CD) methods. It was indicated that compound 6 can enhance the Tm of oligomer DNA from 51.8 to 63.5 degrees C and possesses large binding constant (Kb=8.83x10(4)L/mol).
Collapse
Affiliation(s)
- Qiang Yin
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | | | | |
Collapse
|
80
|
Turner KB, Hagan NA, Fabris D. Understanding the isomerization of the HIV-1 dimerization initiation domain by the nucleocapsid protein. J Mol Biol 2007; 369:812-28. [PMID: 17466332 PMCID: PMC2475603 DOI: 10.1016/j.jmb.2007.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
The specific binding of HIV-1 nucleocapsid (NC) to the hinge region of the kissing-loop (KL) dimer formed by stemloop 1 (SL1) can have significant consequences on its ability to isomerize into the corresponding extended duplex (ED) form. The binding determinants and the effects on the isomerization process were investigated in vitro by a concerted strategy involving ad hoc RNA mutants and electrospray ionization-Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry, which enabled us to characterize the stoichiometry and conformational state of all possible protein-RNA and RNA-RNA assemblies present simultaneously in solution. For the first time, NC-hinge interactions were observed in constructs including at least one unpaired guanine at the 5'-end of the loop-loop duplex, whereas no interactions were detected when the unpaired guanine was placed at its 3'-end. This binding mode is supported by the presence of a grip-like motif described by recent crystal structures, which is formed by the 5'-purines of both hairpins held together by mutual stacking interactions. Using tandem mass spectrometry, hinge interactions were clearly shown to reduce the efficiency of KL/ED isomerization without inducing its complete block. This outcome is consistent with the partial stabilization of the extra-helical grip by the bound protein, which can hamper the purine components from parting ways and initiate the strand exchange process. These findings confirm that the broad binding and chaperone activities of NC induce unique effects that are clearly dependent on the structural context of the cognate nucleic acid substrate. For this reason, the presence of multiple binding sites on the different forms assumed by SL1 can produce seemingly contrasting effects that contribute to a fine modulation of the two-step process of RNA dimerization and isomerization.
Collapse
Affiliation(s)
- Kevin B. Turner
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| | - Nathan A. Hagan
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| | - Daniele Fabris
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| |
Collapse
|
81
|
Zhou J, Yuan G, Liu J, Zhan CG. Formation and stability of G-quadruplexes self-assembled from guanine-rich strands. Chemistry 2007; 13:945-9. [PMID: 17036297 DOI: 10.1002/chem.200600424] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the formation and stability of G-quadruplexes. For the 15 6-nt oligonucleotides tested, ESI-MS indicated that formation of a parallel tetramer quadruplex requires at least four continuous guanines in the 6-nt sequence. In addition, the G-rich strands prefer to employ "self-association" in the formation of the G-quadruplex rather than hybridized integration, and the thermodynamic-stability order of these three G-quadruplexes is Q(2)>Q(1)>Q(3).
Collapse
Affiliation(s)
- Jiang Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
82
|
Mazzitelli CL, Chu Y, Reczek JJ, Iverson BL, Brodbelt JS. Screening of threading bis-intercalators binding to duplex DNA by electrospray ionization tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:311-21. [PMID: 17098442 PMCID: PMC1853371 DOI: 10.1016/j.jasms.2006.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 05/11/2023]
Abstract
The DNA binding of novel threading bis-intercalators V1, trans-D1, and cis-C1, which contain two naphthalene diimide (NDI) intercalation units connected by a scaffold, was evaluated using electrospray ionization mass spectrometry (ESI-MS) and DNAse footprinting techniques. ESI-MS experiments confirmed that V1, the ligand containing the -Gly3-Lys- peptide scaffold, binds to a DNA duplex containing the 5'-GGTACC-3' specific binding site identified in previous NMR-based studies. The ligand formed complexes with a ligand/DNA binding stoichiometry of 1:1, even when there was excess ligand in solution. Trans-D1 and cis-C1 are new ligands containing a rigid spiro-tricyclic scaffold in the trans- and cis- orientations, respectively. Preliminary DNAse footprinting experiments identified possible specific binding sites of 5'-CAGTGA-5' for trans-D1 and 5'-GGTACC-3' for cis-C1. ESI-MS experiments revealed that both ligands bound to DNA duplexes containing the respective specific binding sequences, with cis-C1 exhibiting the most extensive binding based on a higher fraction of bound DNA value. Cis-C1 formed complexes with a dominant 1:1 binding stoichiometry, whereas trans-D1 was able to form 2:1 complexes at ligand/DNA molar ratios >or=1 which is suggestive of nonspecific binding. Collisional activated dissociation (CAD) experiments indicate that DNA complexes containing V1, trans-D1, and cis-C1 have a unique fragmentation pathway, which was also observed for complexes containing the commercially available bis-intercalator echinomycin, as a result of similar binding interactions, marked by intercalation in addition to hydrogen bonding by the scaffold with the DNA major or minor groove.
Collapse
Affiliation(s)
- Carolyn L Mazzitelli
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712-0165, USA
| | | | | | | | | |
Collapse
|
83
|
Gornall KC, Samosorn S, Talib J, Bremner JB, Beck JL. Selectivity of an indolyl berberine derivative for tetrameric G-quadruplex DNA. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1759-66. [PMID: 17486674 DOI: 10.1002/rcm.3019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Negative ion electrospray ionization mass spectrometry (ESI-MS) was used to compare the binding affinities and stoichiometries of the alkaloid berberine, a 13-substituted indolyl berberine derivative, SS14, and the chemotherapeutic agent, daunomycin, for 16-mer double-stranded (ds) DNA (D1 and D2) and for an 8-mer tetrameric quadruplex, Q1 (d(TTGGGGGT)(4)). Under the experimental conditions presented here, ESI mass spectra of Q1 showed that the major ions were from Q1 with three ammonium ions bound in the structure. Ions from Q1 with four ammonium ions were of lower abundance. In agreement with other work, there were multiple binding sites on the dsDNA and the quadruplex for daunomycin and berberine. The binding of SS14 to both dsDNA and Q1 was less extensive. Although the binding affinity of SS14 for Q1 was modest, this compound showed a clear preference for Q1 DNA over D1 or D2 DNA. Berberine and daunomycin bound with greater affinity to both types of DNA secondary structure, with the former showing a slight preference for Q1 over D1 while the latter showed a slight preference for D1 over Q1. While at least five berberine molecules bound to Q1, this quadruplex could accommodate only two SS14 molecules. These investigations show that SS14 is a promising lead compound for drugs that may selectively bind quadruplex over duplex DNA.
Collapse
Affiliation(s)
- Karina C Gornall
- Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | | | | | |
Collapse
|
84
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
85
|
Li H, Yuan G. Evaluation of binding selectivity of a polyamide probe to single base-pair different DNA in A.T-rich region by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1742-8. [PMID: 16963277 DOI: 10.1016/j.jasms.2006.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 05/11/2023]
Abstract
In this study, electrospray ionization mass spectrometry (ESI-MS) was used for the evaluation of the binding selectivity of a polyamide probe to single-base pair different DNA in an A.T-rich region. In this procedure, DeltaIr(dsn) was introduced as a parameter to compare the binding affinities of the polyamides with the duplex DNA. The results show that ESI-MS is a very useful tool for analysis of binding selectivity of a polyamide probe to single-base pair different DNA.
Collapse
Affiliation(s)
- Huihui Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | |
Collapse
|
86
|
Delvolvé A, Tabet JC, Bregant S, Afonso C, Burlina F, Fournier F. Charge dependent behavior of PNA/DNA/PNA triplexes in the gas phase. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1498-508. [PMID: 17103389 DOI: 10.1002/jms.1124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intact noncovalent complexes were studied in the gas phase using negative ion nano-ESI mass spectrometry. Among various noncovalent systems studied in the gas phase, the interaction of DNA strands with peptide nucleic acids (PNAs) presents a strong interest as biologically relevant systems. PNAs originally described by Nielsen are used as DNA mimics as possible medical agents by imprisoning DNA single strands into stable noncovalent complexes. Two types of PNAs were investigated in the PNA/DNA multiplex: the original Nielsen's PNA and a modified backbone PNA by the introduction of syn- and anti-(aminoethyl)thiazolidine rings. We first investigated the stoichiometry of PNA/DNA multiplexes formed in solution and observed them in the gas phase via qualitative kinetics of complementary strand associations. It resulted in observing PNA2/DNA triplexes (ts) as the multiply deprotonated species, most stable in both the solution and gas phase. Second, charge-dependant decompositions of these species were undertaken under low-energy collision conditions. It appears that covalent bond cleavages (base releasing or skeleton cleavage) occur from lower ts charge states rather than ts unzipping, which takes place from higher charge states. This behavior can be explained by considering the presence of zwitterions depending on the charge state. They result in strong salt-bridge interactions between the positively charged PNA side chain and the negatively charged DNA backbone. We propose a general model to clearly display the involved patterns in the noncovalent triplex decompositions. Third, the relative stability of three PNA2/DNA complexes was scrutinized in the gas phase by acquiring the breakdown curves of their ts(6-) form, corresponding to the ts unzipping. The chemical structures of the studied PNAs were chosen in order to evidence the possible influence of backbone stereochemistry on the rigidity of PNA2/DNA complexes. It provided significantly different stabilities via V(m) measurements. The relative gas-phase stability order obtained was compared to that found in solution by Chassaing et al., and shows qualitative agreement.
Collapse
Affiliation(s)
- Alice Delvolvé
- University Pierre et Marie Curie, CNRS-UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, FR 2769, Case Courrier 45, 4 place Jussieu, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
87
|
Turner KB, Hagan NA, Kohlway AS, Fabris D. Mapping noncovalent ligand binding to stemloop domains of the HIV-1 packaging signal by tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1402-1411. [PMID: 16872834 DOI: 10.1016/j.jasms.2006.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 05/11/2023]
Abstract
The binding modes and structural determinants of the noncovalent complexes formed by aminoglycoside antibiotics with conserved domains of the HIV-1 packaging signal (Psi-RNA) were investigated using electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS). The location of the aminoglycoside binding sites on the different stemloop structures was revealed by characteristic coverage gaps in the ion series obtained by sustained off-resonance irradiation collision induced dissociation (SORI-CID) of the antibiotic-RNA assemblies. The site positions were confirmed using mutants that eliminated salient structural features of the Psi-RNA domains. The effects of the mutations on the binding properties of the different substrates served to validate the position of the aminoglycoside site on the wild-type structures. Additional information was provided by docking experiments performed on the different aminoglycoside-stemloop complexes. The results have shown that, in the absence of features disrupting the regular A-helix of the double-stranded stem, aminoglycosides tend to bind in an area situated between the upper stem and the loop regions, as demonstrated for stemloop SL3. The presence of a tandem wobbles motif in SL4 modifies the regular geometry of the upper stem, which does not affect the general site location, but greatly increases its solution binding affinity compared with SL3. The platform motif in SL2 locates the binding site in the stem midsection and confers upon this stemloop an intermediate affinity toward aminoglycosides. In SL3 and SL4, the extensive overlap of the antibiotic site with the region used to bind the nucleocapsid (NC) protein provides the basis for a competition mechanism that could explain the aminoglycoside inhibition of the NC.SL3 and NC.SL4 assemblies. In contrast, the minimal overlap between the aminoglycoside and the NC sites in SL2 accounts for the absence of inhibition of the NC.SL2 complex.
Collapse
Affiliation(s)
- Kevin B Turner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 100 Hilltop Circle, 21228, Baltimore, MD, USA
| | - Nathan A Hagan
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 100 Hilltop Circle, 21228, Baltimore, MD, USA
| | - Andrew S Kohlway
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 100 Hilltop Circle, 21228, Baltimore, MD, USA
| | - Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 100 Hilltop Circle, 21228, Baltimore, MD, USA.
| |
Collapse
|
88
|
Liu D, Zhou J, Li H, Zheng B, Yuan G. Site-Selective DNA cleavage by a novel complex of copper-conjugate of Phen and polyamide containing N-methylimidazole rings. Bioorg Med Chem Lett 2006; 16:5032-5. [PMID: 16879963 DOI: 10.1016/j.bmcl.2006.07.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/29/2006] [Accepted: 07/14/2006] [Indexed: 11/20/2022]
Abstract
A novel conjugate of 3-Clip-Phen and polyamide containing three N-methylimidazole (Im) rings was synthesized for the targeting human telomeric repeat of 5'-TTAGGG-3', and the DNA cleaving activity and the sequence selectivity of the complex of copper-conjugate were confirmed by electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Dan Liu
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
89
|
Pan S, Sun X, Lee JK. DNA stability in the gas versus solution phases: a systematic study of thirty-one duplexes with varying length, sequence, and charge level. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1383-1395. [PMID: 16914323 DOI: 10.1016/j.jasms.2006.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/21/2006] [Accepted: 07/21/2006] [Indexed: 05/11/2023]
Abstract
We report herein a systematic mass spectrometric study of a series of thirty-one non-self-complementary, matched, DNA duplexes ranging in size from 5- to 12-mers. The purpose of this work is threefold: (1) to establish the viability of using mass spectrometry as a tool for examining solution phase stabilities of DNA duplexes; (2) to systematically assess gas-phase stabilities of DNA duplexes; and (3) to compare gas and solution phase stabilities in an effort to understand how media affects DNA stability. These fundamental issues are of importance both on their own, and also for harnessing the potential of mass spectrometry for biological applications. We have found that ion abundances do not always track with solution phase stability; GC content must be taken into account. Two duplexes with the same Tm yet with differing GC content can yield different ion abundances. That is, if two duplexes have the exact same melting temperature, yet one has a higher GC content, the duplex with the higher GC content yields a higher ion abundance. It thus appears that not only is a GC base pair stronger than an AT base pair, but the relative strengths of each differ in the gas phase versus in solution, such that the electrospray process can differentiate between them. We also characterize the gas-phase stabilities of the duplexes, using collision-induced dissociation (CID) as a method to assess stability. We focus on two aspects of this CID experiment. One, we examine what factors appear to control whether the duplexes dissociate into single strands or covalently fragment; we are able to utilize a charge state normalization we coin "charge level" to compare our results with others' and establish generalities regarding dissociation versus fragmentation patterns. Two, we examine those duplexes that primarily dissociate and use CID to assess the gas-phase stabilities. We find that correlation of gas-phase to solution-phase stabilities is more likely to occur when duplexes of varying GC content are examined. Duplexes with the same GC content tend to have stabilities that do not parallel those in solution. We discuss these results in light of the different roles that hydrogen bonding and base stacking play in solution versus the gas phase. Ultimately, we apply what we learn to lend insight into the biological problem of how the carcinogenic, damaged nucleobase O6-methylguanine causes mutations.
Collapse
Affiliation(s)
- Su Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA
| | - Xuejun Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA.
| |
Collapse
|
90
|
Hofstadler SA, Sannes-Lowery KA. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 2006; 5:585-95. [PMID: 16816839 DOI: 10.1038/nrd2083] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many years, analytical mass spectrometry has had numerous supporting roles in the drug development process, including the assessment of compound purity; quantitation of absorption, distribution, metabolism and excretion; and compound-specific pharmacokinetic analyses. More recently, mass spectrometry has emerged as an effective technique for identifying lead compounds on the basis of the characterization of noncovalent ligand-macromolecular target interactions. This approach offers several attractive properties for screening applications in drug discovery compared with other strategies, including the small quantities of target and ligands required, and the capacity to study ligands or targets without having to label them. Here, we review the application of electrospray ionization mass spectrometry to the interrogation of noncovalent complexes, highlighting examples from drug discovery efforts aimed at a range of target classes.
Collapse
Affiliation(s)
- Steven A Hofstadler
- Ibis Therapeutics, A Division of ISIS Pharmaceuticals, 1891 Rutherford Road, Carlsbad, California 92008, USA.
| | | |
Collapse
|
91
|
Shi X, Takamizawa A, Nishimura Y, Hiraoka K, Akashi S. Stability analysis for double-stranded DNA oligomers and their noncovalent complexes with drugs by laser spray. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1086-95. [PMID: 16830356 DOI: 10.1002/jms.1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Laser spray, which is a newly developed ionization technique, can characterize the stability of noncovalent complexes in the solution phase. By using this advantage, laser spray has been applied to probe the intrinsic stability of double-stranded DNA (dsDNA) sequences and their binding affinities with various drugs in the solution phase. Systematic experiments were carried out using six 16-mer and three 22-mer dsDNA oligomers, together with the complexes of the 16-mer dsDNA with minor groove binders: berenil, Hoechst 33342, DAPI, and netropsin. Dissociation curves for each dsDNA or each complex were plotted as a function of laser power. The laser power (E50%), where 50% of each dsDNA or each complex was dissociated, was compared with its melting temperature (Tm) determined by UV spectroscopy. Linear correlations between E50% and Tm were obtained not only for the dsDNA oligomers (correlation factor r = 0.9835) but also for the 16-mer dsDNA complexes with minor groove binders (r = 0.9966). In addition, laser spray has successfully clarified the binding affinities of a 16-mer dsDNA with two intercalators: daunomycin and nogalamycin. In the case of the dsDNA-daunomycin complex, by changing the molar ratio of dsDNA : drug from 1 : 1 to 1 : 5, the concentration-dependent stability of the complex was confirmed by laser spray. The present results demonstrate that laser spray mass spectrometry can be a powerful and convenient method to investigate the relative binding affinities of dsDNA-ligand complexes in the solution phase, which could be applied to the early stage of high-throughput screening of drugs targeting for dsDNA.
Collapse
Affiliation(s)
- Xiangguo Shi
- International Graduate School of Arts and Sciences, Yokohama City University, Tsurumi-ku, Yokohama Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
92
|
Zhou J, Yuan G. Analysis of noncovalent complexes between human telomeric DNA and polyamides containing N-methylpyrrole and N-methylimidazole by using electrospray ionization mass spectrometry. Chemistry 2006; 11:1157-62. [PMID: 15624127 DOI: 10.1002/chem.200400803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate noncovalent complexes formed between four novel polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im), and human telomeric DNA. Of the four polyamides investigated, PyPyPygammaImImImbetaDp (3) had the highest binding affinity towards the duplex d(TTAGGGTTAGGG/CCCTAACCCTAA) (D1). Results of competition analysis showed that the polyamides had binding affinities with D1 in the order PyPyPygammaImImImbetaDp (3)>PyPyPyPygammaPyImImPybetaDp (4)>PyPyPybetaImImImbetaDp (2)>>ImImImbetaDp (1). MS/MS spectra confirmed that binding between D1 and the hairpin polyamides is more stable than that with the three-ring polyamides. By contrast, in the case of single-stranded d(TTAGGGTTAGGG)(D2), the binding order changes to ImImImbetaDp (1)>PyPyPygammaImImImbetaDp (3)>PyPyPybetaImImImbetaDp (2).
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Chemical Biology, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | | |
Collapse
|
93
|
Mazzitelli CL, Brodbelt JS, Kern JT, Rodriguez M, Kerwin SM. Evaluation of binding of perylene diimide and benzannulated perylene diimide ligands to DNA by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:593-604. [PMID: 16503153 DOI: 10.1016/j.jasms.2005.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/18/2005] [Accepted: 12/22/2005] [Indexed: 05/06/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the self-association, G-quadruplex DNA binding, and selectivity of a series of perylene diimides (PDIs) (PIPER, Tel01, Tel11, Tel12, and Tel18) or benzannulated perylene diimide ligands (Tel34 and Tel32). Fluorescence and resonance light scattering spectra of Tel01, Tel12, Tel32, and Tel34 reveal that these analogs undergo self-association in solution. UV-Vis and fluorescence titrations with G-quadruplex, duplex, or single-stranded DNA demonstrate that all the analogs, with the exception of Tel32, bind to G-quadruplex DNA, with those PDIs that are self-associated in solution showing the highest degree of selectivity for binding G-quadruplex DNA. Parallel ESI-MS analysis of the stoichiometries demonstrates the ability of the ligands, with the exception of Tel32, to bind to G-quadruplex DNA. While most ligands show major 1:1 and 2:1 binding stoichiometries as expected in the case of end-stacking, interestingly, three of the most quadruplex-selective ligands show a different behavior. Tel01 forms 3:1 complexes, while Tel12 and Tel32 only form 1:1 complexes. Collisional activation dissociation patterns are compatible with ligand binding to G-quadruplex DNA via stacking on the ends of the terminal G-tetrads. Experiments with duplex and single strand DNA were performed to assess the binding selectivities of the ligands. PIPER, Tel11, and Tel18 demonstrated extensive complexation with duplex DNA, while Tel11 and Tel18 bound to single strand DNA, confirming the lack of selectivity of these two ligands. Our results indicate that Tel01, Tel12, and Tel34 are the most selective for G-quadruplex DNA.
Collapse
Affiliation(s)
- Carolyn L Mazzitelli
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, 78712-0165, Austin, TX, USA
| | - Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, 78712-0165, Austin, TX, USA.
| | - Jonathan T Kern
- Division of Medicinal Chemistry and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mireya Rodriguez
- Division of Medicinal Chemistry and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Sean M Kerwin
- Division of Medicinal Chemistry and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
94
|
Li H, Yuan G. Investigation of non-covalent complexes of HIV-1 promoter DNA and polyamides containing N-methylpyrrole by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:1736-40. [PMID: 16676310 DOI: 10.1002/rcm.2508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Eight novel polyamides containing N-methylpyrrole were designed to target the sequence (5'-CTGCATATAAGCAG-3'/5'-CTGCTTATATGCAG-3') of the TATA box element of the HIV-1 promoter DNA. The non-covalent complexes of the promoter DNA and the polyamides were investigated by electrospray ionization (ESI) mass spectrometry, which provided strong evidence for the binding of the novel polyamides to the sequence of the TATA box element. It also revealed that polyamide 2 (PyPyPyPybetaDp), a potent binder of HIV-1 promoter DNA and a lead molecule for the design of new anti-HIV-1 drugs, had the highest binding affinity with the TATA box element DNA among these polyamides by examining the stoichiometry and the selectivity.
Collapse
Affiliation(s)
- Huihui Li
- Department of Chemical Biology, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | | |
Collapse
|
95
|
Zhou J, Yuan G, Tang FL. Estimation of binding constants for complexes of polyamides and human telomeric DNA sequences by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2365-7. [PMID: 16835848 DOI: 10.1002/rcm.2597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
96
|
Li H, Zhou J, Tang F, Yuan G. Investigation of noncovalent complexes between beta-cyclodextrin and polyamide acids containing N-methylpyrrole and N-methylimidazole by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:9-14. [PMID: 16338144 DOI: 10.1016/j.jasms.2005.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 05/05/2023]
Abstract
Electrospray ionization (ESI) mass spectrometry was utilized to investigate noncovalent complexes between beta-cyclodextrin (beta-CD) and five novel polyamide acids containing N-methylpyrrole and N-methylimidazole. The 1:1 binding mode was specified by examining the binding stoichiometry from ESI mass spectra. It found that polyamide acids with beta-CD have binding affinities in the order: ImImImbetaCOOH > ImPyImbetaCOOH > ImPyPybetaCOOH > PyPyPybetaCOOH > NO(2)PyPyPybetaCOOH. The method gives, simultaneously, the binding constants between beta-CD and polyamide acids based on a novel linear equation.
Collapse
Affiliation(s)
- Huihui Li
- Department of Chemical Biology, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry, Peking University, Beijing, China
| | | | | | | |
Collapse
|
97
|
Ramos CIV, Barros CM, Fernandes AM, Santana-Marques MG, Correia AJF, Tomé JPC, Carrilho MDCT, Faustino MAF, Tomé AC, Neves MGPMS, Cavaleiro JAS. Interactions of cationic porphyrins with double-stranded oligodeoxynucleotides: a study by electrospray ionisation mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1439-47. [PMID: 16261648 DOI: 10.1002/jms.936] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Electrospray ionisation mass spectrometry (ESI-MS), electrospray ionisation tandem mass spectrometry (ESI-MS/MS) and Ultraviolet-visible (UV-vis) spectroscopy were used to investigate the non-covalent interactions between small oligonucleotide duplexes with the GC motif and a group of cationic meso(N-methylpyridynium-4-yl)porphyrins (four free bases with one to four positive charges, and the zinc complex of the tetracationic free base). The results obtained point to outside binding of the porphyrins, with the binding strength increasing with the number of positive charges. Fragmentations involving losses from both chains were observed for the porphyrins with N-methylpyridinium-4-yl groups in opposite meso positions.
Collapse
Affiliation(s)
- Catarina I V Ramos
- Mass Spectrometry Laboratory, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Arai S, Ohkawa H, Ishihara S, Shibue T, Takeoka S, Nishide H. Porphyrin Capped with Calix[4]arene Derivative via Hydrogen Bonds. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
99
|
Keller KM, Zhang J, Oehlers L, Brodbelt JS. Influence of initial charge state on fragmentation patterns for noncovalent drug/DNA duplex complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1362-71. [PMID: 16220501 DOI: 10.1002/jms.927] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The charge state-dependent dissociation of various DNA duplexes and drug/duplex complexes has been investigated using collisionally activated dissociation (CAD) in a quadrupole ion trap mass spectrometer (QIT-MS). Several non-self-complementary 14-residue oligonucleotides were employed, in addition to an array of known DNA-interactive ligands, including the intercalators daunomycin and nogalamycin, as well as the minor groove binding agents distamycin, netropsin, 4',6-diamidino-2-phenylindole, and Hoechst 33342. In general, the dissociation pathways exhibited by both the duplexes and the drug/duplex complexes were found to be markedly sensitive to initial charge state. Time- and activation voltage-independent duplex strand separation predominated for higher charge states, which was interpreted to be a result of internal Coulombic repulsion or partial unzipping in the interface, while time- and activation voltage-dependent covalent cleavage predominated for lower charge states. The identity of the drug and the sequence of the duplex were both found to affect the competition between different dissociation processes. The dissociation pathways for the lower charge state complexes are probably more reflective of specific drug-DNA interactions because Coulombic and/or conformational effects are less marked for these precursors.
Collapse
Affiliation(s)
- Karin M Keller
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin TX 78712, USA
| | | | | | | |
Collapse
|
100
|
Keller KM, Breeden MM, Zhang J, Ellington AD, Brodbelt JS. Electrospray ionization of nucleic acid aptamer/small molecule complexes for screening aptamer selectivity. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1327-37. [PMID: 16217837 DOI: 10.1002/jms.915] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular recognition of small molecule ligands by the nucleic acid aptamers for tobramycin, ATP, and FMN has been examined using electrospray ionization mass spectrometry (ESI-MS). Mass spectrometric data for binding stoichiometry and relative binding affinity correlated well with solution data for tobramycin aptamer complexes, in which aptamer/ligand interactions are mediated by hydrogen bonds. For the ATP and FMN aptamers, where ligand interactions involve both hydrogen bonding and significant pi-stacking, the relative binding affinities determined by MS did not fully correlate with results obtained from solution experiments. Some high-affinity aptamer/ligand complexes appeared to be destabilized in the gas phase by internal Coulombic repulsion. In CAD experiments, complexes with a greater number of intermolecular hydrogen bonds exhibited greater gas-phase stability even in cases when solution binding affinities were equivalent. These results indicate that in at least some cases, mass spectrometric data on aptamer/ligand binding affinities should be used in conjunction with complementary techniques to fully assess aptamer molecular recognition properties.
Collapse
Affiliation(s)
- Karin M Keller
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin TX 78712, USA
| | | | | | | | | |
Collapse
|