51
|
Weng TY, Tsai SYA, Su TP. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci 2017; 24:74. [PMID: 28917260 PMCID: PMC5603014 DOI: 10.1186/s12929-017-0380-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone that resides mainly at the mitochondrion-associated endoplasmic reticulum (ER) membrane (called the MAMs) and acts as a dynamic pluripotent modulator in living systems. At the MAM, the Sig-1R is known to play a role in regulating the Ca2+ signaling between ER and mitochondria and in maintaining the structural integrity of the MAM. The MAM serves as bridges between ER and mitochondria regulating multiple functions such as Ca2+ transfer, energy exchange, lipid synthesis and transports, and protein folding that are pivotal to cell survival and defense. Recently, emerging evidences indicate that the MAM is critical in maintaining neuronal homeostasis. Thus, given the specific localization of the Sig-1R at the MAM, we highlight and propose that the direct or indirect regulations of the Sig-1R on mitochondrial functions may relate to neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). In addition, the promising use of Sig-1R ligands to rescue mitochondrial dysfunction-induced neurodegeneration is addressed.
Collapse
Affiliation(s)
- Tzu-Yu Weng
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Triad Bldg. suite 3512, 333 Cassell Drive, Baltimore, MD 21224 USA
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shang-Yi Anne Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Triad Bldg. suite 3512, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Triad Bldg. suite 3512, 333 Cassell Drive, Baltimore, MD 21224 USA
| |
Collapse
|
52
|
Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC. ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken) 2017; 74:379-389. [PMID: 28834398 DOI: 10.1002/cm.21405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4+/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lingyan Yang
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Galina Schevzov
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
53
|
Weng TY, Hung DT, Su TP, Tsai SYA. Loss of Sigma-1 Receptor Chaperone Promotes Astrocytosis and Enhances the Nrf2 Antioxidant Defense. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4582135. [PMID: 28883901 PMCID: PMC5573104 DOI: 10.1155/2017/4582135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/09/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Sigma-1 receptor (Sig-1R) functions as a chaperon that interacts with multiple proteins and lipids and is implicated in neurodegenerative and psychiatric diseases. Here, we used Sig-1R KO mice to examine brain expression profiles of astrocytes and ubiquitinated proteins, which are both hallmarks of central nervous system (CNS) pathologies. Our results showed that Sig-1R KO induces increased glial fibrillary acidic protein (GFAP) expression in primary neuron-glia cultures and in the whole brain of fetus mice with concomitantly increased accumulations of ubiquitinated proteins. Astrogliosis was also observed in the neuron-glia culture. Upon proteasome or autophagy inhibitor treatments, the pronounced ubiquitinated proteins were further increased in Sig-1R KO neurons, indicating that the Sig-1R regulates both protein degradation and quality control systems. We found that Nrf2 (nuclear factor erythroid 2-related factor 2), which functions to overcome the stress condition, was enhanced in the Sig-1R KO systems especially when cells were under stressful conditions. Mutation or deficiency of Sig-1Rs has been observed in neurodegenerative models. Our study identifies the critical roles of Sig-1R in CNS homeostasis and supports the idea that functional complementation pathways are triggered in the Sig-1R KO pathology.
Collapse
Affiliation(s)
- Tzu-Yu Weng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Denise T. Hung
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shang-Yi A. Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
54
|
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int J Mol Sci 2017; 18:ijms18071576. [PMID: 28726733 PMCID: PMC5536064 DOI: 10.3390/ijms18071576] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca2+ handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Jędrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Justyna Janikiewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Bernadeta Michalska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariasole Perrone
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Wiesław Ziółkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Agnieszka Dobrzyń
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariusz R Więckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| |
Collapse
|
55
|
Hein LK, Rozaklis T, Adams MK, Hopwood JJ, Karageorgos L. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen. Mol Genet Metab 2017; 121:259-270. [PMID: 28532689 DOI: 10.1016/j.ymgme.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/16/2023]
Abstract
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration.
Collapse
Affiliation(s)
- Leanne K Hein
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Tina Rozaklis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Melissa K Adams
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Litsa Karageorgos
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
56
|
Gueguinou M, Crottès D, Chantôme A, Rapetti-Mauss R, Potier-Cartereau M, Clarysse L, Girault A, Fourbon Y, Jézéquel P, Guérin-Charbonnel C, Fromont G, Martin P, Pellissier B, Schiappa R, Chamorey E, Mignen O, Uguen A, Borgese F, Vandier C, Soriani O. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca 2+ homeostasis. Oncogene 2017; 36:3640-3647. [PMID: 28114279 DOI: 10.1038/onc.2016.501] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
Abstract
The remodeling of calcium homeostasis contributes to the cancer hallmarks and the molecular mechanisms involved in calcium channel regulation in tumors remain to be characterized. Here, we report that SigmaR1, a stress-activated chaperone, is required to increase calcium influx by triggering the coupling between SK3, a Ca2+-activated K+ channel (KCNN3) and the voltage-independent calcium channel Orai1. We show that SigmaR1 physically binds SK3 in BC cells. Inhibition of SigmaR1 activity, either by molecular silencing or by the use of sigma ligand (igmesine), decreased SK3 current and Ca2+ entry in breast cancer (BC) and colorectal cancer (CRC) cells. Interestingly, SigmaR1 inhibition diminished SK3 and/or Orai1 levels in lipid nanodomains isolated from BC cells. Analyses of tissue microarray from CRC patients showed higher SigmaR1 expression levels in cancer samples and a correlation with tumor grade. Moreover, the exploration of a cohort of 4937 BC patients indicated that high expression of SigmaR1 and Orai1 channels was significantly correlated to a lower overall survival. As the SK3/Orai1 tandem drives invasive process in CRC and bone metastasis progression in BC, our results may inaugurate innovative therapeutic approaches targeting SigmaR1 to control the remodeling of Ca2+ homeostasis in epithelial cancers.
Collapse
Affiliation(s)
- M Gueguinou
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
| | - D Crottès
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - A Chantôme
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
| | | | | | - L Clarysse
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
| | - A Girault
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
| | - Y Fourbon
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
| | - P Jézéquel
- Unité de Bioinfomique, Institut de Cancérologie de L'Ouest - René Gauducheau, Centre de Recherche en Cancérologie, UMR-INSERM 892, St Herblain, France
| | - C Guérin-Charbonnel
- Unité de Bioinfomique, Institut de Cancérologie de L'Ouest - René Gauducheau, Centre de Recherche en Cancérologie, UMR-INSERM 892, St Herblain, France
| | - G Fromont
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
- Service d'Anatomie Pathologique, Hopital Bretonneau, CHRU Tours, Tours, France
| | - P Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - B Pellissier
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - R Schiappa
- Unité d'Epidémiologie et Biostatistiques (UEB), Centre Antoine Lacassagne, Nice, France
| | - E Chamorey
- Unité d'Epidémiologie et Biostatistiques (UEB), Centre Antoine Lacassagne, Nice, France
| | - O Mignen
- Department of Pathology, Inserm U1078, Brest University Hospital, Brest, France
| | - A Uguen
- Department of Pathology, Inserm U1078, Brest University Hospital, Brest, France
| | - F Borgese
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | - C Vandier
- Inserm-University U1069 Nutrition, Croissance et Cancer, Tours, France
| | - O Soriani
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| |
Collapse
|
57
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
58
|
Chen L, Li Z, Zhang Q, Wei S, Li B, Zhang X, Zhang L, Li Q, Xu H, Xu Z. Silencing of AQP3 induces apoptosis of gastric cancer cells via downregulation of glycerol intake and downstream inhibition of lipogenesis and autophagy. Onco Targets Ther 2017; 10:2791-2804. [PMID: 28620264 PMCID: PMC5466363 DOI: 10.2147/ott.s134016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Gastric cancer (GC) has a poor prognosis and is a leading cause of cancer-related death. Optimal therapeutic targets have not been identified. AQP3 is capable of transporting glycerol across the cytomembrane. Previous studies have shown that AQP3 is involved in proliferation, invasion and migration by regulating glycerol and lipid metabolism in diverse cancer cell types. However, the potential roles of glycerol and lipid metabolism in AQP3-related cell apoptosis in GC remain unclear. In this study, we observed that AQP3 expression was upregulated in tumor tissues, and positively correlated with tumor size, lymph node metastasis and glycerol concentration in human GC samples. Silencing of AQP3 resulted in decreased glycerol intake and impaired lipid synthesis, which contributed to increased cell apoptosis. Furthermore, inhibition of autophagy induced by AQP3 knockdown promoted cell apoptosis. Administration of either glycerol or rapamycin restored cell viability, and overexpression of AQP3 increased cell viability by upregulating cellular glycerol metabolism and autophagy. Our study demonstrates that the increase in cell apoptosis of AQP3-deficient GC cells is a consequence of reduced glycerol uptake and lipogenesis and is associated with autophagy inhibition induced by AQP3 deficiency.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
59
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
60
|
Webster CP, Smith EF, Shaw PJ, De Vos KJ. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? Front Mol Neurosci 2017; 10:123. [PMID: 28512398 PMCID: PMC5411428 DOI: 10.3389/fnmol.2017.00123] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
61
|
Mavlyutov TA, Guo LW. Peeking into Sigma-1 Receptor Functions Through the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:285-297. [PMID: 28315278 PMCID: PMC6283661 DOI: 10.1007/978-3-319-50174-1_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses recent advances towards understanding the sigma-1 receptor (S1R) as an endogenous neuro-protective mechanism in the retina , a favorable experimental model system. The exquisite architecture of the mammalian retina features layered and intricately wired neurons supported by non-neuronal cells. Ganglion neurons, photoreceptors , as well as the retinal pigment epithelium, are susceptible to degeneration that leads to major retinal diseases such as glaucoma , diabetic retinopathy , and age-related macular degeneration (AMD), and ultimately, blindness. The S1R protein is found essentially in every retinal cell type, with high abundance in the ganglion cell layer. Ultrastructural studies of photoreceptors, bipolar cells, and ganglion cells show a predominant localization of S1R in the nuclear envelope. A protective role of S1R for ganglion and photoreceptor cells is supported by in vitro and in vivo experiments. Most recently, studies suggest that S1R may also protect retinal neurons via its activities in Müller glia and microglia. The S1R functions in the retina may be attributed to a reduction of excitotoxicity, oxidative stress , ER stress response, or inflammation. S1R knockout mice are being used to delineate the S1R-specific effects. In summary, while significant progress has been made towards the objective of establishing a S1R-targeted paradigm for retinal neuro-protection , critical questions remain. In particular, context-dependent effects and potential side effects of interventions targeting S1R need to be studied in more diverse and more clinically relevant animal models.
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Surgery and McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, 5151 Wisconsin Institute for Medical Research, 1111 Highland Ave, 53705, Madison, WI, USA
| | - Lian-Wang Guo
- Department of Surgery and McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, 5151 Wisconsin Institute for Medical Research, 1111 Highland Ave, 53705, Madison, WI, USA
| |
Collapse
|
62
|
Taylor CP, Traynelis SF, Siffert J, Pope LE, Matsumoto RR. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther 2016; 164:170-82. [PMID: 27139517 DOI: 10.1016/j.pharmthera.2016.04.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dextromethorphan (DM) has been used for more than 50years as an over-the-counter antitussive. Studies have revealed a complex pharmacology of DM with mechanisms beyond blockade of N-methyl-d-aspartate (NMDA) receptors and inhibition of glutamate excitotoxicity, likely contributing to its pharmacological activity and clinical potential. DM is rapidly metabolized to dextrorphan, which has hampered the exploration of DM therapy separate from its metabolites. Coadministration of DM with a low dose of quinidine inhibits DM metabolism, yields greater bioavailability and enables more specific testing of the therapeutic properties of DM apart from its metabolites. The development of the drug combination DM hydrobromide and quinidine sulfate (DM/Q), with subsequent approval by the US Food and Drug Administration for pseudobulbar affect, led to renewed interest in understanding DM pharmacology. This review summarizes the interactions of DM with brain receptors and transporters and also considers its metabolic and pharmacokinetic properties. To assess the potential clinical relevance of these interactions, we provide an analysis comparing DM activity from in vitro functional assays with the estimated free drug DM concentrations in the brain following oral DM/Q administration. The findings suggest that DM/Q likely inhibits serotonin and norepinephrine reuptake and also blocks NMDA receptors with rapid kinetics. Use of DM/Q may also antagonize nicotinic acetylcholine receptors, particularly those composed of α3β4 subunits, and cause agonist activity at sigma-1 receptors.
Collapse
Affiliation(s)
| | - Stephen F Traynelis
- Dept. of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Joao Siffert
- Avanir Pharmaceuticals, Inc., Aliso Viejo, CA, USA
| | - Laura E Pope
- Avanir Pharmaceuticals, Inc., Aliso Viejo, CA, USA
| | - Rae R Matsumoto
- College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
63
|
Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 2016; 142:104-129. [DOI: 10.1016/j.pneurobio.2016.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
|
64
|
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37:262-278. [PMID: 26869505 PMCID: PMC4811735 DOI: 10.1016/j.tips.2016.01.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| |
Collapse
|
65
|
Yasui Y, Su TP. Potential Molecular Mechanisms on the Role of the Sigma-1 Receptor in the Action of Cocaine and Methamphetamine. ACTA ACUST UNITED AC 2016; 5. [PMID: 27088037 DOI: 10.4303/jdar/235970] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum membrane protein that involves a wide range of physiological functions. The Sig-1R has been shown to bind psychostimulants including cocaine and methamphetamine (METH) and thus has been implicated in the actions of those psychostimulants. For example, it has been demonstrated that the Sig-1R antagonists mitigate certain behavioral and cellular effects of psychostimulants including hyperactivity and neurotoxicity. Thus, the Sig-1R has become a potential therapeutic target of medication development against drug abuse that differs from traditional monoamine-related strategies. In this review, we will focus on the molecular mechanisms of the Sig-1R and discuss in such a manner with a hope to further understand or unveil unexplored relations between the Sig-1R and the actions of cocaine and METH, particularly in the context of cellular biological relevance.
Collapse
Affiliation(s)
- Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| |
Collapse
|
66
|
Garofalo T, Manganelli V, Grasso M, Mattei V, Ferri A, Misasi R, Sorice M. Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis 2015; 20:621-34. [PMID: 25652700 DOI: 10.1007/s10495-015-1100-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies.
Collapse
Affiliation(s)
- Tina Garofalo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
67
|
Perrotta C, Cervia D, De Palma C, Assi E, Pellegrino P, Bassi MT, Clementi E. The emerging role of acid sphingomyelinase in autophagy. Apoptosis 2015; 20:635-44. [PMID: 25666706 DOI: 10.1007/s10495-015-1101-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy, the main intracellular process of cytoplasmic material degradation, is involved in cell survival and death. Autophagy is regulated at various levels and novel modulators of its function are being continuously identified. An intriguing recent observation is that among these modulators is the sphingolipid metabolising enzyme, Acid Sphingomyelinase (A-SMase), already known to play a fundamental role in apoptotic cell death participating in several pathophysiological conditions. In this review we analyse and discuss the relationship between autophagy and A-SMase describing how A-SMase may regulate it and defining, for the first time, the existence of an A-SMase-autophagy axis. The imbalance of this axis plays a role in cancer, nervous system, cardiovascular, and hepatic disorders.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), National Research Council-Institute of Neuroscience, University Hospital "Luigi Sacco", Università di Milano, 20157, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
68
|
The Function of Autophagy in Neurodegenerative Diseases. Int J Mol Sci 2015; 16:26797-812. [PMID: 26569220 PMCID: PMC4661849 DOI: 10.3390/ijms161125990] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, is a bulk degradation process performed by lysosomes in which aggregated and altered proteins as well as dysfunctional organelles are decomposed. Autophagy is a basic cellular process that maintains homeostasis and is crucial for postmitotic neurons. Thus, impaired autophagic processes in neurons lead to improper homeostasis and neurodegeneration. Recent studies have suggested that impairments of the autophagic process are associated with several neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and static encephalopathy of childhood with neurodegeneration in adulthood. In this review, we focus on the recent findings regarding the autophagic process and the involvement of autophagy in neurodegenerative diseases.
Collapse
|
69
|
Karademir B, Corek C, Ozer NK. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 2015; 88:42-50. [PMID: 26073124 DOI: 10.1016/j.freeradbiomed.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.
Collapse
Affiliation(s)
- Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
70
|
Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol 2015; 53:5542-74. [PMID: 26468157 DOI: 10.1007/s12035-015-9473-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
71
|
Manfredi G, Kawamata H. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiol Dis 2015; 90:35-42. [PMID: 26282323 DOI: 10.1016/j.nbd.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 12/13/2022] Open
Abstract
Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS.
Collapse
Affiliation(s)
- Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY 10065, United States.
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY 10065, United States.
| |
Collapse
|
72
|
Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS. Cells 2015; 4:354-86. [PMID: 26287246 PMCID: PMC4588041 DOI: 10.3390/cells4030354] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a major role in the elimination of cellular waste components, the renewal of intracellular proteins and the prevention of the build-up of redundant or defective material. It is fundamental for the maintenance of homeostasis and especially important in post-mitotic neuronal cells, which, without competent autophagy, accumulate protein aggregates and degenerate. Many neurodegenerative diseases are associated with defective autophagy; however, whether altered protein turnover or accumulation of misfolded, aggregate-prone proteins is the primary insult in neurodegeneration has long been a matter of debate. Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by selective degeneration of motor neurons. Most of the ALS cases occur in sporadic forms (SALS), while 10%–15% of the cases have a positive familial history (FALS). The accumulation in the cell of misfolded/abnormal proteins is a hallmark of both SALS and FALS, and altered protein degradation due to autophagy dysregulation has been proposed to contribute to ALS pathogenesis. In this review, we focus on the main molecular features of autophagy to provide a framework for discussion of our recent findings about the role in disease pathogenesis of the ALS-linked form of the VAPB gene product, a mutant protein that drives the generation of unusual cytoplasmic inclusions.
Collapse
|
73
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
74
|
Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 2015; 16:345-57. [DOI: 10.1038/nrn3961] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
75
|
Abagnale G, Steger M, Nguyen VH, Hersch N, Sechi A, Joussen S, Denecke B, Merkel R, Hoffmann B, Dreser A, Schnakenberg U, Gillner A, Wagner W. Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials 2015; 61:316-26. [PMID: 26026844 DOI: 10.1016/j.biomaterials.2015.05.030] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/16/2015] [Indexed: 12/15/2022]
Abstract
Surface topography impacts on cell growth and differentiation, but it is not trivial to generate defined surface structures and to assess the relevance of specific topographic parameters. In this study, we have systematically compared in vitro differentiation of mesenchymal stem cells (MSCs) on a variety of groove/ridge structures. Micro- and nano-patterns were generated in polyimide using reactive ion etching or multi beam laser interference, respectively. These structures affected cell spreading and orientation of human MSCs, which was also reflected in focal adhesions morphology and size. Time-lapse demonstrated directed migration parallel to the nano-patterns. Overall, surface patterns clearly enhanced differentiation of MSCs towards specific lineages: 15 μm ridges increased adipogenic differentiation whereas 2 μm ridges enhanced osteogenic differentiation. Notably, nano-patterns with a periodicity of 650 nm increased differentiation towards both osteogenic and adipogenic lineages. However, in absence of differentiation media surface structures did neither induce differentiation, nor lineage-specific gene expression changes. Furthermore, nanostructures did not affect the YAP/TAZ complex, which is activated by substrate stiffness. Our results provide further insight into how structuring of tailored biomaterials and implant interfaces - e.g. by multi beam laser interference in sub-micrometer scale - do not induce differentiation of MSCs per se, but support their directed differentiation.
Collapse
Affiliation(s)
- Giulio Abagnale
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Michael Steger
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Vu Hoa Nguyen
- Institute of Materials in Electrical Engineering 1 (IWE1), RWTH Aachen University, Aachen, Germany
| | - Nils Hersch
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antonio Sechi
- Institute of Biomedical Engineering, Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Sylvia Joussen
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Medical School, Aachen, Germany
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alice Dreser
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1 (IWE1), RWTH Aachen University, Aachen, Germany
| | - Arnold Gillner
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
76
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable motor neuron disease. Aetiologically, it is a multigenic, multifactorial and multiorgan disease. Despite intense research, ALS pathology remains unexplained. Following extensive literature review, this paper posits a new integrative explanation. This framework proposes that ammonia neurotoxicity is a main player in ALS pathogenesis. According to this explanation, a combination of impaired ammonia removal- mainly because of impaired hepatic urea cycle dysfunction-and increased ammoniagenesis- mainly because of impaired glycolytic metabolism in fast twitch skeletal muscle-causes chronic hyperammonia in ALS. In the absence of neuroprotective calcium binding proteins (calbindin, calreticulin and parvalbumin), elevated ammonia-a neurotoxin-damages motor neurons. Ammonia-induced motor neuron damage occurs through multiple mechanisms such as macroautophagy-endolysosomal impairment, endoplasmic reticulum (ER) stress, CDK5 activation, oxidative/nitrosative stress, neuronal hyperexcitability and neuroinflammation. Furthermore, the regional pattern of calcium binding proteins' loss, owing to either ER stress and/or impaired oxidative metabolism, determines clinical variability of ALS. Most importantly, this new framework can be generalised to explain other neurodegenerative disorders such as Huntington's disease and Parkinsonism.
Collapse
Affiliation(s)
- Bhavin Parekh
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
77
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
78
|
Tsai SYA, Pokrass MJ, Klauer NR, De Credico NE, Su TP. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets 2014; 18:1461-76. [PMID: 25331742 PMCID: PMC5518923 DOI: 10.1517/14728222.2014.972939] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Sigma-1 receptors (Sig-1Rs) are molecular chaperones that reside mainly in the endoplasmic reticulum (ER) but exist also in the proximity of the plasma membrane. Sig-1Rs are highly expressed in the CNS and are involved in many cellular processes including cell differentiation, neuritogenesis, microglia activation, protein quality control, calcium-mediated ER stress and ion channel modulation. Disturbance in any of the above cellular processes can accelerate the progression of many neurological disorders; therefore, the Sig-1R has been implicated in several neurological diseases. AREAS COVERED This review broadly covers the functions of Sig-1Rs including several neurodegenerative disorders in humans and drug addiction-associated neurological disturbance in the case of HIV infection. We discuss how several Sig-1R ligands could be utilized in therapeutic approaches to treat those disorders. EXPERT OPINION Emerging understanding of the cellular functions of this unique transmembrane chaperone may lead to the use of new agents or broaden the use of certain available ligands as therapeutic targets in those neurological disorders.
Collapse
Affiliation(s)
- Shang-Yi A Tsai
- National Institute on Drug Abuse, National Institutes of Health, Cellular Pathobiology Section, Integral Neuroscience Branch , Baltimore, MD 21224 , USA ;
| | | | | | | | | |
Collapse
|