51
|
Shan J, Chouchane A, Mokrab Y, Saad M, Boujassoum S, Sayaman RW, Ziv E, Bouaouina N, Remadi Y, Gabbouj S, Roelands J, Ma X, Bedognetti D, Chouchane L. Genetic Variation in CCL5 Signaling Genes and Triple Negative Breast Cancer: Susceptibility and Prognosis Implications. Front Oncol 2019; 9:1328. [PMID: 31921621 PMCID: PMC6915105 DOI: 10.3389/fonc.2019.01328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for ~15–20% of breast cancer (BC) and has a higher rate of early relapse and mortality compared to other subtypes. The Chemokine (C-C motif) ligand 5 (CCL5) and its signaling pathway have been linked to TNBC. We aimed to investigate the susceptibility and prognostic implications of genetic variation in CCL5 signaling genes in TNBC in the present study. We characterized variants in CCL5 and that of six other CCL5 signaling genes (CCND1, ZMIZ1, CASP8, NOTCH2, MAP3K21, and HS6ST3) among 1,082 unrelated Tunisian subjects (544 BC patients, including 196 TNBC, and 538 healthy controls), assessed the association of the variants with BC-specific overall survival (OVS) and progression-free survival (PFS), and correlated CCL5 mRNA and serum levels with CCL5 genotypes. We found a highly significant association between the CCND1 rs614367-TT genotype (OR = 5.14; P = 0.004) and TNBC risk, and identified a significant association between the rs614367-T allele and decreased PFS in TNBC. A decreased risk of lymph node metastasis was associated with the MAP3K21 rs1294255-C allele, particularly in rs1294255-GC (OR = 0.47; P = 0.001). CCL5 variants (rs2107538 and rs2280789) were linked to CCL5 serum and mRNA levels. In the TCGA TNBC/Basal-like cohort the MAP3K21 rs1294255-G allele was associated with a decreased OVS. High expression of CCL5 in breast tumors was significantly associated with an increased OVS in all BC patients, but particularly in TNBC/Basal-like patients. In conclusion, genetic variation in CCL5 signaling genes may predict not only TNBC risk but also disease aggressiveness.
Collapse
Affiliation(s)
- Jingxuan Shan
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.,Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Aziz Chouchane
- Faculta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuero, Rome, Italy
| | - Younes Mokrab
- Translational Genetics and Bioinformatics Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Salha Boujassoum
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Rosalyn W Sayaman
- Department of Population Sciences, City of Hope, Duarte, CA, United States.,Department of Laboratory Medicine at UCSF, San Francisco, CA, United States.,Helen Diller Family Comprehensive Cancer Center at UCSF, San Francisco, CA, United States
| | - Elad Ziv
- Helen Diller Family Comprehensive Cancer Center at UCSF, San Francisco, CA, United States.,Division of General Internal Medicine, Department of Medicine, Institute for Human Genetics at UCSF, San Francisco, CA, United States
| | - Noureddine Bouaouina
- Service de Cancérologie Radiothérapie, CHU Farhat Hached, Sousse, Tunisia.,Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisia
| | - Yasmine Remadi
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisia
| | - Sallouha Gabbouj
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université de Monastir, Monastir, Tunisia
| | - Jessica Roelands
- Tumor Biology Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States
| | - Davide Bedognetti
- Tumor Biology Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, United States.,Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
52
|
Periodontal inflammation recruits distant metastatic breast cancer cells by increasing myeloid-derived suppressor cells. Oncogene 2019; 39:1543-1556. [PMID: 31685946 PMCID: PMC7018659 DOI: 10.1038/s41388-019-1084-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023]
Abstract
Periodontal diseases can lead to chronic inflammation affecting the integrity of the tooth supporting tissues. Recently, a striking association has been made between periodontal diseases and primary cancers in the absence of a mechanistic understanding. Here we address the effect of periodontal inflammation (PI) on tumor progression, metastasis, and possible underlining mechanisms. We show that an experimental model of PI in mice can promote lymph node (LN) micrometastasis, as well as head and neck metastasis of 4T1 breast cancer cells, both in early and late stages of cancer progression. The cervical LNs had a greater tumor burden and infiltration of MDSC and M2 macrophages compared with LNs at other sites. Pyroptosis and the resultant IL-1β production were detected in patients with PI, mirrored in mouse models. Anakinra, IL-1 receptor antagonist, limited metastasis, and MDSC recruitment at early stages of tumor progression, but failed to reverse established metastatic tumors. PI and the resulting production of IL-1β was found to promote CCL5, CXCL12, CCL2, and CXCL5 expression. These chemokines recruit MDSC and macrophages, finally enabling the generation of a premetastatic niche in the inflammatory site. These findings support the idea that periodontal inflammation promotes metastasis of breast cancer by recruiting MDSC in part by pyroptosis-induced IL-1β generation and downstream CCL2, CCL5, and CXCL5 signaling in the early steps of metastasis. These studies define the role for IL-1β in the metastatic progression of breast cancer and highlight the need to control PI, a pervasive inflammatory condition in older patients.
Collapse
|
53
|
Bonavita O, Mollica Poeta V, Massara M, Mantovani A, Bonecchi R. Regulation of hematopoiesis by the chemokine system. Cytokine 2019; 109:76-80. [PMID: 29429849 DOI: 10.1016/j.cyto.2018.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Abstract
Although chemokines are best known for their role in directing cell migration, accumulating evidence indicate their involvement in many other processes. This review focus on the role of chemokines in hematopoiesis with an emphasis on myelopoiesis. Indeed, many chemokine family members are an important component of the cytokine network present in the bone marrow that controls proliferation, retention, and mobilization of hematopoietic progenitors.
Collapse
Affiliation(s)
- Ornella Bonavita
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Valeria Mollica Poeta
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy
| | - Matteo Massara
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy.
| |
Collapse
|
54
|
Naik A, Monjazeb AM, Decock J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front Immunol 2019; 10:1940. [PMID: 31475003 PMCID: PMC6703078 DOI: 10.3389/fimmu.2019.01940] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer immunotherapy has been heralded as a breakthrough cancer treatment demonstrating tremendous success in improving tumor responses and survival of patients with hematological cancers and solid tumors. This novel promising treatment approach has in particular triggered optimism for triple negative breast cancer (TNBC) treatment, a subtype of breast cancer with distinct clinical features and poor clinical outcome. In early 2019, the FDA granted the first approval of immune checkpoint therapy, targeting PD-L1 (Atezolizumab) in combination with chemotherapy for the treatment of patients with locally advanced or metastatic PD-L1 positive TNBC. The efficacy of immuno-based interventions varies across cancer types and patient cohorts, which is attributed to a variety of lifestyle, clinical, and pathological factors. For instance, obesity has emerged as a risk factor for a dampened anti-tumor immune response and increased risk of immunotherapy-induced immune-related adverse events (irAEs) but has also been linked to improved outcomes with checkpoint blockade. Given the breadth of the rising global obesity epidemic, it is imperative to gain insight into the immunomodulatory effects of obesity in the peripheral circulation and within the tumor microenvironment. In this review, we resolve the impact of obesity on breast tumorigenesis and progression on the one hand, and on the immune contexture on the other hand. Finally, we speculate on the potential implications of obesity on immunotherapy response in breast cancer. This review clearly highlights the need for in vivo obese cancer models and representative clinical cohorts for evaluation of immunotherapy efficacy.
Collapse
Affiliation(s)
- Adviti Naik
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Arta Monir Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, University of California, Sacramento, Sacramento, CA, United States
| | - Julie Decock
- Qatar Foundation (QF), Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
55
|
Dillon MT, Bergerhoff KF, Pedersen M, Whittock H, Crespo-Rodriguez E, Patin EC, Pearson A, Smith HG, Paget JTE, Patel RR, Foo S, Bozhanova G, Ragulan C, Fontana E, Desai K, Wilkins AC, Sadanandam A, Melcher A, McLaughlin M, Harrington KJ. ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment. Clin Cancer Res 2019; 25:3392-3403. [PMID: 30770349 PMCID: PMC6551222 DOI: 10.1158/1078-0432.ccr-18-1821] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/09/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE ATR inhibitors (ATRi) are in early phase clinical trials and have been shown to sensitize to chemotherapy and radiotherapy preclinically. Limited data have been published about the effect of these drugs on the tumor microenvironment.Experimental Design: We used an immunocompetent mouse model of HPV-driven malignancies to investigate the ATR inhibitor AZD6738 in combination with fractionated radiation (RT). Gene expression analysis and flow cytometry were performed posttherapy. RESULTS Significant radiosensitization to RT by ATRi was observed alongside a marked increase in immune cell infiltration. We identified increased numbers of CD3+ and NK cells, but most of this infiltrate was composed of myeloid cells. ATRi plus radiation produced a gene expression signature matching a type I/II IFN response, with upregulation of genes playing a role in nucleic acid sensing. Increased MHC I levels were observed on tumor cells, with transcript-level data indicating increased antigen processing and presentation within the tumor. Significant modulation of cytokine gene expression (particularly CCL2, CCL5, and CXCL10) was found in vivo, with in vitro data indicating CCL3, CCL5, and CXCL10 are produced from tumor cells after ATRi + RT. CONCLUSIONS We show that DNA damage by ATRi and RT leads to an IFN response through activation of nucleic acid-sensing pathways. This triggers increased antigen presentation and innate immune cell infiltration. Further understanding of the effect of this combination on the immune response may allow modulation of these effects to maximize tumor control through antitumor immunity.
Collapse
Affiliation(s)
| | | | - Malin Pedersen
- The Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Alex Pearson
- The Institute of Cancer Research, London, United Kingdom
| | - Henry G Smith
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Shane Foo
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Elisa Fontana
- The Institute of Cancer Research, London, United Kingdom
| | - Krisha Desai
- The Institute of Cancer Research, London, United Kingdom
| | - Anna C Wilkins
- The Institute of Cancer Research, London, United Kingdom
| | | | - Alan Melcher
- The Institute of Cancer Research, London, United Kingdom
| | | | | |
Collapse
|
56
|
The Infiltration of ICOS + Cells in Nasopharyngeal Carcinoma is Beneficial for Improved Prognosis. Pathol Oncol Res 2018; 26:365-370. [PMID: 30361907 DOI: 10.1007/s12253-018-0509-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly malignant tumor, associated with poor patient prognoses, and high rates of morbidity and mortality. Currently, immune checkpoint therapy has brought new treatment strategy for NPC. The inducible T cell co-stimulator (ICOS) belongs to the B7-CD28 immunoglobulin superfamily, which is currently the subject of intense study due to great successes gained in treatment of different malignancies by disrupting their family members. However, the role of ICOS played in NPC remains poorly understood. Immunohistochemistry (IHC) was stained with the ICOS specific antibody and ICOS expression is decreased in patients with either lymphatic or distant metastasis and inversely associated with TNM stage of NPC patients. Importantly, high ICOS expression is significantly correlated with overall survival (OS) of NPC patients (N = 185, p < 0.001), and ICOS expression is also proved to be an independent prognostic factor by multivariate analysis. Surgical excised fresh NPC specimens (N = 185) were homogenized to analyze the specific cytokine expression by ELISA assay. ICOS expression level is associated with increased cytotoxic T lymphocyte number and high interferon IFNγ expression, the characteristics of Th1 cells. In addition, the correlation between the percentage of ICOS+ T cells in tumor tissue and survival was detected. Conclusively, expression of ICOS is associated with improved survival in NPC and percentage of ICOS+ cells acting as Th1 cells in primary tumor tissue may be a clinical biomarker for good prognosis of NPC patients.
Collapse
|
57
|
Lechner J, Noumbissi S, von Baehr V. Titanium implants and silent inflammation in jawbone-a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J 2018; 9:331-343. [PMID: 30174768 PMCID: PMC6107454 DOI: 10.1007/s13167-018-0138-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND INTRODUCTION It is a well-known fact that titanium particles deriving from dental titanium implants (DTI) dissolve into the surrounding bone. Although titanium (TI) is regarded as a compatible implant material, increasing concern is coming up that the dissolved titanium particles induce inflammatory reactions around the implant. Specifically, the inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is expressed in the adjacent bone. The transition from TNF-α-induced local inflammation following insertion of DTI surgery to a chronic stage of "silent inflammation" could be a neglected cause of unexplained medical conditions. MATERIAL AND METHODS The signaling pathways involved in the induction of cytokine release were analyzed by multiplex analysis. We examined samples of jawbone (JB) for seven cytokines in two groups: specimens from 14 patients were analyzed in areas of DTI for particle-mediated release of cytokines. Each of the adjacent to DTI tissue samples showed clinically fatty degenerated and osteonecrotic medullary changes in the JB (FDOJ). Specimens from 19 patients were of healthy JB. In five cases, we measured the concentration of dissolved Ti particles by spectrometry. RESULTS All DTI-FDOJ samples showed RANTES/CCL5 (R/C) as the only extremely overexpressed cytokine. DTI-FDOJ cohort showed a 30-fold mean overexpression of R/C as compared with a control cohort of 19 healthy JB samples. Concentration of dissolved Ti particles in DTI-FDOJ was 30-fold higher than an estimated maximum of 1.000 μg/kg. DISCUSSION As R/C is discussed in the literature as a possible contributor to inflammatory diseases, the here-presented research examines the question of whether common DTI may provoke the development of chronic inflammation in the jawbone in an impaired state of healing. Such changes in areas of the JB may lead to hyperactivated signaling pathways of TNF-α induced R/C overexpression, and result in unrecognized sources of silent inflammation. This may contribute to disease patterns like rheumatic arthritis, multiple sclerosis, and other systemic-inflammatory diseases, which is widely discussed in scientific papers. CONCLUSION From a systemic perspective, we recommend that more attention be paid to the cytokine cross-talk that is provoked by dissolved Ti particles from DTI in medicine and dentistry. This may contribute to further development of personalized strategies in preventive medicine.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Grünwalder Str. 10A, Munich, Germany
| | - Sammy Noumbissi
- Miles of Smiles Implant Dentistry, 801 Wayne Ave no. G200, Silver Spring, USA
| | - Volker von Baehr
- Institute for Medical Diagnostics in MVZ GbR, Nicolaistr. 22, 12247 Berlin, Germany
| |
Collapse
|
58
|
Qiu H, Zmina PM, Huang AY, Askew D, Bedogni B. Inhibiting Notch1 enhances immunotherapy efficacy in melanoma by preventing Notch1 dependent immune suppressive properties. Cancer Lett 2018; 434:144-151. [PMID: 30036609 DOI: 10.1016/j.canlet.2018.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
We have previously shown that Notch1 plays a critical role in modulating melanoma tumor cell growth and survival. Here we show that Notch1 also contributes to an immune-suppressive tumor microenvironment (TME). Notch1 inhibition reduces immune suppressive cells (i.e. MDSCs and Tregs) while allowing the recruitment of functional CD8(+) T cells, leading to a decrease in the Tregs/CD8(+) ratio, a key parameter in assessing positive responses to immune-checkpoint inhibitors. Inhibition of Notch1 improves the antitumor activity of nivolumab and ipilimumab, particularly when given in combination. Mechanistically, tumor-associated Notch1 regulates the expression of several chemokines involved in MDSCs and Tregs recruitment. Among them, CCL5, IL6 and IL8, or MIP2 in mouse, were consistently reduced by Notch1 depletion in several human and mouse melanoma cell lines. Notch1 controls the transcription of IL8 and IL6; and the secretion of CCL5 likely by inhibiting the expression of SNAP23, a member of the SNAREs family of proteins involved in cell exocytosis. Inhibition of SNAP23 decreases CCL5 secretion similarly to Notch1 inhibition. Hence, targeting Notch1 would affect both melanoma intrinsic growth/survival properties, and provide an immune-responsive TME, thus improving immune therapy efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Female
- Humans
- Immunotherapy/methods
- Ipilimumab/administration & dosage
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Nivolumab/administration & dosage
- RNA Interference
- Receptor, Notch1/genetics
- Receptor, Notch1/immunology
- Receptor, Notch1/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Tumor Burden/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hong Qiu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Patrick M Zmina
- Department of Dermatology, Miller School of Medicine, Miami, FL 33136, United States
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, United States
| | - David Askew
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Dermatology, Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
59
|
CCL5-deficiency enhances intratumoral infiltration of CD8 + T cells in colorectal cancer. Cell Death Dis 2018; 9:766. [PMID: 29991744 PMCID: PMC6039518 DOI: 10.1038/s41419-018-0796-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is the third most common solid tumor in the world and shows resistance to several immunotherapies, particularly immune checkpoint blockade which has therapeutic effects on many other types of cancer. Cytotoxic CD8+ T cell has been considered as one of the main populations of effector immune cells in antitumor immunity; however, the absence of CD8+ T cells in the central tumor area has become a major obstacle for solid tumor immunotherapy, particularly for CRC. Thus, novel therapeutic strategies that could promote CD8+ T cells to accumulate in the central tumor area are urgently needed. Here, we demonstrated that CCL5-deficiency delayed tumor growth and metastasis via facilitating CD8+ T cells to accumulate into tumor site in CRC mouse models. Furthermore, CCL5-deficiency could upregulate PD-1 and PD-L1 expression and reduce the resistance to anti-PD-1 antibody therapy in CRC mouse model. Mechanically, the results of RNA-sequencing, in vitro coculture system and hypoxia measurements demonstrated that knockdown of CCL5 could result in the metabolic disorders in CD11bhiF4/80low TAMs and suppress the expression of S100a9 to promote the migration of CD8+ T cells in the tumor microenvironment. These findings were verified by the data of clinical samples from CRC patients, suggesting that CCL5 may provide a potential therapeutic target for the combined PD-1-immunotherapy of CRC.
Collapse
|
60
|
Effect of CCL5 expression in the recruitment of immune cells in triple negative breast cancer. Sci Rep 2018; 8:4899. [PMID: 29559701 PMCID: PMC5861063 DOI: 10.1038/s41598-018-23099-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/05/2018] [Indexed: 11/08/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive form of breast cancer with limited options of targeted therapy. Recent findings suggest that the clinical course of TNBC may be modified by the presence of tumor-infiltrating lymphocytes (TILs) and chemokine's expression, such as CCL5. Diverse studies have shown that CCL5 suppresses anti-tumor immunity and it has been related to poor outcome in different types of cancer while in other studies, this gene has been related with a better outcome. We sought to determine the association of CCL5 with the recruitment of TILs and other immune cells. With this aim we evaluated a retrospective cohort of 72 TNBC patients as well as publicly available datasets. TILs were correlated with residual tumor size after neoadjuvant chemotherapy (NAC) and CCL5 expression. In univariate analysis, TILs and CCL5 were both associated to the distant recurrence free survival; however, in a multivariate analysis, TILs was the only significant marker (HR = 0.336; 95%IC: 0.150-0.753; P = 0.008). CIBERSORT analysis suggested that a high CCL5 expression was associated with recruitment of CD8 T cells, CD4 activated T cells, NK activated cells and macrophages M1. The CD8A gene (encoding for CD8) was associated with an improved outcome in several public breast cancer datasets.
Collapse
|
61
|
Vendelova E, Ashour D, Blank P, Erhard F, Saliba AE, Kalinke U, Lutz MB. Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Front Immunol 2018. [PMID: 29541071 PMCID: PMC5835767 DOI: 10.3389/fimmu.2018.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host’s T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
Collapse
Affiliation(s)
- Emilia Vendelova
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Diyaaeldin Ashour
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
62
|
Suenaga M, Schirripa M, Cao S, Zhang W, Yang D, Ning Y, Cremolini C, Antoniotti C, Borelli B, Mashima T, Okazaki S, Berger MD, Miyamoto Y, Gopez R, Barzi A, Lonardi S, Yamaguchi T, Falcone A, Loupakis F, Lenz HJ. Gene Polymorphisms in the CCL5/CCR5 Pathway as a Genetic Biomarker for Outcome and Hand-Foot Skin Reaction in Metastatic Colorectal Cancer Patients Treated With Regorafenib. Clin Colorectal Cancer 2018; 17:e395-e414. [PMID: 29606345 DOI: 10.1016/j.clcc.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The C-C motif chemokine ligand 5/C-C motif chemokine receptor 5 (CCL5/CCR5) pathway has been shown to induce endothelial progenitor cell migration, resulting in increased vascular endothelial growth factor A expression. We hypothesized that genetic polymorphisms in the CCL5/CCR5 pathway predict efficacy and toxicity in patients with metastatic colorectal cancer (mCRC) treated with regorafenib. PATIENTS AND METHODS We analyzed genomic DNA extracted from 229 tumor samples from 2 different cohorts of patients who received regorafenib: an evaluation cohort of 79 Japanese patients and a validation cohort of 150 Italian patients. Single nucleotide polymorphisms of CCL5/CCR5 pathway-related genes were analyzed by PCR-based direct sequencing. RESULTS CCL4 rs1634517 and CCL3 rs1130371 were associated with progression-free survival in the evaluation cohort (hazard ratio [HR] 1.54, P = .043; HR 1.48, P = .064), and progression-free survival (HR 1.74, P < .001; HR 1.66, P = .002) and overall survival (HR 1.65, P = .004; HR 1.65, P = .004) in the validation cohort. The allelic frequencies of CCL5 single nucleotide polymorphisms varied between the evaluation and validation cohorts (G/G variant in rs2280789, 21.5% vs. 1.3%, P < .001; T/T variant in rs3817655, 22.8% vs. 2.7%, P < .001). In the evaluation cohort, patients with the G/G variant in rs2280789 had a higher incidence of grade 3+ hand-foot skin reaction compared to any A allele (53% vs. 27%, P = .078), and similarly to the T/T variant in rs3817655 compared to any A allele (56% vs. 26%, P = .026). CONCLUSION Genetic variants in the CCL5/CCR5 pathway may serve as prognostic markers and may predict severe hand-foot skin reaction in mCRC patients receiving regorafenib therapy.
Collapse
Affiliation(s)
- Mitsukuni Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; Gastroenterology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marta Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; Medical Oncology 1 Unit, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Chiara Cremolini
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Carlotta Antoniotti
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Beatrice Borelli
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Roel Gopez
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Afsaneh Barzi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sara Lonardi
- Medical Oncology 1 Unit, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Toshiharu Yamaguchi
- Gastroenterology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alfredo Falcone
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa, Italy
| | - Fotios Loupakis
- Medical Oncology 1 Unit, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
63
|
Shou D, Wen L, Song Z, Yin J, Sun Q, Gong W. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget 2018; 7:64505-64511. [PMID: 27542274 PMCID: PMC5325458 DOI: 10.18632/oncotarget.11352] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/09/2016] [Indexed: 01/09/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a pivotal role in promoting tumor growth and metastasis and can even decrease the efficacy of immunotherapy. In breast cancer, MDSCs are recruited mainly by breast cancer cells to form a tumor-favoring microenvironment to suppress the anti-tumor immune response. In addition, MDSCs can react directly with breast cancer cells. In this paper, we describe several ways to recruit MDSCs in breast cancer, including breast cancer cell-derived cytokines and chemokines. The intracellular pathways in MDSCs during recruitment are classified as the STAT3-NF-κB-IDO pathway, the STAT3/IRF-8 pathway and the PTEN/Akt pathway. MDSCs act on T cells and NK cells to suppress the body's immunity, and via IL-6 trans-signaling, promote breast cancer directly. We further describe MDSC-targeted immune therapies for breast cancer, which are classified as: preventing the formation of MDSCs, eliminating MDSDCs, and reducing the products of MDSCs. Furthermore, MDSC-targeted immunotherapy potentiates the effect of the other immunotherapies. Based on the facts that MSDCs have significant roles in breast cancer malignant behaviors and can be suppressed by various strategies, we do believe MDSC-targeted immunotherapy presents a broad prospect in the future.
Collapse
Affiliation(s)
- Dawei Shou
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Liang Wen
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Zhenya Song
- Department of Comprehensive Medicine, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Jian Yin
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, City Key Laboratory of Tianjin Cancer Center, Tianjin, People's Republic of China
| | - Qiming Sun
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| |
Collapse
|
64
|
Nie X, Tan J, Dai Y, Liu Y, Zou J, Sun J, Ye S, Shen C, Fan L, Chen J, Bian JS. CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation. J Mol Cell Cardiol 2018; 116:41-56. [PMID: 29374556 DOI: 10.1016/j.yjmcc.2018.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with PAH impairs pulmonary arterial endothelial cells (PAECs) function. This can adversely affect PAEC survival and promote PASMCs proliferation. We hypothesized that interventions to normalize the expression of genes that are targets of the BMPR2 signaling could restore PAECs function and prevent or reverse PAH. Here we characterized for the first time, in human PAECs, chemokine (C-C motif) ligand 5 (CCL5/RANTES) deficiency restore BMP-mediated PAECs function. In the cell culture experiments, we found that CCL5 deficiency increased apoptosis and tube formation of PAECs, but suppressed proliferation and migration of PASMCs. Silencing CCL5 expression in PAH PAECs restored bone morphogenetic protein (BMP) signaling responses and promoted phosphorylation of SMADs and transcription of ID genes. Moreover, CCL5 deficiency inhibited angiogenesis by increasing pSMAD-dependent and-independent BMPR2 signaling. This was linked mechanistically to enhanced interaction of BMPR2 with caveolin-1 via CCL5 deficiency-mediated stabilization of endothelial surface caveolin-1. Consistent with these functions, deletion of CCL5 significantly attenuated development of Sugen5416/hypoxia-induced PAH by restoring BMPR2 signaling in mice. Taken together, our findings suggest that CCL5 deficiency could reverse obliterative changes in pulmonary arteries via caveolin-1-dependent amplification of BMPR2 signaling. Our results shed light on better understanding of the disease pathobiology and provide a possible novel target for the treatment of PAH.
Collapse
Affiliation(s)
- Xiaowei Nie
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Jianxin Tan
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Youai Dai
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Jian Zou
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jie Sun
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shugao Ye
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Chenyou Shen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Li Fan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jingyu Chen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
65
|
Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment. Sci Rep 2017; 7:17925. [PMID: 29263330 PMCID: PMC5738423 DOI: 10.1038/s41598-017-17622-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Macrophages are potent immune cells with well-established roles in the response to stress, injury, infection and inflammation. The classically activated macrophages (M1) are induced by lipopolysaccharide (LPS) and express a wide range of pro-inflammatory genes. M2 macrophages are induced by T helper type 2 cytokines such as interleukin-4 (IL4) and express high levels of anti-inflammatory and tissue repair genes. The strong association between macrophages and tumour cells as well as the high incidences of leukocyte infiltration in solid tumours have contributed to the discovery that tumour-associated macrophages (TAMs) are key to tumour progression. Here, we investigated the role of Annexin A1 (ANXA1), a well characterized immunomodulatory protein on macrophage polarization and the interaction between macrophages and breast cancer cells. Our results demonstrate that ANXA1 regulates macrophage polarization and activation. ANXA1 can act dually as an endogenous signalling molecule or as a secreted mediator which acts via its receptor, FPR2, to promote macrophage polarization. Furthermore, ANXA1 deficient mice exhibit reduced tumour growth and enhanced survival in vivo, possibly due to increased M1 macrophages within the tumor microenvironment. These results provide new insights into the molecular mechanisms of macrophage polarization with therapeutic potential to suppress breast cancer growth and metastasis.
Collapse
|
66
|
Gao D, Cazares LH, Fish EN. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer 2017; 17:834. [PMID: 29216863 PMCID: PMC5721608 DOI: 10.1186/s12885-017-3817-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/22/2017] [Indexed: 01/16/2023] Open
Abstract
Background In earlier studies we have shown that CCL5 activation of CCR5 induces the proliferation and survival of breast cancer cells in a mechanistic target of rapamycin (mTOR)-dependent manner and that this is in part due to CCR5-mediated increases in glycolytic metabolism. Methods Using the MDA-MB-231 triple negative human breast cancer cell line and mouse mammary tumor virus – polyomavirus middle T-antigen (MMTV-PyMT) mouse primary breast cancer cells, we conducted in vivo tumor transplant experiments to examine the effects of CCL5-CCR5 interactions in the context of regulating tumor metabolism. Additionally, we employed Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry imaging (MALDI-FTICR-MSI) to evaluate tumor utilization of cellular metabolites. Results We provide evidence that, in the absence of CCR5, the early events associated with rapid tumor growth in the MMTV-PyMT mouse model of spontaneous breast cancer development, are diminished, as demonstrated by a delay in tumor onset. In tumor transplant studies into immunocompromised mice we identify a direct correlation between reduced tumor proliferation and decreased metabolic activity, specifically associated with tumor expression of CCR5. The reduction in tumorigenesis is accompanied by decreases in glucose uptake, glucose transporter-1 (GLUT-1) cell surface expression, intracellular ATP and lactate levels, as well as reduced CCL5 production. Using MALDI-FTICR-MS, we show that the rapid early tumor growth of CCR5+/+ triple negative breast cancer cells in vivo is attributable to increased levels of glycolytic intermediates required for anabolic processes, in contrast to the slower growth rate of their corresponding CCR5−/− cells, that exhibit reduced glycolytic metabolism. Conclusions These findings suggest that CCL5-CCR5 interactions in the tumor microenvironment modulate metabolic events during tumor onset to promote tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s12885-017-3817-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darrin Gao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, USA
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|
67
|
Gao D, Rahbar R, Fish EN. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells. Open Biol 2017; 6:rsob.160122. [PMID: 27335323 PMCID: PMC4929946 DOI: 10.1098/rsob.160122] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.
Collapse
Affiliation(s)
- Darrin Gao
- Toronto General Research Institute, University Health Network, Toronto, Canada Department of Immunology, University of Toronto, Toronto, Canada
| | - Ramtin Rahbar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Eleanor N Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
68
|
CCR5+ Myeloid-Derived Suppressor Cells Are Enriched and Activated in Melanoma Lesions. Cancer Res 2017; 78:157-167. [DOI: 10.1158/0008-5472.can-17-0348] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
|
69
|
Han Z, Cheng H, Parvani JG, Zhou Z, Lu ZR. Magnetic resonance molecular imaging of metastatic breast cancer by targeting extradomain-B fibronectin in the tumor microenvironment. Magn Reson Med 2017; 79:3135-3143. [PMID: 29082597 DOI: 10.1002/mrm.26976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/30/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-invasive early accurate detection of malignant breast cancer is paramount to the clinical management of the life-threatening disease. Here, we aim to test a small peptide targeted MRI contrast agent, ZD2-Gd(HP-DO3A), specific to an oncoprotein, extradomain-B fibronectin (EDB-FN), in the tumor microenvironment for MR molecular imaging of breast cancer. METHOD EDB-FN expression in 4T1 and MDA-MB-231 cancers was analyzed with quantitative real-time PCR and western blot. Primary and metastatic triple negative breast cancer mouse models were developed using 4T1 and MDA-MB-231 cells. Contrast-enhanced MRI was carried out to evaluate the use of ZD2-Gd(HP-DO3A) in detecting 4T1 and MDA-MB-231 primary and metastatic tumors. RESULTS EDB-FN was abundantly expressed in the extracellular matrix (ECM) of both the primary and metastatic TNBC tumors. In T1 -weighted MRI, ZD2-Gd(HP-DO3A) generated superior contrast enhancement in primary TNBC tumors than a nonspecific clinical agent Gd(HP-DO3A), during 30 min after contrast injection. ZD2-Gd(HP-DO3A) also produced a significant increase in contrast-to-noise ratio (CNR) of TNBC metastases, enabling sensitive localization and delineation of metastases that occulted in non-contrast-enhanced or Gd(HP-DO3A)-enhanced MRI. CONCLUSIONS These findings potentiate the use of ZD2-Gd(HP-DO3A) for MR molecular imaging of malignant breast cancers to improve the healthcare of breast cancer patients. Magn Reson Med 79:3135-3143, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zheng Han
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Han Cheng
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jenny G Parvani
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhuxian Zhou
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
70
|
Palacios-Arreola MI, Nava-Castro KE, Río-Araiza VHD, Pérez-Sánchez NY, Morales-Montor J. A single neonatal administration of Bisphenol A induces higher tumour weight associated to changes in tumour microenvironment in the adulthood. Sci Rep 2017; 7:10573. [PMID: 28874690 PMCID: PMC5585249 DOI: 10.1038/s41598-017-10135-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/29/2023] Open
Abstract
BPA is an oestrogenic endocrine disrupting chemical compound. Exposure to BPA in as early as pregnancy leads to lifelong effects. Since endocrine and immune systems interact in a bidirectional manner, endocrine disruption may cause permanent alterations of the immune system, affecting a future anti-tumoral response. Neonate (PND 3) female syngeneic BALB/c mice were exposed to a single dose of 250 µg/kg BPA. Once sexual maturity was reached, a mammary tumour was induced injecting 4T1 cells in situ, these cells are derived from a spontaneous adenocarcinoma in a BALB/c mouse and therefore allows for an immunocompetent recipient. After 25 days of injection, showing no major endocrine alterations, BPA-exposed mice developed larger tumours. Tumour leukocytic infiltrate analysis revealed a higher proportion of regulatory T lymphocytes in the BPA-exposed group. RT-PCR analysis of tumour samples showed a decreased expression of TNF-α and IFN-γ, as well as the M2 macrophage marker Fizz-1 in the BPA-exposed group. Flow cytometry analysis revealed differences in ERα expression by T lymphocytes, macrophages and NK cells, both associated to BPA exposure and tumour development. These findings show a new aspect whereby early life BPA exposure can contribute to breast cancer development and progression by modulating the anti-tumoral immune response.
Collapse
Affiliation(s)
- Margarita Isabel Palacios-Arreola
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico
| | - Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, CP 04510, Ciudad de Mexico, Mexico
| | - Víctor Hugo Del Río-Araiza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico
| | - Nashla Yazmín Pérez-Sánchez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de Mexico, CP, 04510, Mexico.
| |
Collapse
|
71
|
Umansky V, Blattner C, Gebhardt C, Utikal J. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol Immunother 2017; 66:1015-1023. [PMID: 28382399 PMCID: PMC11029643 DOI: 10.1007/s00262-017-1988-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b+Gr1+ immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5+ MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5- counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5+ MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | - Carolin Blattner
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
72
|
Human MSCs promotes colorectal cancer epithelial-mesenchymal transition and progression via CCL5/β-catenin/Slug pathway. Cell Death Dis 2017; 8:e2819. [PMID: 28542126 PMCID: PMC5520690 DOI: 10.1038/cddis.2017.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) extensively interact with cancer cells and other stroma cells in the tumor microenvironment. However, the role of MSCs in colorectal cancer (CRC) progression and metastasis is controversial. This study was designed to identify the role of inflammation-activated-MSCs in CRC development. Our results show that tumor necrosis factor (TNF)-α-preactivated-hMSCs significantly promote the progression of colon cancer cells by enhancing cell proliferation, epithelial–mesenchymal transition, migration, and invasion. TNF-α-primed-hMSCs secrete high level of CCL5, which interacts with its receptor CCR1 expressed in colon cancer cells. Interestingly, the stimulation of colon cancer cell progression by TNF-α-primed hMSCs is associated with the upregulation ofβ-catenin signaling pathway. Blockingβ-catenin pathway significantly decreases the TNF-α-primed-conditioned medium or CCL5-mediated cancer cell progression by decreasing the enhancement of Slug, suggesting that the CCL5/β-catenin/Slug pathway plays a critical role in hMSC-mediated cancer progression. Furthermore,in vivomodel in nude mice confirms the ability of hMSCs to promote the proliferation and progression of colon cancer cells, and the upregulation of CCl5/β-catenin/Slug pathway. Taken together, the present study has demonstrated a novel pathway involving CCl5/CCR1/β-catenin/Slug, via which hMSCs promotes CRC development.
Collapse
|
73
|
Ban Y, Mai J, Li X, Mitchell-Flack M, Zhang T, Zhang L, Chouchane L, Ferrari M, Shen H, Ma X. Targeting Autocrine CCL5-CCR5 Axis Reprograms Immunosuppressive Myeloid Cells and Reinvigorates Antitumor Immunity. Cancer Res 2017; 77:2857-2868. [PMID: 28416485 DOI: 10.1158/0008-5472.can-16-2913] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 08/30/2016] [Accepted: 04/05/2017] [Indexed: 01/21/2023]
Abstract
The tumor-promoting potential of CCL5 has been proposed but remains poorly understood. We demonstrate here that an autocrine CCL5-CCR5 axis is a major regulator of immunosuppressive myeloid cells (IMC) of both monocytic and granulocytic lineages. The absence of the autocrine CCL5 abrogated the generation of granulocytic myeloid-derived suppressor cells and tumor-associated macrophages. In parallel, enhanced maturation of intratumoral neutrophils and macrophages occurred in spite of tumor-derived CCL5. The refractory nature of ccl5-null myeloid precursors to tumor-derived CCL5 was attributable to their persistent lack of membrane-bound CCR5. The changes in the ccl5-null myeloid compartment subsequently resulted in increased tumor-infiltrating cytotoxic CD8+ T cells and decreased regulatory T cells in tumor-draining lymph nodes. An analysis of human triple-negative breast cancer specimens demonstrated an inverse correlation between "immune CCR5" levels and the maturation status of tumor-infiltrating neutrophils as well as 5-year-survival rates. Targeting the host CCL5 in bone marrow via nanoparticle-delivered expression silencing, in combination with the CCR5 inhibitor Maraviroc, resulted in strong reductions of IMC and robust antitumor immunities. Our study suggests that the myeloid CCL5-CCR5 axis is an excellent target for cancer immunotherapy. Cancer Res; 77(11); 2857-68. ©2017 AACR.
Collapse
Affiliation(s)
- Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Junhua Mai
- Department of NanoMedicine, Houston Methodist Research Institute, Houston, Texas
| | - Xin Li
- Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marisa Mitchell-Flack
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Lixing Zhang
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Mauro Ferrari
- Department of NanoMedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Haifa Shen
- Department of NanoMedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York. .,Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
74
|
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia 2016; 17:776-88. [PMID: 26585233 PMCID: PMC4656811 DOI: 10.1016/j.neo.2015.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Solid cancers develop within a supportive microenvironment that promotes tumor formation and growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), we have previously demonstrated that microglia are essential for glioma formation and maintenance. To identify potential tumor-associated microglial factors that support glioma growth (gliomagens), we initiated a comprehensive large-scale discovery effort using optimized RNA-sequencing methods focused specifically on glioma-associated microglia. Candidate microglial gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative real-time polymerase chain reaction as well as by RNA fluorescence in situ hybridization following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, chemokine (C-C motif) ligand 5 (Ccl5) was identified as a chemokine highly expressed in genetically engineered Nf1 mouse optic gliomas relative to nonneoplastic optic nerves. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, treatment with Ccl5 neutralizing antibodies reduced Nf1 mouse optic glioma growth and improved retinal dysfunction in vivo. Collectively, these findings establish Ccl5 as an important microglial growth factor for low-grade glioma maintenance relevant to the development of future stroma-targeted brain tumor therapies.
Collapse
|
75
|
Abstract
The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention.
Collapse
Affiliation(s)
- M Yao
- University of Kansas Medical Center, Kansas City, KS, United States
| | - G Brummer
- University of Kansas Medical Center, Kansas City, KS, United States
| | - D Acevedo
- University of Kansas Medical Center, Kansas City, KS, United States
| | - N Cheng
- University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
76
|
Tanabe Y, Sasaki S, Mukaida N, Baba T. Blockade of the chemokine receptor, CCR5, reduces the growth of orthotopically injected colon cancer cells via limiting cancer-associated fibroblast accumulation. Oncotarget 2016; 7:48335-48345. [PMID: 27340784 PMCID: PMC5217021 DOI: 10.18632/oncotarget.10227] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that cancer-associated fibroblasts (CAFs) accumulate at tumor sites through the interaction between a chemokine, CCL3, and its receptor, CCR5, in the late phase of colitis-associated colon carcinogenesis. Here we examined the effect of a CCR5 antagonist, maraviroc, on tumor growth arising from the orthotopic injection of mouse or human colon cancer cell lines into the cecal wall by focusing on CAFs. Orthotopic injection of either cell line caused tumor formation together with leukocyte infiltration and fibroblast accumulation. Concomitant oral administration of maraviroc reduced tumor formation with few effects on leukocyte infiltration. In contrast, maraviroc reduced the intratumor number of α-smooth muscle actin-positive fibroblasts, which express epidermal growth factor, a crucial growth factor for colon cancer cell growth. These observations suggest that maraviroc or other CCR5 antagonists might act as novel anti-CRC drugs to dampen CAFs, an essential cell component for tumor progression.
Collapse
Affiliation(s)
- Yamato Tanabe
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Soichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
77
|
Gao M, Yao H, Dong Q, Zhang H, Yang Z, Yang Y, Zhu J, Xu M, Xu R. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain. Sci Rep 2016; 6:29955. [PMID: 27417157 PMCID: PMC4945932 DOI: 10.1038/srep29955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023] Open
Abstract
Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Hui Yao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Hongtian Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Zhijun Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Yang Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Jianwei Zhu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ruxiang Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|
78
|
Frediani JN, Fabbri M. Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Mol Cancer 2016; 15:42. [PMID: 27231010 PMCID: PMC4882787 DOI: 10.1186/s12943-016-0525-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging as central players in shaping the biology of the Tumor Microenvironment (TME). They do so both by modulating their expression levels within the different cells of the TME and by being shuttled among different cell populations within exosomes and other extracellular vesicles. This review focuses on the state-of-the-art knowledge of the role of miRNAs in the complexity of the TME and highlights limitations and challenges in the field. A better understanding of the mechanisms of action of these fascinating micro molecules will lead to the development of new therapeutic weapons and most importantly, to an improvement in the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Jamie N Frediani
- Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital, Los Angeles, Los Angeles, CA, USA
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital, Los Angeles, Los Angeles, CA, USA. .,Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,, 4650 Sunset Blvd MS #57, Los Angeles, CA, 90027, USA.
| |
Collapse
|
79
|
García-Mendoza MG, Inman DR, Ponik SM, Jeffery JJ, Sheerar DS, Van Doorn RR, Keely PJ. Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Res 2016; 18:49. [PMID: 27169366 PMCID: PMC4864897 DOI: 10.1186/s13058-016-0703-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/12/2016] [Indexed: 12/27/2022] Open
Abstract
Background High mammographic density has been correlated with a 4-fold to 6-fold increased risk of developing breast cancer, and is associated with increased stromal deposition of extracellular matrix proteins, including collagen I. The molecular and cellular mechanisms responsible for high breast tissue density are not completely understood. Methods We previously described accelerated tumor formation and metastases in a transgenic mouse model of collagen-dense mammary tumors (type I collagen-α1 (Col1α1)tm1Jae and mouse mammary tumor virus - polyoma virus middle T antigen (MMTV-PyVT)) compared to wild-type mice. Using ELISA cytokine arrays and multi-color flow cytometry analysis, we studied cytokine signals and the non-malignant, immune cells in the collagen-dense tumor microenvironment that may promote accelerated tumor progression and metastasis. Results Collagen-dense tumors did not show any alteration in immune cell populations at late stages. The cytokine signals in the mammary tumor microenvironment were clearly different between wild-type and collagen-dense tumors. Cytokines associated with neutrophil signaling, such as granulocyte monocyte-colony stimulated factor (GM-CSF), were increased in collagen-dense tumors. Depleting neutrophils with anti-Ly6G (1A8) significantly reduced the number of tumors, and blocked metastasis in over 80 % of mice with collagen-dense tumors, but did not impact tumor growth or metastasis in wild-type mice. Conclusion Our study suggests that tumor progression in a collagen-dense microenvironment is mechanistically different, with pro-tumor neutrophils, compared to a non-dense microenvironment. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0703-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María G García-Mendoza
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, Madison, WI, USA.,UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA.,Present Address: Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Inman
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, Madison, WI, USA.,UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, Madison, WI, USA.,UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Justin J Jeffery
- UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Dagna S Sheerar
- UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Rachel R Van Doorn
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, Madison, WI, USA
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, Madison, WI, USA. .,UW Carbone Cancer Center, University of Wisconsin - Madison, Madison, WI, USA. .,Wisconsin Institutes of Medical Research, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
80
|
Zhang Y, Luo Y, Qin SL, Mu YF, Qi Y, Yu MH, Zhong M. The clinical impact of ICOS signal in colorectal cancer patients. Oncoimmunology 2016; 5:e1141857. [PMID: 27467961 PMCID: PMC4910717 DOI: 10.1080/2162402x.2016.1141857] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 10/26/2022] Open
Abstract
The inducible T-cell co-stimulator (ICOS) belongs to the B7-CD28 immunoglobulin superfamily, which is currently the subject of intense study due to great successes gained in treatment of different malignancies by disrupting their family members. However, the role of ICOS played in colorectal cancer (CRC) remains poorly understood. A tissue microarray (n = 310) was stained with the ICOS specific antibody and ICOS expression is decreased in patients with either lymphatic or distant metastasis and inversely associated with CEA level and TNM stage of CRC patients. Importantly, high ICOS expression is significantly correlated with overall survival (OS) of CRC patients (n = 230, p < 0.001), and ICOS expression is also proved to be an independent prognostic factor by multivariate analysis. Surgical excised CRC specimens (n = 26) were enzymatically digested to get the tumor-infiltrating leukocytes and ICOS is mainly expressed on CD4(+) T cells and its ligand ICOSL is detected on macrophages and tumor cells. ICOS expression level is associated with increased cytotoxic T lymphocyte antigen (CTLA)-4 (p < 0.001) and programmed death (PD-1) (p = 0.005) expression on T cells and more infiltrated CD8(+) T cells (p < 0.001). Interestingly, ICOS(+)CD4(+) cells isolated from tumor tissues have high T-bet and interferon (IFN)γ expression, the characteristics of Th1 cells, compared to ICOS(-)CD4(+) cells. In addition, the correlation between the percentage of ICOS(+)CD4(+) T cells in tumor tissue and peripheral blood was detected. Conclusively, expression of ICOS is associated with improved survival in CRC and percentage of ICOS(+)CD4(+) cells acting as Th1 cells in either primary tumor tissue or peripheral blood may be a clinical biomarker for good prognosis of CRC patients.
Collapse
Affiliation(s)
- Yan Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University , Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, P.R., China
| | - Shao-Lan Qin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, P.R., China
| | - Yi-Fei Mu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, P.R., China
| | - Yang Qi
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, P.R., China
| | - Min-Hao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, P.R., China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, P.R., China
| |
Collapse
|
81
|
Long H, Xiang T, Qi W, Huang J, Chen J, He L, Liang Z, Guo B, Li Y, Xie R, Zhu B. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget 2016; 6:5846-59. [PMID: 25788271 PMCID: PMC4467406 DOI: 10.18632/oncotarget.3462] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs, also called cancer stem-like cells, CSLCs) can function as "seed cells" for tumor recurrence and metastasis. Here, we report that, in the presence of CD133+ ovarian CSLCs, CD133- non-CSLCs can undergo an epithelial-mesenchymal transition (EMT)-like process and display enhanced metastatic capacity in vitro and in vivo. Highly elevated expression of chemokine (C-C motif) ligand 5 (CCL5) and its receptors chemokine (C-C motif) receptor (CCR) 1/3/5 are observed in clinical and murine metastatic tumor tissues from epithelial ovarian carcinomas. Mechanistically, paracrine CCL5 from ovarian CSLCs activates the NF-κB signaling pathway in ovarian non-CSLCs via binding CCR1/3/5, thereby inducing EMT and tumor invasion. Taken together, our results redefine the metastatic potential of non-stem cancer cells and provide evidence that targeting the CCL5:CCR1/3/5-NF-κB pathway could be an effective strategy to prevent ovarian cancer metastasis.
Collapse
Affiliation(s)
- Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tong Xiang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Qi
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junying Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Luhang He
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bo Guo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rongkai Xie
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| |
Collapse
|
82
|
Hsu YL, Hsieh CJ, Tsai EM, Hung JY, Chang WA, Hou MF, Kuo PL. Didymin reverses phthalate ester-associated breast cancer aggravation in the breast cancer tumor microenvironment. Oncol Lett 2015; 11:1035-1042. [PMID: 26893687 DOI: 10.3892/ol.2015.4008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
The present study demonstrated two novel findings. To the best of our knowledge, it is the first study to demonstrate that regulated upon activation, normal T-cell expressed and secreted (RANTES), produced by breast tumor-associated monocyte-derived dendritic cells (TADCs) following breast cancer cell exposure to phthalate esters, may contribute to the progression of cancer via enhancement of cancer cell proliferation, migration and invasion. Furthermore, the present study revealed that didymin, a dietary flavonoid glycoside present in citrus fruits, was able to reverse phthalate ester-mediated breast cancer aggravation. MDA-MB-231 cells were treated with butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP) or di-2-ethylhexyl phthalate (DEHP). Subsequently, the conditioned medium (CM) was harvested and cultured with monocyte-derived dendritic cells (mdDCs). Cultures of MDA-MB-231 cells with the conditioned medium of BBP-, DBP- or DEHP-MDA-MB-231 tumor-associated mdDCs (BBP-, DBP- or DEHP-MDA-TADC-CM) demonstrated enhanced proliferation, migration and invasion. Exposure of the MDA-MB-231 cells to DBP induced the MDA-TADCs to produce the inflammatory cytokine RANTES, which subsequently induced MDA-MB-231 cell proliferation, migration and invasion. Depleting RANTES reversed the effects of DBP-MDA-TADC-mediated MDA-MB-231 cell proliferation, migration and invasion. In addition, didymin was observed to suppress phthalate-mediated breast cancer cell proliferation, migration and invasion. The present study suggested that didymin was capable of preventing phthalate ester-associated cancer aggravation.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chia-Jung Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Department of Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.; Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Feng Hou
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| |
Collapse
|
83
|
Zhang Q, Qin J, Zhong L, Gong L, Zhang B, Zhang Y, Gao WQ. CCL5-Mediated Th2 Immune Polarization Promotes Metastasis in Luminal Breast Cancer. Cancer Res 2015; 75:4312-21. [PMID: 26249173 DOI: 10.1158/0008-5472.can-14-3590] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
Abstract
The tumor-promoting chemokine CCL5 has been implicated in malignant transformation of breast epithelial cells, with studies to date focusing mainly on basal-type breast cancers. In this study, we investigated the consequences of CCL5 deletion in the MMTV-PyMT transgenic mouse model of luminal breast cancer. In this model, primary tumor burden and pulmonary metastases were reduced significantly in CCL5-deficient subjects, an effect found to be associated with a deficit of Th2 (IL4⁺CD4⁺ T) cells. Mechanistic investigations revealed that CCL5 activates CCR3, a highly expressed chemokine receptor on CD4⁺ T cells, and also boosts Gfi1 expression to promote the differentiation of Th2 cells, which enhance the prometastatic activity of tumor-associated myeloid cells. Clinically, polarization toward this immunosuppressive Th2 phenotype was also evident in patients with advanced luminal breast cancer. Thus, our findings showed that CCL5/CCR3 signaling promotes metastasis by inducing Th2 polarization of CD4⁺ T cells, with implications for prognosis and immunotherapy of luminal breast cancer.
Collapse
Affiliation(s)
- Qianfei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jilong Qin
- Department of Pathology, The First Affiliate Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Lei Gong
- Yuhuangding Hospital, Yantai, China
| | - Bing Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. Collarative Innovation Center of Systems Biomedicine, Sanghai, China.
| |
Collapse
|
84
|
Kan JY, Wu DC, Yu FJ, Wu CY, Ho YW, Chiu YJ, Jian SF, Hung JY, Wang JY, Kuo PL. Chemokine (C-C Motif) Ligand 5 is Involved in Tumor-Associated Dendritic Cell-Mediated Colon Cancer Progression Through Non-Coding RNA MALAT-1. J Cell Physiol 2015; 230:1883-1894. [PMID: 25546229 DOI: 10.1002/jcp.24918] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Tumor micro-environment is a critical factor in the development of cancer. The aim of this study was to investigate the inflammatory cytokines secreted by tumor-associated dendritic cells (TADCs) that contribute to enhanced migration, invasion, and epithelial-to-mesenchymal transition (EMT) in colon cancer. The administration of recombinant human chemokine (C-C motif) ligand 5 (CCL5), which is largely expressed by colon cancer surrounding TADCs, mimicked the stimulation of TADC-conditioned medium on migration, invasion, and EMT in colon cancer cells. Blocking CCL5 by neutralizing antibodies or siRNA transfection diminished the promotion of cancer progression by TADCs. Tumor-infiltrating CD11c(+) DCs in human colon cancer specimens were shown to produce CCL5. The stimulation of colon cancer progression by TADC-derived CCL5 was associated with the up-regulation of non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), which subsequently increased the expression of Snail. Blocking MALAT-1 significantly decreased the TADC-conditioned medium and CCL5-mediated migration and invasion by decreasing the enhancement of Snail, suggesting that the MALAT-1/Snail pathway plays a critical role in TADC-mediated cancer progression. In conclusion, the inhibition of CCL5 or CCL5-related signaling may be an attractive therapeutic target in colon cancer patients.
Collapse
Affiliation(s)
- Jung-Yu Kan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Allen MD, Jones LJ. The role of inflammation in progression of breast cancer: Friend or foe? (Review). Int J Oncol 2015; 47:797-805. [PMID: 26165857 DOI: 10.3892/ijo.2015.3075] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022] Open
Abstract
There is a growing interest in the role of the microenvironment in cancer, however, it has been known for over one hundred years that the immune system plays a prominent role in cancer. Recent decades have revealed more and more data on how our own host response to cancer cells can help or hinder progression of the disease. Despite all this work it is surprising how little is known about the role of the immune system in human breast cancer development, as compared to other cancers. Recent successes of PD-1 blockade in treating multiple cancers, and new developments with other immune targets such as CTLA-4 and CSF-1 inhibitors, highlight that it is becoming ever more important that we understand the complexity of the immune and inflammatory systems in the development and progression of breast cancer. With this knowledge it may be possible to not only target therapy but also more accurately predict those patients that truly need it. This review summarises some of the most significant findings for the role of the immune system and inflammatory response in breast cancer progression. Focusing on how the inflammatory microenvironment may be involved in the progression of pre-invasive ductal carcinoma in situ to invasive breast cancer. It will also discuss the use of immune markers as diagnostic and prognostic tools and summarise the state of the art of immune-therapeutics in breast cancer treatment.
Collapse
Affiliation(s)
- Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, UK
| | - Louise J Jones
- Centre for Tumour Biology, Barts Cancer Institute, A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, UK
| |
Collapse
|
86
|
Zhao W, Xu Y, Xu J, Wu D, Zhao B, Yin Z, Wang X. Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially. Int Immunopharmacol 2015; 26:314-21. [DOI: 10.1016/j.intimp.2015.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/27/2015] [Accepted: 04/03/2015] [Indexed: 01/04/2023]
|
87
|
Gatti L, Sevko A, De Cesare M, Arrighetti N, Manenti G, Ciusani E, Verderio P, Ciniselli CM, Cominetti D, Carenini N, Corna E, Zaffaroni N, Rodolfo M, Rivoltini L, Umansky V, Perego P. Histone deacetylase inhibitor-temozolomide co-treatment inhibits melanoma growth through suppression of Chemokine (C-C motif) ligand 2-driven signals. Oncotarget 2015; 5:4516-28. [PMID: 24980831 PMCID: PMC4147342 DOI: 10.18632/oncotarget.2065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Target-specific agents used in melanoma are not curative, and chemokines are being implicated in drug-resistance to target-specific agents. Thus, the use of conventional agents in rationale combinations may result in optimization of therapy. Because histone deacetylases participate in tumor development and progression, the combination of the pan-inhibitor SAHA and temozolomide might provide a therapeutic advantage. Here, we show synergism between the two drugs in mutant BRAF cell lines, in association with decreased phosphorylation of cell survival proteins (e.g., C-Jun-N-terminal-kinase, JNK). In the spontaneous ret transgenic mouse melanoma model, combination therapy produced a significant disease onset delay and down-regulation of Chemokine (C-C motif) ligand 2 (CCL2), JNK, and of Myeloid-derived suppressor cell recruitment. Co-incubation with a CCL2-blocking-antibody enhanced in vitro cell sensitivity to temozolomide. Conversely, recombinant CCL2 activated JNK in human tumor melanoma cells. In keeping with these results, the combination of a JNK-inhibitor with temozolomide was synergistic. By showing that down-regulation of CCL2-driven signals by SAHA and temozolomide via JNK contributes to reduce melanoma growth, we provide a rationale for the therapeutic advantage of the drug combination. This combination strategy may be effective because of interference both with tumor cell and tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gatti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. These authors contributed equally to this work
| | - Alexandra Sevko
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Heidelberg, Germany. These authors contributed equally to this work
| | - Michelandrea De Cesare
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Manenti
- Genetic Epidemiology and Pharmacogenomics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Paolo Verderio
- Medical Statistics, Biometry and Bioinformatics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M Ciniselli
- Medical Statistics, Biometry and Bioinformatics Unit,Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Denis Cominetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nives Carenini
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Corna
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Immunotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Heidelberg, Germany. These authors contributed equally to this work
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. These authors contributed equally to this work
| |
Collapse
|
88
|
Yao T, Lu W, Zhu J, Jin X, Ma G, Wang Y, Meng S, Zhang Y, Li Y, Shen C. Role of CD11b+Gr-1+ myeloid cells in AGEs-induced myocardial injury in a mice model of acute myocardial infarction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3238-3249. [PMID: 26045847 PMCID: PMC4440156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
AIMS Polymorph neutrophils are the predominant inflammatory cells and play a crucial role on the pathogenesis of myocardial injury at the early stage of acute myocardial infarction (AMI). However, the precursors and the differentiation of neutrophils are not fully understood. Here we explored the role of CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) on myocardial injury in the absence and presence of advanced glycation end-products (AGEs) in a mice model of AMI. METHODS AND RESULTS Male C57BL/6J mice were selected. Fluorescent actived cell sortor (FACS) data demonstrated significantly increased CD11b+Gr-1+ MDSCs both in peripheral blood circulation and in the ischemic myocardium at 24 hours post AMI. Quantitative-real-time PCR results also revealed significantly upregulated CD11b and Ly6G mRNA expression in the ischemic myocardium. AGEs treatment further aggravated these changes in AMI mice but not in sham mice. Moreover, AGEs treatment also significantly increased infarction size and enhanced cardiomyocyte apoptosis. The mRNA expression of pro-inflammatory cytokine IL-6 and iNOS2 was also significantly increased in AMI + AGEs group compared to AMI group. CONCLUSION These data suggest enhanced infiltration of MDSCs by AGEs contributes to aggravated myocardial injury in AMI mice, which might be one of the mechanisms responsible for severer myocardial injury in AMI patients complicating diabetes.
Collapse
Affiliation(s)
- Tongqing Yao
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| | - Wenbin Lu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast89#, Dingjiaqiao Road, Nanjing 210009, China
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast89#, Dingjiaqiao Road, Nanjing 210009, China
| | - Xian Jin
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast89#, Dingjiaqiao Road, Nanjing 210009, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| | - Shu Meng
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| | - Chengxing Shen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
89
|
Mechanisms of tumor-induced T cell immune suppression and therapeutics to counter those effects. Arch Pharm Res 2015; 38:1415-33. [PMID: 25634101 DOI: 10.1007/s12272-015-0566-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/18/2015] [Indexed: 02/07/2023]
Abstract
The theory of tumor immune surveillance states that the host immune system has means to recognize transformed cells and kills them to prevent growth and spreading of those cells. Nevertheless, cancer cells often survive and outgrow to form a tumor mass and metastasize to other tissues or organs. During the stage of immune evasion of tumor, various changes takes place both in the tumor cells and the tumor microenvironment to divert the anti-tumor immune responses by T cells and natural killer cells. Advances in the basic science in tumor immunology have led to development of many creative strategies to overcome the immune suppression imposed during tumor progression, a few of which have been approved for the treatment of cancer patients in the clinic. In the first part of this review, mechanisms of tumor-induced T cell immune suppression resulting in immune evasion of tumors will be discussed. In the second part, emerging methods to harness the immune responses against tumors will be introduced.
Collapse
|
90
|
Chafe SC, Lou Y, Sceneay J, Vallejo M, Hamilton MJ, McDonald PC, Bennewith KL, Möller A, Dedhar S. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res 2015; 75:996-1008. [PMID: 25623234 DOI: 10.1158/0008-5472.can-14-3000] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mobilization of bone marrow-derived cells (BMDC) to distant tissues before the arrival of disseminated tumor cells has been shown preclinically to facilitate metastasis through the establishment of metastatic niches. Primary tumor hypoxia has been demonstrated to play a pivotal role in the production of chemokines and cytokines responsible for the mobilization of these BMDCs, especially in breast cancer. Carbonic anhydrase IX (CAIX, CA9) expression is highly upregulated in hypoxic breast cancer cells through the action of hypoxia-inducible factor-1 (HIF1). Preclinical evidence has demonstrated that CAIX is required for breast tumor growth and metastasis; however, the mechanism by which CAIX exerts its prometastatic function is not well understood. Here, we show that CAIX is indispensable for the production of granulocyte colony-stimulating factor (G-CSF) by hypoxic breast cancer cells and tumors in an orthotopic model. Furthermore, we demonstrate that tumor-expressed CAIX is required for the G-CSF-driven mobilization of granulocytic myeloid-derived suppressor cells (MDSC) to the breast cancer lung metastatic niche. We also determined that CAIX expression is required for the activation of NF-κB in hypoxic breast cancer cells and constitutive activation of the NF-κB pathway in CAIX-depleted cells restored G-CSF secretion. Together, these findings identify a novel hypoxia-induced CAIX-NF-κB-G-CSF cellular signaling axis culminating in the mobilization of granulocytic MDSCs to the breast cancer lung metastatic niche.
Collapse
Affiliation(s)
- Shawn C Chafe
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Yuanmei Lou
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jaclyn Sceneay
- Tumour Microenvironment Laboratory, QIMR Berghofer, Herston, Queensland, Australia
| | - Marylou Vallejo
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Melisa J Hamilton
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer, Herston, Queensland, Australia
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
91
|
Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, Cimmino A, Fabbri M. microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Rev Mol Diagn 2015; 14:565-74. [PMID: 24844135 DOI: 10.1586/14737159.2014.922879] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miRNAs are small noncoding RNAs with gene regulatory functions, frequently dysregulated in human cancers. Specific signatures of differentially expressed miRNAs can be used in the diagnosis of cancer and in some cases harbor prognostic implications. The biology of cancer is dictated not only by cancer cells but also by the surrounding tumor microenvironment. In particular, the role of miRNAs within the tumor microenvironment is emerging as of paramount importance. This review will focus on the current knowledge of the role of miRNAs and both cellular and stromal components of the tumor microenvironment. We will also discuss more recent findings, showing that miRNAs can be found inside of exosomes and mediate the cross-talk between cancer cells and surrounding cells, leading to the discovery of new fascinating molecular mechanisms leading to a better understanding of the cancer 'niche' and how these noncoding RNAs can become very promising diagnostic molecules.
Collapse
Affiliation(s)
- Kishore B Challagundla
- Departments of Pediatrics and Molecular Microbiology & Immunology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Saban Research Institute, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Khalid A, Wolfram J, Mu C, Mai J, Yang Z, Wang F, Zhao Y, Ferrari M, Ma X, Yang Y, Shen H. Recent Advances in Discovering the Role of CCL5 in Metastatic Breast Cancer. Mini Rev Med Chem 2015; 15:1063-72. [PMID: 26420723 PMCID: PMC4968951 DOI: 10.2174/138955751513150923094709] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
A variety of therapeutic strategies are currently under investigation to inhibit factors that promote tumor invasion, as metastasis is the most common cause of mortality for cancer patients. Notably, considerable emphasis has been placed on studying metastasis as a dynamic process that is highly dependent on the tumor microenvironment. In regards to breast cancer, chemokine C-C motif ligand 5 (CCL5), which is produced by tumor-associated stromal cells, has been established as an important contributor to metastatic disease. This review summarizes recent discoveries uncovering the role of this chemokine in breast cancer metastasis, including conditions that increase the generation of CCL5 and effects induced by this signaling pathway. In particular, CCL-5-mediated cancer cell migration and invasion are discussed in the context of intertwined feedback loops between breast cancer cells and stromal cells. Moreover, the potential use of CCL5 and its receptor chemokine C-C motif receptor 5 (CCR5) as targets for preventing breast cancer metastasis is also reviewed.
Collapse
Affiliation(s)
- Ayesha Khalid
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Medical Program, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
| | - Chaofeng Mu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zhizhou Yang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Feng Wang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072, People’s Republic of China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100190, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Yong Yang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
93
|
Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie DA, Gillanders WE. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest 2014; 124:5411-23. [PMID: 25365225 DOI: 10.1172/jci75661] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 09/30/2014] [Indexed: 12/25/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are a heterogeneous set of cancers that are defined by the absence of hormone receptor expression and HER2 amplification. Here, we found that inducible IκB kinase-related (IKK-related) kinase IKBKE expression and JAK/STAT pathway activation compose a cytokine signaling network in the immune-activated subset of TNBC. We found that treatment of cultured IKBKE-driven breast cancer cells with CYT387, a potent inhibitor of TBK1/IKBKE and JAK signaling, impairs proliferation, while inhibition of JAK alone does not. CYT387 treatment inhibited activation of both NF-κB and STAT and disrupted expression of the protumorigenic cytokines CCL5 and IL-6 in these IKBKE-driven breast cancer cells. Moreover, in 3D culture models, the addition of CCL5 and IL-6 to the media not only promoted tumor spheroid dispersal but also stimulated proliferation and migration of endothelial cells. Interruption of cytokine signaling by CYT387 in vivo impaired the growth of an IKBKE-driven TNBC cell line and patient-derived xenografts (PDXs). A combination of CYT387 therapy with a MEK inhibitor was particularly effective, abrogating tumor growth and angiogenesis in an aggressive PDX model of TNBC. Together, these findings reveal that IKBKE-associated cytokine signaling promotes tumorigenicity of immune-driven TNBC and identify a potential therapeutic strategy using clinically available compounds.
Collapse
|
94
|
Abstract
Standard treatment options for breast cancer include surgery, chemotherapy, radiation, and targeted therapies, such as adjuvant hormonal therapy and monoclonal antibodies. Recently, the recognition that chronic inflammation in the tumor microenvironment promotes tumor growth and survival during different stages of breast cancer development has led to the development of novel immunotherapies. Several immunotherapeutic strategies have been studied both preclinically and clinically and already have been shown to enhance the efficacy of conventional treatment modalities. Therefore, therapies targeting the immune system may represent a promising next-generation approach for the treatment of breast cancers. This review will discuss recent findings that elucidate the roles of suppressive immune cells and proinflammatory cytokines and chemokines in the tumor-promoting microenvironment, and the most current immunotherapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System/Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
95
|
Ash S, Valchev G, Looney M, Ni Mhathuna A, Crowley P, Gallagher H, Buggy D. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane. Br J Anaesth 2014; 113 Suppl 1:i14-21. [DOI: 10.1093/bja/aeu191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
96
|
Boyle ST, Kochetkova M. Breast cancer stem cells and the immune system: promotion, evasion and therapy. J Mammary Gland Biol Neoplasia 2014; 19:203-11. [PMID: 24997735 DOI: 10.1007/s10911-014-9323-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells are believed to be a subset of heterogeneous tumour cells responsible for tumour initiation, growth, local invasion, and metastasis. In breast cancer, numerous factors have been implicated in regulation of cancer stem cells, but there is still a paucity of information regarding precise molecular and cellular mechanisms guiding their pathobiology. Components of both the adaptive and the innate immune system have been shown to play a crucial role in supporting breast cancer growth and spread, and recently some immune mediators, both molecules and cells, have been reported to influence breast cancer stem cell biology. This review summarises a small, pioneering body of evidence for the potentially important function of the "immuniche" in maintaining and supporting breast cancer stem cells.
Collapse
Affiliation(s)
- Sarah T Boyle
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
97
|
Liu Q, Tan Q, Zheng Y, Chen K, Qian C, Li N, Wang Q, Cao X. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation. J Biol Chem 2014; 289:11522-11535. [PMID: 24627480 DOI: 10.1074/jbc.m113.525014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.
Collapse
Affiliation(s)
- Qiuyan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China,.
| | - Qinchun Tan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and
| | - Yuanyuan Zheng
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Kun Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and
| | - Cheng Qian
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China,; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China, and; National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
98
|
The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014; 2014:292376. [PMID: 24523569 PMCID: PMC3910068 DOI: 10.1155/2014/292376] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Until recently, inflammatory chemokines were viewed mainly as indispensable “gate keepers” of immunity and inflammation. However, updated research indicates that cancer cells subvert the normal chemokine system and these molecules and their receptors become important constituents of the tumor microenvironment with very different ways to exert tumor-promoting roles. The CCR5 and the CCL5 ligand have been detected in some hematological malignancies, lymphomas, and a great number of solid tumors, but extensive studies on the role of the CCL5/CCR axis were performed only in a limited number of cancers. This review summarizes updated information on the role of CCL5 and its receptor CCR5 in cancer cell proliferation, metastasis, and the formation of an immunosuppressive microenvironment and highlights the development of newer therapeutic strategies aimed to inhibit the binding of CCL5 to CCR5, to inhibit CCL5 secretion, or to inhibit the interactions among tumor cells and the microenvironment leading to CCL5 secretion.
Collapse
|
99
|
The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 2013; 352:36-53. [PMID: 24141062 DOI: 10.1016/j.canlet.2013.10.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
Abstract
Chemokines and their receptors regulate the trafficking of leukocytes in hematopoiesis and inflammation, and thus are fundamental to the immune integrity of the host. In parallel, members of the chemokine system exert a large variety of functions that dictate processes of cancer development and progression. Chemokines can act as pro-tumoral or anti-tumoral regulators of malignancy by affecting cells of the tumor microenvironment (leukocytes, endothelial cells, fibroblasts) and the tumor cells themselves (migration, invasion, proliferation, resistance to chemotherapy). Several of the chemokines are generally skewed towards the cancer-promoting direction, including primarily the CCR5-CCL5 (RANTES) and the CXCR4-CXCL12 (SDF-1) axes. This review provides a general view of chemokines and chemokine receptors as regulators of malignancy, describing their multi-faceted activities in cancer. The tumor-promoting activities of the CCR5-CCL5 and CXCR4-CXCL12 pathways are enlightened, emphasizing their potential use as targets for personalized therapy. Indeed, novel blockers of chemokines and their receptors are constantly emerging, and two chemokine receptor inhibitors were recently approved for clinical use: Maraviroc for CCR5 and Plerixafor for CXCR4. The review addresses ongoing pre-clinical and clinical trials using these modalities and others in cancer. Then, challenges and opportunities of personalized therapy directed against chemokines and their receptors in malignancy are discussed, demonstrating that such novel personalized cancer therapies hold many challenges, but also offer hope for cancer patients.
Collapse
|
100
|
Chou J, Shahi P, Werb Z. microRNA-mediated regulation of the tumor microenvironment. Cell Cycle 2013; 12:3262-71. [PMID: 24036551 DOI: 10.4161/cc.26087] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment includes cells such as fibroblasts, immune cells, endothelial cells, as well as extracellular matrix (ECM), proteases, and cytokines. Together, these components participate in a complex crosstalk with neoplastic tumor cells that affects growth, angiogenesis, and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs involved in post-transcriptional regulation of gene expression and have recently emerged as important players involved in regulating multiple aspects of cancer biology and the tumor microenvironment. Differential miRNA expression in both the epithelial and stromal compartments of tumors compared with normal tissue suggests that miRNAs are important drivers of tumorigenesis and metastasis. This review article summarizes our current understanding of the diverse roles of miRNAs involved in tumor microenvironment regulation and underscores the importance of miRNAs within multiple cell types that contribute to the hallmarks of cancer.
Collapse
Affiliation(s)
- Jonathan Chou
- Department of Anatomy; University of California, San Francisco; San Francisco, CA USA; Biomedical Sciences Program; University of California, San Francisco; San Francisco, CA USA
| | | | | |
Collapse
|