51
|
Pascucci B, D'Errico M, Parlanti E, Giovannini S, Dogliotti E. Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating. BIOCHEMISTRY (MOSCOW) 2011; 76:4-15. [PMID: 21568835 DOI: 10.1134/s0006297911010032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.
Collapse
Affiliation(s)
- B Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy.
| | | | | | | | | |
Collapse
|
52
|
Liu S, Yan SJ, Lee YF, Liu NC, Ting HJ, Li G, Wu Q, Chen LM, Chang C. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. J Biol Chem 2011; 286:38103-38108. [PMID: 21918225 DOI: 10.1074/jbc.m111.259523] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV irradiation is one of the major external insults to cells and can cause skin aging and cancer. In response to UV light-induced DNA damage, the nucleotide excision repair (NER) pathways are activated to remove DNA lesions. We report here that testicular nuclear receptor 4 (TR4), a member of the nuclear receptor family, modulates DNA repair specifically through the transcription-coupled (TC) NER pathway but not the global genomic NER pathway. The level of Cockayne syndrome B protein (CSB), a member of the TC-NER pathway, is 10-fold reduced in TR4-deficient mouse tissues, and TR4 directly regulates CSB at the transcriptional level. Moreover, restored CSB expression rescues UV hypersensitivity of TR4-deficient cells. Together, these results indicate that TR4 modulates UV sensitivity by promoting the TC-NER DNA repair pathway through transcriptional regulation of CSB. These results may lead to the development of new treatments for UV light-sensitive syndromes, skin cancer, and aging.
Collapse
Affiliation(s)
- Su Liu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Shian-Jang Yan
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Yi-Fen Lee
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Ning-Chun Liu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Huei-Ju Ting
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Qiao Wu
- Key Lab of the Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Min Chen
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, New York 14642; Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan.
| |
Collapse
|
53
|
Lake RJ, Basheer A, Fan HY. Reciprocally regulated chromatin association of Cockayne syndrome protein B and p53 protein. J Biol Chem 2011; 286:34951-8. [PMID: 21852235 DOI: 10.1074/jbc.m111.252643] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Cockayne syndrome complementation group B (CSB) protein is an ATP-dependent chromatin remodeler with an essential function in transcription-coupled DNA repair, and mutations in the CSB gene are associated with Cockayne syndrome. The p53 tumor suppressor has been known to interact with CSB, and both proteins have been implicated in overlapping biological processes, such as DNA repair and aging. The significance of the interaction between CSB and p53 has remained unclear, however. Here, we show that the chromatin association of CSB and p53 is inversely related. Using in vitro binding and chromatin immunoprecipitation approaches, we demonstrate that CSB facilitates the sequence-independent association of p53 with chromatin when p53 concentrations are low and that this is achieved by the interaction of CSB with the C-terminal region of p53. Remarkably, p53 prevents CSB from binding to nucleosomes when p53 concentrations are elevated. Examining the enzymatic properties of CSB revealed that p53 excludes CSB from nucleosomes by occluding a nucleosome interaction surface on CSB. Together, our results suggest that the reciprocal regulation of chromatin access by CSB and p53 could be part of a mechanism by which these two proteins coordinate their activities to regulate DNA repair, cell survival, and aging.
Collapse
Affiliation(s)
- Robert J Lake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145, USA
| | | | | |
Collapse
|
54
|
Hayashi M, Miwa-Saito N, Tanuma N, Kubota M. Brain vascular changes in Cockayne syndrome. Neuropathology 2011; 32:113-7. [DOI: 10.1111/j.1440-1789.2011.01241.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, Mazurier F. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol 2011; 131:1793-805. [PMID: 21633368 DOI: 10.1038/jid.2011.141] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Besides lung, postnatal human epidermis is the only epithelium in direct contact with atmospheric oxygen. Skin epidermal oxygenation occurs mostly through atmospheric oxygen rather than tissue vasculature, resulting in a mildly hypoxic microenvironment that favors increased expression of hypoxia-inducible factor-1α (HIF-1α). Considering the wide spectrum of biological processes, such as angiogenesis, inflammation, bioenergetics, proliferation, motility, and apoptosis, that are regulated by this transcription factor, its high expression level in the epidermis might be important to HIF-1α in skin physiology and pathophysiology. Here, we review the role of HIF-1α in cutaneous angiogenesis, skin tumorigenesis, and several skin disorders.
Collapse
|
56
|
Sermeus A, Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2011; 2:e164. [PMID: 21614094 PMCID: PMC3122125 DOI: 10.1038/cddis.2011.48] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/17/2022]
Abstract
When cells sense a decrease in oxygen availability (hypoxia), they develop adaptive responses in order to sustain this condition and survive. If hypoxia lasts too long or is too severe, the cells eventually die. Hypoxia is also known to modulate the p53 pathway, in a manner dependent or not of HIF-1 (hypoxia-inducible factor-1), the main transcription factor activated by hypoxia. The p53 protein is a transcription factor, which is rapidly stabilised by cellular stresses and which has a major role in the cell responses to these stresses. The aim of this review is to compile what has been reported until now about the interconnection between these two important pathways. Indeed, according to the cell line, the severity and the duration of hypoxia, oxygen deficiency influences very differently p53 protein level and activity. Conversely, p53 is also described to affect HIF-1α stability, one of the two subunits of HIF-1, and HIF-1 activity. The direct and indirect interactions between HIF-1α and p53 are described as well as the involvement in this complex network of their respective ubiquitin ligases von Hippel Lindau protein and murine double minute 2. Finally, the synergistic or antagonistic effects of p53 and HIF-1 on some important cellular pathways are discussed.
Collapse
Affiliation(s)
- A Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur–FUNDP, Namur, Belgium
| | - C Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur–FUNDP, Namur, Belgium
| |
Collapse
|
57
|
Su Y, Meador JA, Calaf GM, DeSantis LP, Zhao Y, Bohr VA, Balajee AS. Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res 2010; 70:9207-17. [PMID: 21045146 PMCID: PMC3058916 DOI: 10.1158/0008-5472.can-10-1743] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer cell lines. Increased RecQL4 expression was also detected in human prostate tumor tissues as a function of tumor grade with the highest expression level in metastatic tumor samples, suggesting that RecQL4 may be a potential prognostic factor for advanced stage of prostate cancer. Transient and stable suppression of RecQL4 by small interfering RNA and short hairpin RNA vectors drastically reduced the growth and survival of metastatic prostate cancer cells, indicating that RecQL4 is a prosurvival factor for prostate cancer cells. RecQL4 suppression led to increased poly(ADP-ribose) polymerase (PARP) synthesis and RecQL4-suppressed prostate cancer cells underwent an extensive apoptotic death in a PARP-1-dependent manner. Most notably, RecQL4 knockdown in metastatic prostate cancer cells drastically reduced their cell invasiveness in vitro and tumorigenicity in vivo, showing that RecQL4 is essential for prostate cancer promotion. Observation of a direct interaction of retinoblastoma (Rb) and E2F1 proteins with RecQL4 promoter suggests that Rb-E2F1 pathway may regulate RecQL4 expression. Collectively, our study shows that RecQL4 is an essential factor for prostate carcinogenesis.
Collapse
Affiliation(s)
- Yanrong Su
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jarah A. Meador
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria M. Calaf
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Yongliang Zhao
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600, Nathan Shock Drive, Baltimore, MD21224, USA
| | - Adayabalam S. Balajee
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
58
|
Gray LT, Weiner AM. Ubiquitin recognition by the Cockayne syndrome group B protein: binding will set you free. Mol Cell 2010; 38:621-2. [PMID: 20541993 DOI: 10.1016/j.molcel.2010.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) requires the coordinated efforts of many proteins. In this issue of Molecular Cell, Anindya et al. (2010) show that the proteins assemble at the site of DNA damage but cannot begin repair until the Cockayne syndrome group B protein (CSB) binds ubiquitin.
Collapse
Affiliation(s)
- Lucas T Gray
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
59
|
Laugel V, Dalloz C, Durand M, Sauvanaud F, Kristensen U, Vincent MC, Pasquier L, Odent S, Cormier-Daire V, Gener B, Tobias ES, Tolmie JL, Martin-Coignard D, Drouin-Garraud V, Heron D, Journel H, Raffo E, Vigneron J, Lyonnet S, Murday V, Gubser-Mercati D, Funalot B, Brueton L, Sanchez Del Pozo J, Muñoz E, Gennery AR, Salih M, Noruzinia M, Prescott K, Ramos L, Stark Z, Fieggen K, Chabrol B, Sarda P, Edery P, Bloch-Zupan A, Fawcett H, Pham D, Egly JM, Lehmann AR, Sarasin A, Dollfus H. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 2010; 31:113-26. [PMID: 19894250 DOI: 10.1002/humu.21154] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/).
Collapse
Affiliation(s)
- V Laugel
- Laboratory of Medical Genetics, University of Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
During the course of tumorigenesis, cells acquire a number of alterations that contribute to the acquisition of the malignant phenotype, allowing them to survive and flourish in increasingly hostile environments. Cancer cells can be characterized by perturbations in the control of cell proliferation and growth, resistance to death, and alterations in their interactions with the microenvironment. Underpinning many of these changes are shifts in metabolism that allow cancer cells to use alternative pathways for energy production and building the macromolecules necessary for growth, as well as regulating the generation of signaling molecules such as reactive oxygen species (ROS). In the past few years, it became clear that p53, the most studied, if not most important, tumor suppressor protein, can also directly control metabolic traits of cells.
Collapse
Affiliation(s)
- Eyal Gottlieb
- The Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | | |
Collapse
|
61
|
Ruas JL, Berchner-Pfannschmidt U, Malik S, Gradin K, Fandrey J, Roeder RG, Pereira T, Poellinger L. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J Biol Chem 2009; 285:2601-9. [PMID: 19880525 DOI: 10.1074/jbc.m109.021824] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation of transcription in response to low oxygen tension is mediated by the hypoxia-inducible factor-1 (HIF-1). HIF-1 is a heterodimer of two proteins: aryl hydrocarbon receptor nuclear translocator and the oxygen-regulated HIF-1 alpha. The C-terminal activation domain of HIF-1 alpha has been shown to interact with cysteine/histidine-rich region 1 (CH1) of the coactivator CBP/p300 in a hypoxia-dependent manner. However, HIF forms lacking C-terminal activation domain (naturally occurring or genetically engineered) are still able to activate transcription of target genes in hypoxia. Here, we demonstrate that the N-terminal activation domain (N-TAD) of HIF-1 alpha interacts with endogenous CBP and that this interaction facilitates its transactivation function. Our results show that interaction of HIF-1 alpha N-TAD with CBP/p300 is mediated by the CH3 region of CBP known to interact with, among other factors, p53. Using fluorescence resonance energy transfer experiments, we demonstrate that N-TAD interacts with CH3 in vivo. Coimmunoprecipitation assays using endogenous proteins showed that immunoprecipitation of CBP in hypoxia results in the recovery of a larger fraction of HIF-1 alpha than of p53. Chromatin immunoprecipitation demonstrated that at 1% O(2) CBP is recruited to a HIF-1 alpha but not to a p53 target gene. Upon activation of both pathways, lower levels of chromatin-associated CBP were detected at either target gene promoter. These results identify CBP as the coactivator directly interacting with HIF-1 alpha N-TAD and mediating the transactivation function of this domain. Thus, we suggest that in hypoxia HIF-1 alpha is a major CBP-interacting transcription factor that may compete with other CBP-dependent factors, including p53, for limiting amounts of this coactivator, underscoring the complexity in the regulation of gene expression by HIF-1 alpha.
Collapse
Affiliation(s)
- Jorge L Ruas
- Department of Cell and Molecular Biology, Karolinska Institutet, von Eulers väg 3, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
62
|
From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J Invest Dermatol 2009; 129:2340-50. [PMID: 19387478 DOI: 10.1038/jid.2009.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite their rarity, diseases of premature aging, or "progeroid" syndromes, have provided important insights into basic mechanisms that may underlie cancer and normal aging. In this review, we highlight these recent developments in Hutchinson-Gilford progeria syndrome (HGPS), Werner syndrome, Bloom syndrome, Cockayne syndrome, trichothiodystrophy, ataxia-telangiectasia, Rothmund-Thomson syndrome, and xeroderma pigmentosum. Though they are caused by different mutations in various genes and often result in quite disparate phenotypes, deciphering the molecular bases of these conditions has served to highlight their underlying basic similarities. Studies of progeroid syndromes, particularly HGPS, the most dramatic form of premature aging, have contributed to our knowledge of fundamental processes of importance to skin biology, including DNA transcription, replication, and repair, genome instability, cellular senescence, and stem-cell differentiation.
Collapse
|