51
|
Deng Z, Wang Z, Lieberman PM. Telomeres and viruses: common themes of genome maintenance. Front Oncol 2012; 2:201. [PMID: 23293769 PMCID: PMC3533235 DOI: 10.3389/fonc.2012.00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/08/2012] [Indexed: 12/14/2022] Open
Abstract
Genome maintenance mechanisms actively suppress genetic instability associated with cancer and aging. Some viruses provoke genetic instability by subverting the host's control of genome maintenance. Viruses have their own specialized strategies for genome maintenance, which can mimic and modify host cell processes. Here, we review some of the common features of genome maintenance utilized by viruses and host chromosomes, with a particular focus on terminal repeat (TR) elements. The TRs of cellular chromosomes, better known as telomeres, have well-established roles in cellular chromosome stability. Cellular telomeres are themselves maintained by viral-like mechanisms, including self-propagation by reverse transcription, recombination, and retrotransposition. Viral TR elements, like cellular telomeres, are essential for viral genome stability and propagation. We review the structure and function of viral repeat elements and discuss how they may share telomere-like structures and genome protection functions. We consider how viral infections modulate telomere regulatory factors for viral repurposing and can alter normal host telomere structure and chromosome stability. Understanding the common strategies of viral and cellular genome maintenance may provide new insights into viral-host interactions and the mechanisms driving genetic instability in cancer.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute Philadelphia, PA, USA
| | | | | |
Collapse
|
52
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
53
|
Frappier L. EBNA1 and host factors in Epstein-Barr virus latent DNA replication. Curr Opin Virol 2012; 2:733-9. [PMID: 23031715 DOI: 10.1016/j.coviro.2012.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
Abstract
Epstein-Barr virus episomes (EBV) replicate once per cell cycle during latent infection from the latent origin, oriP. This replication requires the viral EBNA1 protein, which specifically recognizes sequences in oriP and recruits cellular proteins to this origin. Replication from oriP requires the cellular origin recognition and MCM helicase complexes and also involves telomeric factors (including TRF2) that associate with repeated nonameric sequences at the origin. Replication from oriP occurs late in S-phase and this timing appears to be important for efficient replication. Replication from oriP has proven to be a valuable system for elucidating cellular proteins and mechanisms of origin activation.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
54
|
Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 2012; 287:23977-94. [PMID: 22589552 DOI: 10.1074/jbc.m112.368456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (Orc) plays an essential role in directing assembly of prereplicative complex at selective sites on chromosomes. However, Orc from vertebrates is reported to bind to DNA in a sequence-nonspecific manner, and it is still unclear how it selects specific genomic loci and how Cdc6, another conserved AAA(+) factor known to interact with Orc, participates in this process. Replication from oriP, the latent origin of Epstein-Barr virus, provides an excellent model system for the study of initiation on the host chromosomes because it is known to depend on prereplicative complex factors, including Orc and Mcm. Here, we show that Orc is recruited selectively at the essential dyad symmetry element in nuclear extracts in a manner dependent on EBNA1, which specifically binds to dyad symmetry. With purified proteins, EBNA1 can recruit both Cdc6 and Orc independently on a DNA containing EBNA1 binding sites, and Cdc6 facilitates the Orc recruitment by EBNA1. Purified Cdc6 directly binds to EBNA1, whereas association of Orc with EBNA1 requires the presence of the oriP DNA. Nuclease protection assays suggest that Orc associates with DNA segments on both sides adjacent to the EBNA1 binding sites and that this process is stimulated by the presence of Cdc6. Thus, EBNA1 can direct localized assembly of Orc in a process that is facilitated by Cdc6. The possibility of similar modes of recruitment of Orc/Cdc6 at the human chromosomal origins will be discussed.
Collapse
Affiliation(s)
- Kenji Moriyama
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
55
|
Proteomic profiling of EBNA1-host protein interactions in latent and lytic Epstein-Barr virus infections. J Virol 2012; 86:6999-7002. [PMID: 22496234 DOI: 10.1128/jvi.00194-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr nuclear antigen 1 (EBNA1) protein of Epstein-Barr virus (EBV) is expressed in both latent and lytic modes of EBV infection and contributes to EBV-associated cancers. Using a proteomics approach, we profiled EBNA1-host protein interactions in nasopharyngeal and gastric carcinoma cells in the context of latent and lytic EBV infection. We identified several interactions that occur in both modes of infection, including a previously unreported interaction with nucleophosmin and RNA-mediated interactions with several heterogeneous ribonucleoproteins (hnRNPs) and La protein.
Collapse
|
56
|
Frappier L. The Epstein-Barr Virus EBNA1 Protein. SCIENTIFICA 2012; 2012:438204. [PMID: 24278697 PMCID: PMC3820569 DOI: 10.6064/2012/438204] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/28/2012] [Indexed: 05/06/2023]
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds specific DNA sequences in the viral DNA. While the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identified. The multiple roles of EBNA1 in EBV infection are the subject of this paper.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
- *Lori Frappier:
| |
Collapse
|
57
|
Abstract
The first protocols describing transient gene expression in mammalian cells for the rapid generation of recombinant proteins emerged more than 10 years ago as an alternative to the establishment of stable, often amplified clonal cell lines, and relieved somewhat the bias against mammalian cell systems as being too complicated, labor intensive, and tedious to serve as a source for tool proteins in industrial research and academia. Over the past decade, these attempts have been refined and optimized, giving rise to expression protocols applicable in every lab in dependence on available tools, equipment, and envisaged outcome. This chapter summarizes the development of transient expression technologies over the past decade up to its current status and provides an outlook into what may be the future of transient technology development.
Collapse
|
58
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
59
|
Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol 2011; 22:154-61. [PMID: 22206863 DOI: 10.1016/j.semcancer.2011.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022]
Abstract
EBNA1 is expressed in all NPC tumours and is the only Epstein-Barr virus protein needed for the stable persistence of EBV episomes. EBNA1 binds to specific sequences in the EBV genome to facilitate the initiation of DNA synthesis, ensure the even distribution of the viral episomes to daughter cells during mitosis and to activate the transcription of other viral latency genes important for cell immortalization. In addition, EBNA1 has been found to alter cellular pathways in multiple ways that likely contribute to cell immortalization and malignant transformation. This chapter discusses the known functions and cellular effects of EBNA1, especially as pertains to NPC.
Collapse
|
60
|
Thomae AW, Baltin J, Pich D, Deutsch MJ, Ravasz M, Zeller K, Gossen M, Hammerschmidt W, Schepers A. Different roles of the human Orc6 protein in the replication initiation process. Cell Mol Life Sci 2011; 68:3741-56. [PMID: 21461783 PMCID: PMC11114885 DOI: 10.1007/s00018-011-0675-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 01/05/2023]
Abstract
In eukaryotes, binding of the six-subunit origin recognition complex (ORC) to DNA provides an interactive platform for the sequential assembly of pre-replicative complexes. This process licenses replication origins competent for the subsequent initiation step. Here, we analyze the contribution of human Orc6, the smallest subunit of ORC, to DNA binding and pre-replicative complex formation. We show that Orc6 not only interacts with Orc1-Orc5 but also with the initiation factor Cdc6. Biochemical and imaging experiments reveal that this interaction is required for licensing DNA replication competent. Furthermore, we demonstrate that Orc6 contributes to the interaction of ORC with the chaperone protein HMGA1a (high mobility group protein A1a). Binding of human ORC to replication origins is not specified at the level of DNA sequence and the functional organization of origins is poorly understood. We have identified HMGA1a as one factor that might direct ORC to AT-rich heterochromatic regions. The systematic analysis of the interaction between ORC and HMGA1a revealed that Orc6 interacts with the acidic C-terminus of HMGA1a and also with its AT-hooks. Both domains support autonomous replication if targeted to DNA templates. As such, Orc6 functions at different stages of the replication initiation process. Orc6 can interact with ORC chaperone proteins such as HMGA1a to facilitate chromatin binding of ORC and is also an essential factor for pre-RC formation.
Collapse
Affiliation(s)
- Andreas W. Thomae
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
- Adolf-Butenandt-Institut, Ludwig-Maximilians-University, Schillerstraße 44, 80336 Munich, Germany
| | - Jens Baltin
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Dagmar Pich
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Manuel J. Deutsch
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Máté Ravasz
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Krisztina Zeller
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, BCRT, Campus Virchow-Klinikum, Föhrer Straße 15, 13353 Berlin, Germany
| | - Wolfgang Hammerschmidt
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
61
|
The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis. Mol Cell Biol 2011; 31:3857-70. [PMID: 21791613 DOI: 10.1128/mcb.05411-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery.
Collapse
|
62
|
Kelly BL, Singh G, Aiyar A. Molecular and cellular characterization of an AT-hook protein from Leishmania. PLoS One 2011; 6:e21412. [PMID: 21731738 PMCID: PMC3121789 DOI: 10.1371/journal.pone.0021412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/27/2011] [Indexed: 11/26/2022] Open
Abstract
AT-rich DNA, and the proteins that bind it (AT-hook proteins), modulate chromosome structure and function in most eukaryotes. Unlike other trypanosomatids, the genome of Leishmania species is unusually GC-rich, and the regulation of Leishmania chromosome structure, replication, partitioning is not fully understood. Because AT-hook proteins modulate these functions in other eukaryotes, we examined whether AT-hook proteins are encoded in the Leishmania genome, to test their potential functions. Several Leishmania ORFs predicted to be AT-hook proteins were identified using in silico approaches based on sequences shared between eukaryotic AT-hook proteins. We have used biochemical, molecular and cellular techniques to characterize the L. amazonensis ortholog of the L. major protein LmjF06.0720, a potential AT-hook protein that is highly conserved in Leishmania species. Using a novel fusion between the AT-hook domain encoded by LmjF06.0720 and a herpesviral protein, we have demonstrated that LmjF06.0720 functions as an AT-hook protein in mammalian cells. Further, as observed for mammalian and viral AT-hook proteins, the AT-hook domains of LmjF06.0720 bind specific regions of condensed mammalian metaphase chromosomes, and support the licensed replication of DNA in mammalian cells. LmjF06.0720 is nuclear in Leishmania, and this localization is disrupted upon exposure to drugs that displace AT-hook proteins from AT-rich DNA. Coincidentally, these drugs dramatically alter the cellular physiology of Leishmania promastigotes. Finally, we have devised a novel peptido-mimetic agent derived from the sequence of LmjF06.0720 that blocks the proliferation of Leishmania promastigotes, and lowers amastigote parasitic burden in infected macrophages. Our results indicate that AT-hook proteins are critical for the normal biology of Leishmania. In addition, we have described a simple technique to examine the function of Leishmania chromatin-binding proteins in a eukaryotic context amenable to studying chromosome structure and function. Lastly, we demonstrate the therapeutic potential of compounds directed against AT-hook proteins in Leishmania.
Collapse
Affiliation(s)
- Ben L. Kelly
- Department of Microbiology, Immunology and Parasitology, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Gyanendra Singh
- Stanley S. Scott Cancer Center, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Lousiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
63
|
Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci 2011; 124:2058-69. [PMID: 21610089 PMCID: PMC3104036 DOI: 10.1242/jcs.086561] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2011] [Indexed: 01/02/2023] Open
Abstract
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular 'catch and release' mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors.
Collapse
Affiliation(s)
| | | | - Christo P. Christov
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Eyemen Kheir
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Thomas Shafee
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Timothy J. Gardiner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
64
|
Abstract
Small noncoding RNAs regulate a variety of cellular processes, including genomic imprinting, chromatin remodeling, replication, transcription, and translation. Here, we report small replication-regulating RNAs (srRNAs) that specifically inhibit DNA replication of the human BK polyomavirus (BKV) in vitro and in vivo. srRNAs from FM3A murine mammary tumor cells were enriched by DNA replication assay-guided fractionation and hybridization to the BKV noncoding control region (NCCR) and synthesized as cDNAs. Selective mutagenesis of the cDNA sequences and their putative targets suggests that the inhibition of BKV DNA replication is mediated by srRNAs binding to the viral NCCR, hindering early steps in the initiation of DNA replication. Ectopic expression of srRNAs in human cells inhibited BKV DNA replication in vivo. Additional srRNAs were designed and synthesized that specifically inhibit simian virus 40 (SV40) DNA replication in vitro. These observations point to novel mechanisms for regulating DNA replication and suggest the design of synthetic agents for inhibiting replication of polyomaviruses and possibly other viruses.
Collapse
|
65
|
Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 2010; 85:378-89. [PMID: 20980502 DOI: 10.1128/jvi.01900-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in posttranscriptional regulation. miRNAs are utilized in organisms ranging from plants to higher mammals, and data have shown that DNA viruses also use this method for host and viral gene regulation. Here, we report the sequencing of the small RNAs in rat cytomegalovirus (RCMV)-infected fibroblasts and persistently infected salivary glands. We identified 24 unique miRNAs that mapped to hairpin structures found within the viral genome. While most miRNAs were detected in both samples, four were detected exclusively in the infected fibroblasts and two were specific for the infected salivary glands. The RCMV miRNAs are distributed across the viral genome on both the positive and negative strands, with clusters of miRNAs at a number of locations, including near viral genes r1 and r111. The RCMV miRNAs have a genomic positional orientation similar to that of the miRNAs described for mouse cytomegalovirus, but they do not share any substantial sequence conservation. Similar to other reported miRNAs, the RCMV miRNAs had considerable variation at their 3' and 5' ends. Interestingly, we found a number of specific examples of differential isoform usage between the fibroblast and salivary gland samples. We determined by real-time PCR that expression of the RCMV miRNA miR-r111.1-2 is highly expressed in the salivary glands and that miR-R87-1 is expressed in most tissues during the acute infection phase. Our study identified the miRNAs expressed by RCMV in vitro and in vivo and demonstrated that expression is tissue specific and associated with a stage of viral infection.
Collapse
|
66
|
Apcher S, Daskalogianni C, Manoury B, Fåhraeus R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog 2010; 6:e1001151. [PMID: 20976201 PMCID: PMC2954899 DOI: 10.1371/journal.ppat.1001151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 09/13/2010] [Indexed: 01/25/2023] Open
Abstract
Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general. The presentation of short peptides on major histocompatibility (MHC) class I molecules forms the cornerstone for which the immune system tells apart self from non-self. It is important for viruses such as the Epstein-Barr virus (EBV) to avoid this antigen presentation pathway in order to escape recognition and killing of its host cells. All EBV-infected cells, including cancer cells, express EBNA1 without attracting the attention of the immune system. In this report we describe the mechanism by which EBNA1 escapes antigen presentation. This should open up for new approaches to target EBV-associated diseases including cancers and immuno proliferative disorders and for understanding the underlying mechanisms of the source and regulation of antigenic peptide production.
Collapse
Affiliation(s)
- Sebastien Apcher
- Cibles Thérapeutiques, INSERM U940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Chrysoula Daskalogianni
- Cibles Thérapeutiques, INSERM U940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | | | - Robin Fåhraeus
- Cibles Thérapeutiques, INSERM U940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
- * E-mail:
| |
Collapse
|
67
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
68
|
Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2010; 120:39-46. [DOI: 10.1007/s00412-010-0287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 06/22/2010] [Accepted: 07/17/2010] [Indexed: 01/22/2023]
|
69
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
70
|
Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1. J Virol 2010; 84:4988-97. [PMID: 20219917 DOI: 10.1128/jvi.02333-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is an abundant, chromatin-associated, NAD-dependent enzyme that functions in multiple chromosomal processes, including DNA replication and chromatin remodeling. The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) is a dynamic genetic element that confers stable episome maintenance, DNA replication initiation, and chromatin organization functions. OriP function depends on the EBV-encoded origin binding protein EBNA1. We have previously shown that EBNA1 is subject to negative regulation by poly(ADP-ribosyl)ation (PARylation). We now show that PARP1 physically associates with OriP in latently EBV-infected B cells. Short hairpin RNA depletion of PARP1 enhances OriP replication activity and increases EBNA1, origin recognition complex 2 (ORC2), and minichromosome maintenance complex (MCM) association with OriP. Pharmacological inhibitors of PARP1 enhance OriP plasmid maintenance and increase EBNA1, ORC2, and MCM3 occupancy at OriP. PARylation in vitro inhibits ORC2 recruitment and remodels telomere repeat factor (TRF) binding at the dyad symmetry (DS) element of OriP. Purified PARP1 can ribosylate EBNA1 at multiple sites throughout its amino terminus but not in the carboxy-terminal DNA binding domain. We also show that EBNA1 linking regions (LR1 and LR2) can bind directly to oligomers of PAR. We propose that PARP1-dependent PARylation of EBNA1 and adjacently bound TRF2 induces structural changes at the DS element that reduce EBNA1 DNA binding affinity and functional recruitment of ORC.
Collapse
|
71
|
Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle 2010; 9:69-74. [PMID: 20016274 DOI: 10.4161/cc.9.1.10358] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Self-reinforcing negative feedback loops are commonly observed in biological systems. RNA-mediated negative feedback loops have been described in the formation of heterochromatin at centromeres in fission yeast and the inactive X chromosome in mammalian cells. The telomere repeat-containing RNA (TERRA) has also been implicated in the formation of telomeric heterochromatin through a self-reinforcing negative feedback loop. In cells derived from human ICF syndrome, TERRA levels are abnormally elevated and telomeres are abnormally shortened. We now show that telomere heterochromatin is also abnormal in ICF cells. We propose that ICF cells fail to reinforce the TERRA-dependent negative feedback loop as a result of the inability to establish heterochromatin at subtelomeres. This failure is likely due to the lack of DNMT3b and DNA methylation, which is a genetic lesion associated with ICF syndrome. Failure of this feedback mechanism leads to catastrophic telomere dysfunction and chromosome instability.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, Philadelphia, PA, USA
| | | | | |
Collapse
|
72
|
Regulation of Epstein-Barr virus origin of plasmid replication (OriP) by the S-phase checkpoint kinase Chk2. J Virol 2010; 84:4979-87. [PMID: 20200249 DOI: 10.1128/jvi.01300-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Epstein-Barr virus (EBV) origin of plasmid replication (OriP) is required for episome stability during latent infection. Telomere repeat factor 2 (TRF2) binds directly to OriP and facilitates DNA replication and plasmid maintenance. Recent studies have found that TRF2 interacts with the DNA damage checkpoint protein Chk2. We show here that Chk2 plays an important role in regulating OriP plasmid stability, chromatin modifications, and replication timing. The depletion of Chk2 by small interfering RNA (siRNA) leads to a reduction in DNA replication efficiency and a loss of OriP-dependent plasmid maintenance. This corresponds to a change in OriP replication timing and an increase in constitutive histone H3 acetylation. We show that Chk2 interacts with TRF2 in the early G(1)/S phase of the cell cycle. We also show that Chk2 can phosphorylate TRF2 in vitro at a consensus acceptor site in the amino-terminal basic domain of TRF2. TRF2 mutants with a serine-to-aspartic acid phosphomimetic substitution mutation were reduced in their ability to recruit the origin recognition complex (ORC) and stimulate OriP replication. We suggest that the Chk2 phosphorylation of TRF2 is important for coordinating ORC binding with chromatin remodeling during the early S phase and that a failure to execute these events leads to replication defects and plasmid instability.
Collapse
|
73
|
Corbin-Lickfett KA, Chen IHB, Cocco MJ, Sandri-Goldin RM. The HSV-1 ICP27 RGG box specifically binds flexible, GC-rich sequences but not G-quartet structures. Nucleic Acids Res 2010; 37:7290-301. [PMID: 19783816 PMCID: PMC2790906 DOI: 10.1093/nar/gkp793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27, an important regulator for viral gene expression, directly recognizes and exports viral RNA through an N-terminal RGG box RNA binding motif, which is necessary and sufficient for RNA binding. An ICP27 N-terminal peptide, including the RGG box RNA binding motif, was expressed and its binding specificity was analyzed using EMSA and SELEX. DNA oligonucleotides corresponding to HSV-1 glycoprotein C (gC) mRNA, identified in a yeast three-hybrid analysis, were screened for binding to the ICP27 N-terminal peptide in EMSA experiments. The ICP27 N-terminus was able to bind most gC substrates. Notably, the ICP27 RGG box was unable to bind G-quartet structures recognized by the RGG domains of other proteins. SELEX analysis identified GC-rich RNA sequences as a common feature of recognition. NMR analysis of SELEX and gC sequences revealed that sequences able to bind to ICP27 did not form secondary structures and conversely, sequences that were not able to bind to ICP27 gave spectra consistent with base-pairing. Therefore, the ICP27 RGG box is unique in its recognition of nucleic acid sequences compared to other RGG box proteins; it prefers flexible, GC-rich substrates that do not form stable secondary structures.
Collapse
Affiliation(s)
- Kara A Corbin-Lickfett
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
74
|
Abstract
Localized mRNAs found in specific regions of somatic cells, germ cells, and embryos function through their protein translation products in cell polarization and development. Recent studies on Xenopus and Drosophila eggs and various somatic cells showed that some of the localized noncoding and coding RNAs play a structural (translation independent) role in maintaining the integrity of microtubule and microfilament cytoskeleton and/or may function in protein folding or as a scaffold for the assembly of cytoplasmic complexes essential for egg or embryo development. In addition, structural noncoding RNAs within the cell nucleus have been shown to be involved in the organization of chromatin, nuclear bodies, and DNA replication. The fact that some of the RNAs may have previously unforeseen structural functions, will change our view on traditional functions of RNAs and will open new frontiers in the field of RNA studies and therapeutic development.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, The Methodist Hospital Research Institute, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
75
|
Abstract
The machinery required for the replication of eukaryotic chromosomal DNA is made up of proteins whose function, structure and main interaction partners are evolutionarily conserved. Several new cases have been reported recently, however, in which non-coding RNAs play additional and specialised roles in the initiation of eukaryotic DNA replication in different classes of organisms. These non-coding RNAs include Y RNAs in vertebrate somatic cells, 26T RNA in somatic macronuclei of the ciliate Tetrahymena, and G-rich RNA in the Epstein-Barr DNA tumour virus and its human host cells. Here, I will give an overview of the experimental evidence in favour of roles for these non-coding RNAs in the regulation of eukaryotic DNA replication, and compare and contrast their biosynthesis and mechanisms of action.
Collapse
|
76
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
77
|
The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus. J Virol 2009; 84:2533-46. [PMID: 20032186 DOI: 10.1128/jvi.01909-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus efficiently infects human B cells. The EBV genome is maintained extrachromosomally and replicates synchronously with the host's chromosomes. The latent origin of replication (oriP) guarantees plasmid stability by mediating two basic functions: replication and segregation of the viral genome. While the segregation process of EBV genomes is well understood, little is known about its chromatin association and nuclear distribution during interphase. Here, we analyzed the nuclear localization of EBV genomes and the role of functional oriP domains FR and DS for basic functions such as the transformation of primary cells, their role in targeting EBV genomes to distinct nuclear regions, and their association with epigenetic domains. Fluorescence in situ hybridization visualized the localization of extrachromosomal EBV genomes in the regions adjacent to chromatin-dense territories called the perichromatin. Further, immunofluorescence experiments demonstrated a preference of the viral genome for histone 3 lysine 4-trimethylated (H3K4me3) and histone 3 lysine 9-acetylated (H3K9ac) nuclear regions. To determine the role of FR and DS for establishment and subnuclear localization of EBV genomes, we transformed primary human B lymphocytes with recombinant mini-EBV genomes containing different oriP mutants. The loss of DS results in a slightly increased association in H3K27me3 domains. This study demonstrates that EBV genomes or oriP-based extrachromosomal vector systems are integrated into the higher order nuclear organization. We found that viral genomes are not randomly distributed in the nucleus. FR but not DS is crucial for the localization of EBV in perichromatic regions that are enriched for H3K4me3 and H3K9ac, which are hallmarks of transcriptionally active regions.
Collapse
|
78
|
Nayyar VK, Shire K, Frappier L. Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). J Cell Sci 2009; 122:4341-50. [PMID: 19887584 DOI: 10.1242/jcs.060913] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Epstein-Barr nuclear antigen 1 (EBNA1) protein enables the stable persistence of Epstein-Barr virus episomal genomes during latent infection, in part by tethering the episomes to the cellular chromosomes in mitosis. A host nucleolar protein, EBNA1-binding protein 2 (EBP2), has been shown to be important for interactions between EBNA1 and chromosomes in metaphase and to associate with metaphase chromosomes. Here, we examine the timing of the chromosome associations of EBNA1 and EBP2 through mitosis and the regions of EBNA1 that mediate the chromosome interactions at each stage of mitosis. We show that EBP2 is localized to the nucleolus until late prophase, after which it relocalizes to the chromosome periphery, where it remains throughout telophase. EBNA1 is associated with chromosomes early in prophase through to telophase and partially colocalizes with chromosomal EBP2 in metaphase through to telophase. Using EBNA1 deletion mutants, the chromosome association of EBNA1 at each stage of mitosis was found to be mediated mainly by a central glycine-arginine region, and to a lesser degree by N-terminal sequences. These sequence requirements for chromosome interaction mirrored those for EBP2 binding. Our results suggest that interactions between EBNA1 and chromosomes involve at least two stages, and that the contribution of EBP2 to these interactions occurs in the second half of mitosis.
Collapse
Affiliation(s)
- Vipra Kapur Nayyar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | | | | |
Collapse
|
79
|
Krude T, Christov CP, Hyrien O, Marheineke K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J Cell Sci 2009; 122:2836-45. [PMID: 19657016 DOI: 10.1242/jcs.047563] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-coding Y RNAs have recently been identified as essential novel factors for chromosomal DNA replication in mammalian cell nuclei, but mechanistic details of their function have not been defined. Here, we identify the execution point for Y RNA function during chromosomal DNA replication in a mammalian cell-free system. We determined the effect of degradation of Y3 RNA on replication origin activation and on fork progression rates at single-molecule resolution by DNA combing and nascent-strand analysis. Degradation of Y3 RNA inhibits the establishment of new DNA replication forks at the G1- to S-phase transition and during S phase. This inhibition is negated by addition of exogenous Y1 RNA. By contrast, progression rates of DNA replication forks are not affected by degradation of Y3 RNA or supplementation with exogenous Y1 RNA. These data indicate that Y RNAs are required for the establishment, but not for the elongation, of chromosomal DNA replication forks in mammalian cell nuclei. We conclude that the execution point for non-coding Y RNA function is the activation of chromosomal DNA replication origins.
Collapse
Affiliation(s)
- Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| | | | | | | |
Collapse
|
80
|
Dinger ME, Amaral PP, Mercer TR, Mattick JS. Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:407-23. [PMID: 19770204 DOI: 10.1093/bfgp/elp038] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome-wide analyses of the eukaryotic transcriptome have revealed that the majority of the genome is transcribed, producing large numbers of non-protein-coding RNAs (ncRNAs). This surprising observation challenges many assumptions about the genetic programming of higher organisms and how information is stored and organized within the genome. Moreover, the rapid advances in genomics have given little opportunity for biologists to integrate these emerging findings into their intellectual and experimental frameworks. This problem has been compounded by the perception that genome-wide studies often generate more questions than answers, which in turn has led to confusion and controversy. In this article, we address common questions associated with the phenomenon of pervasive transcription and consider the indices that can be used to evaluate the function (or lack thereof) of the resulting ncRNAs. We suggest that many lines of evidence, including expression profiles, conservation signatures, chromatin modification patterns and examination of increasing numbers of individual cases, argue in favour of the widespread functionality of non-coding transcription. We also discuss how informatic and experimental approaches used to analyse protein-coding genes may not be applicable to ncRNAs and how the general perception that protein-coding genes form the main informational output of the genome has resulted in much of the misunderstanding surrounding pervasive transcription and its potential significance. Finally, we present the conceptual implications of the majority of the eukaryotic genome being functional and describe how appreciating this perspective will provide considerable opportunity to further understand the molecular basis of development and complex diseases.
Collapse
Affiliation(s)
- Marcel E Dinger
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
81
|
TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 2009; 35:403-13. [PMID: 19716786 DOI: 10.1016/j.molcel.2009.06.025] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/10/2009] [Accepted: 06/23/2009] [Indexed: 12/30/2022]
Abstract
Telomere-repeat-encoding RNA (referred to as TERRA) has been identified as a potential component of yeast and mammalian telomeres. We show here that TERRA RNA interacts with several telomere-associated proteins, including telomere repeat factors 1 (TRF1) and 2 (TRF2), subunits of the origin recognition complex (ORC), heterochromatin protein 1 (HP1), histone H3 trimethyl K9 (H3 K9me3), and members of the DNA-damage-sensing pathway. siRNA depletion of TERRA caused an increase in telomere dysfunction-induced foci, aberrations in metaphase telomeres, and a loss of histone H3 K9me3 and ORC at telomere repeat DNA. Previous studies found that TRF2 amino-terminal GAR domain recruited ORC to telomeres. We now show that TERRA RNA can interact directly with the TRF2 GAR and ORC1 to form a stable ternary complex. We conclude that TERRA facilitates TRF2 interaction with ORC and plays a central role in telomere structural maintenance and heterochromatin formation.
Collapse
|
82
|
Nucleosome assembly proteins bind to Epstein-Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. J Virol 2009; 83:11704-14. [PMID: 19726498 DOI: 10.1128/jvi.00931-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The EBNA1 protein of Epstein-Barr virus (EBV) plays several important roles in EBV latent infection, including activating DNA replication from the latent origin of replication (oriP) and activating the transcription of other latency genes within the EBV chromatin. These functions require EBNA1 binding to the DS and FR elements within oriP, respectively, although how these interactions activate these processes is not clear. We previously identified interactions of EBNA1 with the related nucleosome assembly proteins NAP1 and TAF-I, known to affect the replication and transcription of other chromatinized templates. We have further investigated these interactions, showing that EBNA1 binds directly to NAP1 and to the beta isoform of TAF-I (also called SET) and that these interactions greatly increase the solubility of EBNA1 in vitro. These interactions were confirmed in EBV-infected cells, and chromatin immunoprecipitation with these cells showed that NAP1 and TAF-I both localized with EBNA1 to the FR element, while only TAF-I was detected with EBNA1 at the DS element. In keeping with these observations, alteration of the NAP1 or TAF-Ibeta level by RNA interference and overexpression inhibited transcriptional activation by EBNA1 in FR reporter assays. In addition, EBNA1-mediated DNA replication was stimulated when TAF-I (but not NAP1) was downregulated and was inhibited by TAF-Ibeta overexpression. The results indicate that the interaction of EBNA1 with NAP1 and TAF-I is important for transcriptional activation and that EBNA1 recruits TAF-I to the DS element, where it negatively regulates DNA replication.
Collapse
|
83
|
Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J Virol 2009; 83:10336-46. [PMID: 19656898 DOI: 10.1128/jvi.00747-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent infection by Epstein-Barr virus (EBV) requires both replication and maintenance of the viral genome. EBV nuclear antigen 1 (EBNA1) is a virus-encoded protein that is critical for the replication and maintenance of the genome during latency in proliferating cells. We have previously demonstrated that EBNA1 recruits the cellular origin recognition complex (ORC) through an RNA-dependent interaction with EBNA1 linking region 1 (LR1) and LR2. We now show that LR1 and LR2 bind to G-rich RNA that is predicted to form G-quadruplex structures. Several chemically distinct G-quadruplex-interacting drugs disrupted the interaction between EBNA1 and ORC. The G-quadruplex-interacting compound BRACO-19 inhibited EBNA1-dependent stimulation of viral DNA replication and preferentially blocked proliferation of EBV-positive cells relative to EBV-negative cell lines. BRACO-19 treatment also disrupted the ability of EBNA1 to tether to metaphase chromosomes, suggesting that maintenance function is also mediated through G-quadruplex recognition. These findings suggest that the EBNA1 replication and maintenance function uses a common G-quadruplex binding capacity of LR1 and LR2, which may be targetable by small-molecule inhibitors.
Collapse
|
84
|
Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009; 5:e1000446. [PMID: 19360092 PMCID: PMC2661365 DOI: 10.1371/journal.pgen.1000446] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/04/2009] [Indexed: 12/24/2022] Open
Abstract
Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS), suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation, unveiling a new hallmark in ORI efficiency regulation in mammalian cells. The duplication of the genetic information of a cell starts from specific sites on the chromosomes called DNA replication origins. Their number varies from a few hundred in yeast cells to several thousands in human cells, distributed along the genome at comparable distances in both systems. An important question in the field is to understand how origins of replication are specified and regulated in the mammalian genome, as neither their location nor their activity can be directly inferred from the DNA sequence. Previous studies at individual origins and, more recently, at large scale across 1% of the human genome, have revealed that most origins overlap with transcriptional regulatory elements, and specifically with gene promoters. To gain insight into the nature of the relationship between active transcription and origin specification we have combined a genomic mapping of origins at 0.4% of the mouse genome with detailed studies of activation efficiency. The data identify two types of origins with distinct regulatory properties: highly efficient origins map at CpG island-promoters and low efficient origins locate elsewhere in association with transcriptional units. We also find a remarkable parallel organisation of the replication initiation sites and transcription start sites at efficient promoter-origins that suggests a prominent role of transcription initiation in setting the efficiency of replication origin activation.
Collapse
|
85
|
Aiyar A, Aras S, Washington A, Singh G, Luftig RB. Epstein-Barr Nuclear Antigen 1 modulates replication of oriP-plasmids by impeding replication and transcription fork migration through the family of repeats. Virol J 2009; 6:29. [PMID: 19265546 PMCID: PMC2654434 DOI: 10.1186/1743-422x-6-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 03/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epstein-Barr virus is replicated once per cell-cycle, and partitioned equally in latently infected cells. Both these processes require a single viral cis-element, termed oriP, and a single viral protein, EBNA1. EBNA1 binds two clusters of binding sites in oriP, termed the dyad symmetry element (DS) and the family of repeats (FR), which function as a replication element and partitioning element respectively. Wild-type FR contains 20 binding sites for EBNA1. RESULTS We, and others, have determined previously that decreasing the number of EBNA1-binding sites in FR increases the efficiency with which oriP-plasmids are replicated. Here we demonstrate that the wild-type number of binding sites in FR impedes the migration of replication and transcription forks. Further, splitting FR into two widely separated sets of ten binding sites causes a ten-fold increase in the efficiency with which oriP-plasmids are established in cells expressing EBNA1. We have also determined that EBNA1 bound to FR impairs the migration of transcription forks in a manner dependent on the number of EBNA1-binding sites in FR. CONCLUSION We conclude that EBNA1 bound to FR regulates the replication of oriP-plasmids by impeding the migration of replication forks. Upon binding FR, EBNA1 also blocks the migration of transcription forks. Thus, in addition to regulating oriP replication, EBNA1 bound to FR also decreases the probability of detrimental collisions between two opposing replication forks, or between a transcription fork and a replication fork.
Collapse
Affiliation(s)
- Ashok Aiyar
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
- Department of Microbiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Siddhesh Aras
- Department of Microbiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Amber Washington
- Department of Microbiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Gyanendra Singh
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Ronald B Luftig
- Department of Microbiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
86
|
Donti TR, Datta S, Sandoval PY, Kapler GM. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J 2009; 28:223-33. [PMID: 19153611 DOI: 10.1038/emboj.2008.282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/02/2008] [Indexed: 11/09/2022] Open
Abstract
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis-acting replication determinant--the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non-rDNA fragment containing two closely associated replicators, ARS1-A (0.8 kb) and ARS1-B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA-independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non-rDNA ARS1 chromosome changed across the cell cycle. In G(2) phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1-A/B. Remarkably, ORC and Mcm6 associated with just the ARS1-A replicator in G(1) phase when pre-replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non-rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.
Collapse
Affiliation(s)
- Taraka R Donti
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | | | | | | |
Collapse
|