51
|
Xian Z, Hu B, Wang T, Zeng J, Cai J, Zou Q, Zhu P. lncRNA UCA1 Contributes to 5-Fluorouracil Resistance of Colorectal Cancer Cells Through miR-23b-3p/ZNF281 Axis. Onco Targets Ther 2020; 13:7571-7583. [PMID: 32801774 PMCID: PMC7402858 DOI: 10.2147/ott.s258727] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The chemoresistance of 5-fluorouracil (5-FU) limited the application of chemotherapy in colorectal cancer (CRC) treatment. Herein, we aimed to uncover the potential mechanism behind the 5-FU resistance of CRC cells. Methods The abundance of long noncoding RNA urothelial carcinoma associated 1 (lncRNA UCA1), microRNA-23b-3p (miR-23b-3p) and zinc finger protein 281 (ZNF281) was measured by quantitative real-time polymerase chain reaction (qRT-PCR) in CRC tissues and cells. Western blot was conducted to examine autophagy-related proteins, apoptosis-associated proteins and ZNF281 in CRC tissues and cells. Cell counting kit-8 (CCK8) assay was performed to detect the viability and inhibitory concentration 50% (IC50) value of 5-FU of CRC cells. The apoptosis of CRC cells was measured by flow cytometry. The binding sites between miR-23b-3p and UCA1 or ZNF281 were predicted by miRcode and Starbase software, respectively, and the combination was confirmed by dual-luciferase reporter assay and RIP assay. Murine xenograft model was established to verify the role of UCA1 on the 5-FU resistance of CRC in vivo. Results The 5-FU resistance of CRC was positively related to the level of UCA1 and autophagy. UCA1 accelerated the 5-FU resistance of CRC cells through facilitating autophagy and suppressing apoptosis. MiR-23b-3p was a target of UCA1 in 293T and CRC cells. The knockdown of miR-23b-3p reversed the inhibitory effects of UCA1 interference on the 5-FU resistance and autophagy and the promoting impact on the apoptosis of CRC cells. ZNF281 could bind to miR-23b-3p in 293T cells. MiR-23b-3p elevated the 5-FU sensitivity through down-regulating ZNF281 in CRC cells. UCA1 interference enhanced the 5-FU sensitivity of CRC through miR-23b-3p/ZNF281 axis in vivo. Conclusion UCA1 mediated 5-FU resistance of CRC cells through facilitating autophagy and inhibiting apoptosis via miR-23b-3p/ZNF281 axis in vivo and in vitro.
Collapse
Affiliation(s)
- Zhenyu Xian
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bang Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal and Anal Hospital), Guangzhou, Guangdong, People's Republic of China
| | - Ting Wang
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Junyi Zeng
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jinlin Cai
- Graceland Medical Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qi Zou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal and Anal Hospital), Guangzhou, Guangdong, People's Republic of China
| | - Peixuan Zhu
- International Medical Center, Guangzhou General Hospital of Foresea Life Insurance, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
52
|
SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks. Cancers (Basel) 2020; 12:cancers12071870. [PMID: 32664538 PMCID: PMC7408994 DOI: 10.3390/cancers12071870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a predominant soft tissue tumor in children and adolescents. For high-grade RMS with metastatic involvement, the 3-year overall survival rate is only 25 to 30%. Thus, understanding the regulatory mechanisms involved in promoting the metastasis of RMS is important. Here, we demonstrate for the first time that the SNAIL transcription factor regulates the metastatic behavior of RMS both in vitro and in vivo. SNAIL upregulates the protein expression of EZRIN and AKT, known to promote metastatic behavior, by direct interaction with their promoters. Our data suggest that SNAIL promotes RMS cell motility, invasion and chemotaxis towards the prometastatic factors: HGF and SDF-1 by regulating RHO, AKT and GSK3β activity. In addition, miRNA transcriptome analysis revealed that SNAIL-miRNA axis regulates processes associated with actin cytoskeleton reorganization. Our data show a novel role of SNAIL in regulating RMS cell metastasis that may also be important in other mesenchymal tumor types and clearly suggests SNAIL as a promising new target for future RMS therapies.
Collapse
|
53
|
Exposure to desflurane anesthesia confers colorectal cancer cells metastatic capacity through deregulation of miR-34a/LOXL3. Eur J Cancer Prev 2020; 30:143-153. [PMID: 32658033 DOI: 10.1097/cej.0000000000000608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to high potency and low toxicity, desflurane has been widely used during surgery. Recent evidence that the use of desflurane was associated with colorectal cancer (CRC) tumor metastasis and poor prognosis raising concerns about the safety of desflurane. However, the mechanism was uncovered. CRC cells were exposed to desflurane, the changes in morphology and epithelial-mesenchymal transition (EMT)-related genes were evaluated. Transwell assay was used to study the migration and invasion effect. Xenograft was performed to study the tumor formation ability of desflurane-treated cells in vivo. Dual-luciferase reporter assay was conducted to verify the target of microRNA (miR)-34a. Knockdown or overexpression of LOXL3 was used to investigate the mechanism of desflurane-induced EMT. The association of LOXL3 with CRC molecular subtypes and clinical relevance was studied by analysis of public datasets. Exposure to desflurane induced EMT, migration, and invasion in CRC cells. Mice injected with desflurane-treated cells formed more tumors in the lungs. Downregulation of miR-34a and upregulation of LOXL3 were required for desflurane-induced EMT in CRC cells. LOXL3 was a direct target of miR-34a. Overexpression of LOXL3 rescued miR-34a-repressed EMT after exposure to desflurane. Elevated expression of LOXL3 was enriched in CMS4 and CRIS-B subtypes. Patients with high expression of LOXL3 showed more lymph node metastasis, as well as poor survival. Desflurane induced EMT and metastasis in CRC through deregulation of miR-34a/LOXL3 axis. Clinical miR-34a mimic or inhibitor targeting LOXL3 might have a potential protective role when patients with CRC anesthetized by desflurane.
Collapse
|
54
|
Ji W, Mu Q, Liu XY, Cao XC, Yu Y. ZNF281-miR-543 Feedback Loop Regulates Transforming Growth Factor-β-Induced Breast Cancer Metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:98-107. [PMID: 32512343 PMCID: PMC7281305 DOI: 10.1016/j.omtn.2020.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most common malignancy, and metastasis is the main cause of cancer-associated mortality in women worldwide. Transforming growth factor-β (TGF-β) signaling, an inducer of epithelial-to-mesenchymal transition (EMT), plays an important role in breast cancer metastasis. Abnormal expression of miR-543 is associated with tumorigenesis and progression of various human cancers; however, the knowledge about the role of miR-543 in breast cancer metastasis is still unknown. In this study, we demonstrated that miR-543 inhibits the EMT-like phenotype and TGF-β-induced breast cancer metastasis both in vitro and in vivo by targeting ZNF281. ZNF281 transactivates the EMT-related transcription factor ZEB1 and Snail. Furthermore, both ZEB1 and Snail can transcriptionally suppress miR-543 expression. Taken together, our data uncover the ZNF281-miR-543 feedback loop and provide a mechanism to extend the understanding of TGF-β network complexity.
Collapse
Affiliation(s)
- Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Mu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Surgery, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao 266042, China
| | - Xiang-Yu Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xu-Chen Cao
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Yue Yu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
55
|
Wang J, Cai H, Liu Q, Xia Y, Xing L, Zuo Q, Zhang Y, Chen C, Xu K, Yin P, Chen T. Cinobufacini Inhibits Colon Cancer Invasion and Metastasis via Suppressing Wnt/β-Catenin Signaling Pathway and EMT. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:703-718. [PMID: 32329642 DOI: 10.1142/s0192415x20500354] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cinobufacini is a well-known Chinese medicine extracted from Venenum Bufonis, also called Chan Su. It has been used clinically for various cancers, including colon cancer. However, the function of Cinobufacini on colon cancer invasion and metastasis, and its underlying molecular mechanism, is still not clear. In this study, we investigated the function and mechanism of Cinobufacini on colon cancer invasion and metastasis both in vitro and in vivo studies. Human colon cancer cells were cultured. CCK assay was used to detect the effect of Cinobufacini on colon cancer cells proliferation. The invasion and migration abilities were observed by transwell assays, and the expression of invasion and migration related genes MMP2, MMP9, and epithelial-to-mesenchymal transition (EMT) relate genes were observed by Western blot assays. An orthotopic xenograft model in nude mice was established using colon cancer HCT116 cells, and the function of Cinobufacini on colon cancer invasion and metastasis were observed in vivo. We found Cinobufacini significantly inhibited colon cancer cell proliferation in a dose/time-dependent manner; the invasion and migration abilities of colon cancer were decreased after treated with Cinobufacini. The metastasis and EMT related genes MMP9, MMP2, N-cadherin and Snail were obviously down-regulated, while the expression of E-cadherin was up-regulated after treatment with Cinobufacini. The Wnt/β-catenin signaling pathway related genes were observed using WB,and results show that the expression of β-catenin, wnt3a, c-myc, cyclin D1, and MMP7 were all down-regulated after being treated with cinobufacini, while the expression of APC was up-regulated. In vivo studies of the volume and weight of orthotopic xenograft tumors showed significantly shrinkage in the Cinobufacini group compared to the control group. The enterocoelia and liver metastasis tumors were significantly decreased, and the expression of MMP9, MMP2, and β-catenin were also down-regulated, while E-cadherin was up-regulated in vivo after the treatment with Cinobufacini. Our data proves that Cinobufacini can inhibit colon cancer invasion and metastasis both in vitro and in vivo; the mechanism is related by suppressing the Wnt/β-catenin signaling pathway and then inhibiting the EMT of CRC.
Collapse
Affiliation(s)
- Jie Wang
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Han Cai
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Qiaoli Liu
- Clinical Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Yue Xia
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - LiKai Xing
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Qingsong Zuo
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Yong Zhang
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Cao Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Ke Xu
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - Peihao Yin
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui 230022, P. R. China
| | - Teng Chen
- Department Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui 230022, P. R. China
| |
Collapse
|
56
|
Shi X, Kaller M, Rokavec M, Kirchner T, Horst D, Hermeking H. Characterization of a p53/miR-34a/CSF1R/STAT3 Feedback Loop in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2020; 10:391-418. [PMID: 32304779 PMCID: PMC7423584 DOI: 10.1016/j.jcmgh.2020.04.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The miR-34a gene is a direct target of p53 and is commonly silenced in colorectal cancer (CRC). Here we identified the receptor tyrosine kinase CSF1R as a direct miR-34a target and characterized CSF1R as an effector of p53/miR-34a-mediated CRC suppression. METHODS Analyses of TCGA-COAD and three other CRC cohorts for association of mRNA expression and signatures with patient survival and molecular subtypes. Bioinformatics identification and experimental validation of miRNA and transcription factor targets. Functional analysis of factors/pathways in the regulation of epithelial-mesenchymal transition (EMT), invasion, migration, acquired chemo-resistance and metastasis. Analyses of protein expression and CpG methylation within primary human colon cancer samples. RESULTS In primary CRCs increased CSF1R, CSF1 and IL34 expression was associated with poor patient survival and a mesenchymal-like subtype. CSF1R displayed an inverse correlation with miR-34a expression. This was explained by direct inhibition of CSF1R by miR-34a. Furthermore, p53 repressed CSF1R via inducing miR-34a, whereas SNAIL induced CSF1R both directly and indirectly via repressing miR-34a in a coherent feed-forward loop. Activation of CSF1R induced EMT, migration, invasion and metastasis of CRC cells via STAT3-mediated down-regulation of miR-34a. 5-FU resistance of CRC cells was mediated by CpG-methylation of miR-34a and the resulting elevated expression of CSF1R. In primary CRCs elevated expression of CSF1R was detected at the tumor invasion front and was associated with CpG methylation of the miR-34a promoter as well as distant metastasis. CONCLUSIONS The reciprocal inhibition between miR-34a and CSF1R and its loss in tumor cells may be relevant for therapeutic and prognostic approaches towards CRC management.
Collapse
Affiliation(s)
- Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium, Partner site Berlin, Berlin, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Correspondence Address requests for reprints to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany; fax: +49-89-2180-73697.
| |
Collapse
|
57
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
58
|
Skrzypek K, Majka M. Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:E209. [PMID: 31947678 PMCID: PMC7017348 DOI: 10.3390/cancers12010209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition, which is the main mechanism responsible for the progression and metastasis of epithelial tumors. Nevertheless, it also regulates different processes that are responsible for tumor growth, such as the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation. Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may help develop novel therapeutic strategies against cancer based on microRNAs.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
59
|
Nicolai S, Mahen R, Raschellà G, Marini A, Pieraccioli M, Malewicz M, Venkitaraman AR, Melino G. ZNF281 is recruited on DNA breaks to facilitate DNA repair by non-homologous end joining. Oncogene 2020; 39:754-766. [PMID: 31570788 PMCID: PMC6976523 DOI: 10.1038/s41388-019-1028-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Efficient repair of DNA double-strand breaks (DSBs) is of critical importance for cell survival. Although non-homologous end joining (NHEJ) is the most used DSBs repair pathway in the cells, how NHEJ factors are sequentially recruited to damaged chromatin remains unclear. Here, we identify a novel role for the zinc-finger protein ZNF281 in participating in the ordered recruitment of the NHEJ repair factor XRCC4 at damage sites. ZNF281 is recruited to DNA lesions within seconds after DNA damage through a mechanism dependent on its DNA binding domain and, at least in part, on poly-ADP ribose polymerase (PARP) activity. ZNF281 binds XRCC4 through its zinc-finger domain and facilitates its recruitment to damaged sites. Consequently, depletion of ZNF281 impairs the efficiency of the NHEJ repair pathway and decreases cell viability upon DNA damage. Survival analyses from datasets of commonly occurring human cancers show that higher levels of ZNF281 correlate with poor prognosis of patients treated with DNA-damaging therapies. Thus, our results define a late ZNF281-dependent regulatory step of NHEJ complex assembly at DNA lesions and suggest additional possibilities for cancer patients' stratification and for the development of personalised therapeutic strategies.
Collapse
Affiliation(s)
- Sara Nicolai
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK
| | - Robert Mahen
- Medical Research Council, Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | | | - Alberto Marini
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK
| | - Marco Pieraccioli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK
| | - Ashok R Venkitaraman
- Medical Research Council, Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, University of Cambridge, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
60
|
Nicolai S, Pieraccioli M, Smirnov A, Pitolli C, Anemona L, Mauriello A, Candi E, Annicchiarico-Petruzzelli M, Shi Y, Wang Y, Melino G, Raschellà G. ZNF281/Zfp281 is a target of miR-1 and counteracts muscle differentiation. Mol Oncol 2019; 14:294-308. [PMID: 31782884 PMCID: PMC6998661 DOI: 10.1002/1878-0261.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 01/28/2023] Open
Abstract
Defects in achieving a fully differentiated state and aberrant expression of genes and microRNAs (miRs) involved in differentiation are common to virtually all tumor types. Here, we demonstrate that the zinc finger transcription factor ZNF281/Zfp281 is down‐regulated during epithelial, muscle, and granulocytic differentiation in vitro. The expression of this gene is absent in terminally differentiated human tissues, in contrast to the elevated expression in proliferating/differentiating ones. Analysis of the 3’UTR of ZNF281/Zfp281 revealed the presence of numerous previously undescribed miR binding sites that were proved to be functional for miR‐mediated post‐transcriptional regulation. Many of these miRs are involved in differentiation pathways of distinct cell lineages. Of interest, ZNF281/Zfp281 is able to inhibit muscle differentiation promoted by miR‐1, of which ZNF281/Zfp281 is a direct target. These data suggest that down‐regulation of ZNF281/Zfp281 during differentiation in various cell types may occur through specific miRs whose expression is tissue‐restricted. In addition, we found that in rhabdomyosarcoma and leiomyosarcoma tumors, the expression of ZNF281/Zfp281 is significantly higher compared with normal counterparts. We extended our analysis to other human soft tissue sarcomas, in which the expression of ZNF281 is associated with a worse prognosis. In summary, we highlight here a new role of ZNF281/Zfp281 in counteracting muscle differentiation; its down‐regulation is at least in part mediated by miR‐1. The elevated expression of ZNF281/Zfp281 in soft tissue sarcomas warrants further analysis for its possible exploitation as a prognostic marker in this class of tumors.
Collapse
Affiliation(s)
- Sara Nicolai
- Medical Research Council, Toxicology Unit, Department of Pathology, University of Cambridge, UK
| | - Marco Pieraccioli
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | - Consuelo Pitolli
- Medical Research Council, Toxicology Unit, Department of Pathology, University of Cambridge, UK
| | - Lucia Anemona
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | | | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Italy.,Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | | | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Department of Pathology, University of Cambridge, UK.,Department of Experimental Medicine, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
61
|
Zhang Y, Yuan Y, Zhang Y, Cheng L, Zhou X, Chen K. SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer. Cell Cycle 2019; 19:142-152. [PMID: 31814518 DOI: 10.1080/15384101.2019.1699753] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small nucleolar RNA host gene 7 (SNHG7) is a newly recognized oncogenic Long non-coding RNA (lncRNA) in most human cancers. In gastric cancer, SNHG7 has been suggested to enhance cell proliferation and suppressed apoptosis through down-regulating P15 and P16 expression, but the effect of SNHG7 on gastric cancer cell migration and invasion was still unknown. In our study, we aimed to estimate the relationship between SNHG7 expression and clinical and pathological characteristics, and explore the effect of SNHG7 on gastric cancer cell migration and invasion. In our study, the levels of SNHG7 expression in gastric cancer tissues and cell lines were severally higher than in normal adjacent tissues and gastric mucosal epithelial cells. Moreover, high SNHG7 expression was positively correlated with TNM stage, depth of invasion, lymph-node metastasis and distant metastasis in gastric cancer patients. Furthermore, the multivariate Cox proportional hazard analysis further showed high SNHG7 expression was an independent poor prognostic factor for overall survival in gastric cancer patients. The studies in vitro revealed that SNHG7 directly binds to miR-34a and negatively regulates miR-34a expression, and SNHG7 enhances gastric cancer cell migration and invasion through suppressing miR-34a-Snail-EMT axis. In conclusion, SNHG7 functions as oncogenic lncRNA in gastric cancer and may be a potential therapeutic target for gastric cancer patients.Abbreviations: lncRNA: Long non-coding RNA; SNHG7: Small nucleolar RNA host gene 7; EMT: Epithelial mesenchymal transition; TNM: Tumor-Lymph Node-Metastasis.
Collapse
Affiliation(s)
- Yangmei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Yuan Yuan
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Long Cheng
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Xichang Zhou
- Department of Intervention, Xuzhou Central Hospital, Xuzhou Medical University, XuZhou, China
| | - Kai Chen
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
62
|
ZFP281 Recruits MYC to Active Promoters in Regulating Transcriptional Initiation and Elongation. Mol Cell Biol 2019; 39:MCB.00329-19. [PMID: 31570506 DOI: 10.1128/mcb.00329-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 02/02/2023] Open
Abstract
The roles of the MYC transcription factor in transcriptional regulation have been studied intensively. However, the general mechanism underlying the recruitment of MYC to chromatin is less clear. Here, we found that the Krüppel-like transcription factor ZFP281 plays important roles in recruiting MYC to active promoters in mouse embryonic stem cells. At the genome scale, ZFP281 is broadly associated with MYC, and the depletion of ZFP281 significantly reduces the levels of MYC and RNA polymerase II at the ZFP281- and MYC-cobound genes. Specially, we found that recruitment is required for the regulation of the Lin28a oncogene and pri-let-7 transcription. Our results therefore suggest a major role of ZFP281 in recruiting MYC to chromatin and the integration of ZFP281 and the MYC/LIN28A/Let-7 loop into a multilevel circuit.
Collapse
|
63
|
Maffeis V, Nicolè L, Cappellesso R. RAS, Cellular Plasticity, and Tumor Budding in Colorectal Cancer. Front Oncol 2019; 9:1255. [PMID: 31803624 PMCID: PMC6877753 DOI: 10.3389/fonc.2019.01255] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
The high morbidity and mortality of colorectal cancer (CRC) remain a worldwide challenge, despite the advances in prevention, diagnosis, and treatment. RAS alterations have a central role in the pathogenesis of CRC universally recognized both in the canonical mutation-based classification and in the recent transcriptome-based classification. About 40% of CRCs are KRAS mutated, 5% NRAS mutated, and only rare cases are HRAS mutated. Morphological and molecular correlations demonstrated the involvement of RAS in cellular plasticity, which is related to invasive and migration properties of neoplastic cells. RAS signaling has been involved in the initiation of epithelial to mesenchymal transition (EMT) in CRC leading to tumor spreading. Tumor budding is the morphological surrogate of EMT and features cellular plasticity. Tumor budding is clinically relevant for CRC patients in three different contexts: (i) in pT1 CRC the presence of tumor buds is associated with nodal metastasis, (ii) in stage II CRC identifies the cases with a prognosis similar to metastatic disease, and (iii) intratumoral budding could be useful in patient selection for neoadjuvant therapy. This review is focused on the current knowledge on RAS in CRC and its link with cellular plasticity and related clinicopathological features.
Collapse
Affiliation(s)
- Valeria Maffeis
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Lorenzo Nicolè
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Rocco Cappellesso
- Pathological Anatomy Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
64
|
Tian YQ, Fan ZJ, Liu S, Wu YJ, Liu SY. Value of microRNAs in diagnosis and prognosis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:1278-1284. [DOI: 10.11569/wcjd.v27.i20.1278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some new treatment methods have been explored to delay the recurrence of colorectal cancer (CRC). Early diagnosis plays an important role in the improvement of curative effect. The conventional methods used to diagnose and monitor CRC are fecal occult blood test (FOBT) and colonoscopy. However, FOBT has an unsatisfactory sensitivity, while colonoscopy is expensive and invasive. As new biomarkers, microRNAs, which can be detected in CRC tissues, cells, and body fluid as tumor suppressors or oncogenes, can be used in early diagnosis, the monitoring of metastasis and treatment, as well prognostic evaluation of CRC. This article reviews the diagnostic and prognostic value of microRNAs in CRC.
Collapse
Affiliation(s)
- Ya-Qiong Tian
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Zhi-Juan Fan
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Shuang Liu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yu-Jing Wu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Shu-Ye Liu
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| |
Collapse
|
65
|
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019; 20:ijms20112767. [PMID: 31195692 PMCID: PMC6600375 DOI: 10.3390/ijms20112767] [Citation(s) in RCA: 758] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation, migration, and the differentiation of a plethora of different cell types. Consistent with these findings, TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair, as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages, when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition (EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Yang Hao
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
66
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
67
|
Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, Tung YC, Hsu HL. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 2019; 18:42. [PMID: 30885232 PMCID: PMC6421700 DOI: 10.1186/s12943-019-0988-0] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a poor prognostic breast cancer with the highest mutations and limited therapeutic choices. Cytokine networking between cancer cells and the tumor microenvironment (TME) maintains the self-renewing subpopulation of breast cancer stem cells (BCSCs) that mediate tumor heterogeneity, resistance and recurrence. Immunotherapy of those factors combined with targeted therapy or chemoagents may advantage TNBC treatment. Results We found that the oncogene Multiple Copies in T-cell Malignancy 1 (MCT-1/MCTS1) expression is a new poor-prognosis marker in patients with aggressive breast cancers. Overexpressing MCT-1 perturbed the oncogenic breast epithelial acini morphogenesis and stimulated epithelial-mesenchymal transition and matrix metalloproteinase activation in invasive TNBC cells, which were repressed after MCT-1 gene silencing. As mammary tumor progression was promoted by oncogenic MCT-1 activation, tumor-promoting M2 macrophages were enriched in TME, whereas M2 macrophages were decreased and tumor-suppressive M1 macrophages were increased as the tumor was repressed via MCT-1 knockdown. MCT-1 stimulated interleukin-6 (IL-6) secretion that promoted monocytic THP-1 polarization into M2-like macrophages to increase TNBC cell invasiveness. In addition, MCT-1 elevated the soluble IL-6 receptor levels, and thus, IL-6R antibodies antagonized the effect of MCT-1 on promoting M2-like polarization and cancer cell invasion. Notably, MCT-1 increased the features of BCSCs, which were further advanced by IL-6 but prevented by tocilizumab, a humanized IL-6R antibody, thus MCT-1 knockdown and tocilizumab synergistically inhibited TNBC stemness. Tumor suppressor miR-34a was induced upon MCT-1 knockdown that inhibited IL-6R expression and activated M1 polarization. Conclusions The MCT-1 pathway is a novel and promising therapeutic target for TNBC. Electronic supplementary material The online version of this article (10.1186/s12943-019-0988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pei-Chun Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
68
|
Sadłecki P, Grabiec M, Grzanka D, Jóźwicki J, Antosik P, Walentowicz-Sadłecka M. Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers. J Ovarian Res 2019; 12:23. [PMID: 30885238 PMCID: PMC6423742 DOI: 10.1186/s13048-019-0501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Low-grade ovarian cancers represent up to 8% of all epithelial ovarian carcinomas (EOCs). Recent studies demonstrated that epithelial-mesenchymal transition (EMT) is crucial for the progression of EOCs. EMT plays a key role in cancer invasion, metastasis formation and chemotherapy resistance. An array of novel EMT transcription factors from the zinc finger protein family have been described recently, among them zinc finger protein 143 (ZNF143) and zinc finger protein 281 (ZNF281). The study included tissue specimens from 42 patients. Based on histopathological examination of surgical specimens, eight lesions were classified as serous borderline ovarian tumors (sBOTs) and 34 as low-grade EOCs. The proportions of the ovarian tumors that tested positively for ZNF143 and ZNF281 were 90 and 57%, respectively. No statistically significant differences were found in the expressions of ZNF143 and ZNF281 transcription factors in SBOTs and low-grade EOCs. Considering the expression patterns for ZNF143 and ZNF281 identified in this study, both sBOTs and low-grade EOCs might undergo a dynamic epithelial-mesenchymal interconversion. The lack of statistically significant differences in the expressions of the zinc finger proteins in sBOTs and low-grade serous EOCs might constitute an evidence for common origin of these two tumor types.
Collapse
Affiliation(s)
- Paweł Sadłecki
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Walentowicz-Sadłecka
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| |
Collapse
|
69
|
Rokavec M, Bouznad N, Hermeking H. Paracrine Induction of Epithelial-Mesenchymal Transition Between Colorectal Cancer Cells and its Suppression by a p53/miR-192/215/NID1 Axis. Cell Mol Gastroenterol Hepatol 2019; 7:783-802. [PMID: 30831320 PMCID: PMC6468198 DOI: 10.1016/j.jcmgh.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Intratumor heterogeneity is a common feature of colorectal cancer (CRC). Here, we analyzed whether mesenchymal-like CRC cells promote the progression of epithelial-like CRC cells via paracrine mechanisms. METHODS Six CRC cell lines that show an epithelial phenotype were treated with conditioned media (CM) from CRC cell lines that show a mesenchymal phenotype, and effects on epithelial-mesenchymal transition (EMT), migration, invasion, and chemoresistance were determined. Secreted factors potentially mediating these effects were identified by using cytokine arrays. Associations of these factors with tumor progression and patient survival were determined. RESULTS CM obtained from mesenchymal-like CRC cells induced EMT associated with increased migration, invasion, and chemoresistance in epithelial-like CRC cell lines. Notably, activation of p53 in mesenchymal-like CRC cells prevented these effects of CM. Increased concentrations of several cytokines were identified in CM from mesenchymal-like CRC cell lines and a subset of these cytokines showed repression by p53. The down-regulation of nidogen-1 (NID1) was particularly significant and was owing to p53-mediated induction of microRNA-192 and microRNA-215, which directly target the NID1 messenger RNA. NID1 was found to be required and sufficient for inducing EMT, invasion, and migration in epithelial-like CRC cells. In primary CRCs, increased NID1 expression was associated with p53 mutation and microRNA-192/215 down-regulation. Importantly, increased NID1 expression in CRCs correlated with enhanced tumor progression and poor patient survival. CONCLUSIONS Taken together, our results show that CRC cells promote tumor progression via secreting NID1, which induces EMT in neighboring tumor cells. Importantly, the interference of p53 with this paracrine signaling between tumor cells may critically contribute to tumor suppression.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany,German Cancer Consortium (DKTK), Partner site Munich, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Correspondence Address correspondence to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany. fax: (49) 89-2180-73697.
| |
Collapse
|
70
|
Zhao GX, Xu YY, Weng SQ, Zhang S, Chen Y, Shen XZ, Dong L, Chen S. CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. Oncogene 2019; 38:4574-4589. [PMID: 30742066 DOI: 10.1038/s41388-019-0740-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer with high mortality rate mostly due to metastasis. Ca2+-dependent activator protein for secretion 1 (CAPS1) was originally identified as a soluble factor that reconstitutes Ca2+-dependent secretion. In this study, we discovered a novel role of CAPS1 in CRC metastasis. CAPS1 is frequently up-regulated in CRC tissues. Increased CAPS1 expression is associated with frequent metastasis and poor prognosis of CRC patients. Overexpression of CAPS1 promotes CRC cell migration and invasion in vitro, as well as liver metastasis in vivo, without affecting cell proliferation. CAPS1 induces epithelial-mesenchymal transition (EMT), including decreased E-cadherin and ZO-1, epithelial marker expression, and increased N-cadherin and Snail, mesenchymal marker expression. Snail knockdown reversed CAPS1-induced EMT, cell migration and invasion. This result indicates that Snail is required for CAPS1-mediated EMT process and metastasis in CRC. Furthermore, CAPS1 can bind with Septin2 and p85 (subunit of PI3K). LY294002 and wortmanin, PI3K/Akt inhibitors, can abolish CAPS1-induced increase of Akt/GSK3β activity, as well as increase of Snail protein level. Taken together, CAPS1 promotes colorectal cancer metastasis through PI3K/Akt/GSK3β/Snail signal pathway-mediated EMT process.
Collapse
Affiliation(s)
- Guang-Xi Zhao
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.,Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Ying Xu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
71
|
The Developing Story of Predictive Biomarkers in Colorectal Cancer. J Pers Med 2019; 9:jpm9010012. [PMID: 30736475 PMCID: PMC6463186 DOI: 10.3390/jpm9010012] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Surgery remains the most important treatment for non-metastatic CRC, and the administration of adjuvant chemotherapy depends mainly on the disease stage, which is still the strongest prognostic factor. A refined understanding of the genomics of CRC has recently been achieved thanks to the widespread use of next generation sequencing with potential future therapeutic implications. Microsatellite instability (MSI) has been suggested as a predictive marker for response to anti-programmed-cell-death protein 1 (PD-1) therapy in solid tumors, including CRC. It should be noted that not all cancers with MSI phenotype respond to anti-PD-1 immunotherapy, highlighting the urgent need for even better predictive biomarkers. Mitogen-Activated Protein Kinase (MAPK) pathway genes KRAS, NRAS, and BRAF represent important molecular targets and could serve as independent prognostic biomarkers in CRC, and identify those who potentially benefit from anti-epidermal growth factor receptor (EGFR) treatment. Emerging evidence has attributed a significant role to inflammatory markers including blood cell ratios in the prognosis and survival of CRC patients; these biomarkers can be easily assessed in routine blood exams and be used to identify high-risk patients or those more likely to benefit from chemotherapy, targeted therapies and potentially immunotherapy. Analysis of cell-free DNA (cfDNA), circulating tumor cells (CTC) and/or micro RNAs (miRNAs) could provide useful information for the early diagnosis of CRC, the identification of minimal residual disease and, the evaluation of the risk of recurrence in early CRC patients. Even the selection of patients suitable for the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Finally, the development of treatment resistance with the emergence of chemo-resistance clones after treatment remains the most important challenge in the clinical practice. In this context it is crucial to identify potential biomarkers and therapeutic targets which could lead to development of new and more effective treatments.
Collapse
|
72
|
Swier LJYM, Dzikiewicz‐Krawczyk A, Winkle M, van den Berg A, Kluiver J. Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Mol Oncol 2019; 13:26-45. [PMID: 30451365 PMCID: PMC6322196 DOI: 10.1002/1878-0261.12409] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023] Open
Abstract
Myelocytomatosis viral oncogene homolog (MYC) plays an important role in the regulation of many cellular processes, and its expression is tightly regulated at the level of transcription, translation, protein stability, and activity. Despite this tight regulation, MYC is overexpressed in many cancers and contributes to multiple hallmarks of cancer. In recent years, it has become clear that noncoding RNAs add a crucial additional layer to the regulation of MYC and its downstream effects. So far, twenty-five microRNAs and eighteen long noncoding RNAs that regulate MYC have been identified. Thirty-three miRNAs and nineteen lncRNAs are downstream effectors of MYC that contribute to the broad oncogenic role of MYC, including its effects on diverse hallmarks of cancer. In this review, we give an overview of this extensive, multilayered noncoding RNA network that exists around MYC. Current data clearly show explicit roles of crosstalk between MYC and ncRNAs to allow tumorigenesis.
Collapse
Affiliation(s)
- Lotteke J. Y. M. Swier
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | | | - Melanie Winkle
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| |
Collapse
|
73
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
74
|
Pierdomenico M, Palone F, Cesi V, Vitali R, Mancuso AB, Cucchiara S, Oliva S, Aloi M, Stronati L. Transcription Factor ZNF281: A Novel Player in Intestinal Inflammation and Fibrosis. Front Immunol 2018; 9:2907. [PMID: 30619271 PMCID: PMC6297801 DOI: 10.3389/fimmu.2018.02907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Background and aims: Recent evidences reveal the occurrence of a close relationship among epithelial to mesenchymal transition (EMT), chronic inflammation and fibrosis. ZNF281 is an EMT-inducing transcription factor (EMT-TF) involved in the regulation of pluripotency, stemness, and cancer. The aim of this study was to investigate in vitro, in vivo, and ex vivo a possible role of ZNF281 in the onset and progression of intestinal inflammation. A conceivable contribution of the protein to the development of intestinal fibrosis was also explored. Methods: Human colorectal adenocarcinoma cell line, HT29, and C57BL/6 mice were used for in vitro and in vivo studies. Mucosal biopsy specimens were taken during endoscopy from 29 pediatric patients with Crohn's disease (CD), 24 with ulcerative colitis (UC) and 16 controls. ZNF281 was knocked down by transfecting HT29 cells with 20 nM small interference RNA (siRNA) targeting ZNF281 (siZNF281). Results: We show for the first time that ZNF281 is induced upon treatment with inflammatory agents in HT29 cells, in cultured uninflamed colonic samples from CD patients and in DSS-treated mice. ZNF281 expression correlates with the disease severity degree of CD and UC patients. Silencing of ZNF281 strongly reduces both inflammatory (IL-8, IL-1beta, IL-17, IL-23) and EMT/fibrotic (SNAIL, Slug, TIMP-1, vimentin, fibronectin, and α-SMA) gene expression; besides, it abolishes the increase of extracellular-collagen level as well as the morphological modifications induced by inflammation. Conclusions: The identification of transcription factor ZNF281 as a novel player of intestinal inflammation and fibrosis allows a deeper comprehension of the pathogenetic mechanisms underlying inflammatory bowel disease (IBD) and provide a new target for their cure.
Collapse
Affiliation(s)
- Maria Pierdomenico
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Franscesca Palone
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Roberta Vitali
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Anna Barbara Mancuso
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
75
|
The Impact of miRNA in Colorectal Cancer Progression and Its Liver Metastases. Int J Mol Sci 2018; 19:ijms19123711. [PMID: 30469518 PMCID: PMC6321452 DOI: 10.3390/ijms19123711] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high incidence and mortality rate. An essential challenge in colorectal cancer management is to identify new prognostic factors that could better estimate the evolution and treatment responses of this disease. Considering their role in cancer development, progression and metastasis, miRNAs have become an important class of molecules suitable for cancer biomarkers discovery. We performed a systematic search of studies investigating the role of miRNAs in colorectal progression and liver metastasis published until October 2018. In this review, we present up-to-date information regarding the specific microRNAs involved in CRC development, considering their roles in alteration of Wnt/βcatenin, EGFR, TGFβ and TP53 signaling pathways. We also emphasize the role of miRNAs in controlling the epithelial⁻mesenchymal transition of CRC cells, a process responsible for liver metastasis in a circulating tumor cell-dependent manner. Furthermore, we discuss the role of miRNAs transported by CRC-derived exosomes in mediating liver metastases, by preparing the secondary pre-metastatic niche and in inducing liver carcinogenesis in a Dicer-dependent manner.
Collapse
|
76
|
Zhang L, Wang L, Dong D, Wang Z, Ji W, Yu M, Zhang F, Niu R, Zhou Y. MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis. Cell Prolif 2018; 52:e12527. [PMID: 30334298 PMCID: PMC6430481 DOI: 10.1111/cpr.12527] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES MiR-34 is a tumour suppressor in breast cancer. Neurokinin-1 receptor (NK1R), which is the predicted target of the miR-34 family, is overexpressed in many cancers. This study investigated the correlation and clinical significance of miR-34 and NK1R in breast cancer. MATERIALS AND METHODS Western blotting, quantitative reverse transcription-PCR (qRT-PCR) and luciferase assays were conducted to analyse the regulation of NK1R by miR-34 in MDA-MB-231, MCF-7, T47D, SK-BR-3 and HEK-293 T cells. MiR-34b/c-5p, full-length NK1R (NK1R-FL) and truncated NK1R (NK1R-Tr) expression in fifty patients were quantified by qRT-PCR and correlated with their clinicopathological parameters. CCK-8 assays, colony formation assays and flow cytometry were used to measure cell proliferation and apoptosis in MDA-MB-231 and MCF-7 cells transfected with miR-34b/c-5p or NK1R-siRNA and before treatment with or without Substance P (SP), an endogenous peptide agonists of NK1R. The effect of NK1R antagonist aprepitant was also investigated. In vivo xenograft models were used to further verify the regulation of NK1R by miR-34b/c-5p. RESULTS Expression levels of miR-34b/c-5p and NK1R-Tr, but not NK1R-FL, were associated with enhanced malignant potential, such as tumour stage and Ki67 expression. The overexpression of miR-34b/c-5p or NK1R silencing potently suppressed cell proliferation and induced G2/M phase arrest and the apoptosis of MDA-MB-231 and MCF-7 cells. The NK1R antagonist aprepitant had similar effects. In vivo studies confirmed that miR-34b/c-5p overexpression or NK1R silencing reduced the tumorigenicity of breast cancer. In addition, SP rescued the effects of miR-34b/c-5p overexpression or NK1R silencing on cell proliferation and apoptosis in vitro and in vivo assays. CONCLUSIONS MiR-34b/c-5p and NK1R contribute to breast cancer cell proliferation and apoptosis and are potential targets for breast cancer therapeutics.
Collapse
Affiliation(s)
- Lufang Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China.,Department of Clinical Laboratory, Aviation General Hospital, Beijing, China
| | - Lushan Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Dong Dong
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy of Educational Ministry, Tianjin Medical University, Tianjin, China
| |
Collapse
|
77
|
Krajewska JB, Fichna J, Mosińska P. One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool? Crit Rev Oncol Hematol 2018; 132:1-8. [PMID: 30447913 DOI: 10.1016/j.critrevonc.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The discovery that microRNAs (miRNAs) - short, non-coding RNA molecules which regulate gene expression - are implicated in many types of cancer has revolutionised cancer research, giving hope for a new perspective in diagnostics and treatment. Dysregulation of miRNAs occurs in various malignancies, including colorectal cancer (CRC). CRC is one of the leading causes of cancer-related death and in most countries its incidence is still rising. Among several miRNAs which have been linked to CRC, miR-34 has attracted particular attention. This miRNA is involved in the regulation of cell cycle and apoptosis through multiple signaling pathways such as p53, Ra and Wnt signaling. Understanding its role in CRC may facilitate its future use as a diagnostic tool and therapeutic target.
Collapse
Affiliation(s)
- Julia B Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland.
| |
Collapse
|
78
|
Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 2018; 18:130. [PMID: 30202241 PMCID: PMC6127951 DOI: 10.1186/s12935-018-0631-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers diagnosed and among the commonest causes of cancer-related mortality globally. Despite the various available treatment options, millions of people still suffer from this illness and most of these treatment options have several limitations. Therefore, a less expensive, non-invasive or a treatment that requires the use of dietary products remains a focal point in this review. Main body Aberrant microRNA expression has been revealed to have a functional role in the initiation and progression of CRC. These has shown significant promise in the diagnosis and prognosis of CRC, owing to their unique expression profile associated with cancer types and malignancies. Moreover, microRNA therapeutics show a great promise in preclinical studies, and these encourage further development of their clinical use in CRC patients. Additionally, emerging studies show the chemo-preventive potential of dietary components in microRNA modulation using several CRC models. This review examines the dietary interplay between microRNAs and CRC incidence. Improving the understanding of the interactions between microRNAs and dietary components in the carcinogenesis of CRC will assist the study of CRC progression and finally, in developing personalized approaches for cancer prevention and therapy. Conclusion Although miRNA research is still at its infancy, it could serve as a promising predictive biomarkers and therapeutic targets for CRC. Given the ever-expanding number of miRNAs, understanding their functional aspects represents a promising option for further research.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- 1Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.,3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Babajide A Ojo
- 2Department of Nutritional Science, Oklahoma State University, 301, Human Sciences, Stillwater, OK 74075 USA
| | - Olusola Bolaji Adewale
- 3Department of Biochemistry, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State Nigeria
| | - Temitope Esho
- 4Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann Str. 52, 50931 Cologne, Germany
| | - Ashley Pretorius
- Biotechnology Innovation Division, Aminotek PTY LTD, Suite 2C, Oude Westhof Village Square Bellville, 7530 South Africa
| |
Collapse
|
79
|
To KKW, Tong CWS, Wu M, Cho WCS. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World J Gastroenterol 2018; 24:2949-2973. [PMID: 30038463 PMCID: PMC6054943 DOI: 10.3748/wjg.v24.i27.2949] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs that can post-transcriptionally regulate the expression of various oncogenes and tumor suppressor genes. Dysregulated expression of many miRNAs have been shown to mediate the signaling pathways critical in the multistep carcinogenesis of colorectal cancer (CRC). MiRNAs are stable and protected from RNase-mediated degradation, thereby enabling its detection in biological fluids and archival tissues for biomarker studies. This review focuses on the role and application of miRNAs in the prognosis and therapy of CRC. While stage II CRC is potentially curable by surgical resection, a significant percentage of stage II CRC patients do develop recurrence. MiRNA biomarkers may be used to stratify such high-risk population for adjuvant chemotherapy to provide better prognoses. Growing evidence also suggests that miRNAs are involved in the metastatic process of CRC. Certain of these miRNAs may thus be used as prognostic biomarkers to identify patients more likely to have micro-metastasis, who could be monitored more closely after surgery and/or given more aggressive adjuvant chemotherapy. Intrinsic and acquired resistance to chemotherapy severely hinders successful chemotherapy in CRC treatment. Predictive miRNA biomarkers for response to chemotherapy may identify patients who will benefit the most from a particular regimen and also spare the patients from unnecessary side effects. Selection of patients to receive the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Lastly, forced expression of tumor suppressor miRNA or silencing of oncogenic miRNA in tumors by gene therapy can also be adopted to treat CRC alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kenneth KW To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Christy WS Tong
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - William CS Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
80
|
Wang Y, Wu Z, Hu L. The regulatory effects of metformin on the [SNAIL/miR-34]:[ZEB/miR-200] system in the epithelial-mesenchymal transition(EMT) for colorectal cancer(CRC). Eur J Pharmacol 2018; 834:45-53. [PMID: 30017802 DOI: 10.1016/j.ejphar.2018.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 07/09/2018] [Indexed: 01/26/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a critical role in cancer progression, metastasis and drug resistance. The transcription factor(TF) and microRNA (miR) chimeric [SNAIL/miR-34]:[ZEB/miR-200] unit is the core regulatory system for the EMT process. Here, we proposed to assess the anti-EMT abilities and explore the inherent pharmacological mechanisms of the classic hypoglycaemic agent metformin for colorectal cancer(CRC). For the EMT model, the TGF-β-induced CRC cell lines SW480 and HCT116 were treated with metformin. The viability, migration and invasion abilities of the cells were evaluated with the Cell Counting Kit-8, wound-healing and trans-well assay. The alterations of the [SNAIL/miR-34]:[ZEB/miR-200] system and the EMT markers E-cadherin and vimentin were detected by western blot, qPCR and immunofluorescent staining. Metformin exhibited inhibitory effects on the proliferation, migration and invasion of the CRC SW480 cells. The up-regulation of E-cadherin and the down-regulation of vimentin for both SW480 and HCT116 cells revealed the anti-EMT abilities of metformin. For the [SNAIL/miR-34]:[ZEB/miR-200] system, metformin increased miR-200a, miR-200c and miR-429 levels and decreased miR-34a, SNAIL1 and ZEB1 levels in the TGF-β-induced EMT. From immunofluorescence, we observed increased E-cadherin and ZEB1 co-expression in metformin-treated cells. Metformin may perform bidirectional regulations of the [SNAIL/miR-34]:[ZEB/miR-200] system in the EMT process for colorectal cancer. Such regulation is expressed as the inhibition of EMT in general as well as an increased higher proportion of E/M hybrid cells in the total population.
Collapse
Affiliation(s)
- Yaodu Wang
- Cancer Center, Shandong University Qilu Hospital, West Wenhua Road 107, Jinan 250012, Shandong Province, PR China
| | - Zhiyang Wu
- Intensive Care Unit, Shandong University Qilu Hospital(Qingdao), Hefei Road 758, Qingdao 266035, Shandong Province, PR China
| | - Likuan Hu
- Cancer Center, Shandong University Qilu Hospital, West Wenhua Road 107, Jinan 250012, Shandong Province, PR China.
| |
Collapse
|
81
|
Atarod S, Norden J, Bibby LA, Janin A, Ratajczak P, Lendrem C, Pearce KF, Wang XN, O'Reilly S, Van Laar JM, Collin M, Dickinson AM, Crossland RE. Differential MicroRNA Expression Levels in Cutaneous Acute Graft-Versus-Host Disease. Front Immunol 2018; 9:1485. [PMID: 30042760 PMCID: PMC6048189 DOI: 10.3389/fimmu.2018.01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGvHD) is a major complication affecting 40-70% of all transplant patients, whereby the earliest and most frequent presentation is in the skin. MicroRNAs play a role in varied biological process and have been reported as potential biomarkers for aGvHD. More recently, microRNAs have received added attention as circulatory biomarkers that can be detected in biofluids. In this study, we performed global microRNA expression profiling using a discovery cohort of diagnostic cutaneous aGvHD biopsies (n = 5, stages 1-3) and healthy volunteers (n = 4), in order to identify a signature list of microRNAs that could be used as diagnostic biomarkers for cutaneous aGvHD. Candidate microRNAs (n = 8) were then further investigated in a validation cohort of post-HSCT skin biopsies (n = 17), pre-HSCT skin biopsies (n = 6) and normal controls (n = 6) for their association with aGvHD. Expression of let-7c (p = 0.014), miR-503-5p (p = 0.003), miR-365a-3p (p = 0.02), miR-34a-5p (p < 0.001) and miR-34a-3p (p = 0.006) were significantly differentially expressed between groups and significantly associated with survival outcome in post-HSCT patients (miR-503-5p ROC AUC = 0.83 p = 0.021, Log Rank p = 0.003; miR-34a-3p ROC AUC = 0.93, p = 0.003, Log Rank p = 0.004). There was no association with relapse. A statistical interaction between miR-34a-3p and miR-503-5p (p = 0.016) was diagnostic for aGvHD. Expression levels of the miR-34a-5p protein target p53 were assessed in the epidermis of the skin, and an inverse correlation was identified (r2 = 0.44, p = 0.039). Expression of the validated candidate microRNAs was also assessed at day 28 post-HSCT in the sera of transplant recipients, in order to investigate their potential as circulatory microRNA biomarkers. Expression of miR-503-5p (p = 0.001), miR-34a-5p (p = 0.005), and miR-34a-3p (p = 0.004) was significantly elevated in the sera of patients who developed aGvHD versus no-aGvHD (n = 30) and miR-503-5p was associated with overall survival (OS) (ROC AUC = 0.80, p = 0.04, Log Rank p = 0.041). In conclusion, this investigation reports that microRNA expression levels in clinical skin biopsies, obtained at the time of cutaneous aGvHD onset, show potential as diagnostic biomarkers for aGvHD and as predictive biomarkers for OS. In addition, the same microRNAs can be detected in the circulation and show predictive association with post-HSCT outcomes.
Collapse
Affiliation(s)
- Sadaf Atarod
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newborn Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, United States
| | - Jean Norden
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis A Bibby
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne Janin
- Université Paris Diderot, INSERM, UMR_S1165, Paris, France
| | | | - Clare Lendrem
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kim F Pearce
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jacob M Van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Matthew Collin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel E Crossland
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
82
|
ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. Proc Natl Acad Sci U S A 2018; 115:7356-7361. [PMID: 29941555 PMCID: PMC6048510 DOI: 10.1073/pnas.1801435115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-risk neuroblastomas (NBs) show undifferentiated/poorly differentiated morphology as a distinctive feature. We have identified the transcription factor ZNF281 as a factor that can counteract the neuronal differentiation of primary neurons in culture and NB cells. The expression of ZNF281 is inhibited by TAp73 and promoted by MYCN. In turn, ZNF281 inhibits the expression of GDNF and NRP2, two proteins associated with neuronal differentiation. In patients with NB, the expression of ZNF281 is higher in high-risk patients and is associated with worse prognosis. Understanding the molecular mechanisms that regulate neuronal differentiation is relevant for the identification of defects in this process that underlie the development of tumors such as NB, in which an aberrant differentiation arrest has occurred. Derangement of cellular differentiation because of mutation or inappropriate expression of specific genes is a common feature in tumors. Here, we show that the expression of ZNF281, a zinc finger factor involved in several cellular processes, decreases during terminal differentiation of murine cortical neurons and in retinoic acid-induced differentiation of neuroblastoma (NB) cells. The ectopic expression of ZNF281 inhibits the neuronal differentiation of murine cortical neurons and NB cells, whereas its silencing causes the opposite effect. Furthermore, TAp73 inhibits the expression of ZNF281 through miR34a. Conversely, MYCN promotes the expression of ZNF281 at least in part by inhibiting miR34a. These findings imply a functional network that includes p73, MYCN, and ZNF281 in NB cells, where ZNF281 acts by negatively affecting neuronal differentiation. Array analysis of NB cells silenced for ZNF281 expression identified GDNF and NRP2 as two transcriptional targets inhibited by ZNF281. Binding of ZNF281 to the promoters of these genes suggests a direct mechanism of repression. Bioinformatic analysis of NB datasets indicates that ZNF281 expression is higher in aggressive, undifferentiated stage 4 than in localized stage 1 tumors supporting a central role of ZNF281 in affecting the differentiation of NB. Furthermore, patients with NB with high expression of ZNF281 have a poor clinical outcome compared with low-expressors. These observations suggest that ZNF281 is a controller of neuronal differentiation that should be evaluated as a prognostic marker in NB.
Collapse
|
83
|
Chu PC, Lin PC, Wu HY, Lin KT, Wu C, Bekaii-Saab T, Lin YJ, Lee CT, Lee JC, Chen CS. Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene 2018; 37:3440-3455. [PMID: 29559746 DOI: 10.1038/s41388-018-0222-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/20/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
Abstract
Although the role of insulin-like growth factor-I receptor (IGF-IR) in promoting colorectal liver metastasis is known, the mechanism by which IGF-IR is upregulated in colorectal cancer (CRC) is not defined. In this study, we obtained evidence that mutant KRAS transcriptionally activates IGF-IR gene expression through Y-box-binding protein (YB)-1 upregulation via a novel MEK-Sp1-DNMT1-miR-137 pathway in CRC cells. The mechanistic link between the tumor suppressive miR-137 and the translational regulation of YB-1 is intriguing because epigenetic silencing of miR-137 represents an early event in colorectal carcinogenesis due to promoter hypermethylation. This proposed signaling axis was further verified by the immunohistochemical evaluations of liver metastases from a cohort of 46 KRAS mutant CRC patients, which showed a significant correlation in the expression levels among Sp1, miR-137, YB-1, and IGF-1R. Moreover, suppression of the expression of YB-1 and IGF-IR via genetic knockdown or the pharmacological inhibition of MEK hampers KRAS-driven colorectal liver metastasis in our animal model studies. From a translational perspective, the identification of this KRAS-driven pathway might provide a mechanistic rationale for the use of a MEK inhibitor as an adjuvant, in combination with standard of care, to prevent the recurrence of colorectal liver metastasis in KRAS mutant CRC patients after receiving liver resection, which warrants further investigation.
Collapse
Affiliation(s)
- Po-Chen Chu
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan
- Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, 40402, Taichung, Taiwan
| | - Peng-Chan Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Hsing-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 10617, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan
| | - Christina Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Tanios Bekaii-Saab
- Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Jeng-Chang Lee
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 70403, Tainan, Taiwan
| | - Ching-Shih Chen
- Institute of Biological Chemistry, Academia Sinica, 11529, Taipei, Taiwan.
- Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, 40402, Taichung, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
84
|
Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition. Noncoding RNA 2018; 4:ncrna4020014. [PMID: 29843425 PMCID: PMC6027143 DOI: 10.3390/ncrna4020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key biological process involved in a multitude of developmental and pathological events. It is characterized by the progressive loss of cell-to-cell contacts and actin cytoskeletal rearrangements, leading to filopodia formation and the progressive up-regulation of a mesenchymal gene expression pattern enabling cell migration. Epithelial-to-mesenchymal transition is already observed in early embryonic stages such as gastrulation, when the epiblast undergoes an EMT process and therefore leads to the formation of the third embryonic layer, the mesoderm. Epithelial-to-mesenchymal transition is pivotal in multiple embryonic processes, such as for example during cardiovascular system development, as valve primordia are formed and the cardiac jelly is progressively invaded by endocardium-derived mesenchyme or as the external cardiac cell layer is established, i.e., the epicardium and cells detached migrate into the embryonic myocardial to form the cardiac fibrous skeleton and the coronary vasculature. Strikingly, the most important biological event in which EMT is pivotal is cancer development and metastasis. Over the last years, understanding of the transcriptional regulatory networks involved in EMT has greatly advanced. Several transcriptional factors such as Snail, Slug, Twist, Zeb1 and Zeb2 have been reported to play fundamental roles in EMT, leading in most cases to transcriptional repression of cell⁻cell interacting proteins such as ZO-1 and cadherins and activation of cytoskeletal markers such as vimentin. In recent years, a fundamental role for non-coding RNAs, particularly microRNAs and more recently long non-coding RNAs, has been identified in normal tissue development and homeostasis as well as in several oncogenic processes. In this study, we will provide a state-of-the-art review of the functional roles of non-coding RNAs, particularly microRNAs, in epithelial-to-mesenchymal transition in both developmental and pathological EMT.
Collapse
|
85
|
di Gennaro A, Damiano V, Brisotto G, Armellin M, Perin T, Zucchetto A, Guardascione M, Spaink HP, Doglioni C, Snaar-Jagalska BE, Santarosa M, Maestro R. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ 2018; 25:2165-2180. [PMID: 29666469 PMCID: PMC6262018 DOI: 10.1038/s41418-018-0103-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Inactivation of p53 contributes significantly to the dismal prognosis of breast tumors, most notably triple-negative breast cancers (TNBCs). How the relief from p53 tumor suppressive functions results in tumor cell aggressive behavior is only partially elucidated. In an attempt to shed light on the implication of microRNAs in this context, we discovered a new signaling axis involving p53, miR-30a and ZEB2. By an in silico approach we identified miR-30a as a putative p53 target and observed that in breast tumors reduced miR-30a expression correlated with p53 inactivation, lymph node positivity and poor prognosis. We demonstrate that p53 binds the MIR30A promoter and induces the transcription of both miRNA strands 5p and 3p. Both miR-30a-5p and -3p showed the capacity of targeting ZEB2, a transcription factor involved in epithelial–mesenchymal transition (EMT), tumor cell migration and drug resistance. Intriguingly, we found that p53 does restrain ZEB2 expression via miR-30a. Finally, we provide evidence that the new p53/miR-30a/ZEB2 axis controls tumor cell invasion and distal spreading and impinges upon miR-200c expression. Overall, this study highlights the existence of a novel axis linking p53 to EMT via miR-30a, and adds support to the notion that miRNAs represent key elements of the complex network whereby p53 inactivation affects TNBC clinical behavior.
Collapse
Affiliation(s)
- Alessandra di Gennaro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Valentina Damiano
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Giulia Brisotto
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Armellin
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Tiziana Perin
- Pathology Unit, CRO Aviano National Cancer Institute, Aviano (PN), via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Antonella Zucchetto
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, Aviano (PN) via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Guardascione
- Medical Oncology Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Herman P Spaink
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Claudio Doglioni
- Ateneo Vita-Salute, Department of Pathology, IRCCS Scientific Institute San Raffaele, Milan, 20132, Italy
| | - B Ewa Snaar-Jagalska
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Manuela Santarosa
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Roberta Maestro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| |
Collapse
|
86
|
Meel MH, Schaper SA, Kaspers GJL, Hulleman E. Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cell Mol Life Sci 2018; 75:871-887. [PMID: 29164272 PMCID: PMC5809527 DOI: 10.1007/s00018-017-2714-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal types of cancer in children. In recent years, it has become evident that these tumors are driven by epigenetic events, mainly mutations involving genes encoding Histone 3, setting them apart from their adult counterparts. These tumors are exceptionally resistant to chemotherapy and respond only temporarily to radiotherapy. Moreover, their delicate location and diffuse growth pattern make complete surgical resection impossible. In many other forms of cancer, chemo- and radioresistance, in combination with a diffuse, invasive phenotype, are associated with a transcriptional program termed the epithelial-to-mesenchymal transition (EMT). Activation of this program allows cancer cells to survive individually, invade surrounding tissues and metastasize. It also enables them to survive exposure to cytotoxic therapy, including chemotherapeutic drugs and radiation. We here suggest that EMT plays an important, yet poorly understood role in the biology and therapy resistance of pHGG and DIPG. This review summarizes the current knowledge on the major signal transduction pathways and transcription factors involved in the epithelial-to-mesenchymal transition in cancer in general and in pediatric HGG and DIPG in particular. Despite the fact that the mesenchymal transition has not yet been specifically studied in pHGG and DIPG, activation of pathways and high levels of transcription factors involved in EMT have been described. We conclude that the mesenchymal transition is likely to be an important element of the biology of pHGG and DIPG and warrants further investigation for the development of novel therapeutics.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Sophie A Schaper
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
87
|
Cui D, Zhao Y, Xu J. Activated CXCL5-CXCR2 axis promotes the migration, invasion and EMT of papillary thyroid carcinoma cells via modulation of β-catenin pathway. Biochimie 2018; 148:1-11. [PMID: 29471001 DOI: 10.1016/j.biochi.2018.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
Initiation of epithelial-to-mesenchymal transition (EMT) is common in papillary thyroid carcinoma (PTC) and may contribute to its metastasis. Aims of the present study are to investigate whether and how the C-X-C motif chemokine ligand (CXCL)-5/C-X-C motif receptor 2 (CXCR2) axis affects PTC metastasis, with a focus on the EMT process. Herein, two PTC cell lines, KTC-1 and B-CPAP cells, identified as CXCR2-positive cells were used as the cell model. We found that a 24-h stimulation of 1 or 10 nM recombinant human CXCL5 (rhCXCL5) enhanced the migration and invasion of both KTC-1 and B-CPAP cells without affecting their proliferation. The migration- and invasion-promoting effects of rhCXCL5 were attenuated if CXCR2 was silenced by its specific short hairpin RNAs (shRNAs). EMT initiation is defined as downregulation of epithelial-cadherin (E-cadherin) and upregulation of N-cadherin, Vimentin and Snail. Our data showed that rhCXCL5-induced EMT in PTC cells was suppressed by CXCR2 shRNA. Furthermore, the active CXCL5-CXCR2 axis enhanced the phosphorylation of Akt at Ser 473 residue and that of glycogen synthase kinase-3 (GSK-3β) at Ser 9 residue, and accelerated the nuclear accumulation of β-catenin in PTC cells. Re-expression of the active form of β-catenin in PTC cells rescued their impaired invasiveness caused by the blockade of CXCL5-CXCR2 axis. In addition, CXCL5 and CXCR2 were overexpressed in the metastatic lymph nodes obtained from 18 patients with PTC. In summary, our study demonstrates that the activated CXCL5-CXCR2 axis contributes to the metastatic phenotype of PTC cells by modulating Akt/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Dong Cui
- Department of Thyroid Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China.
| | - Yongfu Zhao
- Department of Thyroid Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China
| | - Jingchao Xu
- Department of Thyroid Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China
| |
Collapse
|
88
|
MicroRNA-182 drives colonization and macroscopic metastasis via targeting its suppressor SNAI1 in breast cancer. Oncotarget 2018; 8:4629-4641. [PMID: 27894095 PMCID: PMC5354860 DOI: 10.18632/oncotarget.13542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a multi-step process. Tumor cells occur epithelial-mesenchymal transition (EMT) to start metastasis, then, they need to undergo a reverse progression of EMT, mesenchymal-epithelial transition (MET), to colonize and form macrometastases at distant organs to complete the whole process of metastasis. Although microRNAs (miRNAs) functions in EMT process are well established, their influence on colonization and macrometastases formation remains unclear. Here, we established an EMT model in MCF-10A cells with SNAI1 overexpression, and characterized some EMT-related microRNAs. We identified that miR-182, which was directly suppressed by SNAI1, could enable an epithelial-like state in breast cancer cells in vitro, and enhance colonization and macrometastases in vivo. Subsequent studies showed that miR-182 exerted its function through targeting its suppressor SNAI1. Moreover, higher expression level of miR-182 was detected in metastatic lymph nodes, compared with paired primary tumor tissues. In addition, the expression level of miR-182 was negatively correlated with that of SNAI1 in these clinical specimens. Taking together, our findings describe the role of miR-182 in colonization and macrometastases in breast cancer for the first time, and provide a promise for diagnosis or therapy of breast cancer metastasis.
Collapse
|
89
|
Lee YJ, Bernstock JD, Klimanis D, Hallenbeck JM. Akt Protein Kinase, miR-200/miR-182 Expression and Epithelial-Mesenchymal Transition Proteins in Hibernating Ground Squirrels. Front Mol Neurosci 2018; 11:22. [PMID: 29440989 PMCID: PMC5797618 DOI: 10.3389/fnmol.2018.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
Hibernating 13-lined ground squirrels (Ictidomys tridecemlineatus; TLGS) rank among the most brain hypoperfusion-tolerant mammals known. Herein we provide some evidence of cycling between an epithelial phenotype and a hybrid epithelial/mesenchymal (E/M) phenotype (partial EMT) within the brains of TLGS during each bout of hibernation torpor. During hibernation torpor, expression of the epithelial marker E-cadherin (E-CDH) was reduced, while expression of the well-known mesenchymal markers vimentin and Sox2 were increased. P-cadherin (P-CDH), which has recently been proposed as a marker of intermediate/partial EMT, also increased during torpor, suggesting that a partial EMT may be taking place during hibernation torpor. Members of the miR-200 family and miR-182 cluster and Akt isoforms (Akt1, Akt2), well-known EMT regulators, were also differentially regulated in the TLGS brain during hibernation bouts. Using SHSY5Y cells, we also demonstrate that the Akt1/Akt2 ratio determined the expression levels of miR-200/miR-182 miRNA family members, and that these miRNAs controlled the expression of EMT-related proteins. Accordingly, we propose that such cell state transitions (EMT/MET) may be one of the mechanisms underlying the extraordinary ischemic tolerance of the TLGS brain during hibernation bouts; hibernator brain cells appear to enter reversible states that confer the stress survival characteristics of cancer cells without the risk of neoplastic transformation.
Collapse
Affiliation(s)
- Yang-Ja Lee
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| | - Joshua D Bernstock
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| | - Dace Klimanis
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| | - John M Hallenbeck
- Clinical Investigation Section, Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, United States
| |
Collapse
|
90
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
91
|
Dai Q, Shen Y, Wang Y, Wang X, Francisco JC, Luo Z, Lin C. Striking a balance: regulation of transposable elements by Zfp281 and Mll2 in mouse embryonic stem cells. Nucleic Acids Res 2017; 45:12301-12310. [PMID: 29036642 PMCID: PMC5716208 DOI: 10.1093/nar/gkx841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/12/2017] [Indexed: 01/22/2023] Open
Abstract
Transposable elements (TEs) compose about 40% of the murine genome. Retrotransposition of active TEs such as LINE-1 (L1) tremendously impacts genetic diversification and genome stability. Therefore, transcription and transposition activities of retrotransposons are tightly controlled. Here, we show that the Krüppel-like zinc finger protein Zfp281 directly binds and suppresses a subset of retrotransposons, including the active young L1 repeat elements, in mouse embryonic stem (ES) cells. In addition, we find that Zfp281-regulated L1s are highly enriched for 5-hydroxymethylcytosine (5hmC) and H3K4me3. The COMPASS-like H3K4 methyltransferase Mll2 is the major H3K4me3 methylase at the Zfp281-regulated L1s and required for their proper expression. Our studies also reveal that Zfp281 functions partially through recruiting the L1 regulators DNA hydroxymethylase Tet1 and Sin3A, and restricting Mll2 at these active L1s, leading to their balanced expression. In summary, our data indicate an instrumental role of Zfp281 in suppressing the young active L1s in mouse ES cells.
Collapse
Affiliation(s)
- Qian Dai
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yang Shen
- Bioinformatics Group, A*STAR Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yan Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xin Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Joel Celio Francisco
- Transcriptional Control in Development and Disease Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Zhuojuan Luo
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Chengqi Lin
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.,Transcriptional Control in Development and Disease Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| |
Collapse
|
92
|
Vu T, Datta PK. Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis. Cancers (Basel) 2017; 9:cancers9120171. [PMID: 29258163 PMCID: PMC5742819 DOI: 10.3390/cancers9120171] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a process during which cells lose their epithelial characteristics, for instance cell polarity and cell-cell contact, and gain mesenchymal properties, such as increased motility. In colorectal cancer (CRC), EMT is associated with an invasive or metastatic phenotype. In this review, we discuss recent studies exploring novel regulation mechanisms of EMT in CRC, including the identification of new CRC EMT regulators. Upregulation of inducers can promote EMT, leading to increased invasiveness and metastasis in CRC. These inducers can downregulate E-cadherin and upregulate N-cadherin and vimentin (VIM) through modulating EMT-related signaling pathways, for instance WNT/β-catenin and TGF-β, and EMT transcription factors, such as zinc finger E-box binding homeobox 1 (ZEB1) and ZEB2. In addition, several microRNAs (miRNAs), including members of the miR-34 and miR-200 families, are found to target mRNAs of EMT-transcription factors, for example ZEB1, ZEB2, or SNAIL. Downregulation of these miRNAs is associated with distant metastasis and advanced stage tumors. Furthermore, the role of EMT in circulating tumor cells (CTCs) is also discussed. Mesenchymal markers on the surface of EMT CTCs were found to be associated with metastasis and could serve as potential biomarkers for metastasis. Altogether, these studies indicate that EMT is orchestrated by a complicated network, involving regulators of different signaling pathways. Further studies are required to understand the mechanisms underlying EMT in CRC.
Collapse
Affiliation(s)
- Trung Vu
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
93
|
Long NP, Jung KH, Yoon SJ, Anh NH, Nghi TD, Kang YP, Yan HH, Min JE, Hong SS, Kwon SW. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers. Oncotarget 2017; 8:109436-109456. [PMID: 29312619 PMCID: PMC5752532 DOI: 10.18632/oncotarget.22689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Although many outstanding achievements in the management of cervical cancer (CxCa) have obtained, it still imposes a major burden which has prompted scientists to discover and validate new CxCa biomarkers to improve the diagnostic and prognostic assessment of CxCa. In this study, eight different gene expression data sets containing 202 cancer, 115 cervical intraepithelial neoplasia (CIN), and 105 normal samples were utilized for an integrative systems biology assessment in a multi-stage carcinogenesis manner. Deep learning-based diagnostic models were established based on the genetic panels of intrinsic genes of cervical carcinogenesis as well as on the unbiased variable selection approach. Survival analysis was also conducted to explore the potential biomarker candidates for prognostic assessment. Our results showed that cell cycle, RNA transport, mRNA surveillance, and one carbon pool by folate were the key regulatory mechanisms involved in the initiation, progression, and metastasis of CxCa. Various genetic panels combined with machine learning algorithms successfully differentiated CxCa from CIN and normalcy in cross-study normalized data sets. In particular, the 168-gene deep learning model for the differentiation of cancer from normalcy achieved an externally validated accuracy of 97.96% (99.01% sensitivity and 95.65% specificity). Survival analysis revealed that ZNF281 and EPHB6 were the two most promising prognostic genetic markers for CxCa among others. Our findings open new opportunities to enhance current understanding of the characteristics of CxCa pathobiology. In addition, the combination of transcriptomics-based signatures and deep learning classification may become an important approach to improve CxCa diagnosis and management in clinical practice.
Collapse
Affiliation(s)
| | - Kyung Hee Jung
- Department of Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoang Anh
- School of Medicine, Vietnam National University, Ho Chi Minh 70000, Vietnam
| | - Tran Diem Nghi
- School of Medicine, Vietnam National University, Ho Chi Minh 70000, Vietnam
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hong Hua Yan
- Department of Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
94
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
95
|
Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis 2017; 8:e3100. [PMID: 29022903 PMCID: PMC5682661 DOI: 10.1038/cddis.2017.495] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
MicroRNA miR-34a is recognized as a master regulator of tumor suppression. The strategy of miR-34a replacement has been investigated in clinical trials as the first attempt of miRNA application in cancer treatment. However, emerging outcomes promote the re-evaluation of existing knowledge and urge the need for better understanding the complex biological role of miR-34a. The targets of miR-34a encompass numerous regulators of cancer cell proliferation, survival and resistance to therapy. MiR-34a expression is transcriptionally controlled by p53, a crucial tumor suppressor pathway, often disrupted in cancer. Moreover, miR-34a abundance is fine-tuned by context-dependent feedback loops. The function and effects of exogenously delivered or re-expressed miR-34a on the background of defective p53 therefore remain prominent issues in miR-34a based therapy. In this work, we review p53-independent mechanisms regulating the expression of miR-34a. Aside from molecules directly interacting with MIR34A promoter, processes affecting epigenetic regulation and miRNA maturation are discussed. Multiple mechanisms operate in the context of cancer-associated phenomena, such as aberrant oncogene signaling, EMT or inflammation. Since p53-dependent tumor-suppressive mechanisms are disturbed in a substantial proportion of malignancies, we summarize the effects of miR-34a modulation in cell and animal models in the clinically relevant context of disrupted or insufficient p53 function.
Collapse
|
96
|
GSK-3β phosphorylation-dependent degradation of ZNF281 by β-TrCP2 suppresses colorectal cancer progression. Oncotarget 2017; 8:88599-88612. [PMID: 29179460 PMCID: PMC5687630 DOI: 10.18632/oncotarget.20100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023] Open
Abstract
Zinc finger protein 281 (ZNF281) has been recently shown to be critical for CRC progression. However, the immediate upstream regulators of ZNF281 remain unclear. Here we reported that the E3 ligase the β-transducin repeat-containing protein 2 (β-TrCP2) governs the ubiquitination and degradation of ZNF281. In human CRC specimens, endogenous β-TrCP2 were inversely correlated with ZNF281. Beta-TrCP2 reversed the phenotype of CRC cell with overexpressed ZNF281. Moreover, we found that glycogen synthase kinase 3β (GSK-3β), not GSK-α, could bind to and phosphorylate ZNF281 at one consensus motif (TSGEHS; phosphorylation site is shown in italics), which promotes the interaction of ZNF281 with β-TrCP2, not β-TrCP1, and leads to the subsequent ubiquitination and degradation of phosphorylated ZNF281. A mutant of ZNF281 (ZNF281-S638A) is much more stable than wild-type ZNF281 because ZNF281-S638A mutant abolishes the phosphorylation by GSK-3β and can not be ubiquitinated and degraded by β-TrCP2. Conversely, ZNF281 transcriptionally repressed the expression of β-TrCP2, indicating a negative feedback loop between ZNF281 and β-TrCP2 in CRC cells. These findings suggest that the turnover of ZNF281 by β-TrCP2 might provide a potentially novel treatment for patients with CRC.
Collapse
|
97
|
Qian Y, Li J, Xia S. ZNF281 Promotes Growth and Invasion of Pancreatic Cancer Cells by Activating Wnt/β-Catenin Signaling. Dig Dis Sci 2017; 62:2011-2020. [PMID: 28523575 DOI: 10.1007/s10620-017-4611-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zinc finger protein 281 (ZNF281) has been identified to be involved in embryonic stem cell differentiation and tissue development. Also, ZNF281 was found in various types of cancers. However, its biological functions and clinical significance in pancreatic cancer remain elusive. AIMS To explore the role of ZNF281 in pancreatic cancer cells proliferation and invasion. METHODS ZNF281 expression was examined in public database Oncomine and cBioPortal. The correlation between ZNF281 and clinicopathological features was measured, and Kaplan-Meier method was used to measure the overall survival and recurrence-free survival in the TCGA cohort. Ectopic expression and knockdown of ZNF281 were performed to measure the impact on cell proliferation and invasion. Western blot and immunoprecipitation were further used to identify the ZNF281 interacting proteins. Topflash luciferase assay was used to detect the Wnt/β-catenin signaling activation. RESULTS ZNF281 was predominantly up-regulated in pancreatic cancer tissues and significantly associated with advanced stage. Meanwhile, the high expression of ZNF281 indicated shorter overall survival and recurrence-free survival and ZNF281 could be an independent prognostic factor of pancreatic cancer. ZNF281 promoted cell proliferation and invasion in vitro. Mechanically, ZNF281 activated Wnt/β-catenin signaling and induced the downstream gene expression by directly binding with β-catenin and decreasing the polyubiquitination. CONCLUSIONS ZNF281 promotes pancreatic cancer cells proliferation and invasion by interacting and up-regulating β-catenin, highlighting the role of ZNF281 in pancreatic cancer progression.
Collapse
Affiliation(s)
- Yu Qian
- Translational Medicine Research Center, Shanxi Medical University, 56#, South Xinjian Road, Taiyuan, 030001, Shanxi Province, China.
| | - Jingyi Li
- Department of Gastroenterology, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
98
|
Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Sci Rep 2017; 7:6859. [PMID: 28761088 PMCID: PMC5537359 DOI: 10.1038/s41598-017-07049-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the wide use of mesenchymal stromal cells (MSCs) for paracrine support in clinical trials, their variable and heterogeneous supporting activity pose major challenges. While three-dimensional (3D) MSC cultures are emerging as alternative approaches, key changes in cellular characteristics during 3D-spheroid formation remain unclear. Here, we show that MSCs in 3D spheroids undergo further progression towards the epithelial-mesenchymal transition (EMT), driven by upregulation of EMT-promoting microRNAs and suppression of EMT-inhibitory miRNAs. The shift of EMT in MSCs is associated with widespread histone modifications mimicking the epigenetic reprogramming towards enhanced chromatin dynamics and stem cell-like properties, but without changes in their surface phenotype. Notably, these molecular shifts towards EMT in 3D MSCs caused enhanced stem cell niche activity, resulting in higher stimulation of hematopoietic progenitor self-renewal and cancer stem cell metastasis. Moreover, miRNA-mediated induction of EMT in 2D MSCs were sufficient to mimic the enhanced niche activity of 3D spheroid MSCs. Thus, the molecular hierarchy in the EMT gradient among phenotypically indistinguishable MSCs revealed the previously unrecognized functional parameters in MSCs, and the EMT-enhanced “naïve” mesenchymal state represents an ‘activated mesenchymal niche’ in 3D spheroid MSCs.
Collapse
|
99
|
MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:239-47. [PMID: 27573904 DOI: 10.1007/978-3-319-42059-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.
Collapse
|
100
|
He SJ, Xiang CQ, Zhang Y, Lu XT, Chen HW, Xiong LX. Recent progress on the effects of microRNAs and natural products on tumor epithelial-mesenchymal transition. Onco Targets Ther 2017; 10:3435-3451. [PMID: 28744148 PMCID: PMC5513877 DOI: 10.2147/ott.s139546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3′ untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.
Collapse
Affiliation(s)
- Shu-Jin He
- Department of Pathophysiology, Medical College, Nanchang University.,Second Clinical Medical College, Nanchang University
| | - Chu-Qi Xiang
- Department of Pathophysiology, Medical College, Nanchang University.,First Clinical Medical College, Nanchang University
| | - Yu Zhang
- First Clinical Medical College, Nanchang University
| | - Xiang-Tong Lu
- Department of Pathophysiology, Medical College, Nanchang University
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| |
Collapse
|