51
|
Kieft B, Li Z, Bryson S, Crump BC, Hettich R, Pan C, Mayali X, Mueller RS. Microbial Community Structure-Function Relationships in Yaquina Bay Estuary Reveal Spatially Distinct Carbon and Nitrogen Cycling Capacities. Front Microbiol 2018; 9:1282. [PMID: 29963029 PMCID: PMC6010575 DOI: 10.3389/fmicb.2018.01282] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Linking microbial community structure to ecological processes requires understanding of the functional roles among individual populations and the factors that influence their distributions. These structure–function relationships are particularly difficult to disentangle in estuaries, due to highly variable physico-chemical conditions. Yet, examining microbe-mediated turnover of resources in these “bioreactor” ecosystems is critical for understanding estuarine ecology. In this study, a combined metagenomics and metaproteomics approach was used to show that the unequal distribution of microbial populations across the Yaquina Bay estuary led to a habitat-specific taxonomic and functional structure and a clear spatial distribution in microbe-mediated capacities for cycling of carbon and nitrogen. For example, size-fractionation revealed that communities inhabiting suspended particulate material encoded more diverse types of metabolisms (e.g., fermentation and denitrification) than those with a planktonic lifestyle, suggesting that the metabolic reactions can differ between size fractions of the same parcel of an estuarine water column. Similarly, communities inhabiting oligotrophic conditions in the lower estuary were enriched in genes involved in central carbon metabolism (e.g., TCA cycle), while communities in the upper estuary were enriched in genes typical of copiotrophic populations (e.g., cell growth, cell division). Integrating gene and protein data revealed that abundant populations of Flavobacteriales and Rhodobacterales encoded similar genomic functions, yet differed significantly in protein expression, dedicating a large proportion of their respective proteomes to rapid growth and division versus metabolic versatility and resource acquisition. This suggested potentially distinct life-strategies between these two co-occurring lineages and was concomitant with differing patterns of positive evolutionary selection on their encoded genes. Microbial communities and their functions across Yaquina Bay appear to be structured by population-level habitat preferences, resulting in spatially distinct elemental cycling, while within each community, forces such as competitive exclusion and evolutionary selection influence species life-strategies and may help maintain microbial diversity.
Collapse
Affiliation(s)
- Brandon Kieft
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Zhou Li
- Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Samuel Bryson
- Department of Civil and Environmental Engineering, The University of Washington, Seattle, WA, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Robert Hettich
- Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chongle Pan
- Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, U.S. Department of Energy, Livermore, CA, United States
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
52
|
Nnadozie CF, Lin J, Govinden R. Optimisation of protocol for effective detachment and selective recovery of the representative bacteria for extraction of metagenomic DNA from Eucalyptus spp. woodchips. J Microbiol Methods 2018; 148:155-160. [PMID: 29673787 DOI: 10.1016/j.mimet.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
For some environments such as planktonic/aqueous environments, the separation of bacteria cells from eukaryotic cells prior to DNA extraction using filtration is relatively straightforward. However, for woodchips, the bacteria are attached/embedded within the wood matrix, which prevents easy removal of bacterial cells. In this study, a method for the selective extraction of DNA from bacteria inhabiting Eucalyptus spp. woodchips has been developed. The objective was to compare milled and unmilled woodchips processed via three detachment methods, viz., sonication, vortexing and shaking followed by filtration using Teflon filters according to three relevant criteria: DNA yield, DNA purity and quality of DNA. Highest DNA yield was obtained by milling and vortexing for 10 min (77.50 ± 5.17 ng/μl), followed by milling and vortexing for 2 min (61.00 ± 6.56 ng/μl), unmilled and vortexing for 10 min (38.67 ± 5.17 ng/μl) and milled and shaking for 2 h (31.62 ± 5.17 ng/μl). The lowest DNA yield was obtained by using unmilled woodchips and 5 min of sonication treatment (7.00 ± 1.22 ng/μl). There was no significant difference in DNA purity for milled or unmilled woodchips processed via the three detachment methods. Duration of cell detachment treatment did not significantly influence DNA yield and purity. Following optimisation experiments, it was possible to extract bacterial DNA using milled woodchips and 10 minute vortexing devoid of DNA from the host background and other associated eukaryotes and of sufficient quality and quantity for metagenomic analysis.
Collapse
Affiliation(s)
- Chika F Nnadozie
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa.
| | - Johnson Lin
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Roshini Govinden
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
53
|
Wang H, Shen Y, Hu C, Xing X, Zhao D. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:71-78. [PMID: 29161575 DOI: 10.1016/j.envpol.2017.11.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 05/19/2023]
Abstract
Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yi Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Sciences and Engineering, Guangzhou University, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xueci Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| |
Collapse
|
54
|
Liu Q, Fang J, Li J, Zhang L, Xie BB, Chen XL, Zhang YZ. Depth-Resolved Variations of Cultivable Bacteria and Their Extracellular Enzymes in the Water Column of the New Britain Trench. Front Microbiol 2018; 9:135. [PMID: 29467744 PMCID: PMC5808245 DOI: 10.3389/fmicb.2018.00135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/22/2018] [Indexed: 01/26/2023] Open
Abstract
Marine microorganisms and their extracellular enzymes (ECEs) play an important role in the remineralization of organic material by hydrolyzing high-molecular-weight substrates to sizes sufficiently small to be transported through cell membrane, yet the diversity of the enzyme-producing bacteria and the types of ECEs involved in the degradation process are largely unknown. In this work, we investigated the diversity of cultivable bacteria and their ECEs and the potential activities of aminopeptidase in the water column at eight different depths of the New Britain Trench. There was a great diversity of cultivable bacteria and ECEs, and depth appears an important driver of the diversity. The 16S rRNA sequence analysis revealed that the cultivable bacteria were affiliated mostly with the phyla Proteobacteria and Actinobacteria, and the predominant genera were Pseudoalteromonas (62.7%) and Halomonas (17.3%). Moreover, 70.7% of the isolates were found to produce hydrolytic zone on casein and gelatin plates, in which Pseudoalteromonas was the predominant group, exhibiting relatively high protease production. Inhibitor analysis showed that the extracellular proteases from the isolated bacteria were serine proteases in the surface water and metalloproteases in the deep water. Meanwhile, the Vmax and Km of aminopeptidase exhibited a maximum in the surface water and low values in the deep bathy- and abyssopelagic water, indicating lower rates of hydrolysis and higher substrate affinity in the deeper waters. These results shed new insights into the diversity of the cultivable bacteria and bacterial ECEs and their likely biogeochemical functions in the trench environment.
Collapse
Affiliation(s)
- Qianfeng Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Jiasong Fang
- Hadal Science and Technology Research Center, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, United States
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Geological Process and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| |
Collapse
|
55
|
Fang T, Cui Q, Huang Y, Dong P, Wang H, Liu WT, Ye Q. Distribution comparison and risk assessment of free-floating and particle-attached bacterial pathogens in urban recreational water: Implications for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:428-438. [PMID: 28918274 DOI: 10.1016/j.scitotenv.2017.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
The risk of pathogen exposure in recreational water is a concern worldwide. Moreover, suspended particles, as ideal shelters for pathogens, in these waters also need attention. However, the risk caused by the pathogen-particle attachment is largely unknown. Accordingly, water samples in three recreational lakes in Beijing were collected and separated into free-floating (FL, 0.22-5μm) and particle-attached (PA, >5μm) fractions. Next-generation sequencing (NGS) was employed to determine the diversity of genera containing pathogens, and quantitative PCR (qPCR) was used to assess the presence of genes from Escherichia coli (uidA), Salmonella enterica (invA), Aeromonas spp. (aerA), Mycobacterium avium (16S) and Pseudomonas aeruginosa (oaa). The NGS results showed stable pathogen genera composition distinctions between the PA and FL fractions. Some genera, such as Aeromonas and Mycobacterium, exhibited higher abundances in the PA fractions. qPCR revealed that most of the gene concentrations were higher within particles than were FL fractions. Some gene levels showed correlations with the particle concentrations and lake nutrient levels. Further quantitative microbial risk assessment (QMRA) of selected strains (S. enterica and M. avium) indicated a higher health risk during secondary contact activities in lakes with more nutrients and particles. We concluded that suspended particles (mainly composed of algae) in urban recreational water might influence the pathogen distribution and could serve as reservoirs for pathogen contamination, with important management implications.
Collapse
Affiliation(s)
- Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qijia Cui
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peiyan Dong
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
56
|
Bullock A, Ziervogel K, Ghobrial S, Smith S, McKee B, Arnosti C. A Multi-season Investigation of Microbial Extracellular Enzyme Activities in Two Temperate Coastal North Carolina Rivers: Evidence of Spatial but Not Seasonal Patterns. Front Microbiol 2018; 8:2589. [PMID: 29312262 PMCID: PMC5743733 DOI: 10.3389/fmicb.2017.02589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023] Open
Abstract
Riverine systems are important sites for the production, transport, and transformation of organic matter. Much of the organic matter processing is carried out by heterotrophic microbial communities, whose activities may be spatially and temporally variable. In an effort to capture and evaluate some of this variability, we sampled four sites-two upstream and two downstream-at each of two North Carolina rivers (the Neuse River and the Tar-Pamlico River) ca. twelve times over a time period of 20 months from 2010 to 2012. At all of the sites and dates, we measured the activities of extracellular enzymes used to hydrolyze polysaccharides and peptides, and thus to initiate heterotrophic carbon processing. We additionally measured bacterial abundance, bacterial production, phosphatase activities, and dissolved organic carbon (DOC) concentrations. Concurrent collection of physical data (stream flow, temperature, salinity, dissolved oxygen) enabled us to explore possible connections between physiochemical parameters and microbial activities throughout this time period. The two rivers, both of which drain into Pamlico Sound, differed somewhat in microbial activities and characteristics: the Tar-Pamlico River showed higher β-glucosidase and phosphatase activities, and frequently had higher peptidase activities at the lower reaches, than the Neuse River. The lower reaches of the Neuse River, however, had much higher DOC concentrations than any site in the Tar River. Both rivers showed activities of a broad range of polysaccharide hydrolases through all stations and seasons, suggesting that the microbial communities are well-equipped to access enzymatically a broad range of substrates. Considerable temporal and spatial variability in microbial activities was evident, variability that was not closely related to factors such as temperature and season. However, Hurricane Irene's passage through North Carolina coincided with higher concentrations of DOC at the downstream sampling sites of both rivers. This DOC maximum persisted into the month following the hurricane, when it continued to stimulate bacterial protein production and phosphatase activity in the Neuse River, but not in the Tar-Pamlico River. Microbial community activities are related to a complex array of factors, whose interactions vary considerably with time and space.
Collapse
Affiliation(s)
- Avery Bullock
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Kai Ziervogel
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Sherif Ghobrial
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Shannon Smith
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Brent McKee
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
57
|
Baltar F. Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate. Front Microbiol 2018; 8:2438. [PMID: 29354095 PMCID: PMC5758490 DOI: 10.3389/fmicb.2017.02438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/24/2017] [Indexed: 12/02/2022] Open
Abstract
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.
Collapse
Affiliation(s)
- Federico Baltar
- Department of Marine Science, University of Otago, Dunedin, New Zealand.,NIWA/University of Otago Research Centre for Oceanography, Dunedin, New Zealand
| |
Collapse
|
58
|
Kaur A, Hernandez-Fernaud JR, Aguilo-Ferretjans MDM, Wellington EM, Christie-Oleza JA. 100 Days of marine Synechococcus-Ruegeria pomeroyi interaction: A detailed analysis of the exoproteome. Environ Microbiol 2017; 20:785-799. [PMID: 29194907 PMCID: PMC5839243 DOI: 10.1111/1462-2920.14012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/03/2022]
Abstract
Marine phototroph and heterotroph interactions are vital in maintaining the nutrient balance in the oceans as essential nutrients need to be rapidly cycled before sinking to aphotic layers. The aim of this study was to highlight the molecular mechanisms that drive these interactions. For this, we generated a detailed exoproteomic time‐course analysis of a 100‐day co‐culture between the model marine picocyanobacterium Synechococcus sp. WH7803 and the Roseobacter strain Ruegeria pomeroyi DSS‐3, both in nutrient‐enriched and natural oligotrophic seawater. The proteomic data showed a transition between the initial growth phase and stable‐state phase that, in the case of the heterotroph, was caused by a switch in motility attributed to organic matter availability. The phototroph adapted to seawater oligotrophy by reducing its selective leakiness, increasing the acquisition of essential nutrients and secreting conserved proteins of unknown function. We also report a surprisingly high abundance of extracellular superoxide dismutase produced by Synechococcus and a dynamic secretion of potential hydrolytic enzyme candidates used by the heterotroph to cleave organic groups and hydrolase polymeric organic matter produced by the cyanobacterium. The time course dataset we present here will become a reference for understanding the molecular processes underpinning marine phototroph‐heterotroph interactions.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
59
|
Teira E, Hernando-Morales V, Guerrero-Feijóo E, Varela MM. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain). Environ Microbiol 2017; 19:2379-2390. [PMID: 28370995 DOI: 10.1111/1462-2920.13748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production.
Collapse
Affiliation(s)
- E Teira
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.,Estación de Ciencias Marinas de Toralla (ECIMAT), Universidad de Vigo, Vigo, 36331, Spain
| | - V Hernando-Morales
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310, Vigo, Spain.,Estación de Ciencias Marinas de Toralla (ECIMAT), Universidad de Vigo, Vigo, 36331, Spain
| | - E Guerrero-Feijóo
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, IEO, Apdo. 130, Coruña, 15080- A, Spain
| | - M M Varela
- Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, IEO, Apdo. 130, Coruña, 15080- A, Spain
| |
Collapse
|
60
|
Dynamics of size-fractionated bacterial communities during the coastal dispersal of treated municipal effluents. Appl Microbiol Biotechnol 2016; 100:5839-48. [PMID: 26944731 DOI: 10.1007/s00253-016-7408-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Abstract
Everyday huge amount of treated municipal wastewater is discharged into the coastal seawater. However, microbial biomarkers for the municipal effluent instead of the fecal species from raw sewage have not been proposed. Meanwhile, bacterial taxa for degrading large amounts of input organics have not been fully understood. In this study, raw effluent and serial water samples were collected from the coastal dispersal of two sewage treatment plants in Xiamen, China. Free-living (FL) and particle-associated (PA) bacterial communities were analyzed via high-throughput sequencing of 16S rRNA gene and quantitative PCR to measure bacterial abundance. The PA bacterial communities in our samples exhibited higher cell abundance, alpha diversity, and population dynamics than the FL bacterial communities, which supports greater environmental significance of the PA bacterial communities. Two non-fecal but typical genera in activated sludge, Zoogloea and Dechloromonas, exhibited decreased but readily detectable abundance along the effluent dispersal distance. Furthermore, the dominating microbial species near the outfalls were related to well-known marine indigenous taxa, such as SAR11 clade, OM60 clade, low-GC Actinobacteria, and unclassified Flavobacteriales, as well as the less understood taxa like Pseudohongiella and Microbacteriaceae. It is interesting that these taxa exhibited two types of correlation patterns with COD concentration. Our study suggested Zoogloea as a potential indicator of municipal effluents and also proposed potential utilizers of residual effluent COD in marine environments.
Collapse
|
61
|
Schmidt ML, White JD, Denef VJ. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ Microbiol 2016; 18:1212-26. [DOI: 10.1111/1462-2920.13143] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Marian L. Schmidt
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI 48109 USA
| | - Jeffrey D. White
- Department of Biology; Framingham State University; Framingham MA 01701 USA
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
62
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
63
|
Christie-Oleza JA, Armengaud J. Proteomics of theRoseobacterclade, a window to the marine microbiology landscape. Proteomics 2015; 15:3928-42. [DOI: 10.1002/pmic.201500222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jean Armengaud
- CEA; DSV; IBiTec-S; SPI; Li2D; Laboratory “Innovative Technologies for Detection and Diagnostics”; Bagnols-sur-Cèze France
| |
Collapse
|
64
|
Thao NV, Nozawa A, Obayashi Y, Kitamura SI, Yokokawa T, Suzuki S. Extracellular proteases are released by ciliates in defined seawater microcosms. MARINE ENVIRONMENTAL RESEARCH 2015; 109:95-102. [PMID: 26115436 DOI: 10.1016/j.marenvres.2015.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
The biodegradation of proteins in seawater requires various proteases which are commonly thought to be mainly derived from heterotrophic bacteria. We, however, found that protists showed a high protease activity and continuously produced trypsin-type enzymes. The free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium was isolated and used for microcosm incubation with different concentrations of killed bacteria as food for 10 days. The results showed that the co-existence of the ciliate with its associated bacterium produced a significant protease activity in both cell-associated and cell-free fractions while that in the associated bacterium only microcosm was negligible. The protease profiles are different between cell-associated and cell-free fractions, and a trypsin-type enzyme hydrolyzing Boc-Val-Leu-Lys-MCA was detected throughout the period in the presence of ciliates. This suggests that ciliates release proteases into the surrounding environment which could play a role in protein digestion outside cells. It has been previously suggested that bacteria are the major transformers in seawater. We here present additional data which indicates that protists, or at least ciliates with their specific enzymes, are a potential player in organic matter degradation in water columns.
Collapse
Affiliation(s)
- Ngo Vy Thao
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan; Faculty of Environment and Resources, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Akino Nozawa
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Yumiko Obayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Taichi Yokokawa
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
65
|
Padilla CC, Ganesh S, Gantt S, Huhman A, Parris DJ, Sarode N, Stewart FJ. Standard filtration practices may significantly distort planktonic microbial diversity estimates. Front Microbiol 2015; 6:547. [PMID: 26082766 PMCID: PMC4451414 DOI: 10.3389/fmicb.2015.00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 02/01/2023] Open
Abstract
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05–0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
Collapse
Affiliation(s)
- Cory C Padilla
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Shelby Gantt
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Alex Huhman
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
66
|
Amphritea spongicola sp. nov., isolated from a marine sponge, and emended description of the genus Amphritea. Int J Syst Evol Microbiol 2015; 65:1866-1870. [DOI: 10.1099/ijs.0.000188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped (1.2–2.1 μm × 0.8–0.9 μm), flagellated and motile marine bacterium, designated MEBiC05461T, was isolated from a marine sponge inhabiting Micronesia. Strain MEBiC05461T was oxidase-negative and catalase-positive. Growth was observed at 8.0–35.6 °C (optimum 30.0 °C), at pH 5.0–9.0 (optimum pH 7.0) and with 1.5–6.0 % (w/v, optimum 2.0–2.5 %) NaCl. 16S rRNA gene sequence analysis revealed that strain MEBiC05461T showed high similarity to members of the genus Amphritea (96.4–96.6 %). The predominant cellular fatty acids were C16:0 (23.9 %), summed feature 3 (C16:1ω7c and/or C16:1ω6c; 39.7 %) and summed feature 8 (C18:1ω7c and/or C18:1ω6c; 22.0 %). The DNA G+C content was 48.5 mol%. The major respiratory quinone was Q-8.Phosphatidylethanolamine, phosphatidylglycerol, one unidentified glycolipid, one unidentified aminolipid, one unidentified glycophospholipid and two unidentified lipids were detected as the major polar lipids. On the basis of the data from this polyphasic taxonomic study, strain MEBiC05461T should be classified as a representative of a novel species in the genus Amphritea, and the name proposed is Amphritea spongicola sp. nov. The type strain is MEBiC05461T ( = KCCM 42943T = JCM 16668T). Emendations of the genus Amphritea and species Amphritea atlantica
Gärtner et al. 2008 and Amphritea balenae
Miyazaki et al. 2008 are were also given.
Collapse
|
67
|
Neumann AM, Balmonte JP, Berger M, Giebel HA, Arnosti C, Voget S, Simon M, Brinkhoff T, Wietz M. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol 2015; 17:3857-68. [PMID: 25847866 DOI: 10.1111/1462-2920.12862] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
Abstract
The marine bacterium Alteromonas macleodii is a copiotrophic r-strategist, but little is known about its potential to degrade polysaccharides. Here, we studied the degradation of alginate and other algal polysaccharides by A. macleodii strain 83-1 in comparison to other A. macleodii strains. Cell densities of strain 83-1 with alginate as sole carbon source were comparable to those with glucose, but the exponential phase was delayed. The genome of 83-1 was found to harbour an alginolytic system comprising five alginate lyases, whose expression was induced by alginate. The alginolytic system contains additional CAZymes, including two TonB-dependent receptors, and is part of a 24 kb genomic island unique to the A. macleodii 'surface clade' ecotype. In contrast, strains of the 'deep clade' ecotype contain only a single alginate lyase in a separate 7 kb island. This difference was reflected in an eightfold greater efficiency of surface clade strains to grow on alginate. Strain 83-1 furthermore hydrolysed laminarin, pullulan and xylan, and corresponding polysaccharide utilization loci were detected in the genome. Alteromonas macleodii alginate lyases were predominantly detected in Atlantic Ocean metagenomes. The demonstrated hydrolytic capacities are likely of ecological relevance and represent another level of adaptation among A. macleodii ecotypes.
Collapse
Affiliation(s)
- Anna M Neumann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - John P Balmonte
- Department of Marine Sciences, University of North Carolina, 3117 Venable Hall, Chapel Hill, NC, USA
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina, 3117 Venable Hall, Chapel Hill, NC, USA
| | - Sonja Voget
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, 37077, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, 26129, Germany
| |
Collapse
|
68
|
Christie-Oleza JA, Scanlan DJ, Armengaud J. "You produce while I clean up", a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions. Proteomics 2015; 15:3454-62. [PMID: 25728650 PMCID: PMC4949626 DOI: 10.1002/pmic.201400562] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 11/06/2022]
Abstract
Most of the energy that is introduced into the oceans by photosynthetic primary producers is in the form of organic matter that then sustains the rest of the food web, from micro to macro-organisms. However, it is the interactions between phototrophs and heterotrophs that are vital to maintaining the nutrient balance of marine microbiomes that ultimately feed these higher trophic levels. The primary produced organic matter is mostly remineralized by heterotrophic microorganisms but, because most of the oceanic dissolved organic matter is in the form of biopolymers, and microbial membrane transport systems operate with molecules <0.6 kDa, it must be hydrolyzed outside the cell before a microorganism can acquire it. As a simili of the marine microbiome, we analyzed, using state-of-the-art proteomics, the exoproteomes obtained from synthetic communities combining specific Roseobacter (Ruegeria pomeroyi DSS-3, Roseobacter denitrificans OCh114, and Dinoroseobacter shibae DFL-12) and Synechococcus strains (WH7803 and WH8102). This approach identified the repertoire of hydrolytic enzymes secreted by Roseobacter, opening up the black box of heterotrophic transformation/remineralization of biopolymers generated by marine phytoplankton. As well as highlighting interesting exoenzymes this strategy also allowed us to infer clues on the molecular basis of niche partitioning.
Collapse
Affiliation(s)
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Technological Innovations for Detection and Diagnostic", Bagnols-sur-Cèze, France
| |
Collapse
|
69
|
Wietz M, Wemheuer B, Simon H, Giebel HA, Seibt MA, Daniel R, Brinkhoff T, Simon M. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans. Environ Microbiol 2015; 17:3822-31. [DOI: 10.1111/1462-2920.12842] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Institute of Microbiology and Genetics; University of Göttingen; Göttingen 37077 Germany
| | - Heike Simon
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Maren A. Seibt
- ICBM-MPI Bridging Group for Marine Geochemistry; Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Institute of Microbiology and Genetics; University of Göttingen; Göttingen 37077 Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| |
Collapse
|
70
|
Nguyen TT, Landfald B. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor. Front Microbiol 2015; 6:17. [PMID: 25667586 PMCID: PMC4304239 DOI: 10.3389/fmicb.2015.00017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/07/2015] [Indexed: 02/01/2023] Open
Abstract
Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.
Collapse
Affiliation(s)
- Tan T Nguyen
- Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway Tromsø, Norway
| | - Bjarne Landfald
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway Tromsø, Norway
| |
Collapse
|
71
|
Simon HM, Smith MW, Herfort L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Front Microbiol 2014; 5:466. [PMID: 25250019 PMCID: PMC4155809 DOI: 10.3389/fmicb.2014.00466] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/17/2014] [Indexed: 11/17/2022] Open
Abstract
Our previously published research was one of the pioneering studies on the use of metagenomics to directly compare taxonomic and metabolic properties of aquatic microorganisms from different filter size-fractions. We compared size-fractionated water samples representing free-living and particle-attached communities from four diverse habitats in the Columbia River coastal margin, analyzing 12 metagenomes consisting of >5 million sequence reads (>1.6 Gbp). With predicted peptide and rRNA data we evaluated eukaryotic, bacterial and archaeal populations across size fractions and related their properties to attached and free-living lifestyles, and their potential roles in carbon and nutrient cycling. In this focused review, we expand our discussion on the use of high-throughput sequence data to relate microbial community structure and function to the origin, fate and transport of particulate organic matter (POM) in coastal margins. We additionally discuss the potential impact of the priming effect on organic matter cycling at the land-ocean interface, and build a case for the importance, in particle-rich estuaries and coastal margin waters, of microbial activities in low-oxygen microzones within particle interiors.
Collapse
Affiliation(s)
- Holly M Simon
- Center for Coastal Margin Observation and Prediction, Institute of Environmental Health, Oregon Health and Science University Portland, OR, USA
| | - Maria W Smith
- Center for Coastal Margin Observation and Prediction, Institute of Environmental Health, Oregon Health and Science University Portland, OR, USA
| | - Lydie Herfort
- Center for Coastal Margin Observation and Prediction, Institute of Environmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
72
|
Patterns of Microbially Driven Carbon Cycling in the Ocean: Links between Extracellular Enzymes and Microbial Communities. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/706082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterotrophic microbial communities play a central role in the marine carbon cycle. They are active in nearly all known environments, from the surface to the deep ocean, in the sediments, and from the equator to the Poles. In order to process complex organic matter, these communities produce extracellular enzymes of the correct structural specificity to hydrolyze substrates to sizes sufficiently small for uptake. Extracellular enzymatic hydrolysis thus initiates heterotrophic carbon cycling. Our knowledge of the enzymatic capabilities of microbial communities in the ocean is still underdeveloped. Recent studies, however, suggest that there may be large-scale patterns of enzymatic function in the ocean, patterns of community function that may be connected to emerging patterns of microbial community composition. Here I review some of these large-scale contrasts in microbial enzyme activities, between high-latitude and temperate surface ocean waters, contrasts between inshore and offshore waters, changes with depth gradients in the ocean, and contrasts between the water column and underlying sediments. These contrasting patterns are set in the context of recent studies of microbial communities and patterns of microbial biogeography. Focusing on microbial community function as well as composition and potential should yield clearer understanding of the factors driving carbon cycling in the ocean.
Collapse
|
73
|
Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard. Appl Environ Microbiol 2014; 80:3749-56. [PMID: 24727271 DOI: 10.1128/aem.00899-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Arctic marine bacterial communities, members of the phylum Verrucomicrobia are consistently detected, although not typically abundant, in 16S rRNA gene clone libraries and pyrotag surveys of the marine water column and in sediments. In an Arctic fjord (Smeerenburgfjord) of Svalbard, members of the Verrucomicrobia, together with Flavobacteria and smaller proportions of Alpha- and Gammaproteobacteria, constituted the most frequently detected bacterioplankton community members in 16S rRNA gene-based clone library analyses of the water column. Parallel measurements in the water column of the activities of six endo-acting polysaccharide hydrolases showed that chondroitin sulfate, laminarin, and xylan hydrolysis accounted for most of the activity. Several Verrucomicrobia water column phylotypes were affiliated with previously sequenced, glycoside hydrolase-rich genomes of individual Verrucomicrobia cells that bound fluorescently labeled laminarin and xylan and therefore constituted candidates for laminarin and xylan hydrolysis. In sediments, the bacterial community was dominated by different lineages of Verrucomicrobia, Bacteroidetes, and Proteobacteria but also included members of multiple phylum-level lineages not observed in the water column. This community hydrolyzed laminarin, xylan, chondroitin sulfate, and three additional polysaccharide substrates at high rates. Comparisons with data from the same fjord in the previous summer showed that the bacterial community in Smeerenburgfjord changed in composition, most conspicuously in the changing detection frequency of Verrucomicrobia in the water column. Nonetheless, in both years the community hydrolyzed the same polysaccharide substrates.
Collapse
|