51
|
Montero S, Mendoza H, Valles V, Lemus M, Alvarez-Buylla R, de Alvarez-Buylla ER. Arginine-vasopressin mediates central and peripheral glucose regulation in response to carotid body receptor stimulation with Na-cyanide. J Appl Physiol (1985) 2006; 100:1902-9. [PMID: 16497839 DOI: 10.1152/japplphysiol.01414.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic stimulation of the carotid body receptors (CBR) results in a rapid hyperglycemia with an increase in brain glucose retention. Previous work indicates that neurohypophysectomy inhibits this hyperglycemic response. Here, we show that systemic arginine vasopressin (AVP) induced a transient, but significant, increase in blood glucose levels and increased brain glucose retention, a response similar to that observed after CBR stimulation. Comparable results were obtained after intracerebral infusion of AVP. Systemic AVP-induced changes were maintained in hypophysectomized rats but were not observed after adrenalectomy. Glycemic changes after CBR stimulation were inhibited by pharmacological blockage of AVP V1a receptors with a V1a-selective receptor antagonist ([β-Mercapto-β,β-cyclopentamethylenepropionyl1,O-me-Tyr2, Arg8]-vasopressin). Importantly, local application of micro-doses of this antagonist to the liver was sufficient to abolish the hyperglycemic response after CBR stimulation. These results suggest that AVP is a mediator of the hyperglycemic reflex and cerebral glucose retention following CBR stimulation. We propose that hepatic activation of AVP V1a receptors is essential for this hyperglycemic response.
Collapse
Affiliation(s)
- Sergio Montero
- CUIB, Universidad de Colima, Ave. 25 de Julio s/n, Colima, Col. 28045, México.
| | | | | | | | | | | |
Collapse
|
52
|
Weber R, Ramos-Cabrer P, Hoehn M. Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 2006; 26:591-604. [PMID: 16292254 DOI: 10.1038/sj.jcbfm.9600241] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Magnetic resonance imaging (MRI) is based on a wide variety of physical parameters, which, in principle, can all influence the image contrast conditions. As these diverse variables are validated by independent physiological, metabolic, hemodynamic, and histological techniques, a physiological MRI evolves. This imaging modality has been successfully applied to experimental stroke studies, covering a broad range of raised questions. In the present review, we present an overview of possible physiological criteria to be studied by in vivo MRI and magnetic resonance spectroscopy, and critically analyze the present limits and future potential of the imaging technique for experimental stroke investigations. The documented applications cover the spectrum from morphological-structural details of the lesion to hemodynamic and metabolic alterations, inflammatory reaction, evaluation of thrombolytic treatment, studies on recovery of functional brain activation by functional MRI, and, finally, the most recent applications of exploring stem cells for regenerative therapy.
Collapse
Affiliation(s)
- Ralph Weber
- In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | |
Collapse
|
53
|
Schmidt KF, Febo M, Shen Q, Luo F, Sicard KM, Ferris CF, Stein EA, Duong TQ. Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI. Psychopharmacology (Berl) 2006; 185:479-86. [PMID: 16550388 PMCID: PMC2949961 DOI: 10.1007/s00213-006-0319-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 12/19/2005] [Indexed: 10/24/2022]
Abstract
RATIONALE Physiological changes (such as heart rate and respiration rate) associated with strong pharmacological stimuli could change the blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) mapping signals, independent of neural activity. OBJECTIVES This study investigates whether the physiological changes per se associated with systemic cocaine administration (1 mg/kg) contaminate the BOLD fMRI signals by measuring BOLD and cerebral blood flow (CBF) fMRI and estimating the cerebral metabolic rate of oxygen (CMRO(2)) changes. MATERIALS AND METHODS BOLD and CBF fMRI was performed, and changes in CMRO(2) were estimated using the BOLD biophysical model. RESULTS After systemic cocaine administration, blood pressure, heart rate, and respiration rate increased, fMRI signals remained elevated after physiological parameters had returned to baseline. Cocaine induced changes in the BOLD signal within regions of the reward pathway that were heterogeneous and ranged from -1.2 to 5.4%, and negative changes in BOLD were observed along the cortical surface. Changes in CBF and estimated CMRO(2) were heterogeneous and positive throughout the brain, ranging from 14 to 150% and 10 to 55%, respectively. CONCLUSIONS This study demonstrates a valuable tool to investigate the physiological and biophysical basis of drug action on the central nervous system, offering the means to distinguish the physiological from neural sources of the BOLD fMRI signal.
Collapse
Affiliation(s)
- Karl F. Schmidt
- Center for Comparative Neuroimaging, University of Massachusetts, Worcester, MA, USA
| | - Marcelo Febo
- Center for Comparative Neuroimaging, University of Massachusetts, Worcester, MA, USA
| | - Qiang Shen
- Yerkes Imaging Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA, Tel.: +1-404-727-9991, Fax: +1-404-712-9917
| | - Feng Luo
- Center for Comparative Neuroimaging, University of Massachusetts, Worcester, MA, USA
| | - Kenneth M. Sicard
- Center for Comparative Neuroimaging, University of Massachusetts, Worcester, MA, USA
| | - Craig F. Ferris
- Center for Comparative Neuroimaging, University of Massachusetts, Worcester, MA, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Timothy Q. Duong
- Yerkes Imaging Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA, Tel.: +1-404-727-9991, Fax: +1-404-712-9917
| |
Collapse
|
54
|
Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K. Imaging of hyperalgesia in rats by functional MRI. Eur J Pain 2006; 11:109-19. [PMID: 16517192 DOI: 10.1016/j.ejpain.2006.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 01/12/2006] [Accepted: 01/27/2006] [Indexed: 11/17/2022]
Abstract
Cerebral activation in response to sequences of temperature boosts at the hindpaw was observed in functional magnetic resonance imaging (fMRI) experiments in isoflurane anesthetized rats. Cingulate, retrosplenial, sensory-motor and insular cortex, medial and lateral posterior thalamic nuclei, pretectal area, hypothalamus and periaqueductal gray were the most consistently, often bilaterally activated regions. With the same experimental paradigm, activity changes in the brain following subcutaneous zymosan injection into one hindpaw were detected. These changes developed over time (up to 4h) in parallel with the temporal development of hyperalgesia shown by a modified Hargreaves test, thus reflecting processes of peripheral and central sensitization. When the heat stimuli were applied to the inflamed paw, the hyperalgesia manifested itself as a volume increase of the activated areas and/or an enhanced functional blood oxygenation level dependent (BOLD) signal in all the above-mentioned brain regions. Enhanced BOLD signals were also observed in response to stimulation of the contralateral non-injected paw. They were significant in higher associative regions and more pronounced in output-related than in input-related brain structures. This indicates additional sensitization processes in the brain, which we named cerebral sensitization. Long lasting zymosan-induced hyperalgesia could be monitored with high resolution fMRI in rats under isoflurane anaesthesia. This technique may provide an effective method for testing new analgesics and studying structure specific pain processing.
Collapse
Affiliation(s)
- Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Institute for Pharmacology and Toxicology, Fahrstrasse 17, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
55
|
Abstract
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
56
|
Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 2006; 29:1303-10. [PMID: 16223588 DOI: 10.1016/j.neuroimage.2005.08.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/09/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a unique tool to study brain activity and plasticity changes. Combination of blood-oxygen level-dependent (BOLD) fMRI and electrical forepaw stimulation has been used as a standard model to study the somatosensory pathway and brain rehabilitation in rats. The majority of fMRI studies have been performed in animals anesthetized with alpha-chloralose as functional-metabolic coupling is best preserved under this anesthesia. However, alpha-chloralose is not suitable for survival procedures due to side effects, limiting its use to single time point studies of the same animal. We therefore developed a new, totally noninvasive fMRI protocol, using sedation with the alpha2-adrenoreceptor agonist medetomidine in combination with transcutaneous monitoring of blood gases. The continuous subcutaneous administration of medetomidine resulted in stable physiological conditions over a long time and all animals tolerated the repetitive fMRI experiments well. A robust and reproducible, significant BOLD signal increase was observed upon forepaw stimulation in the contralateral primary somatosensory cortex in two consecutive medetomidine sessions in all rats, which was similar to the BOLD signal increase observed in the same animals under alpha-chloralose during a third independent session. Activation in the secondary somatosensory cortex was observed less frequently under both medetomidine and alpha-chloralose. No head motion artifacts or nonspecific brain activation was present. Sedation was quickly reversed by the administration of the antagonist atipamezole after the fMRI experiment. These results demonstrate that longitudinal fMRI studies can be performed safely under sedation with medetomidine to study functional recovery processes upon therapeutical treatment.
Collapse
Affiliation(s)
- Ralph Weber
- In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleuelerstrasse 50, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
57
|
Trübel HKF, Sacolick LI, Hyder F. Regional temperature changes in the brain during somatosensory stimulation. J Cereb Blood Flow Metab 2006; 26:68-78. [PMID: 15959461 DOI: 10.1038/sj.jcbfm.9600164] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Time-dependent variations in the brain temperature (Tt) are likely to be caused by fluctuations of cerebral blood flow (CBF) and cerebral metabolic rate of oxidative consumption (CMRO2) both of which are seemingly coupled to alterations in neuronal activity. We combined magnetic resonance, optical imaging, temperature sensing, and electrophysiologic methods in alpha-chloralose anesthetized rats to obtain multimodal measurements during forepaw stimulation. Localized changes in neuronal activity were colocalized with regional increases in Tt (by approximately 0.2%), CBF (by approximately 95%), and CMRO2 (by approximately 73%). The time-to-peak for Tt (42+/-11 secs) was significantly longer than those for CBF and CMRO2 (5+/-2 and 18+/-4 secs, respectively) with a 2-min stimulation. Net heat in the region of interest (ROI) was modeled as being dependent on the sum of heats attributed to changes in CMRO2 (Qm) and CBF (Qf) as well as conductive heat loss from the ROI to neighboring regions (Qc) and to the environment (Qe). Although tissue cooling because of Qf and Qc can occur and are enhanced during activation, the net increase in Tt corresponded to a large rise in Qm, whereas effects of Qe can be ignored. The results show that Tt increases slowly (by approximately 0.1 degrees C) during physiologic stimulation in alpha-chloralose anesthetized rats. Because the potential cooling effect of CBF depends on the temperature of blood entering the brain, Tt is mainly affected by CMRO2 during functional challenges. Implications of these findings for functional studies in awake humans and temperature regulation are discussed.
Collapse
Affiliation(s)
- Hubert K F Trübel
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
58
|
Shen Q, Ren H, Cheng H, Fisher M, Duong TQ. Functional, perfusion and diffusion MRI of acute focal ischemic brain injury. J Cereb Blood Flow Metab 2005; 25:1265-79. [PMID: 15858531 PMCID: PMC2962947 DOI: 10.1038/sj.jcbfm.9600132] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Combined functional, perfusion and diffusion magnetic resonance imaging (MRI) with a temporal resolution of 30 mins was performed on permanent and transient focal ischemic brain injury in rats during the acute phase. The apparent diffusion coefficient (ADC), baseline cerebral blood flow (CBF), and functional MRI (fMRI) blood-oxygen-level-dependent (BOLD), CBF, and CMRO(2) responses associated with CO(2) challenge and forepaw stimulation were measured. An automated cluster analysis of ADC and CBF data was used to track the spatial and temporal progression of different tissue types (e.g., normal, 'at risk,' and ischemic core) on a pixel-by-pixel basis. With permanent ischemia (n=11), forepaw stimulation fMRI response in the primary somatosensory cortices was lost, although vascular coupling (CO(2) response) was intact in some animals. Control experiments in which the right common carotid artery was ligated without causing a stroke (n=8) showed that the delayed transit time had negligible effect on the fMRI responses in the primary somatosensory cortices. With temporary (15-mins, n=8) ischemia, transient CBF and/or ADC declines were observed after reperfusion. However, no T(2) or TTC lesions were observed at 24 h except in two animals, which showed very small subcortical lesions. Vascular coupling and forepaw fMRI response also remained intact. Finally, comparison of the relative and absolute fMRI signal changes suggest caution when interpreting percent changes in disease states in which the baseline signals are physiologically altered; quantitative CBF fMRI are more appropriate measures. This approach provides valuable information regarding ischemic tissue viability, vascular coupling, and functional integrity associated with ischemic injury and could have potential clinical applications.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Neurology, Yerkes Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
59
|
Xu S, Yang J, Li CQ, Zhu W, Shen J. Metabolic alterations in focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats measured by 1H MRS at 11.7 T. Neuroimage 2005; 28:401-9. [PMID: 16182571 DOI: 10.1016/j.neuroimage.2005.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/08/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022] Open
Abstract
Previously, magnetic resonance spectroscopy studies of alterations in cerebral metabolite concentration during functional activation have been focused on phosphocreatine using 31P MRS and lactate using 1H MRS with controversial results. Recently, significant improvements on the spectral resolution and sensitivity of in vivo spectroscopy have been made at ultrahigh magnetic field strength. Using highly resolved localized short-TE 1H MRS at 11.7 T, we report metabolic responses of rat somatosensory cortex to forepaw stimulation in alpha-chloralose-anesthetized rats. The phosphocreatine/creatine ratio was found to be significantly decreased by 15.1 +/- 4.6% (mean +/- SEM, P < 0.01). Lactate remained very low (approximately <0.3 micromol/g w/w) with no statistically significant changes observed during forepaw stimulation at a temporal resolution of 10.7 min. An increase in glutamine and a decrease in glutamate and myo-inositol were also detected in the stimulated state. Our results suggest that, under the experimental conditions used in this study, increased energy consumption due to focal activation causes a shift in the creatine kinase reaction towards the direction of adenosine triphosphate production. At the same time, metabolic matching prevails during increased energy consumption with no significant increase in the glycolytic product lactate in the focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats.
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, Building 10, Room 2D51A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
60
|
Burnett MG, Detre JA, Greenberg JH. Activation–flow coupling during graded cerebral ischemia. Brain Res 2005; 1047:112-8. [PMID: 15893740 DOI: 10.1016/j.brainres.2005.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 11/16/2022]
Abstract
Most functional neuroimaging techniques rely on activation-flow coupling (AFC) to detect changes in regional brain function, but AFC responses may also be altered during pathophysiological conditions such as ischemia. To define the relationship between progressive ischemia and the AFC response, graded levels of cerebral blood flow reduction were produced using a rat compression ischemia model, and the cerebral hemodynamic response to forepaw stimulation was measured. Graded levels of cortical ischemia of the somatosensory cortex were induced in male Sprague-Dawley rats (n = 16) by compressing the intact dura with a 4-mm-diameter cylinder equipped with a laser-Doppler probe, combined with ipsilateral common carotid artery occlusion. At each level of CBF reduction, electric forepaw stimulation was conducted, and signal-averaged laser Doppler and evoked potential responses were recorded. A visible AFC response was present at all levels of CBF reduction (0-90% reduction from baseline), and the temporal characteristics of the response appeared largely preserved. However, the amplitude of the AFC response began to decline at levels of mild ischemia (10% flow reduction) and progressively decreased with further CBF reduction. The amplitude of the evoked response appeared to decrease in concert with the AFC amplitude and appeared to be equally sensitive to ischemia. AFC appears to be a sensitive marker for cerebral ischemia, and alterations in the AFC response occur at CBF reductions above the accepted thresholds for infarction. However, the AFC response is also preserved when flow is reduced below ischemic thresholds.
Collapse
Affiliation(s)
- Mark G Burnett
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, 415 Stemmler Hall, 3450 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104-6063, USA
| | | | | |
Collapse
|
61
|
Woydt M, Kripfgans OD, Fowlkes BJ, Roosen K, Carson PL. Functional Imaging with Intraoperative Ultrasound: Detection of Somatosensory Cortex in Dogs with Color-duplex Sonography. Neurosurgery 2005; 56:355-63; discussion 355-63. [PMID: 15670383 DOI: 10.1227/01.neu.0000148901.45322.ff] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 08/10/2004] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To evaluate the capability of intraoperative color-duplex sonography to detect eloquent flow-activated areas and their anatomic relationship in dogs. METHODS After craniotomy, the sensory cortex of eight dogs was identified by recording the highest amplitude detected with a grid electrode evoked with somatosensory evoked potential stimulation of the nervus ischiadicus. A 7.5-MHz linear array transducer was placed on the dura, and eight images were taken in color-coded capture mode during baseline and somatosensory evoked potential stimulation of the ipsilateral (nonevoked) and contralateral (evoked) sensory cortex. The differences in flow velocity intensities were statistically compared (Wilcoxon test) in three arbitrary velocity ranges and across all colored pixels in a region of interest between baseline and stimulation in both hemispheres. RESULTS Comparing both hemispheres during stimulation, the evoked sensory cortex demonstrated an increase of 10% in the number of counted colored pixels during stimulation, whereas the number of counted colored pixels in the ipsilateral sensory cortex decreased by 2% (P < 0.05), indicating an overall increase in measured flow during stimulation. Comparing differences during nonstimulation and stimulation in single hemispheres, the lowest of the three velocity ranges (approximately 10-20 mm/s) demonstrated a statistically significant (P = 0.01) increase during stimulation, whereas no change was observed during stimulation in the ipsilateral hemisphere. This increase has been confirmed by regional cerebral blood flow measurement with colored microspheres. CONCLUSION This study indicates, for the first time, the capability of intraoperative ultrasound to detect functionally important areas during evoked stimulation.
Collapse
Affiliation(s)
- Michael Woydt
- Neurosurgical Department, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
62
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
63
|
Strong AJ, Dardis R. Depolarisation phenomena in traumatic and ischaemic brain injury. Adv Tech Stand Neurosurg 2005; 30:3-49. [PMID: 16350451 DOI: 10.1007/3-211-27208-9_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
1. Cortical spreading depression is a non-physiological global depolarisation of neurones and astrocytes that can be initiated with varying degrees of difficulty in the normally perfused cerebral cortex in the experimental laboratory. Induction is typically with electrical stimulation, needling of the cerebral cortex, or superfusion of isotonic or more concentrated potassium chloride solution. The phenomenon propagates across the cerebral cortex at a rate of 2-5 mm per minute, and is accompanied by marked but transient increases in cerebral blood flow, in local tissue oxygen tension, and most probably in metabolic rate. 2. Peri-infarct depolarisation is also a depolarisation event affecting neurones and glia, with an electrophysiological basis similar or identical to CSD, but occurring spontaneously in the ischaemic penumbra or boundary zone in focal cerebral cortical ischaemia. Most such events arise from the edge of the ischaemic core, and propagate throughout the penumbra, at a rate similar to that of cortical spreading depression. 3. Cortical spreading depression in the normally perfused cortex does not result in histological damage whereas peri-infarct depolarisations augment neuronal damage in the penumbra, and are believed by many authors to constitute an important, or the principal, mechanism by which electrophysiological penumbra progressively deteriorates, ultimately undergoing terminal depolarisation and thus recruitment into an expanded core lesion. 4. There is some experimental evidence to suggest that under some circumstances induction of episodes of cortical spreading depression can confer protection against subsequent ischaemic insults. 5. Although cortical spreading depression and peri-infarct depolarisations have been extensively studied in the experimental in vivo models, there is now clear evidence that depolarisations also occur and propagate in the human brain in areas surrounding a focus of traumatic contusion. 6. Whether such events in the injured human brain represent cortical spreading depression or peri-infarct depolarisation is unclear. However, invasive and probably non-invasive monitoring methods are available which may serve to distinguish which event has occurred. 7. Much further work will be needed to examine the relationship of depolarisation events in the injured brain with outcome from cerebral ischaemia or head injury, to examine the factors which influence the frequency of depolarisation events, and to determine which depolarisation events in the human brain augment the injury and should be prevented.
Collapse
Affiliation(s)
- A J Strong
- Section of Neurosurgery, Department of Clinical Neurosciences, King's College, London, UK
| | | |
Collapse
|
64
|
Austin VC, Blamire AM, Allers KA, Sharp T, Styles P, Matthews PM, Sibson NR. Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and α-chloralose anesthesia. Neuroimage 2005; 24:92-100. [PMID: 15588600 DOI: 10.1016/j.neuroimage.2004.08.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 08/09/2004] [Accepted: 08/10/2004] [Indexed: 11/29/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) in animal models provides a platform for more extensive investigation of drug effects and underlying physiological mechanisms than is possible in humans. However, it is usually necessary for the animal to be anesthetized. In this study, we have used a rat model of direct cortical stimulation to investigate the effects of anesthesia in rodent fMRI. Specifically, we have sought to answer two questions (i) what is the relationship between baseline neuronal activity and the BOLD response to stimulation under halothane anesthesia? And (ii) how does the BOLD response change after transferring from halothane to the commonly used anesthetic alpha-chloralose? In the first set of experiments, we found no significant differences in the amplitude of the BOLD response at the different halothane doses studied, despite electroencephalography (EEG) recordings indicating a dose-dependent reduction in baseline neuronal activity with increasing halothane levels. In the second set of experiments, a reduction in the spatial extent of the BOLD response was apparent immediately after transfer from halothane to alpha-chloralose anesthesia, although no change in the peak signal change was evident. However, several hours after transfer to alpha-chloralose, a significant increase in both the spatial extent and peak height of the BOLD response was observed, as well as an increased sensitivity to secondary cortical and subcortical activation. These findings suggest that, although alpha-chloralose anesthesia is associated with a greater BOLD response for a fixed stimulus relative to halothane, there is substantial variation in the extent and magnitude of the response over time that could introduce considerable variability in studies using this anesthetic.
Collapse
Affiliation(s)
- V C Austin
- Experimental Neuroimaging Group, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
65
|
Schwindt W, Burke M, Pillekamp F, Luhmann HJ, Hoehn M. Functional magnetic resonance imaging and somatosensory evoked potentials in rats with a neonatally induced freeze lesion of the somatosensory cortex. J Cereb Blood Flow Metab 2004; 24:1409-18. [PMID: 15625415 DOI: 10.1097/01.wcb.0000143535.84012.ca] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brain plasticity is an important mechanism for functional recovery from a cerebral lesion. The authors aimed to visualize plasticity in adult rats with a neonatal freeze lesion in the somatosensory cortex using functional magnetic resonance imaging (fMRI), and hypothesized activation outside the primary projection area. A freeze lesion was induced in the right somatosensory cortex of newborn Wistar rats (n = 12). Sham-operated animals (n = 7) served as controls. After 6 or 7 months, a neurologic examination was followed by recording of somatosensory evoked potentials (SSEPs) and magnetic resonance experiments (anatomical images, fMRI with blood oxygen level-dependent contrast and perfusion-weighted imaging) with electrical forepaw stimulation under alpha-chloralose anesthesia. Lesioned animals had no obvious neurologic deficits. Anatomical magnetic resonance images showed a malformed cortex or hyperintense areas (cysts) in the lesioned hemisphere. SSEPs were distorted and smaller in amplitude, and fMRI activation was significantly weaker in the lesioned hemisphere. Only in a few animals were cortical areas outside the primary sensory cortex activated. The results are discussed in respect to an apparent absence of plasticity, loss of excitable tissue, the excitability of the lesioned hemisphere, altered connectivity, and a disturbed coupling of increased neuronal activity to the hemodynamic response.
Collapse
Affiliation(s)
- Wolfram Schwindt
- Max-Planck-Institute for Neurological Research, Cologne, Germany.
| | | | | | | | | |
Collapse
|
66
|
Mintun MA, Vlassenko AG, Rundle MM, Raichle ME. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci U S A 2004; 101:659-64. [PMID: 14704276 PMCID: PMC327204 DOI: 10.1073/pnas.0307457100] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The factors regulating cerebral blood flow (CBF) changes in physiological activation remain the subject of great interest and debate. Recent experimental studies suggest that an increase in cytosolic NADH mediates increased blood flow in the working brain. Lactate injection should elevate NADH levels by increasing the lactate/pyruvate ratio, which is in near equilibrium with the NADH/NAD(+) ratio. We studied CBF responses to bolus lactate injection at rest and in visual stimulation by using positron-emission tomography in seven healthy volunteers. Bolus lactate injection augmented the CBF response to visual stimulation by 38-53% in regions of the visual cortex but had no effect on the resting CBF or the whole-brain CBF. These lactate-induced CBF increases correlated with elevations in plasma lactate/pyruvate ratios and in plasma lactate levels but not with plasma pyruvate levels. Our observations support the hypothesis that an increase in the NADH/NAD(+) ratio activates signaling pathways to selectively increase CBF in the physiologically stimulated brain regions.
Collapse
Affiliation(s)
- Mark A Mintun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
67
|
Ido Y, Chang K, Williamson JR. NADH augments blood flow in physiologically activated retina and visual cortex. Proc Natl Acad Sci U S A 2004; 101:653-8. [PMID: 14704275 PMCID: PMC327203 DOI: 10.1073/pnas.0307458100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism(s) that increase retinal and visual cortex blood flows in response to visual stimulation are poorly understood. We tested the hypothesis that increased transfer of electrons and protons from glucose to cytosolic free NAD(+), reducing it to NADH, evoked by increased energy metabolism, fuels redox-signaling pathways that augment flow. The near-equilibrium between free cytosolic NADH/NAD(+) and lactate/pyruvate ratios established by lactate dehydrogenase predicts that transfer of additional electrons and protons from injected lactate to NAD(+) will augment the elevated blood flows in stimulated retina and cortex, whereas transfer of electrons and protons from NADH to injected pyruvate will attenuate the elevated flows. These predictions were tested and confirmed in rats. Increased flows evoked by stimulation also were prevented by inhibition of nitric oxide synthase. These findings support an important role for cytosolic free NADH in fueling a signaling cascade that increases *NO production, which augments blood flow in photostimulated retina and visual cortex.
Collapse
Affiliation(s)
- Yasuo Ido
- Diabetes and Metabolism Unit, Boston Medical Center, EBRC 820, and Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
68
|
Pellerin L, Bergersen LH, Halestrap AP, Pierre K. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 2004; 79:55-64. [PMID: 15573400 DOI: 10.1002/jnr.20307] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocarboxylate transporters (MCTs) are involved in the uptake and release of lactate, pyruvate, and ketone bodies. Studies of their distribution at both the mRNA and protein levels have highlighted the specific expression of MCT1, MCT2, and more recently MCT4 in the central nervous system. MCT1 was found strongly expressed by cortical astrocytes both in vitro and in vivo. It was also found at high levels on blood vessels, ependymocytes, and glia limitans. A subset of neurons in vitro exhibited a weak but significant MCT1 expression. In contrast, it was determined that MCT2 represents the predominant neuronal MCT on cultured neurons as well as on neurons throughout the brain parenchyma. At the subcellular level, part of MCT2 is located in postsynaptic densities. Specific populations of astrocytes in the white matter also exhibited MCT2 expression in the rat, but not in the mouse brain. MCT4 was found exclusively in astrocytes in several areas including the cortex, the hippocampus, and the cerebellum. MCT2 expression increased in cultured neurons with days in vitro commensurate with increased synapse formation. Moreover, a significant increase in MCT2 expression was observed in cultured neurons exposed to noradrenaline, an effect involving a regulation at the translational level. The description of MCTs on different cell types in the central nervous system together with clear evidence for regulation of their expression further emphasize the important role that monocarboxylates, and particularly lactate, might play in brain energy metabolism not only during development but also in the adult.
Collapse
Affiliation(s)
- Luc Pellerin
- Department of Physiology, University of Lausanne, 7 rue du Bugnon, 1005 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
69
|
Alvarez-Buylla R, Huberman A, Montero S, Lemus M, Valles V, de Alvarez-Buylla ER. Induction of brain glucose uptake by a factor secreted into cerebrospinal fluid. Brain Res 2003; 994:124-33. [PMID: 14642456 DOI: 10.1016/j.brainres.2003.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is well established that the carotid body receptors (CBR), at the bifurcation of the carotid artery, inform the brain of changes in the concentration of CO(2) and O(2) in arterial blood. More recent work suggests that these receptors are also extremely sensitive to blood glucose levels suggesting that they may play an important role as sensors of blood components important for brain energy metabolism. Much less is known about changes in brain glucose metabolism in response to CBR activation. Here we show that 2-8 min after local injection of sodium cyanide (NaCN) into the CBR or after electrical stimulation of the carotid sinus nerve in dogs and rats, brain glucose uptake increased fourfold. Cerebrospinal fluids (CSF) transferred from dogs, 2-8 min after CBR stimulation, into the cisterna magna of non-stimulated dogs or rats induced a similar increase in brain glucose uptake. CSF from stimulated dogs was also active when injected intravenously in anesthetized or awake rats. The activity was destroyed when the stimulated CSF was heated to 100 degrees C or treated with trypsin. We conclude that a peptide important for brain glucose regulation appears in the CSF shortly after CBR stimulation.
Collapse
Affiliation(s)
- Ramón Alvarez-Buylla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Mexico
| | | | | | | | | | | |
Collapse
|
70
|
Chih CP, Roberts EL. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 2003; 23:1263-81. [PMID: 14600433 DOI: 10.1097/01.wcb.0000081369.51727.6f] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucose had long been thought to fuel oxidative metabolism in active neurons until the recently proposed astrocyte-neuron lactate shuttle hypothesis (ANLSH) challenged this view. According to the ANLSH, activity-induced uptake of glucose takes place predominantly in astrocytes, which metabolize glucose anaerobically. Lactate produced from anaerobic glycolysis in astrocytes is then released from astrocytes and provides the primary metabolic fuel for neurons. The conventional hypothesis asserts that glucose is the primary substrate for both neurons and astrocytes during neural activity and that lactate produced during activity is removed mainly after neural activity. The conventional hypothesis does not assign any particular fraction of glucose metabolism to the aerobic or anaerobic pathways. In this review, the authors discuss the theoretical background and critically review the experimental evidence regarding these two hypotheses. The authors conclude that the experimental evidence for the ANLSH is weak, and that existing evidence and theoretical considerations support the conventional hypothesis.
Collapse
Affiliation(s)
- Ching-Ping Chih
- Geriatric Research, Education, and Clinical Center, and Research Office, Miami VA Medical Center, Miami, Florida, USA
| | | |
Collapse
|
71
|
Ip EY, Zanier ER, Moore AH, Lee SM, Hovda DA. Metabolic, neurochemical, and histologic responses to vibrissa motor cortex stimulation after traumatic brain injury. J Cereb Blood Flow Metab 2003; 23:900-10. [PMID: 12902834 DOI: 10.1097/01.wcb.0000076702.71231.f2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the prolonged metabolic depression after traumatic brain injury (TBI), neurons are less able to respond metabolically to peripheral stimulation. Because this decreased responsiveness has been attributed to circuit dysfunction, the present study examined the metabolic, neurochemical, and histologic responses to direct cortical stimulation after lateral fluid percussion injury (LFPI). This study addressed three specific hypotheses: that neurons, if activated after LFPI, will increase their utilization of glucose even during a period of posttraumatic metabolic depression; that this secondary activation results in an increase in the production of lactate and a depletion of extracellular glucose; and that because cells are known to be in a state of energy crisis after traumatic brain injury, additional energy demands resulting from activation can result in their death. The results indicate that stimulating to levels eliciting a vibrissa twitch resulted in an increase in the cerebral metabolic rate for glucose (CMR(glc); micromol.100 g(-1).min(-1)) of 34% to 61% in the sham-operated, 1-hour LFPI, and 7-day LFPI groups. However, in the 1-day LFPI group, stimulation induced a 161% increase in CMR(glc) and a 35% decrease in metabolic activation volume. Extracellular lactate concentrations during stimulation significantly increased from 23% in the sham-injured group to 55% to 63% in the 1-day and 7-day LFPI groups. Extracellular glucose concentrations during stimulation remained unchanged in the sham-injured and 7-day LFPI groups, but decreased 17% in the 1-day LFPI group. The extent of cortical degeneration around the stimulating electrode in the 1-day LFPI group nearly doubled when compared with controls. These results indicate that at 1 day after LFPI, the cortex can respond to stimulation with an increase in anaerobic glycolysis; however, this metabolic response to levels eliciting a vibrissa response via direct cortical stimulation appears to constitute a secondary injury in the TBI brain.
Collapse
Affiliation(s)
- Emily Y Ip
- Division of Neurosurgery, Neuroscience Interdepartmental Ph.D. Program, University of California at Los Angeles, Los Angeles, California 90095, U.S.A
| | | | | | | | | |
Collapse
|
72
|
Urrila AS, Hakkarainen A, Heikkinen S, Vuori K, Stenberg D, Häkkinen AM, Lundbom N, Porkka-Heiskanen T. Metabolic imaging of human cognition: an fMRI/1H-MRS study of brain lactate response to silent word generation. J Cereb Blood Flow Metab 2003; 23:942-8. [PMID: 12902838 DOI: 10.1097/01.wcb.0000080652.64357.1d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) allows in vivo assessment of the metabolism related to human brain functions. Visual, auditory, tactile, and motor stimuli induce a temporary increase in the brain lactate level, which may act as a rapid source of energy for the activated neurons. The authors studied the metabolism of the frontal lobes during cognitive stimulation and measured local lactate levels with standard 1H-MRS, after localizing the activated area by functional MRI. Lactate levels were monitored while the subjects either silently listed numbers (baseline) or performed a silent word-generation task (stimulus-activation). The cognitive stimulus-activation produced a 50% increase in the brain lactate level in the left inferior frontal gyrus. The results show that metabolic imaging of neuronal activity related to cognition is possible using 1H-MRS.
Collapse
Affiliation(s)
- Anna S Urrila
- Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Rothman DL, Behar KL, Hyder F, Shulman RG. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 2003; 65:401-27. [PMID: 12524459 DOI: 10.1146/annurev.physiol.65.092101.142131] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until very recently, non-invasive measurement of the glutamate-glutamine cycle in the intact mammalian brain had not been possible. In this review, we describe some studies that have led to quantitative assessment of the glutamate-glutamine cycle (Vcyc), as well as other important metabolic fluxes (e.g., glucose oxidation, CMRglc(ox)), with (13)C magnetic resonance spectroscopy (MRS) in vivo. These (13)C MRS studies clearly demonstrate that glutamate released from presynaptic neurons is taken up by the astrocyte for subsequent glutamine synthesis. Contrary to the earlier concept of a small, metabolically inactive neurotransmitter pool, in vivo (13)C MRS studies demonstrate that glutamate release and recycling is a major metabolic pathway that cannot be distinguished from its actions of neurotransmission. Furthermore, the in vivo (13)C MRS studies demonstrate in the rat cerebral cortex that increases in Vcyc and neuronal CMRglc(ox) are linearly related with a close to 1:1 slope. Measurements in human cerebral cortex are in agreement with this result. This relationship is consistent with more than two thirds of the energy yielded by glucose oxidation being used to support events associated with glutamate neurotransmission, and it supports a molecular model of a stoichiometric coupling between glutamate neurotransmission and functional glucose oxidation. (13)C MRS measurements of resting human cerebral cortex have found a high level of glutamate-glutamine cycling. This high resting neuronal activity, which is subtracted away in brain mapping studies by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has significant implications for the interpretations of functional imaging data. Here we review and discuss the importance of neurotransmission and neuroenergetics as measured by (13)C MRS for understanding brain function and interpreting fMRI.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Center for Research in Metabolism and Physiology, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | |
Collapse
|
74
|
Muthuswamy J, Kimura T, Ding MC, Geocadin R, Hanley DF, Thakor NV. Vulnerability of the thalamic somatosensory pathway after prolonged global hypoxic-ischemic injury. Neuroscience 2003; 115:917-29. [PMID: 12435429 DOI: 10.1016/s0306-4522(02)00369-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to test the hypothesis that under prolonged global ischemic injury, the somatosensory thalamus and the cortex would manifest differential susceptibility leading to varying degrees of thalamo-cortical dissociation. The thalamic electrical responses displayed increasing suppression with longer durations of ischemia leading to a significant thalamo-cortical electrical dissociation. The data also point to a selective vulnerability of the network oscillations involving the thalamic relay and reticular thalamic neurons. An adult rat model of asphyxial cardiac arrest involving three cohorts with 3 min (G1, n=5), 5 min (G2, n=5) and 7 min (G3, n=5) of asphyxia respectively was used. The cortical evoked response, as quantified by the peak amplitude at 20 ms in the cortical evoked potential, recovers to more than 60% of baseline in all the cases. The multi-unit responses to the somatosensory stimuli recorded from the thalamic ventral posterior lateral (VPL) nuclei consists typically of three components: (1). the ON response (<30 ms after stimulus), (2). the OFF response (period of inhibition, from 30 ms to 100 ms after stimulus) and (3). rhythmic spindles (beyond 100 ms after stimulus). Asphyxia has a significant effect on the VPL ON response at 30 min (P<0.025), 60 min (P<0.05) and 90 min (P<0.05) after asphyxia. Only animals in G3 show a significant suppression (P<0.05) of the VPL ON response when compared to the sham group at 30 min, 60 min and 90 min after asphyxia. There was no significant reduction in somatosensory cortical N20 (negative peak in the cortical response at 20 ms after stimulus) amplitude in any of the three groups with asphyxia indicating a thalamo-cortical dissociation in G3. Further, rhythmic spindle oscillations in the thalamic VPL nuclei that normally accompany the ON response recover either slowly after the recovery of ON response (in the case of G1 and G2) or do not recover at all (in the case of G3).We conclude that there is strong evidence for selective vulnerability of thalamic relay neurons and its network interactions with the inhibitory interneurons in the somatosensory pathway leading to a thalamo-cortical dissociation after prolonged durations of global ischemia.
Collapse
Affiliation(s)
- J Muthuswamy
- Department of Bioengineering, PO Box 879709, College of Engineering and Applied Sciences, Arizona State University, Tempe, AZ 85287-9709, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Trübel HKF, Maciejewski PK, Farber JH, Hyder F. Brain temperature measured by 1H-NMR in conjunction with a lanthanide complex. J Appl Physiol (1985) 2003; 94:1641-9. [PMID: 12626478 DOI: 10.1152/japplphysiol.00841.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In vivo data on temperature distributions in the intact brain are scarce, partly due to lack of noninvasive methods for the region of interest. NMR has been exploited for probing a variety of brain activities in vivo noninvasively within the region of interest. Here we report the use of a thulium-based thermometric sensor, infused through the blood, for monitoring absolute temperature in rat brain in vivo by (1)H-NMR and validated by direct temperature measurements with thermocouple wires. Because the (1)H chemical shifts also demonstrate pH sensitivity, detection of multiple resonances was used to measure both temperature and pH simultaneously with high sensitivity. Examination of blood plasma and cerebral spinal fluid samples removed from rats infused with the thermometric sensor suggests that the complex, despite its negative charge, crosses the blood-brain barrier to enter the extracellular milieu. In the future, the thulium-based thermometric sensor may be used for monitoring temperature (and pH) distributions throughout the entire brain, examining response to therapy and evaluating changes induced by alterations in neuronal activity.
Collapse
Affiliation(s)
- Hubert K F Trübel
- Departments of Pediatrics, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
76
|
Abstract
In vivo 13C magnetic resonance spectroscopy studies of the brain have measured rates of glutamate-glutamine cycle (Vcyc) and glucose oxidation (CMRglc(ox)) by detecting 13C label turnover from glucose to glutamate and glutamine. In both the awake human and in the anesthetized rat brains Vcyc and CMRglc(ox) are stoichiometrically related, and form a major pathway in which approximately 80% of the energy from glucose oxidation supports events associated with glutamate neurotransmission. The high energy consumption of the brain at rest and its quantitative usage for neurotransmission reflect a high level of neuronal activity for the non-stimulated brain. This high activity supports a reinterpretation of functional imaging data, e.g., where the large baseline signal has commonly been discarded. Independent measurements of energy consumption (delta CMRO2%) obtained from calibrated fMRI equaled percentage changes in neuronal spiking rate (delta nu %) measured by electrodes during sensory stimulation at two depths of anesthesia. These quantitative biophysical relationships between energy consumption and neuronal activity provide novel insights into the nature of brain function. The high resting brain activity is proposed to include the global interactions constituting the subjective aspects of consciousness. Anesthesia by lowering the total firing rates correlates with the loss of consciousness. These results, which measure the localized neuronal response and distinguish inputs of peripheral neurons from inputs of neurons from other brain regions, fit comfortably into the neuronal scheme of a global workspace proposed by Dehaene and Changeux.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center, Yale University, Schools of Medicine and Engineering, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
77
|
Hyder F, Rothman DL, Shulman RG. Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A 2002; 99:10771-6. [PMID: 12134057 PMCID: PMC125040 DOI: 10.1073/pnas.132272299] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In alpha-chloralose-anesthetized rats, changes in the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal (DeltaS/S), and the relative spiking frequency of a neuronal ensemble (Deltanu/nu) were measured in the somatosensory cortex during forepaw stimulation from two different baselines. Changes in cerebral oxygen consumption (DeltaCMR(O2)/CMR(O2)) were derived from the BOLD signal (at 7T) by independent determinations in cerebral blood flow (DeltaCBF/CBF) and volume (DeltaCBV/CBV). The spiking frequency was measured by extracellular recordings in layer 4. Changes in all three parameters (CMR(O2), nu, and S) were greater from the lower baseline (i.e., deeper anesthesia). For both baselines, DeltaCMR(O2)/CMR(O2) and Deltanu/nu were approximately one order of magnitude larger than DeltaS/S. The final values of CMR(O2) and nu reached during stimulation were approximately the same from both baselines. If only increments were required to support functions then their magnitudes should be independent of the baseline. In contrast, if particular magnitudes of activity were required, then sizes of increments should inversely correlate with the baseline (being larger from a lower baseline). The results show that particular magnitudes of activity support neural function. The disregard of baseline activity in fMRI experiments by differencing removes a large and necessary component of the total activity. Implications of these results for understanding brain function and fMRI experiments are discussed.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
78
|
Affiliation(s)
- Marcus E Raichle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
79
|
Activated areas found by BOLD, CBF, CBV and changes in CMRO2 during somatosensory stimulation do not co-localize in rat cortex. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0531-5131(02)00172-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
80
|
Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ. Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 2002; 16:531-7. [PMID: 12030835 DOI: 10.1006/nimg.2002.1114] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxygen utilization increase is fractionally much less than that seen in glucose metabolism and blood flow soon after onset of neuronal activation, however its behavior during continued activation is less certain. We evaluated the effects of 25 min of visual stimulation on CBF, CMRO(2), and OEF using [(15)O] water and [(15)O] oxygen PET. Seven healthy volunteers underwent a PET session consisting of serial [(15)O] water and [(15)O] oxygen scans at the fixation-only baseline visual state and after 1, 13, and 25 min of the continuous visual stimulation using a black-white vertical grating. CBF, CMRO(2), and OEF values were calculated for the entire brain and for regions of interest in visual cortex centered over the area of activation. After 1 min of stimulation, CMRO(2) increased only 4.7% compared to baseline and CBF increased 40.7%. However, after 25 min of stimulation the increase in CMRO(2) compared to baseline was 15.0%, having tripled from that measured at 1 min (P < 0.05). CBF did not significantly change during this time. OEF was 48.3% at baseline. It decreased to 37.1% after 1 min of visual stimulation (P < 0.01) and then returned almost to baseline values after 25 min of activation OEF (45.7%). There were no significant variations in whole-brain values during the study. We suggest that in the activated brain, the increased energy demands initially are not fully met with oxidative metabolism and must predominantly be supported by increased glycolysis. With continued activation, oxygen utilization increases reducing the need for excess glycolysis.
Collapse
Affiliation(s)
- Mark A Mintun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
81
|
Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR IN BIOMEDICINE 2001; 14:413-431. [PMID: 11746934 DOI: 10.1002/nbm.733] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret the neurophysiologic basis of blood oxygenation level dependent (BOLD) image-contrast at 7 T in glutamatergic neurons of rat cerebral cortex. Multi-modal MRI and MRS measurements of CMR(O2), CBF, CBV and BOLD signal (both gradient-echo and spin-echo) are used to interpret the neuroenergetic basis of BOLD image-contrast. Since each parameter that can influence the BOLD image-contrast is measured quantitatively and separately, multi-modal measurements of changes in CMR(O2), CBF, CBV, BOLD fMRI signal allow calibration and validation of the BOLD image-contrast. Good agreement between changes in CMR(O2) calculated from BOLD theory and measured by (13)C MRS, reveals that BOLD fMRI signal-changes at 7 T are closely linked with alterations in neuronal glucose oxidation, both for activation and deactivation paradigms. To determine the neurochemical basis of BOLD, pharmacological treatment with lamotrigine, which is a neuronal voltage-dependent Na(+) channel blocker and neurotransmitter glutamate release inhibitor, is used in a rat forepaw stimulation model. Attenuation of the functional changes in CBF and BOLD with lamotrigine reveals that the fMRI signal is associated with release of glutamate from neurons, which is consistent with a link between neurotransmitter cycling and energy metabolism. Comparisons of CMR(O2) and CBF over a wide dynamic range of neuronal activity provide insight into the regulation of energy metabolism and oxygen delivery in the cerebral cortex. The current results reveal the energetic and physiologic components of the BOLD fMRI signal and indicate the required steps towards mapping neuronal activity quantitatively by fMRI at steady-state. Consequences of these results from rat brain for similar calibrated BOLD fMRI studies in the human brain are discussed.
Collapse
Affiliation(s)
- F Hyder
- Department of Diagnostic Radiology, Magnetic Resonance Center for Research in Metabolism and Physiology, Yale University, New Haven, CT 06510, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Peeters RR, Tindemans I, De Schutter E, Van der Linden A. Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn Reson Imaging 2001; 19:821-6. [PMID: 11551722 DOI: 10.1016/s0730-725x(01)00391-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The difference between awake curarized and alpha-chloralose anesthetized animals was studied with respect to the BOLD signal response in an fMRI experiment. By studying the activation of the cortex upon electrical forepaw stimulation in the same rat, but following consecutively applied curarization and alpha-chloralose anesthesia protocols, it was possible to compare quantitatively the effect of both immobilization protocols on the fMRI data. The largest BOLD signal change as a result of forepaw stimulation was found in the awake condition, however the activated areas are less specific than those in the anesthetized state leaving it more difficult to interpret.
Collapse
Affiliation(s)
- R R Peeters
- Bio Imaging Lab, University of Antwerp, RUCA, Groenenborgerlaan 171, B2020, Antwerp, Belgium.
| | | | | | | |
Collapse
|
83
|
Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 2001; 21:653-63. [PMID: 11488534 DOI: 10.1097/00004647-200106000-00003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in alpha-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma glucose, which is consistent with the reversible Michaelis-Menten model. When the model was fitted to the brain glucose measurements, the apparent Michaelis-Menten constant, Kt, was 3.3 +/- 1.0 mmol/L, and the ratio of the maximal transport rate relative to CMRglc, Tmax/CMRglc, was 2.7 +/- 0.1. This Kt is comparable to the authors' previous human data, suggesting that glucose transport kinetics in humans and rats are similar. Cerebral blood flow (CBF) was simultaneously assessed and constant above 2 mmol/L plasma glucose at 73 +/- 6 mL 100 g(-1) min(-1). Extrapolation of the reversible Michaelis-Menten model to hypoglycemia correctly predicted the plasma glucose concentration (2.1 +/- 0.6 mmol/L) at which brain glucose concentrations approached zero. At this point, CBF increased sharply by 57% +/- 22%, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglycemia.
Collapse
Affiliation(s)
- I Y Choi
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
84
|
Ido Y, Chang K, Woolsey TA, Williamson JR. NADH: sensor of blood flow need in brain, muscle, and other tissues. FASEB J 2001; 15:1419-21. [PMID: 11387243 DOI: 10.1096/fj.00-0652fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y Ido
- Department of Pathology, Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
85
|
Kida I, Hyder F, Behar KL. Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent. J Cereb Blood Flow Metab 2001; 21:585-91. [PMID: 11333369 DOI: 10.1097/00004647-200105000-00013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Results of recent studies suggest that the glutamate-glutamine neurotransmitter cycle between neurons and astrocytes plays a major role in the generation of the functional imaging signal. In the current study, the authors tested the hypothesis that activation of voltage-dependent Na(+) channels is involved in the blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses during somatosensory activation. The BOLD fMRI and cerebral blood flow (CBF) experiments were performed at 7 Tesla on alpha-chloralose-anesthetized rats undergoing forepaw stimulation before and for successive times after application of lamotrigine, a neuronal voltage-dependent Na+ channel blocker and glutamate release inhibitor. The BOLD fMRI signal changes in response to forepaw stimulation decreased in a time-dependent manner from 6.7% +/- 0.7% before lamotrigine injection to 3.0% +/- 2.5% between 60 and 105 minutes after lamotrigine treatment. After lamotrigine treatment, the fractional increase in CBF during forepaw stimulation was an order of magnitude less than that observed before the treatment. Lamotrigine had no effect on baseline CBF in the somatosensory cortex in the absence of stimulation. These results strongly suggest that activation of voltage-dependent Na+ channels is involved in the BOLD fMRI responses during somatosensory activation of the rat cortex.
Collapse
Affiliation(s)
- I Kida
- Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
86
|
Ances BM, Wilson DF, Greenberg JH, Detre JA. Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching. J Cereb Blood Flow Metab 2001; 21:511-6. [PMID: 11333361 DOI: 10.1097/00004647-200105000-00005] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in cerebral blood flow (CBF) using laser-Doppler and microvascular O2 oxygen tension using oxygen-dependent phosphorescence quenching in the rat somatosensory cortex were obtained during electrical forepaw stimulation. The signal-averaged CBF response resulting from electrical forepaw stimulation consisted of an initial peak (t = 3.1 +/- 0.8 seconds after onset of stimulation), followed by a plateau phase that was maintained throughout the length of the stimulus. In contrast, microvascular O2 tension changes were delayed, reached a plateau level (t = 23.5 +/- 1.7 seconds after the onset of stimulation) that remained for the length of the stimulus and for several seconds after stimulus termination, and then returned to baseline. Using Fick's equation and these dynamic measurements, changes in the calculated cerebral metabolic rate of oxygen (CMRO2) during functional stimulation were determined. The calculated CMRO2 response initially was comparable with the CBF, but with protracted stimulation, CMRO2 changes were approximately one-third that of CBF changes. These results suggest that a complex relation exists, with comparable changes in CBF and CMRO2 initially occurring after stimulation but excessive changes in CBF compared with CMRO2 arising with protracted stimulation.
Collapse
Affiliation(s)
- B M Ances
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
87
|
Chang C, Shyu BC. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res 2001; 897:71-81. [PMID: 11282360 DOI: 10.1016/s0006-8993(01)02094-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An acute pain animal model for fMRI study would provide useful spatial and temporal information for studying the supraspinal nociceptive neuronal responses. The aim of the present study was to investigate whether the nociceptive responses in different brain areas can be differentiated by using functional magnetic resonance imaging (fMRI) in anesthetized rats. Functional changes in brain regions activated by noxious or non-noxious stimuli of the sciatic nerve were investigated using fMRI in a 4.7 T MR system in alpha-chloralose anaesthetized rats. To determine the electrical intensity for noxious and non-noxious stimuli, compound action potential recording was employed to reveal the type of fibers activated by graded electrical stimulation of sciatic nerve. It showed that innocuous A-beta fibers were excited by two times the muscle twitch threshold and nociceptive A-delta and C fibers were recruited and excited by 10 and 20 times threshold, respectively. A series of four-slice gradient echo images were acquired during innocuous (two times threshold) and noxious (10 and 20 times threshold) stimuli in a 4.7 T MR system. Contralateral somatosensory cortex was the most prominent brain area activated by innocuous stimuli. Both signal intensity and activated areas were significantly increased in the somatosensory cortex, cingulate cortex, medial thalamus and hypothalamus during noxious stimuli. These four brain areas activated by noxious stimuli were significantly suppressed by prior intravenous injection of morphine (5 mg/kg). The present findings demonstrated that the difference of the innocuous and nociceptive responses in the brain could be detected and localized by an in vivo spatial map using fMRI. Results suggest that fMRI may be an invaluable tool for studying pain in anesthetized animals.
Collapse
Affiliation(s)
- C Chang
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan, ROC
| | | |
Collapse
|
88
|
Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti P, Bonvento G. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab 2001; 21:404-12. [PMID: 11323526 DOI: 10.1097/00004647-200104000-00009] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms responsible for the local increase in brain glucose utilization during functional activation remain unknown. Recent in vitro studies have identified a new signaling pathway involving an activation of glial glutamate transporters and enhancement of neuron-astrocyte metabolic interactions that suggest a putative coupling mechanism. The aim of the present study was to determine whether one of the glutamate transporters exclusively expressed in astrocytes, GLAST, is involved in the neurometabolic coupling in vivo. For this purpose, rats were microinjected into the posteromedial barrel subfield (PMBSF) of the somatosensory cortex with GLAST antisense or random phosphorothioate oligonucleotides. The physiologic activation was performed by stimulating the whisker-to-barrel pathway in anesthetized rats while measuring local cerebral glucose utilization by quantitative autoradiography in the PMBSF. Twenty-four hours after injection of two different antisense GLAST oligonucleotide sequences, and despite the presence of normal whisker-related neuronal activity in the PMBSF, the metabolic response to whisker stimulation was decreased by more than 50%. Injection of the corresponding random sequences still allowed a significant increase in glucose utilization in the activated area. The present study highlights the contribution of astrocytes to neurometabolic coupling in vivo. It provides evidence that glial glutamate transporters are key molecular components of this coupling and that neuronal glutamatergic activity is an important determinant of energy utilization. Results indicate that astrocytes should also be considered as possible sources of altered brain metabolism that could explain the distinct imaging signals observed in some pathologic situations.
Collapse
Affiliation(s)
- N Cholet
- Laboratory of Cerebrovascular Research, CNRS UPR646, University of Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|
89
|
Bakalova R, Matsuura T, Kanno I. Frequency dependence of local cerebral blood flow induced by somatosensory hind paw stimulation in rat under normo- and hypercapnia. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:201-8. [PMID: 11405913 DOI: 10.2170/jjphysiol.51.201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We measured the field potential and the changes in local cerebral blood flow (LCBF) response during somatosensory activation (evoked LCBF) in alpha-chloralose--anesthetized rats by laser-Doppler flowmetry under normocapnia (PaCO(2)=34.3+/-3.8 mmHg) and hypercapnia (PaCO(2)=70.1+/-9.8 mmHg). Somatosensory activation was induced by electrical stimulation (0.2, 1, and 5 Hz with 1.5 mA for 5 s) of the hind paw. The neuronal activity of the somatosensory area of the hind paw was linear to the stimulus frequency, and there was no significant difference in the neuronal activity between hypercapnia and normocapnia. The baseline level of LCBF under hypercapnia was about 72.2% higher than that under normocapnia (p<0.01). The absolute response magnitude under hypercapnia was greater than that under normocapnia (p<0.05). The evoked LCBF under both conditions showed a frequency-dependent increase in the 0.2 to 5 Hz range, and the difference in the absolute response magnitude at the same stimulus frequency between normocapnia and hypercapnia became large with increasing stimulus frequency (p<0.05). On the other hand, after normalization to each baseline level there was no significant difference in the response magnitude of the normalized evoked LCBF between normocapnia and hypercapnia, indicating that the normalized evoked LCBF reflects neuronal activity even when the baseline LCBF was changed by the PaCO(2) level. The peak time and termination time of LCBF response curves with respect to the graded neuronal activity at 1 and 5 Hz stimulation increased significantly under hypercapnia, compared with those under normocapnia (p<0.05), although the rise time of 0.5 s was nearly constant. In conclusion, the results suggest a synergistic effect of the combined application of graded neuronal stimuli and hypercapnia on the LCBF response.
Collapse
Affiliation(s)
- R Bakalova
- Department of Radiology and Nuclear Medicine, Akita Research Institute for Brain and Blood Vessels, Akita, 010-0874 Japan
| | | | | |
Collapse
|
90
|
Gsell W, De Sadeleer C, Marchalant Y, MacKenzie ET, Schumann P, Dauphin F. The use of cerebral blood flow as an index of neuronal activity in functional neuroimaging: experimental and pathophysiological considerations. J Chem Neuroanat 2000; 20:215-24. [PMID: 11207420 DOI: 10.1016/s0891-0618(00)00095-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over recent years, activation studies that have been undertaken using brain imaging techniques, such as functional magnetic resonance imaging, positron emission tomography or near infrared spectroscopy, have greatly improved our knowledge of the functional anatomy of the brain. Nevertheless, activation studies do not directly quantify the variations of synaptic transmission (neuronal activity) but detect it indirectly either through the visualisation of changes in cerebral blood flow, oxidative or glycolytic metabolism (for positron emission tomography), or through the measurement of a global index that is dependent on both cerebral blood flow and oxidative metabolism (for functional magnetic resonance imaging and near infrared spectroscopy). Such approaches are based on the concept of a tight parallelism--termed coupling--between variations in neuronal activity, metabolism and cerebral blood flow. However, several "uncoupled" situations between these parameters have been reported over the last decade through experimental, pharmacological and pathophysiological studies. The aim of this review is to focus on these data that have to be taken into account for the interpretation of the results obtained in activation paradigms.
Collapse
Affiliation(s)
- W Gsell
- Université de Caen, UMR 6551 CNRS, Centre Cyceron, IFR47, Caen, France
| | | | | | | | | | | |
Collapse
|
91
|
Schwarzbauer C, Hoehn M. The effect of transient hypercapnia on task-related changes in cerebral blood flow and blood oxygenation in awake normal humans: a functional magnetic resonance imaging study. NMR IN BIOMEDICINE 2000; 13:415-419. [PMID: 11114065 DOI: 10.1002/1099-1492(200011)13:7<415::aid-nbm662>3.0.co;2-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It has recently been reported in alpha-chloralose anesthetized rats that the hemodynamic response to somatosensory stimulation almost doubled following transient hypercapnia (THC). In principle, this effect could be employed to enhance the sensitivity of perfusion-based fMRI experiments. To investigate whether a comparable effect was detectable in awake normal humans, changes in cerebral blood flow (DeltaCBF) and the effective transverse relaxation time (DeltaT(2)*) induced by a visual search task were measured in 10 healthy volunteers before and after THC. Concerning DeltaT(2)* no significant differences were found, whereas in four subjects DeltaCBF was significantly decreased (p < 0.01) following THC. These results demonstrate no increase in the CBF response following THC for awake humans. We conclude that the most likely explanation for this discrepancy with the earlier results obtained with animals is an as yet unknown mechanism of modulation of the cholinergic system by the anesthesia.
Collapse
Affiliation(s)
- C Schwarzbauer
- Max-Planck-Institute of Cognitive Neuroscience, Leipzig, Germany.
| | | |
Collapse
|
92
|
Abstract
Large amounts of energy are required to maintain the signaling activities of CNS cells. Because of the fine-grained heterogeneity of brain and the rapid changes in energy demand, it has been difficult to monitor rates of energy generation and consumption at the cellular level and even more difficult at the subcellular level. Mechanisms to facilitate energy transfer within cells include the juxtaposition of sites of generation with sites of consumption and the transfer of approximately P by the creatine kinase/creatine phosphate and the adenylate kinase systems. There is evidence that glycolysis is separated from oxidative metabolism at some sites with lactate becoming an important substrate. Carbonic anhydrase may play a role in buffering activity-induced increases in lactic acid. Relatively little energy is used for 'vegetative' processes. The great majority is used for signaling processes, particularly Na(+) transport. The brain has very small energy reserves, and the margin of safety between the energy that can be generated and the energy required for maximum activity is also small. It seems probable that the supply of energy may impose a limit on the activity of a neuron under normal conditions. A number of mechanisms have evolved to reduce activity when energy levels are diminished.
Collapse
Affiliation(s)
- A Ames
- Neurosurgical Service, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
93
|
Burke M, Schwindt W, Ludwig U, Hennig J, Hoehn M. Facilitation of electric forepaw stimulation-induced somatosensory activation in rats by additional acoustic stimulation: an fMRI investigation. Magn Reson Med 2000; 44:317-21. [PMID: 10918332 DOI: 10.1002/1522-2594(200008)44:2<317::aid-mrm20>3.0.co;2-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The influence of scanner acoustic noise on somatosensory activation pattern in rat cortex was investigated by functional magnetic resonance imaging (fMRI) using the blood oxygenation level-dependent (BOLD) contrast. This was achieved by two approaches. The first approach was to compare a conventional, loud fMRI sequence with a new sequence, in which the noise level was reduced by about 30 dB. In the second approach, the inner ear of the animal was destroyed, resulting in deafness. We compared the activation patterns obtained with both sequences before and after cochleotomy. The activated area was larger when data were sampled with background noise, and was also larger before cochleotomy than after. Thus, facilitation of somatosensory activation is induced by additional acoustic stimulation. Magn Reson Med 44:317-321, 2000.
Collapse
Affiliation(s)
- M Burke
- Max Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
94
|
Ances BM, Detre JA. Laser Doppler imaging of changes in cerebral blood flow during acute carotid occlusion. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 2000; 18:131-7. [PMID: 11799977 DOI: 10.1089/clm.2000.18.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To determine by laser Doppler imaging (LDI) the spatial and temporal characteristics of the changes in cerebral blood flow (CBF) in response to electrical forepaw stimulation in rats before and during acute unilateral carotid occlusion. BACKGROUND DATA Single laser Doppler (LD) probes provide a minimally invasive approach for measuring CBF changes due to functional stimulation. Using an electrical forepaw stimulation model in rats, we have previously demonstrated a prolongation in the temporal dynamics of the CBF response during acute mechanical carotid occlusion. However, the spatial resolution of this model system was limited by the diameter of the single LD probe. Recently, we have successfully used LDI, which uses an optically driven low power laser beam to measure CBF changes in two dimensions, to investigate the spatial and temporal changes in CBF due to forepaw stimulation. METHODS LDI was used to measure the spatial and temporal characteristics of the changes in CBF response in a-chloralose anesthetized rats (n = 5) both before and during acute unilateral occlusion of the common carotid contralateral to the forepaw stimulated. RESULTS Acute mechanical occlusion of the common carotid contralateral to the forepaw stimulated did not affect the area of activation due to functional stimulation. However, the amplitude of the CBF response was significantly reduced compared to prior to occlusion. Further, acute occlusion led to a significant prolongation of temporal dynamics of the CBF response. These observations are in agreement with previous results we have obtained using a single LD probe. CONCLUSIONS Our results suggest a promising role for the application of LDI to study the spatial and temporal characteristics of CBF changes in animal models and may allow a diagnostic technique for testing patients with carotid occlusion.
Collapse
Affiliation(s)
- B M Ances
- Department of Neurology, University of Pennsylvania, Philadelphia 19104-4283, USA
| | | |
Collapse
|
95
|
Kida I, Hyder F, Kennan RP, Behar KL. Toward absolute quantitation of bold functional MRI. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 471:681-9. [PMID: 10659202 DOI: 10.1007/978-1-4615-4717-4_78] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- I Kida
- Department of Neurology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
96
|
Hyder F, Shulman RG, Rothman DL. Regulation of cerebral oxygen delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 471:99-110. [PMID: 10659136 DOI: 10.1007/978-1-4615-4717-4_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- F Hyder
- Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, USA
| | | | | |
Collapse
|
97
|
Shimizu K, Veltkamp R, Busija DW. Characteristics of induced spreading depression after transient focal ischemia in the rat. Brain Res 2000; 861:316-24. [PMID: 10760493 DOI: 10.1016/s0006-8993(00)02032-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined characteristics of spreading depression (SD) induced on the rat cortex 1 day after transient focal ischemia. Male Wistar rats (n=21) were subjected to transient intraluminal thread occlusion of the right middle cerebral artery for 75 min. Twenty-four hours after the reperfusion, cerebral blood flow (CBF) was determined using laser Doppler flowmeter during multiple SDs elicited on both non-stroke (left) and stroke (right) cortex by the topical application of 2 M KCl. We also examined CBF responses before and after the intravenous administration of the nonspecific NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) in normal and stroke cortex. Animals were divided into two groups; Group 1 (n=12), animals with subcortical infarction and Group 2 (n=9), animals with subcortical plus cortical infarction. There were no differences between non-stroke and stroke sides in the duration or amplitude of the DC potential shifts in either group. The transient CBF hyperemia during SD was not different between non-stroke (372+/-23% of baseline, mean+/-S.E.) and stroke sides (383+/-30%) in Group 1. However, in Group 2, CBF was significantly restricted on the stroke side (192+/-15% vs. non-stroke side, 374+/-33%). In four normal animals without ischemia, there were no differences in CBF response between both sides. L-NAME had no effect on the transient CBF hyperemia during SD in any of the groups. These data suggest that the CBF responses during SD in the peri-infarction area is restricted 1 day after the transient focal ischemia, while CBF responses are intact in normal cortex overlapping a subcortical infarct. Further, our results indicate that nitric oxide does not promote CBF responses during SD in normal cortex or in tissue surrounding infarction.
Collapse
Affiliation(s)
- K Shimizu
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | |
Collapse
|
98
|
Ances BM, Greenberg JH, Detre JA, Dietrich WD. Acute carotid occlusion alters the activation flow coupling response to forepaw stimulation in a rat model. Stroke 2000; 31:955-60. [PMID: 10754005 DOI: 10.1161/01.str.31.4.955] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE To determine whether the hemodynamic response to functional stimulation is sensitive to proximal arterial occlusion, we measured the activation flow coupling response in a rat model of acute reversible vascular occlusion. METHODS In alpha-chloralose-anesthetized rats (n=18), laser Doppler measurements were made through a thinned skull over the somatosensory cortex in response to electrical forepaw stimulation. Signal-averaged responses to 4 and 8 seconds of electrical forepaw stimulation were obtained before, during, and shortly after acute unilateral or bilateral carotid occlusion produced with the use of a surgically placed snare. RESULTS Baseline cerebral blood flow was significantly decreased over the forepaw region of the somatosensory cortex after both occlusion of the carotid contralateral to the stimulated forepaw and bilateral occlusion compared with preocclusion (P<0.05). Postocclusion and ipsilateral occlusion led to a nonsignificant increase in baseline cerebral blood flow compared with preocclusion. Contralateral carotid occlusion and bilateral occlusion significantly prolonged the temporal characteristics of the flow response, especially the delay to peak (P<0.05), compared with preocclusion, whereas ipsilateral carotid occlusion significantly shortened the delay to peak (P<0.05). Only contralateral carotid occlusion produced a significant reduction in the peak amplitude of the flow response compared with preocclusion (P<0.05). CONCLUSIONS These findings suggest that temporal characteristics of functional activation responses are sensitive to alterations in the proximal arterial supply and, conversely, that functional activation studies must be interpreted with consideration of proximal arterial disease.
Collapse
Affiliation(s)
- B M Ances
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
99
|
Hyder F, Renken R, Kennan RP, Rothman DL. Quantitative multi-modal functional MRI with blood oxygenation level dependent exponential decays adjusted for flow attenuated inversion recovery (BOLDED AFFAIR). Magn Reson Imaging 2000; 18:227-35. [PMID: 10745130 DOI: 10.1016/s0730-725x(00)00125-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A magnetic resonance imaging (MRI) method is described that allows interleaved measurements of transverse (R(2)(*) and R(2)) and longitudinal (R(1)) relaxation rates of tissue water in conjunction with spin labeling. The image-contrasts are intrinsically blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) weighted, but each contrast is made quantitative by two echo time (TE) and inversion recovery time (TIR) acquisitions with gradient echo (GE) and spin echo (SE) weighted echo-planar imaging (EPI). The EPI data were acquired at 7 Tesla with nominal spatial resolution of 430 x 430 x 1000 microm(3) in rat brain in vivo. The method is termed as blood oxygenation level dependent exponential decays adjusted for flow attenuated inversion recovery (BOLDED AFFAIR) and allows acquisition of R(2)(*), R(2), and CBF maps in an interleaved manner within approximately 12 minute. The basic theory of the method, associated experimental/systematic errors, and temporal restrictions are discussed. The method is validated by comparison of multi-modal maps obtained by BOLDED AFFAIR (i.e., two TE and TIR values with GE and SE sequences) and conventional approach (i.e., multiple TE and TIR values with GE and SE sequences) during varied levels of whole brain activity. Preliminary functional data from a rat forepaw stimulation model demonstrate the feasibility of this method for functional MRI (fMRI) studies. It is expected that with appropriate precautions this method in conjunction with contrast agent-based MRI has great potential for quantitative fMRI studies of mammalian cortex.
Collapse
Affiliation(s)
- F Hyder
- Department of Diagnostic Radiology, Magnetic Resonance Center, PO Box 208043, Yale University, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
100
|
Duong TQ, Silva AC, Lee SP, Kim SG. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn Reson Med 2000; 43:383-92. [PMID: 10725881 DOI: 10.1002/(sici)1522-2594(200003)43:3<383::aid-mrm10>3.0.co;2-q] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spatial specificities of the calcium-dependent synaptic activity, hemodynamic-based blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) fMRI were quantitatively compared in the same animals. Calcium-dependent synaptic activity was imaged by exploiting the manganese ion (Mn++) as a calcium analog and an MRI contrast agent at 9.4 T. Following forepaw stimulation in alpha-chloralose anesthetized rat, water T1 of the contralateral forepaw somatosensory cortex (SI) was focally and markedly reduced from 1.99 +/- 0.03 sec to 1.30 +/- 0.18 sec (mean +/- SD, N = 7), resulting from the preferential intracellular Mn++ accumulation. Based on an in vitro calibration, the estimated contralateral somatosensory cortex [Mn++] was approximately 100M, which was 2-5-fold higher than the neighboring tissue and the ipsilateral SI. Regions with the highest calcium activities were localized around cortical layer IV. Stimulus-induced BOLD and CBF changes were 3.4 +/- 1.6% and 98 +/- 33%, respectively. The T1 synaptic activity maps extended along the cortex, whereas the hemodynamic-based activation maps extended radially along the vessels. Spatial overlaps among the synaptic activity, BOLD, and CBF activation maps showed excellent co-registrations. The center-of-mass offsets between any two activation maps were less than 200 microm, suggesting that hemodynamic-based fMRI techniques (at least at high field) can be used to accurately map the spatial loci of synaptic activity.
Collapse
Affiliation(s)
- T Q Duong
- Department of Radiology, University of Minnesota School of Medicine, Minneapolis 55455, USA
| | | | | | | |
Collapse
|