51
|
Denver P, D’Adamo H, Hu S, Zuo X, Zhu C, Okuma C, Kim P, Castro D, Jones MR, Leal C, Mekkittikul M, Ghadishah E, Teter B, Vinters HV, Cole GM, Frautschy SA. A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease. Front Physiol 2019; 10:1269. [PMID: 31708792 PMCID: PMC6821690 DOI: 10.3389/fphys.2019.01269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics.
Collapse
Affiliation(s)
- Paul Denver
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather D’Adamo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuxin Hu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Xiaohong Zuo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Cansheng Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Chihiro Okuma
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Peter Kim
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Daniel Castro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mychica R. Jones
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Carmen Leal
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Marisa Mekkittikul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Elham Ghadishah
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Harry V. Vinters
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory Michael Cole
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Sally A. Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
52
|
Sun M, Shen X, Ma Y. Rehmannioside A attenuates cognitive deficits in rats with vascular dementia (VD) through suppressing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2019; 120:109492. [PMID: 31593895 DOI: 10.1016/j.biopha.2019.109492] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Vascular dementia (VD) is a degenerative cerebrovascular disorder, leading to progressive decline of cognitive abilities and memory. Rehmannioside A (ReA) is isolated from Rehmanniae Radix, which exhibits protective role against various diseases. The present study was performed to calculate the possible neuroprotective effects of ReA on VD. Here, the morris water maze (MWM) test and electrophysiological recordings indicated that ReA reduced cognitive deficits. Additionally, through hematoxylin and eosin (H&E) and Nissl staining, ReA attenuated the histological alterations of hippocampus in rats with VD. ReA group significantly reduced oxidative stress, inflammatory response and apoptosis in the hippocampus of rats with VD, which was linked to the activation of nuclear erythroid related factor-2 (Nrf2), while the inactivation of nuclear factor-κB (NF-κB) and Caspase-3. Further, the anti-oxidative, anti-inflammatory and anti-apoptosis abilities of ReA were confirmed in cells stimulated by hydrogen peroxide. Overall, the results above demonstrated the protective effects of ReA against cognitive deficits and indicated the potential value of ReA in the therapy of VD in future.
Collapse
Affiliation(s)
- Miao Sun
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing, 100000, China
| | - Xiaoming Shen
- The First Affiliated Hospital of Henan University of TCM, No. 19 Renmin Road, Zhengzhou, 450000, China
| | - Yunzhi Ma
- Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing, 100000, China; The First Affiliated Hospital of Henan University of TCM, No. 19 Renmin Road, Zhengzhou, 450000, China.
| |
Collapse
|
53
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
54
|
Guo M, Ma X, Feng Y, Han S, Dong Q, Cui M, Zhao Y. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes. FASEB J 2019; 33:11123-11136. [PMID: 31298941 DOI: 10.1096/fj.201900402rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Astrocyte function is an important contributor to cellular viability during brain hypoxia and ischemia. Levels of the hypoxia-inducible transcription factors (HIFs) HIF-1 and HIF-2 are increased in hypoxic conditions and impact the neuroprotective properties of astrocytes. For example, HIF-2 induces levels of erythropoietin (EPO), a neuroprotectant, by astrocytes. In contrast, HIF-1 activity in astrocytes diminishes the viability of neurons in cocultures during hypoxia. Thus, HIF-1 and HIF-2 may have opposing effects on astrocytes. In this study, we explore the balance of HIF-1 and HIF-2 signaling in astrocytes during chronic (1-7 d) hypoxia while altering the degree of hypoxia and glucose availability. In addition, we investigate the effects of these conditions on neuron apoptosis. During exposure to chronic moderate hypoxia (2% O2) and plentiful glucose (10 mM), HIF-2 and EPO abundance increases from d 1 to 7. Similarly, pretreatment with moderate hypoxia markedly increases the abundance of HIF-2 and EPO when astrocytes are subsequently exposed to severe hypoxia (0.5% O2; 24 h) in 10 mM glucose, which inhibits neuron apoptosis in coculture. Although HIF-1 targets the expression increase during the 7 d in chronic moderate hypoxia (2% O2) and limited glucose (2 mM), further exposure to severe hypoxia (0.5% O2; 24 h) induces a decrease of most HIF-1 targets in astrocytes. Notably, in astrocyte exposure to 2% O2 prior to 0.5% O2, the expression of iNOS, an HIF-1-regulated protein, keeps increasing when glucose is limited, whereas EPO and VEGF abundance is suppressed, inducing increased apoptosis of neurons in coculture under limited glucose (2 mM). Thus, both hypoxic severity and glucose abundance regulate the balance of HIF-1 and HIF-2 activity in astrocytes, leading to diverse effects on neurons. These results could have important implications on the adaptive or pathologic role of astrocytes during chronic hypoxia and ischemia.-Guo, M., Ma, X., Feng, Y., Han, S., Dong, Q., Cui, M., Zhao, Y. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoye Ma
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
55
|
Nakazaki M, Sasaki M, Kataoka-Sasaki Y, Oka S, Suzuki J, Sasaki Y, Nagahama H, Hashi K, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience 2019; 408:361-377. [DOI: 10.1016/j.neuroscience.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
56
|
Chan SL, Nelson MT, Cipolla MJ. Transient receptor potential vanilloid-4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiol (Oxf) 2019; 225:e13181. [PMID: 30153398 DOI: 10.1111/apha.13181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
AIM Adaptive responses of brain parenchymal arterioles (PAs), a target for cerebral small vessel disease, to chronic cerebral hypoperfusion are largely unknown. Previous evidence suggested that transient receptor potential vanilloid 4 channels may be involved in the regulation of cerebrovascular tone. Therefore, we investigated the role of TRPV4 in adaptations of PAs in a mouse model of chronic hypoperfusion. METHODS TRPV4 knockout (-/- ) and wild-type (WT) mice were subjected to unilateral common carotid artery occlusion (UCCAo) for 28 days. Function and structure of PAs ipsilateral to UCCAo were studied isolated and pressurized in an arteriograph. RESULTS Basal tone of PAs was similar between WT and TRPV4-/- mice (22 ± 3 vs 23 ± 5%). After UCCAo, active inner diameters of PAs from WT mice were larger than control (41 ± 2 vs 26 ± 5 μm, P < 0.05) that was due to decreased tone (8 ± 2 vs 23 ± 5%, P < 0.05), increased passive inner diameters (46 ± 3 vs 34 ± 2 μm, P < 0.05), and decreased wall-to-lumen ratio (0.104 ± 0.01 vs 0.137 ± 0.01, P < 0.05). However, UCCAo did not affect vasodilation to a small- and intermediate-conductance calcium-activated potassium channel agonist NS309, the nitric oxide (NO) donor sodium nitroprusside, or constriction to a NO synthase inhibitor L-NNA. Wall thickness and distensibility in PAs from WT mice were unaffected. In TRPV4-/- mice, UCCAo had no effect on active inner diameters or tone and only increased passive inner diameters (53 ± 2 vs 43 ± 3 μm, P < 0.05). CONCLUSION Adaptive response of PAs to chronic cerebral hypoperfusion includes myogenic tone reduction and outward remodelling. TRPV4 channels were involved in tone reduction but not outward remodelling in response to UCCAo.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| | - Mark T. Nelson
- Department of Pharmacology; University of Vermont College of Medicine; Burlington Vermont
| | - Marilyn J. Cipolla
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
- Department of Pharmacology; University of Vermont College of Medicine; Burlington Vermont
- Department of Obstetrics, Gynecology & Reproductive Sciences; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
57
|
van Kralingen JC, McFall A, Ord ENJ, Coyle TF, Bissett M, McClure JD, McCabe C, Macrae IM, Dawson J, Work LM. Altered Extracellular Vesicle MicroRNA Expression in Ischemic Stroke and Small Vessel Disease. Transl Stroke Res 2019; 10:495-508. [PMID: 30617992 PMCID: PMC6733813 DOI: 10.1007/s12975-018-0682-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Active transport of microRNAs (miRNA) in extracellular vesicles (EV) occurs in disease. Circulating EV-packaged miRNAs in the serum of stroke patients were compared to stroke mimics with matched cardio- and cerebrovascular risk factors, with corroboration of results in a pre-clinical model. An unbiased miRNA microarray was performed in stroke vs. stroke mimic patients (n = 39). Results were validated (n = 173 patients) by real-time quantitative polymerase chain reaction. miRNA expression was quantified in total serum/EV (n = 5-7) of naïve adult spontaneously hypertensive stroke-prone rats (SHRSP), their normotensive reference strain (Wistar Kyoto, WKY) and in circulating EV (n = 3), peri-infarct brain (n = 6), or EV derived from this region (n = 3) in SHRSP following transient middle cerebral artery occlusion (tMCAO). Circulating EV concentration did not differ between stroke and stroke mimic patients. The microarray identified many altered EV-packaged miRNAs: levels of miRNA-17-5p, -20b-5p and -93-5p (miRNA-17 family members) and miRNA-27b-3p were significantly (p ≤ 0.05) increased in stroke vs. stroke mimic patients. Patients with small vessel disease (SVD) consistently had the highest miRNA levels. Circulating EV concentration was unaltered between naïve SHRSP and WKY but levels of miRNA-17-5p and -93-5p were significantly increased in SHRSP. tMCAO in SHRSP did not further alter circulating EV miRNA-17 family member expression and nor did it change total miRNA-17 family levels in peri-infarct brain tissue or in EV isolated from this region at 24 h post-tMCAO. Changes in EV packaged miRNA expression was validated in patients with stroke, particularly those with SVD and corroborated pre-clinically. Together, altered circulating EV levels of miRNA-17 family members may reflect the chronic sequelae underlying cerebrovascular SVD rather than the acute ischemic stroke itself.
Collapse
Affiliation(s)
- Josie C van Kralingen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Aisling McFall
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily N J Ord
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Thomas F Coyle
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Bissett
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John D McClure
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher McCabe
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - I Mhairi Macrae
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
58
|
Shaaban CE, Jorgensen DR, Gianaros PJ, Mettenburg J, Rosano C. Cerebrovascular disease: Neuroimaging of cerebral small vessel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:225-255. [DOI: 10.1016/bs.pmbts.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Ostroumova OD, Chernyaeva MS. Antihypertension drugs in prevention of cognition disorder and dementia: focus on calcium channel blockers and diuretics. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2018. [DOI: 10.15829/1728-8800-2018-5-79-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Arterial hypertension is associated with elevated risk of cognition decline and vascular dementia development, as the Alzheimer disease development. Therefore, antihypertension therapy might be of preventive value. The review is focused on literary data that witness on, despite controversial, evidence of cerebroprotective action of the range of antihypertension medications. Especially, dihydropyridine calcium antagonists, diuretics and some blockers of renin-angiotensin-aldosterone system. These act not only via blood pressure decrease, but due to additional specific neuroprotective mechanisms. This makes it to consider calcium antagonists and diuretics as a major component of systemic hypertension management, incl. elderly and senile patients, aiming to prevent cognition decline and dementia of various types development.Nitrendipine, among the calcium channels antagonists, and indapamide among diuretics have acquired the broadest evidence that points on their cerebroprotective properties.
Collapse
Affiliation(s)
- O. D. Ostroumova
- Evdokimov Moscow State University of Medicine and Dentistry (MSUMD); Sechenov First Moscow State University of the Ministry of Health (the Sechenov University)
| | | |
Collapse
|
60
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
61
|
Langdon KD, Cordova CA, Granter-Button S, Boyd JD, Peeling J, Murphy TH, Corbett D. Executive dysfunction and blockage of brain microvessels in a rat model of vascular cognitive impairment. J Cereb Blood Flow Metab 2018; 38:1727-1740. [PMID: 29083274 PMCID: PMC6168916 DOI: 10.1177/0271678x17739219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most research focuses on overt stroke caused by blockage of major blood vessels. Less attention has been paid to small vessel disease which gives rise to covert stroke that often leads to vascular cognitive impairment (VCI). One reason for this may be the relative lack of relevant animal models. Herein, we describe, a model of VCI induced in middle-aged Sprague-Dawley rats exposed to a diet high in saturated fats, salt and refined sugar (HFSS). In Experiment 1, rats were fed HFSS and subjected to a small mediodorsal (MD) thalamic stroke with or without concomitant permanent bilateral carotid artery occlusion. MD lesions produce significant executive dysfunction in an attention set-shift task ( p = 0.012). In Experiment 2, rats were exposed to either HFSS or control diet and functional effects assessed. We found significant hypertension ( p = 0.013), blockage of brain microvessels ( p = 0.018) and white matter atrophy ( p = 0.039) in HFSS diet animals. As in Experiment 1, profound, specific set-shifting executive dysfunction was noted ( p = 0.003) following both small MD infarcts (0.332 mm3) and the HFSS diet. In summary, these data describe a middle-aged animal model of VCI that includes clinically relevant metabolic disturbances and small vessel disease and as such may be helpful in developing new cognitive therapies.
Collapse
Affiliation(s)
- Kristopher D Langdon
- 1 BioMedical Sciences, Memorial University, St. John's, NL, Canada.,2 Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Chris A Cordova
- 1 BioMedical Sciences, Memorial University, St. John's, NL, Canada
| | | | - Jamie D Boyd
- 3 Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - James Peeling
- 4 Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.,5 Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy H Murphy
- 3 Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada.,6 Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,7 Kinsmen Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,8 Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dale Corbett
- 1 BioMedical Sciences, Memorial University, St. John's, NL, Canada.,6 Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,9 Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,10 Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
62
|
Williamson W, Lewandowski AJ, Forkert ND, Griffanti L, Okell TW, Betts J, Boardman H, Siepmann T, McKean D, Huckstep O, Francis JM, Neubauer S, Phellan R, Jenkinson M, Doherty A, Dawes H, Frangou E, Malamateniou C, Foster C, Leeson P. Association of Cardiovascular Risk Factors With MRI Indices of Cerebrovascular Structure and Function and White Matter Hyperintensities in Young Adults. JAMA 2018; 320:665-673. [PMID: 30140877 PMCID: PMC6142949 DOI: 10.1001/jama.2018.11498] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/22/2018] [Indexed: 12/28/2022]
Abstract
Importance Risk of stroke and brain atrophy in later life relate to levels of cardiovascular risk in early adulthood. However, it is unknown whether cerebrovascular changes are present in young adults. Objective To examine relationships between modifiable cardiovascular risk factors and cerebrovascular structure, function, and white matter integrity in young adults. Design, Setting, and Participants A cross-sectional observational study of 125 young adults (aged 18-40 years) without clinical evidence of cerebrovascular disease. Data collection was completed between August 2014 and May 2016 at the University of Oxford, United Kingdom. Final data collection was completed on May 31, 2016. Exposures The number of modifiable cardiovascular risk factors at recommended levels, based on the following criteria: body mass index (BMI) <25; highest tertile of cardiovascular fitness and/or physical activity; alcohol consumption <8 drinks/week; nonsmoker for >6 months; blood pressure on awake ambulatory monitoring <130/80 mm Hg; a nonhypertensive diastolic response to exercise (peak diastolic blood pressure <90 mm Hg); total cholesterol <200 mg/dL; and fasting glucose <100mg/dL. Each risk factor at the recommended level was assigned a value of 1, and participants were categorized from 0-8, according to the number of risk factors at recommended levels, with higher numbers indicating healthier risk categories. Main Outcomes and Measures Cerebral vessel density, caliber and tortuosity, brain white matter hyperintensity lesion count. In a subgroup (n = 52), brain blood arrival time and cerebral blood flow assessed by brain magnetic resonance imaging (MRI). Results A total of 125 participants, mean (SD) age 25 (5) years, 49% women, with a mean (SD) score of 6.0 (1.4) modifiable cardiovascular risk factors at recommended levels, completed the cardiovascular risk assessment and brain MRI protocol. Cardiovascular risk factors were correlated with cerebrovascular morphology and white matter hyperintensity count in multivariable models. For each additional modifiable risk factor categorized as healthy, vessel density was greater by 0.3 vessels/cm3 (95% CI, 0.1-0.5; P = .003), vessel caliber was greater by 8 μm (95% CI, 3-13; P = .01), and white matter hyperintensity lesions were fewer by 1.6 lesions (95% CI, -3.0 to -0.5; P = .006). Among the 52 participants with available data, cerebral blood flow varied with vessel density and was 2.5 mL/100 g/min higher for each healthier category of a modifiable risk factor (95% CI, 0.16-4.89; P = .03). Conclusions and Relevance In this preliminary study involving young adults without clinical evidence of cerebrovascular disease, a greater number of modifiable cardiovascular risk factors at recommended levels was associated with higher cerebral vessel density and caliber, higher cerebral blood flow, and fewer white matter hyperintensities. Further research is needed to verify these findings and determine their clinical importance.
Collapse
Affiliation(s)
- Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, Oxford, United Kingdom
| | - Adam J. Lewandowski
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nils D. Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jill Betts
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, Oxford, United Kingdom
| | - Henry Boardman
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, Oxford, United Kingdom
| | - Timo Siepmann
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David McKean
- Department of Radiology, Stoke Mandeville Hospital, Buckinghamshire NHS Trust, Buckinghamshire, England, United Kingdom
| | - Odaro Huckstep
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, Oxford, United Kingdom
| | - Jane M. Francis
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Renzo Phellan
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aiden Doherty
- Nuffield Department of Population Health, BHF Centre of Research Excellence and Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Helen Dawes
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, Oxford, United Kingdom
| | - Eleni Frangou
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Christina Malamateniou
- School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom
- Department of Family Care and Mental Health, University of Greenwich, London, United Kingdom
| | - Charlie Foster
- School of Policy Studies, University of Bristol, Bristol, United Kingdom
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
63
|
Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE, Verhaaren BFJ, Fornage M, Seshadri S, Atanur SS, Dominiczak AF, Smith C, Wardlaw JM, Williams A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med 2018; 10:10/448/eaam9507. [DOI: 10.1126/scitranslmed.aam9507] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
|
64
|
Effects of dietary salt on gene and protein expression in brain tissue of a model of sporadic small vessel disease. Clin Sci (Lond) 2018; 132:1315-1328. [PMID: 29632138 PMCID: PMC6365623 DOI: 10.1042/cs20171572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The effect of salt on cerebral small vessel disease (SVD) is poorly understood. We assessed the effect of dietary salt on cerebral tissue of the stroke-prone spontaneously hypertensive rat (SHRSP) - a relevant model of sporadic SVD - at both the gene and protein level. Methods: Brains from 21-week-old SHRSP and Wistar-Kyoto rats, half additionally salt-loaded (via a 3-week regime of 1% NaCl in drinking water), were split into two hemispheres and sectioned coronally - one hemisphere for mRNA microarray and qRT-PCR, the other for immunohistochemistry using a panel of antibodies targeting components of the neurovascular unit. Results: We observed differences in gene and protein expression affecting the acute phase pathway and oxidative stress (ALB, AMBP, APOH, AHSG and LOC100129193, up-regulated in salt-loaded WKY versus WKY, >2-fold), active microglia (increased Iba-1 protein expression in salt-loaded SHRSP versus salt-loaded WKY, p<0.05), vascular structure (ACTB and CTNNB, up-regulated in salt-loaded SHRSP versus SHRSP, >3-fold; CLDN-11, VEGF and VGF down-regulated >2-fold in salt-loaded SHRSP versus SHRSP) and myelin integrity (MBP down-regulated in salt loaded WKY rats versus WKY, >2.5-fold). Changes of salt-loading were more pronounced in SHRSP and occurred without an increase in blood pressure in WKY rats. CONCLUSION Salt exposure induced changes in gene and protein expression in an experimental model of SVD and its parent rat strain in multiple pathways involving components of the glio-vascular unit. Further studies in pertinent experimental models at different ages would help clarify the short- and long-term effect of dietary salt in SVD.
Collapse
|
65
|
Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion. Cell Death Dis 2018; 9:733. [PMID: 29955058 PMCID: PMC6023888 DOI: 10.1038/s41419-018-0755-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
URB597 (URB) has therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced neuronal death. The present study investigated the protective effects of URB on autopahgy and mitophagy in a CCH model as well as the underlying mechanisms. The ultrastructural changes were examined by electron microscopy. The mitochondrial membrane potential was assessed by immunofluorescence. The expressions of autophagy-related proteins (beclin-1, p62, and LC3), lysosome-related proteins (CTSD and LAMP1), and mitophagy-related proteins (BNIP3, cyt C and parkin) were evaluated by western blotting, and the interaction of beclin-1 and Bcl-2 were determined by immunoprecipitation. CCH significantly decreased the protein expression of p62, CTSD, and LAMP1 and increased the protein expression of beclin-1, parkin, and BNIP3, the LC3-II to LC3-I ratio, and the release of cyt C from mitochondria to cytoplasm. Furthermore, CCH induced the accumulation of ubiquitinated proteins in PSDs. However, URB significantly reversed these results. Besides, URB significantly inhibited the beclin-1 from beclin-1/Bcl-2 complex to whole-cell lysates. The above results indicate that URB could inhibit impaired autophagy degradation and the disruption of beclin-1/Bcl-2 complex and subsequently cut off BNIP3-cyt C- and parkin-required mitophagy, finally preventing the abnormal excessive autophagy and mitophagy. These findings provide new insights that URB is a promising agent for therapeutic management of CCH.
Collapse
|
66
|
Further dissection of QTLs for salt-induced stroke and identification of candidate genes in the stroke-prone spontaneously hypertensive rat. Sci Rep 2018; 8:9403. [PMID: 29925869 PMCID: PMC6010461 DOI: 10.1038/s41598-018-27539-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
We previously revealed that two major quantitative trait loci (QTLs) for stroke latency of the stroke-prone spontaneously hypertensive rat (SHRSP) under salt-loading were located on chromosome (Chr) 1 and 18. Here, we attempted further dissection of the stroke-QTLs using multiple congenic strains between SHRSP and a stroke-resistant hypertensive rat (SHR). Cox hazard model among subcongenic strains harboring a chromosomal fragment of Chr-1 QTL region showed that the most promising region was a 2.1 Mbp fragment between D1Rat177 and D1Rat97. The QTL region on Chr 18 could not be narrowed down by the analysis, which may be due to multiple QTLs in this region. Nonsynonymous sequence variations were found in four genes (Cblc, Cxcl17, Cic, and Ceacam 19) on the 2.1 Mbp fragment of Chr-1 QTL by whole-genome sequence analysis of SHRSP/Izm and SHR/Izm. Significant changes in protein structure were predicted in CBL-C and CXCL17 using I-TASSER. Comprehensive gene expression analysis in the kidney with a cDNA microarray identified three candidate genes (LOC102548695 (Zinc finger protein 45-like, Zfp45L), Ethe1, and Cxcl17). In conclusion, we successfully narrowed down the QTL region on Chr 1, and identified six candidate genes in this region.
Collapse
|
67
|
Jorgensen DR, Shaaban CE, Wiley CA, Gianaros PJ, Mettenburg J, Rosano C. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review. Am J Physiol Heart Circ Physiol 2018; 314:H1117-H1136. [PMID: 29393657 PMCID: PMC6032084 DOI: 10.1152/ajpheart.00535.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
Abstract
Aging in later life engenders numerous changes to the cerebral microvasculature. Such changes can remain clinically silent but are associated with greater risk for negative health outcomes over time. Knowledge is limited about the pathogenesis, prevention, and treatment of potentially detrimental changes in the cerebral microvasculature that occur with advancing age. In this review, we summarize literature on aging of the cerebral microvasculature, and we propose a conceptual framework to fill existing research gaps and advance future work on this heterogeneous phenomenon. We propose that the major gaps in this area are attributable to an incomplete characterization of cerebrovascular pathology, the populations being studied, and the temporality of exposure to risk factors. Specifically, currently available measures of age-related cerebral microvasculature changes are indirect, primarily related to parenchymal damage rather than direct quantification of small vessel damage, limiting the understanding of cerebral small vessel disease (cSVD) itself. Moreover, studies seldom account for variability in the health-related conditions or interactions with risk factors, which are likely determinants of cSVD pathogenesis. Finally, study designs are predominantly cross-sectional and/or have relied on single time point measures, leaving no clear evidence of time trajectories of risk factors or of change in cerebral microvasculature. We argue that more resources should be invested in 1) developing methodological approaches and basic science models to better understand the pathogenic and etiological nature of age-related brain microvascular diseases and 2) implementing state-of-the-science population study designs that account for the temporal evolution of cerebral microvascular changes in diverse populations across the lifespan.
Collapse
Affiliation(s)
- Dana R Jorgensen
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Elizabeth Shaaban
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Peter J Gianaros
- Departments of Psychology and Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Joseph Mettenburg
- Department of Radiology, University of Pittsburgh, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
68
|
Toyama K, Spin JM, Deng AC, Huang TT, Wei K, Wagenhäuser MU, Yoshino T, Nguyen H, Mulorz J, Kundu S, Raaz U, Adam M, Schellinger IN, Jagger A, Tsao PS. MicroRNA-Mediated Therapy Modulating Blood–Brain Barrier Disruption Improves Vascular Cognitive Impairment. Arterioscler Thromb Vasc Biol 2018; 38:1392-1406. [DOI: 10.1161/atvbaha.118.310822] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kensuke Toyama
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Joshua M. Spin
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Alicia C. Deng
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences (T.-T.H., H.N.), Stanford University School of Medicine, CA
| | - Ke Wei
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Markus U. Wagenhäuser
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Takuya Yoshino
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Huy Nguyen
- Department of Neurology and Neurological Sciences (T.-T.H., H.N.), Stanford University School of Medicine, CA
| | - Joscha Mulorz
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Soumajit Kundu
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Uwe Raaz
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Matti Adam
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Isabel N. Schellinger
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Ann Jagger
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| | - Philip S. Tsao
- From the Division of Cardiovascular Medicine (K.T., J.M.S., A.C.D., M.U.W., T.Y., J.M., U.R., M.A., I.N.S., A.J., P.S.T.)
- VA Palo Alto Health Care System, CA (K.T., J.M.S., A.C.D., K.W., M.U.W., T.Y., J.M., S.K., U.R., M.A., I.N.S., A.J., P.S.T.)
| |
Collapse
|
69
|
Ter Telgte A, Wiegertjes K, Tuladhar AM, Noz MP, Marques JP, Gesierich B, Huebner M, Mutsaerts HJM, Elias-Smale SE, Beelen MJ, Ropele S, Kessels RP, Riksen NP, Klijn CJ, Norris DG, Duering M, de Leeuw FE. Investigating the origin and evolution of cerebral small vessel disease: The RUN DMC - InTENse study. Eur Stroke J 2018; 3:369-378. [PMID: 31236485 PMCID: PMC6571506 DOI: 10.1177/2396987318776088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/17/2018] [Indexed: 01/24/2023] Open
Abstract
Background Neuroimaging in older adults commonly reveals signs of cerebral small vessel
disease (SVD). SVD is believed to be caused by chronic hypoperfusion based
on animal models and longitudinal studies with inter-scan intervals of
years. Recent imaging evidence, however, suggests a role for acute
ischaemia, as indicated by incidental diffusion-weighted imaging lesions
(DWI+ lesions), in the origin of SVD. Furthermore, it becomes increasingly
recognised that focal SVD lesions likely affect the structure and function
of brain areas remote from the original SVD lesion. However, the temporal
dynamics of these events are largely unknown. Aims (1) To investigate the monthly incidence of DWI+ lesions in subjects with
SVD; (2) to assess to which extent these lesions explain progression of SVD
imaging markers; (3) to investigate their effects on cortical thickness,
structural and functional connectivity and cognitive and motor performance;
and (4) to investigate the potential role of the innate immune system in the
pathophysiology of SVD. Design/methods The RUN DMC – InTENse study is a longitudinal observational study among 54
non-demented RUN DMC survivors with mild to severe SVD and no other presumed
cause of ischaemia. We performed MRI assessments monthly during 10
consecutive months (totalling up to 10 scans per subject), complemented with
clinical, motor and cognitive examinations. Discussion Our study will provide a better understanding of the role of DWI+ lesions in
the pathophysiology of SVD and will further unravel the structural and
functional consequences and clinical importance of these lesions, with an
unprecedented temporal resolution. Understanding the role of acute,
potentially ischaemic, processes in SVD may provide new strategies for
therapies.
Collapse
Affiliation(s)
- Annemieke Ter Telgte
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kim Wiegertjes
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies P Noz
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Benno Gesierich
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Mathias Huebner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | | | - Suzette E Elias-Smale
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marie-José Beelen
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Roy Pc Kessels
- Department of Medical Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina Jm Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
70
|
Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS One 2018; 13:e0195765. [PMID: 29649307 PMCID: PMC5897017 DOI: 10.1371/journal.pone.0195765] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Bilateral carotid artery stenosis (BCAS) is one experimental model of vascular dementia thought to preferentially impact brain white matter. Indeed, few studies report hippocampal and cortical pathology prior to 30 days post-stenosis; though it is unclear whether those studies examined regions outside the white matter. Since changes in the blood-brain barrier (BBB) permeability precede more overt brain pathology in various diseases, we hypothesized that changes within the BBB and/or BBB-associated extracellular matrix (ECM) could occur earlier after BCAS in the hippocampus, cortex and striatum and be a precursor of longer term pathology. Here, C57Bl/6 mice underwent BCAS or sham surgeries and changes in the BBB and ECM were analyzed by collagen IV (vascular basement membrane component), α5 integrin (marker of endothelial activation), claudin-5 and occludin (tight junction proteins), Evans blue (permeability marker), Ki-67 (cell proliferation marker), and GFAP and CD11b (glial cell markers) immunohistochemistry after 14 days. Significant changes in markers of cerebrovascular integrity and glial activation were detected, not only in the striatum, but also in the hippocampus and cortex. In conclusion, this study demonstrates for the first time that changes in the BBB/ECM occur shortly after BCAS and within multiple brain regions and suggests such changes might underlie the gradual development of BCAS non-white matter pathology.
Collapse
|
71
|
Luan L, Sullender CT, Li X, Zhao Z, Zhu H, Wei X, Xie C, Dunn AK. Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. J Neurosci Methods 2018; 295:68-76. [PMID: 29203409 PMCID: PMC5801157 DOI: 10.1016/j.jneumeth.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite significant advancements of optical imaging techniques for mapping hemodynamics in small animal models, it remains challenging to combine imaging with spatially resolved electrical recording of individual neurons especially for longitudinal studies. This is largely due to the strong invasiveness to the living brain from the penetrating electrodes and their limited compatibility with longitudinal imaging. NEW METHOD We implant arrays of ultraflexible nanoelectronic threads (NETs) in mice for neural recording both at the brain surface and intracortically, which maintain great tissue compatibility chronically. By mounting a cranial window atop of the NET arrays that allows for chronic optical access, we establish a multimodal platform that combines spatially resolved electrical recording of neural activity and laser speckle contrast imaging (LSCI) of cerebral blood flow (CBF) for longitudinal studies. RESULTS We induce peri-infarct depolarizations (PIDs) by targeted photothrombosis, and show the ability to detect its occurrence and propagation through spatiotemporal variations in both extracellular potentials and CBF. We also demonstrate chronic tracking of single-unit neural activity and CBF over days after photothrombosis, from which we observe reperfusion and increased firing rates. COMPARISON WITH EXISTING METHOD(S) This multimodal platform enables simultaneous mapping of neural activity and hemodynamic parameters at the microscale for quantitative, longitudinal comparisons with minimal perturbation to the baseline neurophysiology. CONCLUSION The ability to spatiotemporally resolve and chronically track CBF and neural electrical activity in the same living brain region has broad applications for studying the interplay between neural and hemodynamic responses in health and in cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Lan Luan
- Department of Biomedical Engineering, The University of Texas at Austin, United States; Department of Physics, The University of Texas at Austin, United States.
| | - Colin T Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Xue Li
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Zhengtuo Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Hanlin Zhu
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Xiaoling Wei
- Department of Biomedical Engineering, The University of Texas at Austin, United States
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin, United States.
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, United States.
| |
Collapse
|
72
|
Matin N, Fisher C, Jackson WF, Diaz-Otero JM, Dorrance AM. Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. Am J Physiol Heart Circ Physiol 2017; 314:H122-H130. [PMID: 28842441 DOI: 10.1152/ajpheart.00638.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is a leading risk factor for vascular cognitive impairment and is strongly associated with carotid artery stenosis. In normotensive rats, chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS) leads to cognitive impairment that is associated with impaired endothelium-dependent dilation in parenchymal arterioles (PAs). The aim of this study was to assess the effects of BCAS on PA function and structure in stroke-prone spontaneously hypertensive rats, a model of human essential hypertension. Understanding the effects of hypoperfusion on PAs in a hypertensive model could lead to the identification of therapeutic targets for cognitive decline in a model that reflects the at-risk population. We hypothesized that BCAS would impair endothelium-dependent dilation in PAs and induce artery remodeling compared with sham rats. PAs from BCAS rats had endothelial dysfunction, as assessed using pressure myography. Inhibition of nitric oxide and prostaglandin production had no effect on PA dilation in sham or BCAS rats. Surprisingly, inhibition of epoxyeicosatrienoic acid production increased dilation in PAs from BCAS rats but not from sham rats. Similar results were observed in the presence of inhibitors for all three dilatory pathways, suggesting that epoxygenase inhibition may have restored a nitric oxide/prostaglandin-independent dilatory pathway in PAs from BCAS rats. PAs from BCAS rats underwent remodeling with a reduced wall thickness. These data suggest that marked endothelial dysfunction in PAs from stroke-prone spontaneously hypertensive rats with BCAS may be associated with the development of vascular cognitive impairment. NEW & NOTEWORTHY The present study assessed the structure and function of parenchymal arterioles in a model of chronic cerebral hypoperfusion and hypertension, both of which are risk factors for cognitive impairment. We observed that impaired dilation and artery remodeling in parenchymal arterioles and abolished cerebrovascular reserve capacity may mediate cognitive deficits.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
73
|
Su SH, Wu YF, Lin Q, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1189-1200. [PMID: 28825114 DOI: 10.1007/s00210-017-1417-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
Abstract
The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.
Collapse
Affiliation(s)
- Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
74
|
Ly H, Verma N, Wu F, Liu M, Saatman KE, Nelson PT, Slevin JT, Goldstein LB, Biessels GJ, Despa F. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann Neurol 2017; 82:208-222. [PMID: 28696548 DOI: 10.1002/ana.24992] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The brain blood vessels of patients with type 2 diabetes and dementia have deposition of amylin, an amyloidogenic hormone cosecreted with insulin. It is not known whether vascular amylin deposition is a consequence or a trigger of vascular injury. We tested the hypothesis that the vascular amylin deposits cause endothelial dysfunction and microvascular injury and are modulated by amylin transport in the brain via plasma apolipoproteins. METHODS Rats overexpressing amyloidogenic (human) amylin in the pancreas (HIP rats) and amylin knockout (AKO) rats intravenously infused with aggregated amylin were used for in vivo phenotyping. We also carried out biochemical analyses of human brain tissues and studied the effects of the aggregated amylin on endothelial cells ex vivo. RESULTS Amylin deposition in brain blood vessels is associated with vessel wall disruption and abnormal surrounding neuropil in patients with type 2 diabetes and dementia, in HIP rats, and in AKO rats infused with aggregated amylin. HIP rats have brain microhemorrhages, white matter injury, and neurologic deficits. Vascular amylin deposition provokes loss of endothelial cell coverage and tight junctions. Intravenous infusion in AKO rats of human amylin, or combined human amylin and apolipoprotein E4, showed that amylin binds to plasma apolipoproteins. The intravenous infusion of apolipoprotein E4 exacerbated the brain accumulation of aggregated amylin and vascular pathology in HIP rats. INTERPRETATION These data identify vascular amylin deposition as a trigger of brain endothelial dysfunction that is modulated by plasma apolipoproteins and represents a potential therapeutic target in diabetes-associated dementia and stroke. Ann Neurol 2017;82:208-222.
Collapse
Affiliation(s)
- Han Ly
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Fengen Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Miao Liu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - John T Slevin
- Veterans Administration Medical Center, Lexington, KY.,Department of Neurology, University of Kentucky, Lexington, KY
| | | | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY.,Department of Neurology, University of Kentucky, Lexington, KY
| |
Collapse
|
75
|
Valdés Hernández MDC, González-Castro V, Chappell FM, Sakka E, Makin S, Armitage PA, Nailon WH, Wardlaw JM. Application of Texture Analysis to Study Small Vessel Disease and Blood-Brain Barrier Integrity. Front Neurol 2017; 8:327. [PMID: 28769863 PMCID: PMC5515862 DOI: 10.3389/fneur.2017.00327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/22/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives We evaluate the alternative use of texture analysis for evaluating the role of blood–brain barrier (BBB) in small vessel disease (SVD). Methods We used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH) and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal–Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF) with Fazekas scores. Results Textural “homogeneity” increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural “homogeneity” increased with age, basal ganglia perivascular spaces scores (p < 0.01) and SVD scores (p < 0.05) and was significantly higher in hypertensive patients (p < 0.002) and lacunar stroke (p = 0.04). Hypertension (74% patients), WMH load (median = 1.5 ± 1.6% of intracranial volume), and age (mean = 65.6 years, SD = 11.3) predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast. Conclusion A consistent general pattern of increasing textural “homogeneity” with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor González-Castro
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francesca M Chappell
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleni Sakka
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Makin
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul A Armitage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - William H Nailon
- Department of Oncology Physics, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
76
|
Endothelial cell-oligodendrocyte interactions in small vessel disease and aging. Clin Sci (Lond) 2017; 131:369-379. [PMID: 28202749 PMCID: PMC5310718 DOI: 10.1042/cs20160618] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022]
Abstract
Cerebral small vessel disease (SVD) is a prevalent, neurological disease that significantly increases the risk of stroke and dementia. The main pathological changes are vascular, in the form of lipohyalinosis and arteriosclerosis, and in the white matter (WM), in the form of WM lesions. Despite this, it is unclear to what extent the key cell types involved–the endothelial cells (ECs) of the vasculature and the oligodendrocytes of the WM–interact. Here, we describe the work that has so far been carried out suggesting an interaction between ECs and oligodendrocytes in SVD. As these interactions have been studied in more detail in other disease states and in development, we explore these systems and discuss the role these mechanisms may play in SVD.
Collapse
|
77
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
78
|
Hernandorena I, Duron E, Vidal JS, Hanon O. Treatment options and considerations for hypertensive patients to prevent dementia. Expert Opin Pharmacother 2017; 18:989-1000. [PMID: 28532183 DOI: 10.1080/14656566.2017.1333599] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Dementia is a worldwide health concern, which leads to loss of autonomy. To date no curative treatment is available so focus on modifiable risk factors is of particular interest. Hypertension, particularly midlife high blood pressure, has been associated with an increased risk for cognitive decline and dementia including vascular dementia (VAD) and Alzheimer disease (AD). In this context, antihypertensive treatments might have a preventive effect. The objective of this review was to examine the relationship between antihypertensive therapy and cognitive decline or dementia. Areas covered: A literature search was conducted using PUBMED and the COCHRANE LIBRARY for publications from 1990 onwards mentioning cognitive decline, AD, Vad, mixed dementia, vascular cognitive impairment, hypertension and antihypertensive therapy. Thirty-nine relevant publications including 20 longitudinal studies, 10 randomized-controlled trials and 9 meta-analyses were taken into account. Expert opinion: Most observational studies have suggested a potential preventive effect of antihypertensive therapies on cognitive decline and dementia, particularly calcium channel blockers and renin-angiotensin system blockers. Randomized clinical trials and meta-analyses provided more conflicting results potentially due to methodological issues. In conclusion, antihypertensive therapies may reduce cognitive decline and incidence of dementia. Further randomized clinical trials conducted in populations at higher risk of cognitive decline, with longer periods of follow-up and cognition as the primary outcome are still needed.
Collapse
Affiliation(s)
- Intza Hernandorena
- a Department of Geriatrics , APHP, Hôpital Broca , Paris , France.,b Sorbonne Paris Cité , University Descartes , Paris , France
| | - Emmanuelle Duron
- a Department of Geriatrics , APHP, Hôpital Broca , Paris , France.,b Sorbonne Paris Cité , University Descartes , Paris , France
| | - Jean-Sébastien Vidal
- a Department of Geriatrics , APHP, Hôpital Broca , Paris , France.,b Sorbonne Paris Cité , University Descartes , Paris , France
| | - Olivier Hanon
- a Department of Geriatrics , APHP, Hôpital Broca , Paris , France.,b Sorbonne Paris Cité , University Descartes , Paris , France
| |
Collapse
|
79
|
Liu Q, Chen S, Soetikno B, Liu W, Tong S, Zhang HF. Monitoring Acute Stroke in Mouse Model Using Laser Speckle Imaging-Guided Visible-Light Optical Coherence Tomography. IEEE Trans Biomed Eng 2017; 65:2136-2142. [PMID: 28541195 DOI: 10.1109/tbme.2017.2706976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Monitoring hemodynamic and vascular changes in the acute stages of mouse stroke models is invaluable in studying ischemic stroke pathophysiology. However, there lacks a tool to simultaneously and dynamically investigate these changes. METHODS We integrated laser speckle imaging (LSI) and visible-light optical coherence tomography (Vis-OCT) to reveal dynamic vascular responses in acute stages in the distal middle cerebral artery occlusion (dMCAO) model in rodents. LSI provides full-field, real-time imaging to guide Vis-OCT imaging and monitor the dynamic cerebral blood flow (CBF). Vis-OCT offers depth-resolved angiography and oxygen saturation (sO2) measurements. RESULTS Our results showed detailed CBF and vasculature changes before, during, and after dMCAO. After dMCAO, we observed insignificant sO2 variation in arteries and arterioles and location-dependent sO2 drop in veins and venules. We observed that higher branch-order veins had larger drops in sO2 at the reperfusion stage after dMCAO. CONCLUSION This work suggests that integrated LSI and Vis-OCT is a promising tool for investigating ischemic stroke in mouse models. SIGNIFICANCE For the first time, LSI and Vis-OCT are integrated to investigate ischemic strokes in rodent models.
Collapse
|
80
|
Walz W, Cayabyab FS. Neutrophil Infiltration and Matrix Metalloproteinase-9 in Lacunar Infarction. Neurochem Res 2017; 42:2560-2565. [PMID: 28417261 DOI: 10.1007/s11064-017-2265-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
We use the modified pial vessel disruption rat model to elucidate the cellular and molecular mechanisms of cavitation as it plays a role in lacunar infarction. Here we discuss the similarities between the genesis of pulmonary cavitation in various animal models and lacunar infarction in the cerebral cortex of rats. Both pathological processes involve the creation of a cavity surrounded by fibroblasts or reactive astrocytes. A crucial step in both, the lung and the cerebral cortex, appears to be the migration of neutrophils across the endothelial barrier into the parenchyma. In the lung and cerebral cortex this involves release of matrix metalloproteinase-9 (MMP-9). Inside the parenchyma neutrophils continue to release MMP-9. In both situations batimastat (BB-94) and minocycline reduce release of MMP-9 and prevent cavitation. In the cerebral cortex MMP-9 release by resident microglia plays an additional role. We therefore advance the hypothesis that cavitation in both tissues is driven by MMP-9 originating from invading neutrophils. Therapeutic intervention has to focus on these blood-borne intruder cells and specific MMP actions. Batimastat and its derivatives (marimastat, BB-1101, mCGS-27023-A, ilomastat, GM6001, CTK8G1150) are already in clinical or experimental use in humans for anti-cancer treatment, and these clinically relevant drugs could be repurposed to act as anti-inflammatory to counter neutrophil contribution to lung or cerebral cortex cavitation.
Collapse
Affiliation(s)
- Wolfgang Walz
- Department of Psychiatry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Francisco S Cayabyab
- Department of Surgery, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
81
|
Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep 2017; 7:42660. [PMID: 28205591 PMCID: PMC5311994 DOI: 10.1038/srep42660] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
The current study examined whether the steroid hormone, 17β-estradiol (E2) can exert long-lasting beneficial effects upon axonal health, synaptic plasticity, dementia-related amyloid-beta (Aβ) protein expression, and hippocampal-dependent cognitive function in an animal model of chronic cerebral hypoperfusion and vascular dementia (VaD). Chronic cerebral hypoperfusion and VaD was induced by bilateral common carotid artery occlusion (BCCAO) in adult male Sprague Dawley rats. Low dose E2 administered for the first 3-months after BCCAO exerted long-lasting beneficial effects, including significant neuroprotection of hippocampal CA1 neurons and preservation of hippocampal-dependent cognitive function when examined at 6-months after BCCAO. E2 treatment also prevented BCCAO-induced damage to hippocampal myelin sheaths and oligodendrocytes, enhanced expression of the synaptic proteins synaptophysin and PSD95 in the hippocampus, and prevented BCCAO-induced loss of total and mushroom dendritic spines in the hippocampal CA1 region. Furthermore, E2-treatment also reduced BCCAO induction of dementia-related proteins expression such as p-tau (PHF1), total ubiquitin, and Aβ1-42, when examined at 6 m after BCCAO. Taken as a whole, the results suggest that low-dose E2 replacement might be a potentially promising therapeutic modality to attenuate or block negative neurological consequences of chronic cerebral hypoperfusion and VaD.
Collapse
|
82
|
Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol 2017; 133:245-261. [PMID: 28064357 PMCID: PMC5250659 DOI: 10.1007/s00401-017-1667-0] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/31/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022]
Abstract
The vast majority of cerebral stroke cases are caused by transient or permanent occlusion of a cerebral blood vessel (“ischemic stroke”) eventually leading to brain infarction. The final infarct size and the neurological outcome depend on a multitude of factors such as the duration and severity of ischemia, the existence of collateral systems and an adequate systemic blood pressure, etiology and localization of the infarct, but also on age, sex, comorbidities with the respective multimedication and genetic background. Thus, ischemic stroke is a highly complex and heterogeneous disorder. It is immediately obvious that experimental models of stroke can cover only individual specific aspects of this multifaceted disease. A basic understanding of the principal molecular pathways induced by ischemia-like conditions comes already from in vitro studies. One of the most frequently used in vivo models in stroke research is the endovascular suture or filament model in rodents with occlusion of the middle cerebral artery (MCA), which causes reproducible infarcts in the MCA territory. It does not require craniectomy and allows reperfusion by withdrawal of the occluding filament. Although promptly restored blood flow is far from the pathophysiology of spontaneous human stroke, it more closely mimics the therapeutic situation of mechanical thrombectomy which is expected to be increasingly applied to stroke patients. Direct transient or permanent occlusion of cerebral arteries represents an alternative approach but requires craniectomy. Application of endothelin-1, a potent vasoconstrictor, allows induction of transient focal ischemia in nearly any brain region and is frequently used to model lacunar stroke. Circumscribed and highly reproducible cortical lesions are characteristic of photothrombotic stroke where infarcts are induced by photoactivation of a systemically given dye through the intact skull. The major shortcoming of this model is near complete lack of a penumbra. The two models mimicking human stroke most closely are various embolic stroke models and spontaneous stroke models. Closeness to reality has its price and goes along with higher variability of infarct size and location as well as unpredictable stroke onset in spontaneous models versus unpredictable reperfusion in embolic clot models.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz; Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
83
|
Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C, Head E, Ihara M, Isaacs JD, Kalaria RN, Lesnik Oberstein SAMJ, Moss MB, Nitzsche B, Rosenberg GA, Rutten JW, Salkovic-Petrisic M, Troen AM. Translational models for vascular cognitive impairment: a review including larger species. BMC Med 2017; 15:16. [PMID: 28118831 PMCID: PMC5264492 DOI: 10.1186/s12916-017-0793-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, University of Lübeck, Lübeck, Germany.,Neurovascular Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Chad Farris
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jeremy D Isaacs
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Raj N Kalaria
- Institute of Neuroscience, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | | | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Björn Nitzsche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Clinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute for Anatomy, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gary A Rosenberg
- Department of Neurology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aron M Troen
- Institute of Biochemistry Food and Nutrition Science, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
84
|
Abstract
Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model.
Collapse
Affiliation(s)
- Jingjing Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xinyu Fu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lijuan Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoting Hao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shasha Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Province Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martions Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
85
|
Meissner A, Minnerup J, Soria G, Planas AM. Structural and functional brain alterations in a murine model of Angiotensin II-induced hypertension. J Neurochem 2016; 140:509-521. [DOI: 10.1111/jnc.13905] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Anja Meissner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Department of Neurology; University Hospital Münster; Münster Germany
| | - Jens Minnerup
- Department of Neurology; University Hospital Münster; Münster Germany
| | - Guadalupe Soria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
| | - Anna M Planas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Departament d'Isquèmia Cerebral i Neurodegeneració; Institut d'Investigacions Biomèdiques de Barcelona (IIBB); Consejo Superior de Investigaciones Científicas (CSIC); Barcelona Spain
| |
Collapse
|
86
|
Fan F, Pabbidi MR, Ge Y, Li L, Wang S, Mims PN, Roman RJ. Knockdown of Add3 impairs the myogenic response of renal afferent arterioles and middle cerebral arteries. Am J Physiol Renal Physiol 2016; 312:F971-F981. [PMID: 27927653 PMCID: PMC5495887 DOI: 10.1152/ajprenal.00529.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022] Open
Abstract
We have reported that the myogenic response of the renal afferent arteriole (Af-art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow are impaired in Fawn-Hooded Hypertensive (FHH) rats. Transfer of a region of chromosome 1 containing γ-adducin (Add3) from the Brown Norway rat rescued the vascular dysfunction and the development of renal disease. To examine whether Add3 is a viable candidate gene altering renal and cerebral hemodynamics in FHH rats, we knocked down the expression of Add3 in rat Af-arts and MCAs cultured for 36-h using a 27-mer Dicer-substrate short interfering RNA (DsiRNA). Control Af-arts constricted by 10 ± 1% in response to an elevation in pressure from 60 to 120 mmHg but dilated by 4 ± 3% when treated with Add3 DsiRNA. Add3 DsiRNA had no effect on the vasoconstrictor response of the Af-art to norepinephrine (10-7 M). Add3 DsiRNA had a similar effect on the attenuation of the myogenic response in the MCA. Peak potassium currents were threefold higher in smooth muscle cells isolated from Af-arts or MCAs transfected with Add3 DsiRNA than in nontransfected cells isolated from the same vessels. This is the first study demonstrating that Add3 plays a role in the regulation of potassium channel function and vascular reactivity. It supports the hypothesis that sequence variants in Add3, which we previously identified in FHH rats, may play a causal role in the impaired myogenic response and autoregulation in the renal and cerebral circulation.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Paige N Mims
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
87
|
Sam K, Peltenburg B, Conklin J, Sobczyk O, Poublanc J, Crawley AP, Mandell DM, Venkatraghavan L, Duffin J, Fisher JA, Black SE, Mikulis DJ. Cerebrovascular reactivity and white matter integrity. Neurology 2016; 87:2333-2339. [PMID: 27794113 DOI: 10.1212/wnl.0000000000003373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 08/24/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the diffusion and perfusion MRI metrics of normal-appearing white matter (NAWM) with and without impaired cerebrovascular reactivity (CVR). METHODS Seventy-five participants with moderate to severe leukoaraiosis underwent blood oxygen level-dependent CVR mapping using a 3T MRI system with precise carbon dioxide stimulus manipulation. Several MRI metrics were statistically compared between areas of NAWM with positive and negative CVR using one-way analysis of variance with Bonferroni correction for multiple comparisons. RESULTS Areas of NAWM with negative CVR showed a significant reduction in fractional anisotropy by a mean (SD) of 3.7% (2.4), cerebral blood flow by 22.1% (8.2), regional cerebral blood volume by 22.2% (7.0), and a significant increase in mean diffusivity by 3.9% (3.1) and time to maximum by 10.9% (13.2) (p < 0.01), compared to areas with positive CVR. CONCLUSIONS Impaired CVR is associated with subtle changes in the tissue integrity of NAWM, as evaluated using several quantitative diffusion and perfusion MRI metrics. These findings suggest that impaired CVR may contribute to the progression of white matter disease.
Collapse
Affiliation(s)
- Kevin Sam
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Boris Peltenburg
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - John Conklin
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Olivia Sobczyk
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Julien Poublanc
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Adrian P Crawley
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Daniel M Mandell
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Lakshmikumar Venkatraghavan
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - James Duffin
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Joseph A Fisher
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sandra E Black
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada
| | - David J Mikulis
- From the Department of Physiology (K.S., J.D., J.A.F.), Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital (K.S., J.C., O.S., J.P., A.P.C., D.M.M., D.J.M.), Department of Medical Imaging (A.P.C., D.M.M., D.J.M.), and Department of Anaesthesia, Toronto General Hospital (L.V., J.D., J.A.F.), The University of Toronto, Canada; Department of Radiotherapy (B.P.), Imaging Division, University Medical Center Utrecht, Utrecht University, the Netherlands; and L.C. Campbell Cognitive Neurology Research Unit (S.E.B.), Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
88
|
Su SH, Wang YQ, Wu YF, Wang DP, Lin Q, Hai J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling. Behav Brain Res 2016; 313:334-344. [DOI: 10.1016/j.bbr.2016.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
|
89
|
Kitamura A, Saito S, Maki T, Oishi N, Ayaki T, Hattori Y, Yamamoto Y, Urushitani M, Kalaria RN, Fukuyama H, Horsburgh K, Takahashi R, Ihara M. Gradual cerebral hypoperfusion in spontaneously hypertensive rats induces slowly evolving white matter abnormalities and impairs working memory. J Cereb Blood Flow Metab 2016; 36:1592-602. [PMID: 26661170 PMCID: PMC5012514 DOI: 10.1177/0271678x15606717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022]
Abstract
Rats subjected to bilateral common carotid arteries (CCAs) occlusion or 2-vessel occlusion (2VO) have been used as animal models of subcortical ischemic vascular dementia (SIVD). However, these models possess an inherent limitation in that cerebral blood flow (CBF) drops sharply and substantially after ligation of CCAs without vascular risk factors and causative small vessel changes. We previously reported a novel rat model of 2-vessel gradual occlusion (2VGO) in which ameroid constrictors (ACs) were placed bilaterally in the CCAs of Wistar-Kyoto rats. To simulate SIVD pathology more closely, we applied ACs in spontaneously hypertensive rats (SHRs), which naturally develop small vessel pathology, and compared their phenotypes with SHR-2VO and sham-operated rats. The mortality rate of the SHR-2VGO was 0% while that of the SHR-2VO was 56.5%. The CBF of the SHR-2VO dropped to 50% of the baseline level at 3 h, whereas the SHR-2VGO showed a gradual CBF reduction reaching only 68% of the baseline level at seven days. The SHR-2VGO showed slowly evolving white matter abnormalities and subsequent spatial working memory impairments of a similar magnitude to the remaining SHR-2VO at 28 days. We suggest the SHR-2VGO robustly replicates selective aspects of the pathophysiology of SIVD with low mortality rate.
Collapse
Affiliation(s)
- Akihiro Kitamura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Satoshi Saito
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Naoya Oishi
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yorito Hattori
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Makoto Urushitani
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, UK
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
90
|
Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1067801. [PMID: 27594970 PMCID: PMC4993945 DOI: 10.1155/2016/1067801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension.
Collapse
|
91
|
Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, Petzold GC. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun 2016; 4:76. [PMID: 27487766 PMCID: PMC4973061 DOI: 10.1186/s40478-016-0350-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
Vascular cognitive impairment is the second most common form of dementia. The pathogenic pathways leading to vascular cognitive impairment remain unclear but clinical and experimental data have shown that chronic reactive astrogliosis occurs within white matter lesions, indicating that a sustained pro-inflammatory environment affecting the white matter may contribute towards disease progression. To model vascular cognitive impairment, we induced prolonged mild cerebral hypoperfusion in mice by bilateral common carotid artery stenosis. This chronic hypoperfusion resulted in reactive gliosis of astrocytes and microglia within white matter tracts, demyelination and axonal degeneration, consecutive spatial memory deficits, and loss of white matter integrity, as measured by ultra high-field magnetic resonance diffusion tensor imaging. White matter astrogliosis was accompanied by activation of the pro-inflammatory transcription factor nuclear factor (NF)-kB in reactive astrocytes. Using mice expressing a dominant negative inhibitor of NF-kB under the control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter (GFAP-IkBα-dn), we found that transgenic inhibition of astroglial NF-kB signaling ameliorated gliosis and axonal loss, maintained white matter structural integrity, and preserved memory function. Collectively, our results imply that pro-inflammatory changes in white matter astrocytes may represent an important detrimental component in the pathogenesis of vascular cognitive impairment, and that targeting these pathways may lead to novel therapeutic strategies.
Collapse
|
92
|
Edrissi H, Schock SC, Cadonic R, Hakim AM, Thompson CS. Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion. Brain Res 2016; 1646:494-503. [PMID: 27350079 DOI: 10.1016/j.brainres.2016.06.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023]
Abstract
Cerebral small vessel disease (CSVD) is a pathological process leading to lacunar infarcts, leukoaraiosis and cerebral microbleeds. Dysfunction of the blood brain barrier (BBB) has been proposed as a mechanism in the progression cerebral small vessel disease. A rodent model commonly used to study some aspects of CSVD is bilateral common carotid artery occlusion (BCCAO) in the rat. In the present study it was determined that gait impairment, as determined by a tapered beam test, and BBB permeability increased following BCCAO. Cilostazol, a type III phosphodiesterase inhibitor, has been shown to have anti-apoptotic effects and prevent white matter vacuolation and rarefaction induced by BCCAO in rats. In this study the protective effect of cilostazol administration on the increase BBB permeability following BCCAO was determined as well as the effect on plasma levels of circulating microparticles (MPs), cerebral white matter rarefaction, glial activation and gait disturbance. The effect of cilostazol on in vitro endothelial barriers was also evaluated. Cilostazol treatment improved BBB permeability and reduced gait disturbance, visual impairment and microglial activation in optic tract following BCCAO in vivo. It also reduced the degree of cell death and the reduction in trans-endothelial electrical resistance (TEER) in artificial endothelial barriers in vitro induced by MP treatment of in vitro barriers.
Collapse
Affiliation(s)
- Hamidreza Edrissi
- Universiy of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Sarah C Schock
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Robert Cadonic
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Antoine M Hakim
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Charlie S Thompson
- Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5.
| |
Collapse
|
93
|
Solis-Gaspar C, Vazquez-Roque RA, De Jesús Gómez-Villalobos M, Flores G. Cerebrolysin improves memory and ameliorates neuronal atrophy in spontaneously hypertensive, aged rats. Synapse 2016; 70:378-89. [DOI: 10.1002/syn.21912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Carlos Solis-Gaspar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570, Puebla México
| | - Ruben A. Vazquez-Roque
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570, Puebla México
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; 14 Sur 6301, CP 72570, Puebla México
| |
Collapse
|
94
|
Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease. Exp Biol Med (Maywood) 2016; 241:1351-63. [PMID: 27190276 DOI: 10.1177/1535370216649060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a leading cause of death and disability among older adults. Modifiable vascular risk factors for AD (VRF) include obesity, hypertension, type 2 diabetes mellitus, sleep apnea, and metabolic syndrome. Here, interactions between cerebrovascular function and development of AD are reviewed, as are interventions to improve cerebral blood flow and reduce VRF. Atherosclerosis and small vessel cerebral disease impair metabolic regulation of cerebral blood flow and, along with microvascular rarefaction and altered trans-capillary exchange, create conditions favoring AD development. Although currently there are no definitive therapies for treatment or prevention of AD, reduction of VRFs lowers the risk for cognitive decline. There is increasing evidence that brief repeated exposures to moderate hypoxia, i.e. intermittent hypoxic training (IHT), improve cerebral vascular function and reduce VRFs including systemic hypertension, cardiac arrhythmias, and mental stress. In experimental AD, IHT nearly prevented endothelial dysfunction of both cerebral and extra-cerebral blood vessels, rarefaction of the brain vascular network, and the loss of neurons in the brain cortex. Associated with these vasoprotective effects, IHT improved memory and lessened AD pathology. IHT increases endothelial production of nitric oxide (NO), thereby increasing regional cerebral blood flow and augmenting the vaso- and neuroprotective effects of endothelial NO. On the other hand, in AD excessive production of NO in microglia, astrocytes, and cortical neurons generates neurotoxic peroxynitrite. IHT enhances storage of excessive NO in the form of S-nitrosothiols and dinitrosyl iron complexes. Oxidative stress plays a pivotal role in the pathogenesis of AD, and IHT reduces oxidative stress in a number of experimental pathologies. Beneficial effects of IHT in experimental neuropathologies other than AD, including dyscirculatory encephalopathy, ischemic stroke injury, audiogenic epilepsy, spinal cord injury, and alcohol withdrawal stress have also been reported. Further research on the potential benefits of IHT in AD and other brain pathologies is warranted.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Institute of General Pathology and Pathophysiology, Moscow 125315, Russian Federation
| | - H Fred Downey
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Robert T Mallet
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| |
Collapse
|
95
|
Gorelick PB, Counts SE, Nyenhuis D. Vascular cognitive impairment and dementia. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:860-8. [PMID: 26704177 PMCID: PMC5232167 DOI: 10.1016/j.bbadis.2015.12.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/12/2015] [Accepted: 12/14/2015] [Indexed: 01/11/2023]
Abstract
Vascular contributions to cognitive impairment are receiving heightened attention as potentially modifiable factors for dementias of later life. These factors have now been linked not only to vascular cognitive disorders but also Alzheimer's disease. In this chapter we review 3 related topics that address vascular contributions to cognitive impairment: 1. vascular pathogenesis and mechanisms; 2. neuropsychological and neuroimaging phenotypic manifestations of cerebrovascular disease; and 3. prospects for prevention of cognitive impairment of later life based on cardiovascular and stroke risk modification. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Philip B Gorelick
- Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Mercy Health Hauenstein Neurosciences, 220 Cherry Street SE, Grand Rapids, MI 49503, USA.
| | - Scott E Counts
- Translational Science & Molecular Medicine and Family Medicine, Michigan State University College of Human Medicine, Mercy Health Hauenstein Neurosciences, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - David Nyenhuis
- Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Neuropsychology Program, Mercy Health Hauenstein Neurosciences, 220 Cherry Street SE, Grand Rapids, MI 49503, USA
| |
Collapse
|
96
|
De Silva TM, Miller AA. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Front Pharmacol 2016; 7:61. [PMID: 27014073 PMCID: PMC4794483 DOI: 10.3389/fphar.2016.00061] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- T. Michael De Silva
- Department of Pharmacology, Biomedicine Discovery Institute, Monash UniversityMelbourne, VIC, Australia
| | - Alyson A. Miller
- Cerebrovascular and Stroke Laboratory, School of Health and Biomedical Sciences, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
97
|
Gooch J, Wilcock DM. Animal Models of Vascular Cognitive Impairment and Dementia (VCID). Cell Mol Neurobiol 2016; 36:233-9. [PMID: 26988696 PMCID: PMC11482509 DOI: 10.1007/s10571-015-0286-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/08/2015] [Indexed: 11/27/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is the most common etiology of dementia in the elderly. Both, vascular and Alzheimer's disease, pathologies work synergistically to create neurodegeneration and cognitive impairments. The main causes of VCID include hemorrhage/microbleed (i.e., hyperhomocysteinemia), cerebral small vessel disease, multi-infarct dementia, severe hypoperfusion (i.e., bilateral common carotid artery stenosis), strategic infarct, angiopathy (i.e., cerebral angiopathy), and hereditary vasculopathy (i.e., cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). In this review, we will discuss the experimental animal models that have been developed to study these pathologies. We will discuss the limitations and strengths of these models and the important research findings that have advanced the field through the use of the models.
Collapse
Affiliation(s)
- Jennifer Gooch
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, 424 Sanders-Brown Center on Aging, 800 S. Limestone St, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, 424 Sanders-Brown Center on Aging, 800 S. Limestone St, Lexington, KY, 40536, USA.
| |
Collapse
|
98
|
Flores G, Flores-Gómez GD, de Jesús Gomez-Villalobos M. Neuronal changes after chronic high blood pressure in animal models and its implication for vascular dementia. Synapse 2016; 70:198-205. [DOI: 10.1002/syn.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. 14 Sur 6301; Puebla 72570 México
| | - Gabriel D. Flores-Gómez
- Departamento de Ciencias de la Salud; Licenciatura en Medicina. Universidad de las Américas Puebla; Puebla Cholula México
| | | |
Collapse
|
99
|
Fan Y, Lan L, Zheng L, Ji X, Lin J, Zeng J, Huang R, Sun J. Spontaneous white matter lesion in brain of stroke-prone renovascular hypertensive rats: a study from MRI, pathology and behavior. Metab Brain Dis 2015; 30:1479-86. [PMID: 26387009 DOI: 10.1007/s11011-015-9722-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Hypertension is considered one of the most important controllable risk factors for white matter lesion (WML). Our previous work found that stroke-prone renovascular hypertensive rats (RHRSP) displayed a high rate of WML. This study aimed to investigate the WML in RHRSP from MRI, pathology and behavior. RHRSP model was established by two-kidney, two-clipmethod and kept for 20 weeks. WML was decteted by magnetic resonance imaging (MRI) and loyez staining. Cognition was tested by morris water maze (MWM). Vascular changes were observed by HE staining on brain and carotid sections. Ultrastucture of blood brain barrier (BBB) were observed by transmission electron microscope. Immunofluorescence was used to detect albumin leakage and cell proliferation. T(2)-weighted MRI scans of RHRSP displayed diffuse, confluent white-matter hyperintensities. Pathological examination of the same rat showed marked vacuoles, disappearence of myelin and nerve fibers in white matter, supporting the neuroimaging findings. Spatial learning and memory impairment were observed in RHRSP. The small arteries in brain exhibited fibrinoid necrosis, hyalinosis and vascular remodeling. BBB disruption and plasma albumin leakage into vascular wall was observed in RHRSP. Increased cell proliferation in subventricular zone was seen in RHRSP. RHRSP demonstrated spontaneous WML and cognitive impairment. Hypertensive small vessel lesions and BBB disruption might paly causative factors for the onset and development of WML. The characteristic features of WML in RHRSP suggested it a valid animal model for WML.
Collapse
Affiliation(s)
- Yuhua Fan
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China.
| | - Linfang Lan
- Department of Medicine and Therapeutics, Chinese University of Hongkong, Hongkong, China
| | - Lu Zheng
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Xiaotan Ji
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Jing Lin
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Jinsheng Zeng
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Ruxun Huang
- Department of Neurology, First Affiliated Hospital Sun Yat-Sen University, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department National Key Discipline, Guangzhou, 510080, China
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
100
|
Experimental model of small subcortical infarcts in mice with long-lasting functional disabilities. Brain Res 2015; 1629:318-28. [DOI: 10.1016/j.brainres.2015.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/11/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023]
|