51
|
Szöllősi AG, Oláh A, Bíró T, Tóth BI. Recent advances in the endocrinology of the sebaceous gland. DERMATO-ENDOCRINOLOGY 2018; 9:e1361576. [PMID: 29484098 PMCID: PMC5821152 DOI: 10.1080/19381980.2017.1361576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
The sebaceous gland, long considered an evolutionary relic with little-to-no physiological relevance in humans, has emerged in recent decades as a key orchestrator and contributor to many cutaneous functions. In addition to the classical physico-chemical barrier function of the skin against constant environmental challenges, a more novel, neuro-immune modulatory role has also emerged. As part of the complex intercellular communication network of the integumentary system, the sebaceous gland acts as a “relay station” in the skin for many endocrine factors. This review aims to offer a comprehensive overview of endocrine effects and subsequent interactions on this much maligned mini-organ.
Collapse
Affiliation(s)
- Attila G Szöllősi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
52
|
Fatty acids and related lipid mediators in the regulation of cutaneous inflammation. Biochem Soc Trans 2018; 46:119-129. [PMID: 29330355 DOI: 10.1042/bst20160469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and N-acyl ethanolamines. Cross-communication between these families of bioactive lipids suggests that their cutaneous activities should be considered as part of a wider metabolic network that can be targeted to maintain skin health, control inflammation and improve skin pathologies.
Collapse
|
53
|
Activation of TRPV3 Regulates Inflammatory Actions of Human Epidermal Keratinocytes. J Invest Dermatol 2017; 138:365-374. [PMID: 28964718 DOI: 10.1016/j.jid.2017.07.852] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 01/19/2023]
Abstract
Transient receptor potential (TRP) ion channels were first characterized on neurons, where they are classically implicated in sensory functions; however, research in recent decades has shown that many of these channels are also expressed on nonneuronal cell types. Emerging findings have highlighted the role of TRP channels in the skin, where they have been shown to be important in numerous cutaneous functions. Of particular interest is TRPV3, which was first described on keratinocytes. Its functional importance was supported when its gain-of-function mutation was linked to Olmsted syndrome, which is characterized by palmoplantar keratoderma, periorifacial hyperkeratosis, diffuse hypotrichosis and alopecia, and itch. Despite these exciting results, we have no information about the role and functionality of TRPV3 on keratinocytes at the cellular level. In this study, we identified TRPV3 expression both on human skin and cultured epidermal keratinocytes. TRPV3 stimulation was found to function as a Ca2+-permeable ion channel that suppresses proliferation of epidermal keratinocytes and induces cell death. Stimulation of the channel also triggers a strong proinflammatory response via the NF-κB pathway. Collectively, our data show that TRPV3 is functionally expressed on human epidermal keratinocytes and that it plays a role in cutaneous inflammatory processes.
Collapse
|
54
|
Assimakopoulou M, Pagoulatos D, Nterma P, Pharmakakis N. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium. Mol Med Rep 2017; 16:5285-5293. [PMID: 28849159 PMCID: PMC5647061 DOI: 10.3892/mmr.2017.7246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids, as multi-target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi-serial paraffin-embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV channel expression was identified to be significantly higher than the expression level of cannabinoid receptors in the pterygium samples (P<0.001). The differentiated expression of cannabinoid receptors in combination with the presence of TRPV channels, in primary and recurrent pterygia, imply a potential role of these cannabinoid targets in the underlying mechanisms of pterygium.
Collapse
Affiliation(s)
- Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Dionysios Pagoulatos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Pinelopi Nterma
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Nikolaos Pharmakakis
- Department of Ophthalmology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| |
Collapse
|
55
|
Misery L, Loser K, Ständer S. Sensitive skin. J Eur Acad Dermatol Venereol 2016; 30 Suppl 1:2-8. [PMID: 26805416 DOI: 10.1111/jdv.13532] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin.
Collapse
Affiliation(s)
- L Misery
- Department of Dermatology, University Hospital, Brest, France
| | - K Loser
- Department of Dermatology, University of Münster, Münster, Germany
| | - S Ständer
- Center for Chronic Pruritus (KCP), University of Münster, Münster, Germany
| |
Collapse
|
56
|
Wang LL, Zhao R, Li JY, Li SS, Liu M, Wang M, Zhang MZ, Dong WW, Jiang SK, Zhang M, Tian ZL, Liu CS, Guan DW. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. Eur J Pharmacol 2016; 786:128-136. [PMID: 27268717 DOI: 10.1016/j.ejphar.2016.06.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
Abstract
Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Wen-Wen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Chang-Sheng Liu
- Institute of Forensic Science, Anshan Municipal People's Procuratorate, Anshan, China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China.
| |
Collapse
|
57
|
Wohlman IM, Composto GM, Heck DE, Heindel ND, Lacey CJ, Guillon CD, Casillas RP, Croutch CR, Gerecke DR, Laskin DL, Joseph LB, Laskin JD. Mustard vesicants alter expression of the endocannabinoid system in mouse skin. Toxicol Appl Pharmacol 2016; 303:30-44. [PMID: 27125198 DOI: 10.1016/j.taap.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.
Collapse
Affiliation(s)
- Irene M Wohlman
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Gabriella M Composto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Diane E Heck
- Environmental Health Science, New York Medical College, Valhalla, NY, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - C Jeffrey Lacey
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | | | | | | | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ, United States.
| |
Collapse
|
58
|
Ogawa N, Kurokawa T, Fujiwara K, Polat OK, Badr H, Takahashi N, Mori Y. Functional and Structural Divergence in Human TRPV1 Channel Subunits by Oxidative Cysteine Modification. J Biol Chem 2016; 291:4197-210. [PMID: 26702055 PMCID: PMC4759194 DOI: 10.1074/jbc.m115.700278] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/17/2015] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function.
Collapse
Affiliation(s)
- Nozomi Ogawa
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tatsuki Kurokawa
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kenji Fujiwara
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Onur Kerem Polat
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Heba Badr
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Nobuaki Takahashi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Yasuo Mori
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
59
|
Deng Y, Huang X, Wu H, Zhao M, Lu Q, Israeli E, Dahan S, Blank M, Shoenfeld Y. Some like it hot: The emerging role of spicy food (capsaicin) in autoimmune diseases. Autoimmun Rev 2016; 15:451-6. [PMID: 26812350 DOI: 10.1016/j.autrev.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases refer to a spectrum of diseases characterized by an active immune response against the host, which frequently involves increased autoantibody production. The pathogenesis of autoimmune diseases is multifactorial and the exploitation of novel effective treatment is urgent. Capsaicin is a nutritional factor, the active component of chili peppers, which is responsible for the pungent component of chili pepper. As a stimuli, capsaicin selectively activate transient receptor potential vanilloid subfamily 1(TRPV1) and exert various biological effects. This review discusses the effect of capsaicin through its receptor on the development and modulation of autoimmune diseases, which may shed light upon potential therapies in capsaicin-targeted approaches.
Collapse
Affiliation(s)
- Yaxiong Deng
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Xin Huang
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China.
| | - Eitan Israeli
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Shani Dahan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Miri Blank
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
60
|
Lowin T, Apitz M, Anders S, Straub RH. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther 2015; 17:321. [PMID: 26567045 PMCID: PMC4644337 DOI: 10.1186/s13075-015-0845-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction The endocannabinoid system modulates function of immune cells and mesenchymal cells such as fibroblasts, which contribute to cartilage destruction in rheumatoid arthritis (RA). The aim of the study was to determine the influence of N-acylethanolamines anandamide (AEA), palmitoylethanolamine (PEA) and oleylethanolamine (OEA) on several features of arthritic inflammation in vitro (human material) and in vivo (a mouse model). Methods Immunofluorescence and western blotting were used to detect cannabinoid receptors and related enzymes. Cytokines and MMP-3 were measured by ELISA. Intracellular signaling proteins were detected by proteome profiling. Proliferation was quantified by CTB reagent. Adhesion was assessed by the xCELLigence system. After onset of collagen type II arthritis, mice were treated daily with the FAAH inhibitor JNJ1661010 (20 mg/kg) or vehicle. Results IL-6, IL-8 and MMP-3 (determined only in synovial fibroblasts (SFs)) were downregulated in primary synoviocytes and SFs of RA and OA after AEA, PEA and OEA treatment. In SFs, this was due to activation of TRPV1 and TRPA1 in a COX-2-dependent fashion. FAAH inhibition increased the efficacy of AEA in primary synoviocytes but not in SFs. The effects of OEA and PEA on SFs were diminished by FAAH inhibition. Adhesion to fibronectin was increased in a CB1-dependent manner by AEA in OASFs. Furthermore, elevation of endocannabinoids ameliorated collagen-induced arthritis in mice. Conclusions N-acylethanolamines exert anti-inflammatory effects in SFs. A dual FAAH/COX-2 inhibitor, increasing N-acylethanolamine levels with concomitant TRP channel desensitization, might be a good candidate to inhibit the production of proinflammatory mediators of synovial cells and to reduce erosions. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0845-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Martin Apitz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Sven Anders
- Department of Orthopaedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V Allee 3, 93077, Bad Abbach, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
61
|
Ambrus L, Oláh A, Oláh T, Balla G, Saleem MA, Orosz P, Zsuga J, Bíró K, Csernoch L, Bíró T, Szabó T. Inhibition of TRPC6 by protein kinase C isoforms in cultured human podocytes. J Cell Mol Med 2015; 19:2771-9. [PMID: 26404773 PMCID: PMC4687697 DOI: 10.1111/jcmm.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical‐6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up‐regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) induced Ca2+‐influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12‐myristate 13‐acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down‐regulated the expression levels of PKCα, PKCβ, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a ‘tonic’ inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte‐expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.
Collapse
Affiliation(s)
- Lídia Ambrus
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Moin A Saleem
- Renal Academic Unit, University of Bristol, Bristol, UK
| | - Petronella Orosz
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Klára Bíró
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Immunology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Szabó
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
62
|
Kim HJ, Kim B, Park BM, Jeon JE, Lee SH, Mann S, Ahn SK, Hong SP, Jeong SK. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Int J Dermatol 2015; 54:e401-8. [PMID: 26095080 DOI: 10.1111/ijd.12841] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/14/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Even with the widespread clinical use of cannabinoid receptor (CBR) stimulating compounds, such as palmitoylethanolamine, the role of CBR agonists on inflammatory skin diseases is not yet fully understood. This study was performed to investigate the effects of CBR agonists on skin inflammation, using acute and chronic inflammation animal models. METHODS The effectiveness of the newly synthesized cannabinoid receptor 1 (CB1R) agonists was determined using in vitro assays. Markers for epidermal permeability barrier function and skin inflammation were measured, and histological assessments were performed for evaluation. RESULTS Topical application of CB1R-specific agonist significantly accelerated the recovery of epidermal permeability barrier function and showed anti-inflammatory activity in both acute and chronic inflammation models. Histological assessments also confirmed the anti-inflammatory effects, which is consistent with previous reports. CONCLUSIONS All of the results suggest that topical application of CB1R-specific agonist can be beneficial for alleviating the inflammatory symptoms in chronic skin diseases, including atopic dermatitis.
Collapse
Affiliation(s)
- Hyun Jong Kim
- Department of Dermatology, Atopy Clinic, Seoul Medical Center, Seoul, Korea
| | - Bongwoo Kim
- CRID Center, NeoPharm Co., Ltd., Daejeon, Korea
| | - Bu Man Park
- CRID Center, NeoPharm Co., Ltd., Daejeon, Korea
| | | | - Sin Hee Lee
- CRID Center, NeoPharm Co., Ltd., Daejeon, Korea
| | - Shivtaj Mann
- College of Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sung Ku Ahn
- Department of Dermatology, Wonju College of Medicine, Yonsei University, Kangwon, Korea
| | - Seung-Phil Hong
- Department of Dermatology, College of Medicine, Dankook University, Chungnam, Korea
| | - Se Kyoo Jeong
- CRID Center, NeoPharm Co., Ltd., Daejeon, Korea.,Department of Pharmaceutics, College of Pharmacy, Chungbook National University, Chungbook, Korea
| |
Collapse
|
63
|
Wang J, Zhang Y, Zhang N, Wang C, Herrler T, Li Q. An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci 2015; 72:2091-106. [PMID: 25681865 PMCID: PMC11113187 DOI: 10.1007/s00018-015-1853-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The skin is constantly exposed and responds to a wide range of biomechanical cues. The mechanobiology of skin has already been known and applied by clinicians long before the fundamental molecular mechanisms of mechanotransduction are elucidated. MATERIALS AND METHODS Despite increasing knowledge on the mediators of biomechanical signaling such as mitogen-associated protein kinases, Rho GTPases or FAK-ERK pathways, the key elements of mechano-responses transcription factors, and mechano-sensors remain unclear. Recently, canonical biochemical components of Hippo and Wnt signaling pathway YAP and β-catenin were found to exhibit undefined mechanical sensitivity. Mechanical forces were identified to be the dominant regulators of YAP/TAZ activity in a multicellular context. Furthermore, different voltage or ligand sensitive ion channels in the cell membrane exhibited their mechanical sensitivity as mechano-sensors. Additionally, a large number of microRNAs have been confirmed to regulate cellular behavior and contribute to various skin disorders under mechanical stimuli. Mechanosensitive (MS) microRNAs could not only be activated by distinct mechanical force pattern, but also responsively target MS sensors such as e-cadherin and cytoskeleton constituent RhoA. CONCLUSION Thus, a comprehensive understanding of this regulatory network of cutaneous mechanotransduction will facilitate the development of novel approaches to wound healing, hypertrophic scar formation, skin regeneration, and the progression or initiation of skin diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | | | | | | | | | | |
Collapse
|
64
|
Ho JC, Lee CH. TRP channels in skin: from physiological implications to clinical significances. Biophysics (Nagoya-shi) 2015; 11:17-24. [PMID: 27493510 PMCID: PMC4736792 DOI: 10.2142/biophysics.11.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/08/2014] [Indexed: 01/29/2023] Open
Abstract
TRP channels are expressed in various cells in skin. As an organ system to border the host and environment, many nonneuronal cells, including epidermal keratinocytes and melanocytes, express several TRP channels functionally distinct from sensory processing. TRPV1 and TRPV3 in keratinocytes of the epidermis and hair apparatus inhibit proliferation, induce terminal differentiation, induce apoptosis, and promote inflammation. Activation of TRPV4, 6, and TRPA1 promotes regeneration of the severed skin barriers. TRPA1 also enhances responses in contact hypersensitivity. TRPCs in keratinocytes regulate epidermal differentiation. In human diseases with pertubered epidermal differentiation, the expression of TRPCs are altered. TRPMs, which contribute to melanin production in melanocytes, serve as significant prognosis markers in patients with metastatic melanoma. In summary, not only act in sensory processing, TRP channels also contribute to epidermal differentiation, proliferation, barrier integration, skin regeneration, and immune responses. In diseases with aberrant TRP channels, TRP channels might be good therapeutic targets.
Collapse
Affiliation(s)
- Ji-Chen Ho
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
65
|
Kendall AC, Pilkington SM, Massey KA, Sassano G, Rhodes LE, Nicolaou A. Distribution of bioactive lipid mediators in human skin. J Invest Dermatol 2015; 135:1510-1520. [PMID: 25668241 DOI: 10.1038/jid.2015.41] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/30/2022]
Abstract
The skin produces bioactive lipids that participate in physiological and pathological states, including homeostasis, induction, propagation, and resolution of inflammation. However, comprehension of the cutaneous lipid complement, and contribution to differing roles of the epidermal and dermal compartments, remains incomplete. We assessed the profiles of eicosanoids, endocannabinoids, N-acyl ethanolamides, and sphingolipids, in human dermis, epidermis, and suction blister fluid. We identified 18 prostanoids, 12 hydroxy-fatty acids, 9 endocannabinoids and N-acyl ethanolamides, and 21 non-hydroxylated ceramides and sphingoid bases, several demonstrating significantly different expression in the tissues assayed. The array of dermal and epidermal fatty acids was reflected in the lipid mediators produced, whereas similarities between lipid profiles in blister fluid and epidermis indicated a primarily epidermal origin of suction blister fluid. Supplementation with omega-3 fatty acids ex vivo showed that their action is mediated through perturbation of existing species and formation of other anti-inflammatory lipids. These findings demonstrate the diversity of lipid mediators involved in maintaining tissue homeostasis in resting skin and hint at their contribution to signaling, cross-support, and functions of different skin compartments. Profiling lipid mediators in biopsies and suction blister fluid can support studies investigating cutaneous inflammatory responses, dietary manipulation, and skin diseases lacking biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Alexandra C Kendall
- Faculty of Medical and Human Sciences, Manchester Pharmacy School, The University of Manchester, Manchester, UK
| | - Suzanne M Pilkington
- Dermatology Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Karen A Massey
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, UK
| | - Gary Sassano
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Lesley E Rhodes
- Dermatology Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Anna Nicolaou
- Faculty of Medical and Human Sciences, Manchester Pharmacy School, The University of Manchester, Manchester, UK.
| |
Collapse
|
66
|
Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol 2014; 171:2568-81. [PMID: 24372189 DOI: 10.1111/bph.12569] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as 'polymodal cellular sensors' on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Balázs I Tóth
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary
| | | | | | | |
Collapse
|
67
|
Caterina MJ. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci 2014; 5:1107-16. [PMID: 24915599 PMCID: PMC4240254 DOI: 10.1021/cn5000919] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
![]()
In
the skin, cannabinoid lipids, whether of endogenous or exogenous
origin, are capable of regulating numerous sensory, homeostatic, and
inflammatory events. Although many of these effects are mediated by
metabotropic cannabinoid receptors, a growing body of evidence has
revealed that multiple members of the transient receptor potential
(TRP) ion channel family can act as “ionotropic cannabinoid
receptors”. Furthermore, many of these same TRP channels are
intimately involved in cutaneous processes that include the initiation
of pain, temperature, and itch perception, the maintenance of epidermal
homeostasis, the regulation of hair follicles and sebaceous glands,
and the modulation of dermatitis. Ionotropic cannabinoid receptors
therefore represent potentially attractive targets for the therapeutic
use of cannabinoids to treat sensory and dermatological diseases.
Furthermore, the interactions between neurons and other cell types
that are mediated by cutaneous ionotropic cannabinoid receptors are
likely to be recapitulated during physiological and pathophysiological
processes in the central nervous system and elsewhere, making the
skin an ideal setting in which to dissect general complexities of
cannabinoid signaling.
Collapse
Affiliation(s)
- Michael J. Caterina
- Departments of Neurosurgery,
Biological Chemistry, and Neuroscience, Neurosurgery Pain Research
Institute, Center for Sensory Biology, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, United States
| |
Collapse
|
68
|
Fischer TW, Herczeg-Lisztes E, Funk W, Zillikens D, Bíró T, Paus R. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro. Br J Dermatol 2014; 171:1031-43. [PMID: 24836650 DOI: 10.1111/bjd.13114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). OBJECTIVES We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. METHODS Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). RESULTS Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. CONCLUSIONS This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ).
Collapse
Affiliation(s)
- T W Fischer
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Ryskamp DA, Redmon S, Jo AO, Križaj D. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision. Cells 2014; 3:914-38. [PMID: 25222270 PMCID: PMC4197638 DOI: 10.3390/cells3030914] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 01/18/2023] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators.
Collapse
Affiliation(s)
- Daniel A Ryskamp
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Sarah Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Andrew O Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
70
|
Pucci M, Rapino C, Di Francesco A, Dainese E, D'Addario C, Maccarrone M. Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol 2014; 170:581-91. [PMID: 23869687 DOI: 10.1111/bph.12309] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoid signalling has been shown to have a role in the control of epidermal physiology, whereby anandamide is able to regulate the expression of skin differentiation genes through DNA methylation. Here, we investigated the possible epigenetic regulation of these genes by several phytocannabinoids, plant-derived cannabinoids that have the potential to be novel therapeutics for various human diseases. EXPERIMENTAL APPROACH The effects of cannabidiol, cannabigerol and cannabidivarin on the expression of skin differentiation genes keratins 1 and 10, involucrin and transglutaminase 5, as well as on DNA methylation of keratin 10 gene, were investigated in human keratinocytes (HaCaT cells). The effects of these phytocannabinoids on global DNA methylation and the activity and expression of four major DNA methyltransferases (DNMT1, 3a, 3b and 3L) were also examined. KEY RESULTS Cannabidiol and cannabigerol significantly reduced the expression of all the genes tested in differentiated HaCaT cells, by increasing DNA methylation of keratin 10 gene, but cannabidivarin was ineffective. Remarkably, cannabidiol reduced keratin 10 mRNA through a type-1 cannabinoid (CB1 ) receptor-dependent mechanism, whereas cannabigerol did not affect either CB1 or CB2 receptors of HaCaT cells. In addition, cannabidiol, but not cannabigerol, increased global DNA methylation levels by selectively enhancing DNMT1 expression, without affecting DNMT 3a, 3b or 3L. CONCLUSIONS AND IMPLICATIONS These findings show that the phytocannabinoids cannabidiol and cannabigerol are transcriptional repressors that can control cell proliferation and differentiation. This indicates that they (especially cannabidiol) have the potential to be lead compounds for the development of novel therapeutics for skin diseases.
Collapse
Affiliation(s)
- Mariangela Pucci
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | | | | | | | | |
Collapse
|
71
|
Oláh A, Tóth BI, Borbíró I, Sugawara K, Szöllõsi AG, Czifra G, Pál B, Ambrus L, Kloepper J, Camera E, Ludovici M, Picardo M, Voets T, Zouboulis CC, Paus R, Bíró T. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J Clin Invest 2014; 124:3713-24. [PMID: 25061872 DOI: 10.1172/jci64628] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/05/2014] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris.
Collapse
|
72
|
Ramot Y, Paus R. Harnessing neuroendocrine controls of keratin expression: A new therapeutic strategy for skin diseases? Bioessays 2014; 36:672-86. [DOI: 10.1002/bies.201400006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Laboratory for Hair Research and Regenerative Medicine, Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
73
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Discovery Research Alliance, Ono Pharmaceutical Co. LtdOsaka, Japan
| | - Arpad Szallasi
- Department of Pathology and Laboratory Medicine, Monmouth Medical CenterLong Branch, NJ, USA
| |
Collapse
|
74
|
Ruzsnavszky O, Dienes B, Oláh T, Vincze J, Gáll T, Balogh E, Nagy G, Bátori R, Lontay B, Erdődi F, Csernoch L. Differential effects of phosphatase inhibitors on the calcium homeostasis and migration of HaCaT keratinocytes. PLoS One 2013; 8:e61507. [PMID: 23646108 PMCID: PMC3640006 DOI: 10.1371/journal.pone.0061507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
Changes in intracellular calcium concentration ([Ca2+]i) as well as in the phosphorylation state of proteins have been implicated in keratinocyte wound healing revealed in scratch assays. Scratching confluent HaCaT monolayers decreased the number of cells displaying repetitive Ca2+ oscillations as well as the frequency of their Ca2+-transients in cells close to the wounded area and initiated migration of the cells into the wound bed. In contrast, calyculin-A (CLA) and okadaic acid (OA), known cell permeable inhibitors of protein phosphatase-1 and 2A, increased the level of resting [Ca2+]i and suppressed cell migration and wound healing of HaCaT cells. Furthermore, neither CLA nor OA influenced how scratching affected Ca2+ oscillations. It is assumed that changes in and alterations of the phosphorylation level of Ca2+-transport and contractile proteins upon phosphatase inhibition mediates cell migration and wound healing.
Collapse
Affiliation(s)
- Olga Ruzsnavszky
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- 1st Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Nagy
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Róbert Bátori
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Laszlo Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
75
|
Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci 2013; 367:3216-28. [PMID: 23108541 DOI: 10.1098/rstb.2011.0382] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, Δ(9)-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto Chimica Biomolecolare, CNR, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, NA, Italy.
| | | |
Collapse
|
76
|
Szöllősi AG, Oláh A, Tóth IB, Papp F, Czifra G, Panyi G, Bíró T. Transient receptor potential vanilloid-2 mediates the effects of transient heat shock on endocytosis of human monocyte-derived dendritic cells. FEBS Lett 2013; 587:1440-5. [PMID: 23542034 DOI: 10.1016/j.febslet.2013.03.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 01/20/2023]
Abstract
Our goal was to investigate the effect of heat shock on human monocyte-derived dendritic cells (DCs) and to dissect the role of thermosensitive transient receptor potential (TRP) channels in the process. We provide evidence that a short heat shock challenge (43 °C) decreased the endocytotic activity of the DCs and that this effect could be alleviated by the RNAi-mediated knockdown of TRPV2 but, importantly, not by the pharmacological (antagonists) or molecular (RNAi) suppression of TRPV1 and TRPV4 activities/levels. Likewise, the heat shock-induced robust membrane currents were selectively and markedly inhibited by TRPV2 "silencing" whereas modulation of TRPV1 and TRPV4 activities, again, had no effect. These intriguing data introduce TRPV2-coupled signaling as a key player in mediating the cellular actions of heat shock on DCs.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
77
|
Ramot Y, Sugawara K, Zákány N, Tóth BI, Bíró T, Paus R. A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ. PeerJ 2013; 1:e40. [PMID: 23638377 PMCID: PMC3628749 DOI: 10.7717/peerj.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cannabinoid receptors (CB) are expressed throughout human skin epithelium. CB1 activation inhibits human hair growth and decreases proliferation of epidermal keratinocytes. Since psoriasis is a chronic hyperproliferative, inflammatory skin disease, it is conceivable that the therapeutic modulation of CB signaling, which can inhibit both proliferation and inflammation, could win a place in future psoriasis management. Given that psoriasis is characterized by up-regulation of keratins K6 and K16, we have investigated whether CB1 stimulation modulates their expression in human epidermis. Treatment of organ-cultured human skin with the CB1-specific agonist, arachidonoyl-chloro-ethanolamide (ACEA), decreased K6 and K16 staining intensity in situ. At the gene and protein levels, ACEA also decreased K6 expression of cultured HaCaT keratinocytes, which show some similarities to psoriatic keratinocytes. These effects were partly antagonized by the CB1-specific antagonist, AM251. While CB1-mediated signaling also significantly inhibited human epidermal keratinocyte proliferation in situ, as shown by K6/Ki-67-double immunofluorescence, the inhibitory effect of ACEA on K6 expression in situ was independent of its anti-proliferative effect. Given recent appreciation of the role of K6 as a functionally important protein that regulates epithelial wound healing in mice, it is conceivable that the novel CB1-mediated regulation of keratin 6/16 revealed here also is relevant to wound healing. Taken together, our results suggest that cannabinoids and their receptors constitute a novel, clinically relevant control element of human K6 and K16 expression.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Sugawara
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nóra Zákány
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary
| | - Balázs I Tóth
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary.,Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Manchester, UK
| |
Collapse
|
78
|
Nunn A, Guy G, Bell JD. Endocannabinoids in neuroendopsychology: multiphasic control of mitochondrial function. Philos Trans R Soc Lond B Biol Sci 2012; 367:3342-52. [PMID: 23108551 PMCID: PMC3481535 DOI: 10.1098/rstb.2011.0393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is a construct based on the discovery of receptors that are modulated by the plant compound tetrahydrocannabinol and the subsequent identification of a family of nascent ligands, the 'endocannabinoids'. The function of the ECS is thus defined by modulation of these receptors-in particular, by two of the best-described ligands (2-arachidonyl glycerol and anandamide), and by their metabolic pathways. Endocannabinoids are released by cell stress, and promote both cell survival and death according to concentration. The ECS appears to shift the immune system towards a type 2 response, while maintaining a positive energy balance and reducing anxiety. It may therefore be important in resolution of injury and inflammation. Data suggest that the ECS could potentially modulate mitochondrial function by several different pathways; this may help explain its actions in the central nervous system. Dose-related control of mitochondrial function could therefore provide an insight into its role in health and disease, and why it might have its own pathology, and possibly, new therapeutic directions.
Collapse
Affiliation(s)
- Alistair Nunn
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | | | | |
Collapse
|
79
|
Yang Y, Yang H, Wang Z, Varadaraj K, Kumari SS, Mergler S, Okada Y, Saika S, Kingsley PJ, Marnett LJ, Reinach PS. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal 2012; 25:501-11. [PMID: 23142606 DOI: 10.1016/j.cellsig.2012.10.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1(-/-) mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC-MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein-protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1-JNK1 signaling. WIN reduced TRPV1-induced Ca(2+) transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification. Such suppression occurs through protein-protein interaction between TRPV1 and CB1 leading to declines in TRPV1 phosphorylation status. CB1 activation of the GTP binding protein, G(i/o) contributes to CB1 mediated TRPV1 dephosphorylation leading to TRPV1 desensitization, declines in TRPV1-induced increases in currents and pro-inflammatory signaling events.
Collapse
Affiliation(s)
- Y Yang
- Biological Sciences, SUNY College of Optometry, NY 10036, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 2012; 52:141-64. [PMID: 23124022 DOI: 10.1016/j.plipres.2012.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.
Collapse
Affiliation(s)
- Alexandra C Kendall
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | | |
Collapse
|
81
|
Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells. J Invest Dermatol 2012; 132:1967-76. [PMID: 22513781 DOI: 10.1038/jid.2012.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The functional existence of the emerging endocannabinoid system (ECS), one of the new neuroendocrine players in cutaneous biology, is recently described in the human skin. In this study, using human eccrine sweat gland-derived immortalized NCL-SG3 model cells and a wide array of cellular and molecular assays, we investigated the effects of prototypic endocannabinoids (anandamide, 2-arachidonoylglycerol) on cellular functions. We show here that both endocannabinoids dose-dependently suppressed proliferation, induced apoptosis, altered expressions of various cytoskeleton proteins (e.g., cytokeratins), and upregulated lipid synthesis. Interestingly, as revealed by specific agonists and antagonists as well as by RNA interference, neither the metabotropic cannabinoid receptors (CB) nor the "ionotropic" CB transient receptor potential ion channels, expressed by these cells, mediated the cellular actions of the endocannabinoids. However, the endocannabinoids selectively activated the mitogen-activated protein kinase signaling pathway. Finally, other elements of the ECS (i.e., enzymes involved in the synthesis and degradation of endocannabinoids) were also identified on NCL-SG3 cells. These results collectively suggest that cannabinoids exert a profound regulatory role in the biology of the appendage. Therefore, from a therapeutic point of view, upregulation of endocannabinoid levels might help to manage certain sweat gland-derived disorders (e.g., tumors) characterized by unwanted growth.
Collapse
|
82
|
Protein kinase C isoforms have differential roles in the regulation of human sebocyte biology. J Invest Dermatol 2012; 132:1988-97. [PMID: 22475757 DOI: 10.1038/jid.2012.94] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein kinase C (PKC) isoforms have crucial roles in cutaneous signaling. Interestingly, we lack information about their involvement in human sebaceous gland biology. Therefore, in this current study, we investigated the functions of the PKC system in human immortalized SZ95 sebocytes. Using molecular biological approaches, imaging, and functional assays, we report that SZ95 sebocytes express the conventional cPKCα; the novel nPKCδ, ɛ, and η; and the atypical aPKCζ. Activation of the PKC system by phorbol 12-myristate 13-acetate (PMA) stimulated lipid synthesis (a hallmark of differentiation) and resulted in translocation and then downregulation of cPKCα and nPKCδ. In good accord with these findings, the effect of PMA was effectively abrogated by inhibitors and short interfering RNA-mediated "silencing" of cPKCα and nPKCδ. Of further importance, molecular or pharmacological inhibition of nPKCδ also prevented the lipogenic and apoptosis-promoting action of arachidonic acid. Finally, we also found that "knockdown" of the endogenous aPKCζ activity markedly increased basal lipid synthesis and apoptosis, suggesting its constitutive activity in suppressing these processes. Collectively, our findings strongly argue for the fact that certain PKCs have pivotal, isoform-specific, differential, and antagonistic roles in the regulation of human sebaceous gland-derived sebocyte biology.
Collapse
|
83
|
Abstract
During embryonic development, the skin, the largest organ of the human body, and nervous system are both derived from the neuroectoderm. Consequently, several key factors and mechanisms that influence and control central or peripheral nervous system activities are also present and hence involved in various regulatory mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective channels as well. Therefore, in this review, we shall focus on delineating the regulatory roles of the channels in skin physiology and pathophysiology. First, we introduce key cutaneous functions and major characteristics of the channels in question. Then, we systematically detail the involvement of a multitude of channels in such skin processes (e.g. skin barrier formation, maintenance, and repair, immune mechanisms, exocrine secretion) which are mostly defined by cutaneous non-neuronal cell populations. Finally, we close by summarizing data suggesting that selected channels are also involved in skin diseases such as e.g. atopic dermatitis, psoriasis, non-melanoma cancers and malignant melanoma, genetic and autoimmune diseases, etc., as well as in skin ageing.
Collapse
Affiliation(s)
- Attila Oláh
- DE-MTA Lendület Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | | | | |
Collapse
|
84
|
Moran MM, McAlexander MA, Bíró T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 2011; 10:601-20. [PMID: 21804597 DOI: 10.1038/nrd3456] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transient receptor potential (TRP) cation channels have been among the most aggressively pursued drug targets over the past few years. Although the initial focus of research was on TRP channels that are expressed by nociceptors, there has been an upsurge in the amount of research that implicates TRP channels in other areas of physiology and pathophysiology, including the skin, bladder and pulmonary systems. In addition, mutations in genes encoding TRP channels are the cause of several inherited diseases that affect a variety of systems including the renal, skeletal and nervous system. This Review focuses on recent developments in the TRP channel-related field, and highlights potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Magdalene M Moran
- Hydra Biosciences, 790 Memorial Drive, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|