51
|
Tetali B, Fahs FM, Mehregan D. Popular over‐the‐counter cosmeceutical ingredients and their clinical efficacy. Int J Dermatol 2019; 59:393-405. [DOI: 10.1111/ijd.14718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Bhavana Tetali
- Department of Dermatology Wayne State University School of Medicine Detroit MI US
| | - Fatima M. Fahs
- Department of Dermatology Wayne State University School of Medicine Detroit MI US
| | - Darius Mehregan
- Department of Dermatology Wayne State University School of Medicine Detroit MI US
- Pinkus Dermatopathology Laboratory Aurora Diagnostics Monroe MI US
| |
Collapse
|
52
|
Xie K, Xie H, Su G, Chen D, Yu B, Mao X, Huang Z, Yu J, Luo J, Zheng P, Luo Y, He J. β-Defensin 129 Attenuates Bacterial Endotoxin-Induced Inflammation and Intestinal Epithelial Cell Apoptosis. Front Immunol 2019; 10:2333. [PMID: 31636641 PMCID: PMC6787771 DOI: 10.3389/fimmu.2019.02333] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Defensins have attracted considerable research interest worldwide because of their potential to serve as a substitute for antibiotics. In this study, we characterized a novel porcine β-defensin (pBD129) and explored its role in alleviating bacterial endotoxin-induced inflammation and intestinal epithelium atrophy. The pBD129 gene was cloned and expressed in Escherichia coli. A recombinant pBD129 protein was also purified. To explore its role in alleviating the endotoxin-induced inflammation, mice, with or without lipopolysaccharide (LPS) challenge were treated by pBD129 at different doses. The recombinant pBD129 showed significant antimicrobial activities against the E. coli and Streptococcus with a minimal inhibitory concentration (MICs) of 32 μg/mL. Hemolytic assays showed that the pBD129 had no detrimental impact on cell viabilities. Interestingly, we found that pBD129 attenuated LPS-induced inflammatory responses by decreasing serum concentrations of inflammatory cytokines, such as the IL-1β, IL-6, and TNF-α (P < 0.05). Moreover, pBD129 elevated the intestinal villus height (P < 0.05) and enhanced the expression and localization of the major tight junction-associated protein ZO-1 in LPS-challenged mice. Additionally, pDB129 at a high dose significantly decreased serum diamine oxidase (DAO) concentration (P < 0.05) and reduced intestinal epithelium cell apoptosis (P < 0.05) in LPS-challenged mice. Importantly, pBD129 elevated the expression level of Bcl-2-associated death promoter (Bcl-2), but down-regulated the expression levels of apoptosis-related genes such as the B-cell lymphoma-2-associated X protein (Bax), BH3-interacting domain death agonist (Bid), cysteinyl aspartate-specific proteinase-3 (Caspase-3), and caspase-9 in the intestinal mucosa (P < 0.05). These results suggested a novel function of the mammalian defensins, and the anti-bacterial and anti-inflammatory properties of pBD129 may allow it a potential substitute for conventionally used antibiotics or drugs.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hongmei Xie
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Guoqi Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
53
|
Zhang L, Gui S, Liang Z, Liu A, Chen Z, Tang Y, Xiao M, Chu F, Liu W, Jin X, Zhu J, Lu X. Musca domestica Cecropin (Mdc) Alleviates Salmonella typhimurium-Induced Colonic Mucosal Barrier Impairment: Associating With Inflammatory and Oxidative Stress Response, Tight Junction as Well as Intestinal Flora. Front Microbiol 2019; 10:522. [PMID: 30930887 PMCID: PMC6428779 DOI: 10.3389/fmicb.2019.00522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella typhimurium, a Gram-negative food-borne pathogen, induces impairment in intestinal mucosal barrier function frequently. The injury is related to many factors such as inflammation, oxidative stress, tight junctions and flora changes in the host intestine. Musca domestica cecropin (Mdc), a novel antimicrobial peptide containing 40 amino acids, has potential antibacterial, anti-inflammatory, and immunological functions. It remains unclear exactly whether and how Mdc reduces colonic mucosal barrier damage caused by S. typhimurium. Twenty four 6-week-old male mice were divided into four groups: normal group, control group (S. typhimurium-challenged), Mdc group, and ceftriaxone sodium group (Cs group). HE staining and transmission electron microscopy (TEM) were performed to observe the morphology of the colon tissues. Bacterial load of S. typhimurium in colon, liver and spleen were determined by bacterial plate counting. Inflammatory factors were detected by enzyme linked immunosorbent assay (ELISA). Oxidative stress levels in the colon tissues were also analyzed. Immunofluorescence analysis, RT-PCR, and Western blot were carried out to examine the levels of tight junction and inflammatory proteins. The intestinal microbiota composition was assessed via 16s rDNA sequencing. We successfully built and evaluated an S. typhimurium-infection model in mice. Morphology and microcosmic change of the colon tissues confirmed the protective qualities of Mdc. Mdc could inhibit colonic inflammation and oxidative stress. Tight junctions were improved significantly after Mdc administration. Interestingly, Mdc ameliorated intestinal flora imbalance, which may be related to the improvement of tight junction. Our results shed a new light on protective effects and mechanism of the antimicrobial peptide Mdc on colonic mucosal barrier damage caused by S. typhimurium infection. Mdc is expected to be an important candidate for S. typhimurium infection treatment.
Collapse
Affiliation(s)
- Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhaobo Liang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Along Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaoxia Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Tang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fujiang Chu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayong Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
54
|
Meade KG, O'Farrelly C. β-Defensins: Farming the Microbiome for Homeostasis and Health. Front Immunol 2019; 9:3072. [PMID: 30761155 PMCID: PMC6362941 DOI: 10.3389/fimmu.2018.03072] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse commensal populations are now regarded as key to physiological homeostasis and protection against disease. Although bacteria are the most abundant component of microbiomes, and the most intensively studied, the microbiome also consists of viral, fungal, archael, and protozoan communities, about which comparatively little is known. Host-defense peptides (HDPs), originally described as antimicrobial, now have renewed significance as curators of the pervasive microbial loads required to maintain homeostasis and manage microbiome diversity. Harnessing HDP biology to transition away from non-selective, antibiotic-mediated treatments for clearance of microbes is a new paradigm, particularly in veterinary medicine. One family of evolutionarily conserved HDPs, β-defensins which are produced in diverse combinations by epithelial and immune cell populations, are multifunctional cationic peptides which manage the cross-talk between host and microbes and maintain a healthy yet dynamic equilibrium across mucosal systems. They are therefore key gatekeepers to the oral, respiratory, reproductive and enteric tissues, preventing pathogen-associated inflammation and disease and maintaining physiological normality. Expansions in the number of genes encoding these natural antibiotics have been described in the genomes of some species, the functional significance of which has only recently being appreciated. β-defensin expression has been documented pre-birth and disruptions in their regulation may play a role in maladaptive neonatal immune programming, thereby contributing to subsequent disease susceptibility. Here we review recent evidence supporting a critical role for β-defensins as farmers of the pervasive and complex prokaryotic ecosystems that occupy all body surfaces and cavities. We also share some new perspectives on the role of β-defensins as sensors of homeostasis and the immune vanguard particularly at sites of immunological privilege where inflammation is attenuated.
Collapse
Affiliation(s)
- Kieran G. Meade
- Animal and Bioscience Research Centre, Teagasc, Grange, Ireland
| | - Cliona O'Farrelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
55
|
Klimov E, Tretiakov A, Rudko O, Soboleva A, Danilin I, Korsunskaya I, Sobolev V. Psychodermatology: a molecular link between psoriasis and anxiety disorder. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2018. [DOI: 10.15570/actaapa.2018.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
56
|
|
57
|
Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018; 25:111-117. [DOI: 10.1111/srt.12626] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Herman
- Faculty of Health SciencesWarsaw College of Health and Engineering Warsaw Poland
| | - Andrzej P. Herman
- Department of Genetic EngineeringThe Kielanowski Institute of Animal Physiology and NutritionPolish Academy of Sciences Jabłonna, Warsaw Poland
| |
Collapse
|
58
|
Zhai Z, Ni X, Jin C, Ren W, Li J, Deng J, Deng B, Yin Y. Cecropin A Modulates Tight Junction-Related Protein Expression and Enhances the Barrier Function of Porcine Intestinal Epithelial Cells by Suppressing the MEK/ERK Pathway. Int J Mol Sci 2018; 19:ijms19071941. [PMID: 30004434 PMCID: PMC6073479 DOI: 10.3390/ijms19071941] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) in humans and animals is associated with bacterial infection and intestinal barrier dysfunction. Cecropin A, an antimicrobial peptide, has antibacterial activity against pathogenic bacteria. However, the effect of cecropin A on intestinal barrier function and its related mechanisms is still unclear. Here, we used porcine jejunum epithelial cells (IPEC-J2) as a model to investigate the effect and mechanism of cecropin A on intestinal barrier function. We found that cecropin A reduced Escherichia coli (E. coli) adherence to IPEC-J2 cells and downregulated mRNA expression of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8). Furthermore, cecropin A elevated the transepithelial electrical resistance (TER) value while reducing the paracellular permeability of the IPEC-J2 cell monolayer barrier. Finally, by using Western blotting, immunofluorescence and pathway-specific antagonists, we demonstrated that cecropin A increased ZO-1, claudin-1 and occludin protein expression and regulated membrane distribution and F-actin polymerization by increasing CDX2 expression. We conclude that cecropin A enhances porcine intestinal epithelial cell barrier function by downregulating the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. We suggest that cecropin A has the potential to replace antibiotics in the treatment of IBD due to its antibacterial activity on gram-negative bacteria and its enhancement effect on intestinal barrier function.
Collapse
Affiliation(s)
- Zhenya Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Xiaojun Ni
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Chenglong Jin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Jie Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, Hunan, China.
| |
Collapse
|
59
|
Kim BE, Leung DYM. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:207-215. [PMID: 29676067 PMCID: PMC5911439 DOI: 10.4168/aair.2018.10.3.207] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
The epidermis contains epithelial cells, immune cells, and microbes which provides a physical and functional barrier to the protection of human skin. It plays critical roles in preventing environmental allergen penetration into the human body and responsing to microbial pathogens. Atopic dermatitis (AD) is the most common, complex chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Multiple factors, including immune dysregulation, filaggrin mutations, deficiency of antimicrobial peptides, and skin dysbiosis contribute to skin barrier defects. In the initial phase of AD, treatment with moisturizers improves skin barrier function and prevents the development of AD. With the progression of AD, effective topical and systemic therapies are needed to reduce immune pathway activation and general inflammation. Targeted microbiome therapy is also being developed to correct skin dysbiosis associated with AD. Improved identification and characterization of AD phenotypes and endotypes are required to optimize the precision medicine approach to AD.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
60
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
61
|
Raina M, Bates AM, Fischer CL, Progulske-Fox A, Abbasi T, Vali S, Brogden KA. Human beta defensin 3 alters matrix metalloproteinase production in human dendritic cells exposed to Porphyromonas gingivalis hemagglutinin B. J Periodontol 2018; 89:361-369. [PMID: 29543996 DOI: 10.1002/jper.17-0366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are zinc- or calcium-dependent proteinases involved in normal maintenance of extracellular matrix. When elevated, they contribute to the tissue destruction seen in periodontal disease. Recently, we found that human beta defensin 3 (HBD3), a cationic antimicrobial peptide, alters chemokine and proinflammatory cytokine responses in human myeloid dendritic cells exposed to Porphyromonas gingivalis hemagglutinin B (HagB). In this study, the hypotheses that HagB induces MMP production in dendritic cells and that HBD3 mixed with HagB prior to treatment alters HagB-induced MMP profiles were tested. METHODS Dendritic cells were exposed to 0.2 μM HagB alone and HagB + HBD3 (0.2 or 2.0 μM) mixtures. After 16 hours, concentrations of MMPs in cell culture media were determined with commercial multiplex fluorescent bead-based immunoassays. An integrated cell network was used to identify potential HagB-induced signaling pathways in dendritic cells leading to the production of MMPs. RESULTS 0.2 μM HagB induced MMP1, -2, -7, -9, and -12 responses in dendritic cells. 0.2 μM HBD3 enhanced the HagB-induced MMP7 response (P < 0.05) and 2.0 μM HBD3 attenuated HagB-induced MMP1, -7, and -9 responses (P < 0.05). The MMP12 response was not affected. In the predicted network, MMPs are produced via activation of multiple pathways. Signals converge to activate numerous transcription factors, which transcribe different MMPs. CONCLUSION HagB was an MMP stimulus and HBD3 was found to decrease HagB-induced MMP1, -7, and -9 responses in dendritic cells at 16 hours, an observation that suggests HBD3 can alter microbial antigen-induced production of MMPs.
Collapse
Affiliation(s)
- Monica Raina
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA
| | - Amber M Bates
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA
| | | | - Ann Progulske-Fox
- Center for Molecular Microbiology and Department of Oral Biology, University of Florida, Gainesville, FL
| | | | | | - Kim A Brogden
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA.,Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA
| |
Collapse
|
62
|
González-Mariscal L, Raya-Sandino A, González-González L, Hernández-Guzmán C. Relationship between G proteins coupled receptors and tight junctions. Tissue Barriers 2018; 6:e1414015. [PMID: 29420165 DOI: 10.1080/21688370.2017.1414015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) are sites of cell-cell adhesion, constituted by a cytoplasmic plaque of molecules linked to integral proteins that form a network of strands around epithelial and endothelial cells at the uppermost portion of the lateral membrane. TJs maintain plasma membrane polarity and form channels and barriers that regulate the transit of ions and molecules through the paracellular pathway. This structure that regulates traffic between the external milieu and the organism is affected in numerous pathological conditions and constitutes an important target for therapeutic intervention. Here, we describe how a wide array of G protein-coupled receptors that are activated by diverse stimuli including light, ions, hormones, peptides, lipids, nucleotides and proteases, signal through heterotrimeric G proteins, arrestins and kinases to regulate TJs present in the blood-brain barrier, the blood-retinal barrier, renal tubular cells, keratinocytes, lung and colon, and the slit diaphragm of the glomerulus.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Arturo Raya-Sandino
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Laura González-González
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Christian Hernández-Guzmán
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| |
Collapse
|
63
|
Kim BE, Goleva E, Hall CF, Park SH, Lee UH, Brauweiler AM, Streib JE, Richers BN, Kim G, Leung DYM. Skin Wound Healing Is Accelerated by a Lipid Mixture Representing Major Lipid Components of Chamaecyparis obtusa Plant Extract. J Invest Dermatol 2017; 138:1176-1186. [PMID: 29277539 DOI: 10.1016/j.jid.2017.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 10/19/2017] [Accepted: 11/07/2017] [Indexed: 01/13/2023]
Abstract
In chronic nonhealing wounds, the healing process is disrupted and wounds are often infected with bacteria. About 85% of lower extremity amputations in diabetes are attributed to deep infection of foot ulcers. Therefore, infection control is critical for wound care. In this study, we analyzed lipid composition of Chamaecyparis obtusa extract, and we describe the wound-healing properties of its combination of 10 major lipid components. A 10-lipid mixture up-regulated HBD-3 and LL-37 through the olfactory receptor 2AT4 and induced phosphorylation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinases in primary human keratinocytes. In addition, the 10-lipid mixture had direct bactericidal effects against Staphylococcus aureus and Streptococcus pyogenes and protected against staphylococcal α-toxin-induced keratinocyte cell death. In an animal model, the 10-lipid mixture accelerated skin wound healing and was also effective in healing wounds superinfected with S. aureus. We suggest that the 10-lipid mixture, because of its wound-healing and antimicrobial properties, can be beneficial for wound treatment.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Sang Hyun Park
- Department of Urology, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Korea
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Anne M Brauweiler
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Joanne E Streib
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | | | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA; Department of Pediatrics, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
64
|
Red ginseng extracts attenuate skin inflammation in atopic dermatitis through p70 ribosomal protein S6 kinase activation. J Pharmacol Sci 2017; 136:9-15. [PMID: 29274665 DOI: 10.1016/j.jphs.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 01/10/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease with increased immunoglobulin E (IgE) levels. Activation of the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) signaling is known to occur in the inflammatory regions of AD skin. We previously demonstrated that red ginseng extract (RGE), as an anti-inflammatory agent, had potential for treating AD. However, it is still unclear whether RGE inhibits mTOR/p70S6K signaling. Thus, we examined the anti-inflammatory effects of RGE on IgE or interferon-γ (IFN-γ) induced signaling pathways. In KU812 human basophils, activation of Fcε receptor type Iα (FCεRI), also known as the high affinity IgE receptor, induced phosphorylation of both mTOR and p70S6K. Moreover, levels of phosphorylated p70S6K (p-p70S6K), but not p-mTOR, were decreased by RGE. RGE also decreased p-p70S6K levels in IFN-γ-stimulated human keratinocytes, suppressing the IFN-γ induced increase in levels of C-C chemokine ligand 2 mRNA. Interestingly, the increased p70S6K phosphorylation in skin lesions of AD model mice was attenuated by RGE treatment. In conclusion, RGE is a potential therapy against inflammatory responses involving the p70S6K signaling pathway.
Collapse
|
65
|
Chieosilapatham P, Ogawa H, Niyonsaba F. Current insights into the role of human β-defensins in atopic dermatitis. Clin Exp Immunol 2017; 190:155-166. [PMID: 28708318 DOI: 10.1111/cei.13013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Anti-microbial peptides or host defence peptides are small molecules that display both anti-microbial activities and complex immunomodulatory functions to protect against various diseases. Among these peptides, the human β-defensins (hBDs) are localized primarily in epithelial surfaces, including those of the skin, where they contribute to protective barriers. In atopic dermatitis skin lesions, altered skin barrier and immune dysregulation are believed to be responsible for reduced hBD synthesis. Impaired hBD expression in the skin is reportedly the leading cause of increased susceptibility to bacterial and viral infection in patients with atopic dermatitis. Although hBDs have considerable beneficial effects as anti-microbial agents and immunomodulators and may ameliorate atopic dermatitis clinically, recent evidence has also suggested the negative effects of hBDs in atopic dermatitis development. In the current review, we provide an overview of the regulation of hBDs and their role in the pathogenesis of atopic dermatitis. The efforts to utilize these molecules in clinical applications are also described.
Collapse
Affiliation(s)
- P Chieosilapatham
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - H Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - F Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| |
Collapse
|
66
|
Bäsler K, Galliano MF, Bergmann S, Rohde H, Wladykowski E, Vidal-Y-Sy S, Guiraud B, Houdek P, Schüring G, Volksdorf T, Caruana A, Bessou-Touya S, Schneider SW, Duplan H, Brandner JM. Biphasic influence of Staphylococcus aureus on human epidermal tight junctions. Ann N Y Acad Sci 2017; 1405:53-70. [PMID: 28753223 DOI: 10.1111/nyas.13418] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
Bacterial infections (e.g., with Staphylococcus aureus) are serious problems in skin with a compromised barrier, such as in patients with atopic dermatitis. Previously, it was shown that tight junction (TJ) proteins are influenced by staphylococcal infection, and TJ function is impaired after infection of the keratinocyte cell line HaCaT. However, functional studies in cells or models more similar to human skin are missing. Therefore, we investigated bacterial colonialization and infection with live S. aureus in primary human keratinocytes and reconstructed human epidermis (RHE). We show that short-term inoculation results in increased TJ barrier function-which could not be seen in HaCaT cells-hinting at an early protective effect. This is accompanied by occludin phosphorylation and sustained localization of occludin and claudin-4 at cell membranes. Long-term incubation resulted in decreased presence of claudin-1 and claudin-4 at cell membranes and decreased TJ barrier function. The agr regulon of S. aureus plays a role in the increasing but not in the decreasing effect. Proinflammatory cytokines, which are produced as a result of S. aureus inoculation, influence both phases. In summary, we show here that S. aureus can have short-term promoting effects on the TJ barrier, while in the long term it results in disturbance of TJs.
Collapse
Affiliation(s)
- Katja Bäsler
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sophia Bergmann
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ewa Wladykowski
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Pia Houdek
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Germar Schüring
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Volksdorf
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Stefan W Schneider
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johanna M Brandner
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
67
|
Umehara Y, Kamata Y, Tominaga M, Niyonsaba F, Ogawa H, Takamori K. Antimicrobial peptides human LL-37 and β-defensin-3 modulate the expression of nerve elongation factors in human epidermal keratinocytes. J Dermatol Sci 2017; 88:365-367. [PMID: 28843623 DOI: 10.1016/j.jdermsci.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Yoshie Umehara
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Yayoi Kamata
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Mitsutoshi Tominaga
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Faculty of International Liberal Arts, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan; Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan.
| |
Collapse
|
68
|
Winge MCG, Marinkovich MP. Epidermal activation of the small GTPase Rac1 in psoriasis pathogenesis. Small GTPases 2017; 10:163-168. [PMID: 28055293 DOI: 10.1080/21541248.2016.1273861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The small GTPase Ras-related C3 botulinum toxin substrate 1 (RAC1) plays a central role in skin homeostasis, including barrier function, wound healing and inflammatory responses. Psoriasis is a common skin disease characterized by deregulation of these functions, and affected skin exhibit keratinocyte hyperproliferation, inflammation and immune cell infiltration. Although psoriasis is often triggered by environmental stimulus, there is a strong genetic association with genes expressed in both immune cells and keratinocytes, of which several are linked to Rac1 signaling. Rac1 is highly active in human psoriatic lesional skin and keratinocytes, and keratinocyte-specific overexpression of an activated mutant of Rac1, Rac1V12, in a transgenic mouse model closely mimics the presentation of human psoriasis. Both Rac1 activation in keratinocytes and immune derived stimulus are required to drive psoriasiform signaling in transgenic mouse and human xenograft models of psoriasis. Therefore, understanding how increased Rac1 activation in psoriatic epidermis is regulated is central to understanding how the abnormal crosstalk between keratinocytes and immune cells is maintained.
Collapse
Affiliation(s)
- Mårten C G Winge
- a Program in Epithelial Biology , Stanford University School of Medicine , Stanford , CA , USA
| | - M Peter Marinkovich
- a Program in Epithelial Biology , Stanford University School of Medicine , Stanford , CA , USA.,b Dermatology Service , Veterans Affairs Medical Center , Palo Alto , CA , USA
| |
Collapse
|
69
|
Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 2017; 26:989-998. [PMID: 28191680 DOI: 10.1111/exd.13314] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
Host defense peptides/proteins (HDPs), also known as antimicrobial peptides/proteins (AMPs), are key molecules in the cutaneous innate immune system. AMPs/HDPs historically exhibit broad-spectrum killing activity against bacteria, enveloped viruses, fungi and several parasites. Recently, AMPs/HDPs were shown to have important biological functions, including inducing cell proliferation, migration and differentiation; regulating inflammatory responses; controlling the production of various cytokines/chemokines; promoting wound healing; and improving skin barrier function. Despite the fact that AMPs/HDPs protect our body, several studies have hypothesized that these molecules actively contribute to the pathogenesis of various skin diseases. For example, AMPs/HDPs play crucial roles in the pathological processes of psoriasis, atopic dermatitis, rosacea, acne vulgaris, systemic lupus erythematosus and systemic sclerosis. Thus, AMPs/HDPs may be a double-edged sword, promoting cutaneous immunity while simultaneously initiating the pathogenesis of some skin disorders. This review will describe the most common skin-derived AMPs/HDPs (defensins, cathelicidins, S100 proteins, ribonucleases and dermcidin) and discuss the biology and both the positive and negative aspects of these AMPs/HDPs in skin inflammatory/infectious diseases. Understanding the regulation, functions and mechanisms of AMPs/HDPs may offer new therapeutic opportunities in the treatment of various skin disorders.
Collapse
Affiliation(s)
- François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Chanisa Kiatsurayanon
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Medical Services, Institute of Dermatology, Ministry of Public Health, Bangkok, Thailand
| | - Panjit Chieosilapatham
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
70
|
Yi H, Hu W, Chen S, Lu Z, Wang Y. Cathelicidin-WA Improves Intestinal Epithelial Barrier Function and Enhances Host Defense against Enterohemorrhagic Escherichia coli O157:H7 Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:1696-1705. [PMID: 28062699 DOI: 10.4049/jimmunol.1601221] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/06/2016] [Indexed: 01/28/2023]
Abstract
Impaired epithelial barrier function disrupts immune homeostasis and increases inflammation in intestines, leading to many intestinal diseases. Cathelicidin peptides suppress intestinal inflammation and improve intestinal epithelial barrier function independently of their antimicrobial activity. In this study, we investigated the effects of Cathelicidin-WA (CWA) on intestinal epithelial barrier function, as well as the underlying mechanism, by using enterohemorrhagic Escherichia coli (EHEC)-infected mice and intestinal epithelial cells. The results showed that CWA attenuated EHEC-induced clinical symptoms and intestinal colitis, as did enrofloxacin (Enro). CWA decreased IL-6 production in the serum, jejunum, and colon of EHEC-infected mice. Additionally, CWA alleviated the EHEC-induced disruption of mucin-2 and goblet cells in the intestine. Interestingly, CWA increased the mucus layer thickness, which was associated with increasing expression of trefoil factor 3, in the jejunum of EHEC-infected mice. CWA increased the expression of tight junction proteins in the jejunum of EHEC-infected mice. Using intestinal epithelial cells and a Rac1 inhibitor in vitro, we demonstrated that the CWA-mediated increases in the tight junction proteins might depend on the Rac1 pathway. Furthermore, CWA improved the microbiota and short-chain fatty acid concentrations in the cecum of EHEC-infected mice. Although Enro and CWA had similar effects on intestinal inflammation, CWA was superior to Enro with regard to improving intestinal epithelial barrier and microbiota in the intestine. In conclusion, CWA attenuated EHEC-induced inflammation, intestinal epithelial barrier damage, and microbiota disruption in the intestine of mice, suggesting that CWA may be an effective therapy for many intestinal diseases.
Collapse
Affiliation(s)
- Hongbo Yi
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; and.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Wangyang Hu
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Shan Chen
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Zeqing Lu
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; and
| |
Collapse
|
71
|
Wang B, McHugh BJ, Qureshi A, Campopiano DJ, Clarke DJ, Fitzgerald JR, Dorin JR, Weller R, Davidson DJ. IL-1β-Induced Protection of Keratinocytes against Staphylococcus aureus-Secreted Proteases Is Mediated by Human β-Defensin 2. J Invest Dermatol 2017; 137:95-105. [PMID: 27702565 PMCID: PMC5176011 DOI: 10.1016/j.jid.2016.08.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that results in significant morbidity. A hallmark of AD is disruption of the critical barrier function of upper epidermal layers, causatively linked to environmental stimuli, genetics, and infection, and a critical current target for the development of new therapeutic and prophylactic interventions. Staphylococcus aureus is an AD-associated pathogen producing virulence factors that induce skin barrier disruption in vivo and contribute to AD pathogenesis. We show, using immortalized and primary keratinocytes, that S. aureus protease SspA/V8 is the dominant secreted factor (in laboratory and AD clinical strains of S. aureus) inducing barrier integrity impairment and tight junction damage. V8-induced integrity damage was inhibited by an IL-1β-mediated mechanism, independent of effects on claudin-1. Induction of keratinocyte expression of the antimicrobial/host defense peptide human β-defensin 2 (hBD2) was found to be the mechanism underpinning this protective effect. Endogenous hBD2 expression was required and sufficient for protection against V8 protease-mediated integrity damage, and exogenous application of hBD2 was protective. This modulatory property of hBD2, unrelated to antibacterial effects, gives new significance to the defective induction of hBD2 in the barrier-defective skin lesions of AD and indicates therapeutic potential.
Collapse
Key Words
- ad, atopic dermatitis
- hbd, human β-defensin
- hdp, host defense peptide
- hpek, human primary epidermal keratinocyte
- lps, lipopolysaccharide
- lta, lipoteichoic acid
- oe, overexpressing
- shrna, small hairpin rna
- ssp, staphylococcus aureus serine protease
- tj, tight junction
- vo, vector only
Collapse
Affiliation(s)
- Bingjie Wang
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Brian J McHugh
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ayub Qureshi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | - David J Clarke
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Julia R Dorin
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Richard Weller
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Donald J Davidson
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
72
|
Bäsler K, Brandner JM. Tight junctions in skin inflammation. Pflugers Arch 2016; 469:3-14. [DOI: 10.1007/s00424-016-1903-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
73
|
Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases. Clin Exp Allergy 2016; 46:1522-1530. [PMID: 27790779 DOI: 10.1111/cea.12843] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs), also referred to as host defence peptides (HDPs), comprise a large family of small molecules broadly distributed throughout the animal and plant kingdom, historically serving as natural antibiotics. In mammals, there are two major families of AMPs/HDPs, the defensins and the cathelicidins. These peptides have evolved to protect against a wide range of infections from bacteria, viruses, fungi and some parasites. However, in addition to their broad-spectrum killing activities, AMPs/HDPs also possess various biological functions. They activate a variety of cell types, such as keratinocytes, airway epithelial cells and mast cells, among others, and regulate cytokine/chemokine production, cell migration, proliferation, differentiation, angiogenesis, the wound healing process and maintenance of the skin barrier function. Recently, it has become clear that alterations in the level of AMPs/HDPs are associated with the initiation and development of various inflammatory and allergic diseases. In this review, we will discuss the regulation and functions of human β-defensins and outline the current evidence supporting the role of these peptides in the pathogenesis of allergic diseases, including atopic dermatitis, allergic rhinitis, asthma and chronic rhinosinusitis. Understanding the functions and mechanisms of human β-defensins may aid in the development of novel therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- F Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - C Kiatsurayanon
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - H Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
74
|
The role of tight junctions in skin barrier function and dermal absorption. J Control Release 2016; 242:105-118. [DOI: 10.1016/j.jconrel.2016.08.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
|
75
|
Li L, Bian T, Lyu J, Cui D, Lei L, Yan F. Human β-defensin-3 alleviates the progression of atherosclerosis accelerated by Porphyromonas gingivalis lipopolysaccharide. Int Immunopharmacol 2016; 38:204-13. [DOI: 10.1016/j.intimp.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
|
76
|
Paller AS, Renert-Yuval Y, Suprun M, Esaki H, Oliva M, Huynh TN, Ungar B, Kunjravia N, Friedland R, Peng X, Zheng X, Estrada YD, Krueger JG, Choate KA, Suárez-Fariñas M, Guttman-Yassky E. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol 2016; 139:152-165. [PMID: 27554821 DOI: 10.1016/j.jaci.2016.07.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/18/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The ichthyoses are rare genetic disorders associated with generalized scaling, erythema, and epidermal barrier impairment. Pathogenesis-based therapy is largely lacking because the underlying molecular basis is poorly understood. OBJECTIVE We sought to characterize molecularly cutaneous inflammation and its correlation with clinical and barrier characteristics. METHODS We analyzed biopsy specimens from 21 genotyped patients with ichthyosis (congenital ichthyosiform erythroderma, n = 6; lamellar ichthyosis, n = 7; epidermolytic ichthyosis, n = 5; and Netherton syndrome, n = 3) using immunohistochemistry and RT-PCR and compared them with specimens from healthy control subjects, patients with atopic dermatitis (AD), and patients with psoriasis. Clinical measures included the Ichthyosis Area Severity Index (IASI), which integrates erythema (IASI-E) and scaling (IASI-S); transepidermal water loss; and pruritus. RESULTS Ichthyosis samples showed increased epidermal hyperplasia (increased thickness and keratin 16 expression) and T-cell and dendritic cell infiltrates. Increases of general inflammatory (IL-2), innate (IL-1β), and some TH1/interferon (IFN-γ) markers in patients with ichthyosis were comparable with those in patients with psoriasis or AD. TNF-α levels in patients with ichthyosis were increased only in those with Netherton syndrome but were much lower than in patients with psoriasis and those with AD. Expression of TH2 cytokines (IL-13 and IL-31) was similar to that seen in control subjects. The striking induction of IL-17-related genes or markers synergistically induced by IL-17 and TNF-α (IL-17A/C, IL-19, CXCL1, PI3, CCL20, and IL36G; P < .05) in patients with ichthyosis was similar to that seen in patients with psoriasis. IASI and IASI-E scores strongly correlated with IL-17A (r = 0.74, P < .001) and IL-17/TNF-synergistic/additive gene expression. These markers also significantly correlated with transepidermal water loss, suggesting a link between the barrier defect and inflammation in patients with ichthyosis. CONCLUSION Our data associate a shared TH17/IL-23 immune fingerprint with the major orphan forms of ichthyosis and raise the possibility of IL-17-targeting strategies.
Collapse
Affiliation(s)
- Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Suprun
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hitokazu Esaki
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Margeaux Oliva
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thy Nhat Huynh
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Benjamin Ungar
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Rivka Friedland
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Xiangyu Peng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James G Krueger
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Mayte Suárez-Fariñas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| |
Collapse
|
77
|
Kiatsurayanon C, Niyonsaba F, Chieosilapatham P, Okumura K, Ikeda S, Ogawa H. Angiogenic peptide (AG)-30/5C activates human keratinocytes to produce cytokines/chemokines and to migrate and proliferate via MrgX receptors. J Dermatol Sci 2016; 83:190-9. [PMID: 27237787 DOI: 10.1016/j.jdermsci.2016.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/24/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND In addition to their antimicrobial activities, antimicrobial peptides, also known as host defense peptides (HDPs) activate keratinocytes; promote wound healing; and improve the skin barrier. AG-30/5C is a novel angiogenic HDP that activates various functions of fibroblasts and endothelial cells, including cytokine/chemokine production and wound healing. OBJECTIVES To investigate whether AG-30/5C activates human keratinocytes and to examine the underlying mechanisms. METHODS Production of cytokines/chemokines was assessed by ELISA. Expression of Mas-related G-protein coupled receptors X (MrgXs) in keratinocytes was determined by real-time PCR and Western blot. MAPK and NF-κB activation was analysed by Western blot. Cell migration was assessed by chemotaxis microchamber and in vitro wound closure assay, whereas cell proliferation was analysed using an XTT assay. RESULTS We found that AG-30/5C was more efficient than its parent peptide AG-30 in increasing the production of various cytokines/chemokines and promoting keratinocyte migration and proliferation. Furthermore, MrgX3 and MrgX4 receptors were constitutively expressed in keratinocytes at higher levels than MrgX1 and MrgX2, and were up-regulated upon stimulation with TLR ligands. Because MrgX3 and MrgX4 siRNAs suppressed AG-30/5C-mediated cytokine/chemokine production, keratinocyte migration and proliferation, we propose that AG-30/5C utilizes these MrgXs to stimulate keratinocytes. In addition, AG-30/5C-induced activation of keratinocytes was controlled by MAPK and NF-κB pathways, as evidenced by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors. Indeed, we confirmed that AG-30/5C enhanced phosphorylation of MAPKs and IκB. CONCLUSIONS Our findings provide novel evidence that AG-30/5C may be a useful therapeutic agent for wound healing by activating human keratinocytes.
Collapse
Affiliation(s)
- Chanisa Kiatsurayanon
- Atopy (Allergy) Research Center, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| | - Panjit Chieosilapatham
- Atopy (Allergy) Research Center, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
78
|
Bogaczewicz J, Malinowska K, Sysa-Jedrzejowska A, Wozniacka A. Medium-dose ultraviolet A1 phototherapy improves SCORAD index and increases mRNA expression of interleukin-4 without direct effect on human β defensin-1, interleukin-10, and interleukin-31. Int J Dermatol 2016; 55:e380-5. [PMID: 26748443 DOI: 10.1111/ijd.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Effectiveness of ultraviolet (UV)A1 in flares of atopic dermatitis (AD) is thought to influence the expression of cytokines involved in its pathogenesis. The aim of the study was to investigate whether mRNA expression of human β defensin-1 (hβD-1) correlates with that of interleukin (IL)-4, IL-10, and IL-31 in skin lesions in AD before and after UVA1 phototherapy, to determine whether UVA1 decreases the expression of the aforementioned mediators, and to confirm whether changes in mRNA expression correspond with the clinical efficacy of UVA1. METHODS Twenty-five patients with AD underwent medium-dose UVA1 phototherapy. Before and after UVA1, biopsies from acute skin lesions were studied using reverse transcription and real-time polymerase chain reaction. RESULTS Levels of mRNA hβD-1 correlated with those of IL-10 and IL-31, levels of IL-4 mRNA correlated with those of IL-10 and IL-31, and IL-10 expression correlated with that of IL-31, both before and after UVA1. Phototherapy with UVA1 improved SCORing of Atopic Dermatitis (SCORAD) values, decreased pruritus, and increased expression of IL-4. After UVA1, no difference was found in the mRNA expression of other molecules. The SCORAD index did not correlate with the expression of any examined mRNA either before or after UVA1. CONCLUSIONS hβD-1, IL-4, IL-10, and IL-31 are expressed in acute skin lesions in AD, and their levels correlate with each other. UVA1 improves SCORAD and pruritus and increases the expression of IL-4 without direct effect on other molecules.
Collapse
Affiliation(s)
- Jaroslaw Bogaczewicz
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | - Karolina Malinowska
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | | | - Anna Wozniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
79
|
Robinson K, Deng Z, Hou Y, Zhang G. Regulation of the Intestinal Barrier Function by Host Defense Peptides. Front Vet Sci 2015; 2:57. [PMID: 26664984 PMCID: PMC4672242 DOI: 10.3389/fvets.2015.00057] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022] Open
Abstract
Intestinal barrier function is achieved primarily through regulating the synthesis of mucins and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and animal performance. An aberrant expression of TJ proteins results in increased paracellular permeability, leading to intestinal and systemic disorders. As an essential component of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolution, endotoxin neutralization, wound healing, and the development of adaptive immune response. Accumulating evidence has also indicated an emerging role of HDPs in barrier function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance mucosal barrier function by directly inducing the expression of multiple mucins and TJ proteins. Consistently, dietary supplementation of HDPs often leads to an improvement in intestinal morphology, production performance, and feed efficiency in livestock animals. This review summarizes current advances on the regulation of epithelial integrity and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may have potential to improve intestinal barrier function and animal health and productivity.
Collapse
Affiliation(s)
- Kelsy Robinson
- Department of Animal Science, Oklahoma State University , Stillwater, OK , USA
| | - Zhuo Deng
- Department of Animal Science, Oklahoma State University , Stillwater, OK , USA
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University , Wuhan , China
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University , Stillwater, OK , USA ; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University , Wuhan , China
| |
Collapse
|
80
|
Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. Food Chem Toxicol 2015; 86:245-52. [PMID: 26505656 DOI: 10.1016/j.fct.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
Abstract
Cytotoxicity of ochratoxin A (OTA) was evaluated using the MTS assay, and membrane integrity was measured using transepithelial electrical resistance (TEER). A transwell system was used to investigate the effect of OTA on the expression of the CYP450 (1A1, 2A6, 2B6, 3A4 and 3A5), NAT2, COX-2, LOX-5, and MRP2 genes in Caco-2 and HepG2 cells. TEER decreased by a mean of 63.2% after 24 h in Caco-2 differentiated cells without inducing cell detachment; revealing damage to the intestinal epithelial cell tight junction proteins and an increase in cell permeability. Gene expression analysis showed that modulation of gene expression by OTA was higher in Caco-2 cells than in HepG2 cells, and generally, the duration of exposure to OTA had a more significant effect than the OTA dose. A general OTA down-regulation effect was observed in Caco-2 cells, in contrast with the down- and up-regulation observed in HepG2 cells. In Caco-2 cells, CYP1A1 was the gene with the highest regulation, followed by CYP3A4 and CYP3A5. Conversely, in HepG2 cells, CYP2B6 was highly regulated at 3 and 12 h compared to the other cytochromes; CYP1A1 was slightly modulated during the first 12 h, but an overexpression was observed at 24 h. Our data support the involvement of the COX-2 and 5-LOX genes in liver metabolism of OTA. On the basis of the gene expression analysis, the results suggest a possible impairment in OTA secretion at the intestinal and hepatic level due to MRP2 repression. In addition, we provide evidence of the effect of OTA on NAT2 gene expression, which had not been reported before.
Collapse
|
81
|
Valere K, Rapista A, Eugenin E, Lu W, Chang TL. Human Alpha-Defensin HNP1 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated Enhancement of HIV Transmission. Viral Immunol 2015; 28:609-15. [PMID: 26379091 DOI: 10.1089/vim.2014.0137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alpha-defensins, including human neutrophil peptides 1-3 (HNP1-3) and human defensin 5 (HD5), are elevated at the genital mucosa in individuals with sexually transmitted infections (STIs). The presence of STIs is associated with an increased risk of human immunodeficiency virus (HIV) transmission, suggesting there may be a role for defensins in early events of HIV transmission. HD5 has been demonstrated to contribute to STI-mediated increased HIV infectivity in vitro. HNPs exhibit anti-HIV activity in vitro. However, increased levels of HNPs have been associated with enhanced HIV acquisition and higher viral load in breast milk. This study found that HNP1, but not HD5, significantly disrupted epithelial integrity and promoted HIV traversal of epithelial barriers. Linear HNP1 with the same charges did not affect epithelial permeability, indicating that the observed effect of HNP1 on the epithelial barrier was structure dependent. These results suggest a role for HNP1 in STI-mediated enhancement of HIV transmission.
Collapse
Affiliation(s)
- Kimyata Valere
- 1 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey , New Jersey Medical School, Newark, New Jersey
| | - Aprille Rapista
- 2 Public Health Research Institute, Rutgers, The State University of New Jersey , New Jersey Medical School, Newark, New Jersey
| | - Eliseo Eugenin
- 1 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey , New Jersey Medical School, Newark, New Jersey.,2 Public Health Research Institute, Rutgers, The State University of New Jersey , New Jersey Medical School, Newark, New Jersey
| | - Wuyuan Lu
- 3 Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Theresa L Chang
- 1 Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey , New Jersey Medical School, Newark, New Jersey.,2 Public Health Research Institute, Rutgers, The State University of New Jersey , New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
82
|
Leelakanok N, Fischer CL, Bates AM, Guthmiller JM, Johnson GK, Salem AK, Brogden KA, Brogden NK. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions. Toxicol Lett 2015; 239:90-6. [PMID: 26367466 DOI: 10.1016/j.toxlet.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/25/2015] [Accepted: 09/09/2015] [Indexed: 01/19/2023]
Abstract
Human β-defensin 3 (HBD3) is a prominent host defense peptide. In our recent work, we observed that HBD3 modulates pro-inflammatory agonist-induced chemokine and cytokine responses in human myeloid dendritic cells (DCs), often at 20.0 μM concentrations. Since HBD3 can be cytotoxic in some circumstances, it is necessary to assess its cytotoxicity for DCs, normal human epidermal keratinocytes (NHEKs), human telomerase reverse transcriptase (hTERT) keratinocytes, and primary oral gingival epithelial (GE) keratinocytes in different cell culture conditions. Cells, in serum free media with resazurin and in complete media with 10% fetal bovine serum and resazurin, were incubated with 5, 10, 20, and 40 μM HBD3. Cytotoxicity was determined by measuring metabolic conversion of resazurin to resorufin. The lethal dose 50 (LD50, mean μM±Std Err) values were determined from the median fluorescent intensities of test concentrations compared to live and killed cell controls. The LD50 value range of HBD3 was 18.2-35.9 μM in serum-free media for DCs, NHEKs, hTERT keratinocytes, and GE keratinocytes, and >40.0 μM in complete media. Thus, HBD3 was cytotoxic at higher concentrations, which must be considered in future studies of HBD3-modulated chemokine and cytokine responses in vitro.
Collapse
Affiliation(s)
- Nattawut Leelakanok
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Carol L Fischer
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Amber M Bates
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Janet M Guthmiller
- College of Dentistry, The University of Nebraska Medical Center, Lincoln, NE 68583, USA.
| | - Georgia K Johnson
- Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Kim A Brogden
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA; Department of Periodontics, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Nicole K Brogden
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
83
|
Sun R, Celli A, Crumrine D, Hupe M, Adame LC, Pennypacker SD, Park K, Uchida Y, Feingold KR, Elias PM, Ilic D, Mauro TM. Lowered humidity produces human epidermal equivalents with enhanced barrier properties. Tissue Eng Part C Methods 2015; 21:15-22. [PMID: 24803151 DOI: 10.1089/ten.tec.2014.0065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multilayered human keratinocyte cultures increasingly are used to model human epidermis. Until now, studies utilizing human epidermal equivalents (HEEs) have been limited because previous preparations do not establish a normal epidermal permeability barrier. In this report, we show that reducing environmental humidity to 50% relative humidity yields HEEs that closely match human postnatal epidermis and have enhanced repair of the permeability barrier. These cultures display low transepidermal water loss and possess a calcium and pH gradient that resembles those seen in human epidermis. These cultures upregulate glucosylceramide synthase and make normal-appearing lipid lamellar bilayers. The epidermal permeability barrier of these cultures can be perturbed, using the identical tools previously described for human skin, and recover in the same time course seen during in vivo barrier recovery. These cultures will be useful for basic and applied studies on epidermal barrier function.
Collapse
Affiliation(s)
- Richard Sun
- 1 Department of Dermatology, San Francisco Veterans Administration Medical Center , San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Brandner JM, Zorn-Kruppa M, Yoshida T, Moll I, Beck LA, De Benedetto A. Epidermal tight junctions in health and disease. Tissue Barriers 2015; 3:e974451. [PMID: 25838981 DOI: 10.4161/21688370.2014.974451] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/04/2014] [Indexed: 01/21/2023] Open
Abstract
The skin, the largest organ of the body, is an essential barrier that under homeostatic conditions efficiently protects and/or minimizes damage from both environmental (e.g. microorganisms, physical trauma, ultraviolet radiation) and endogenous (e.g., cancers, inflammation) factors. This formidable barrier function resides mainly in the epidermis, a dynamic, highly-stratified epithelium. The epidermis has 2 major barrier structures: stratum corneum, the outmost layer and tight junctions, intercellular junctions that seal adjacent keratinocytes in the stratum granulosum, found below the stratum corneum. In recent years there have been significant advances in our understanding of tight junction function, composition and regulation. Herein we review what is known about tight junctions in healthy skin and keratinocyte culture systems and highlight the dynamic crosstalk observed between tight junctions and the cutaneous immune system. Finally we discuss the preliminary observations suggesting that tight junction function or protein expression may be relevant for the pathogenesis of a number of common cutaneous inflammatory and neoplastic conditions.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptides
- Cldn, claudin
- DC, dendritic cells
- FLG, filaggrin
- JAM, junctional adhesion molecule
- LC, Langerhans cells
- MM, malignant melanoma
- PRR, pattern recognition receptor
- PS, psoriasis
- SCC, squamous cell carcinoma; SC, stratum corneum
- SG, stratum granulosum
- SNP, single nucleotide polymorphism
- TER, TransEpithelial Electrical Resistance
- TJ, tight junction
- TLR, Toll-like receptor
- Th, T helper
- ZO-1, zonula occludens 1
- claudins
- skin barrier
- skin immune system
- skin innate barrier
- tight junction
Collapse
Affiliation(s)
- J M Brandner
- Department of Dermatology and Venereology; University Hospital Hamburg-Eppendorf ; Hamburg, Germany
| | - M Zorn-Kruppa
- Department of Dermatology and Venereology; University Hospital Hamburg-Eppendorf ; Hamburg, Germany
| | - T Yoshida
- Department of Dermatology; University of Rochester Medical Center ; Rochester, NY USA
| | - I Moll
- Department of Dermatology and Venereology; University Hospital Hamburg-Eppendorf ; Hamburg, Germany
| | - L A Beck
- Department of Dermatology; University of Rochester Medical Center ; Rochester, NY USA
| | - A De Benedetto
- Department of Dermatology; University of Rochester Medical Center ; Rochester, NY USA
| |
Collapse
|
85
|
Hereditary barrier-related diseases involving the tight junction: lessons from skin and intestine. Cell Tissue Res 2015; 360:723-48. [DOI: 10.1007/s00441-014-2096-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
|
86
|
Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update 2014; 21:353-77. [PMID: 25547201 DOI: 10.1093/humupd/dmu065] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. METHODS A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. RESULTS AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased susceptibility to these pathogens. During pregnancy, AMP are key immune effectors of the fetal membranes and placenta and are dysregulated in states of intrauterine infection and other complications of pregnancy. CONCLUSIONS At the level of the FRT, AMP serve to inhibit infection by sexually and vertically transmissible as well as by opportunistic bacteria, fungi, viruses, and protozoa and must do so throughout the hormone flux of menses and pregnancy. Guarding the exclusive site of reproduction, AMP modulate the vaginal microbiome of the lower FRT to aid in preventing ascending microbes into the upper FRT. Evolving in parallel with, and in response to, pathogenic insults, AMP are relatively immune to the resistance mechanisms employed by rapidly evolving pathogens and play a key role in barrier function and host defense throughout the FRT.
Collapse
Affiliation(s)
- Victoria L Yarbrough
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Sean Winkle
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| |
Collapse
|
87
|
Smithrithee R, Niyonsaba F, Kiatsurayanon C, Ushio H, Ikeda S, Okumura K, Ogawa H. Human β-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes. J Dermatol Sci 2014; 77:46-53. [PMID: 25541254 DOI: 10.1016/j.jdermsci.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interleukin (IL)-37, a new member of the IL-1 family, is characterized as a fundamental inhibitor of innate immunity: it dampens the production of proinflammatory cytokines, protects against inflammatory and autoimmune diseases, and plays a potent immunosuppressive role in the pathogenesis of psoriasis. IL-37 is highly expressed in psoriatic skin, in which human β-defensins (hBDs) have been detected. Although hBDs enhance the production of cytokines, including IL-1 cytokines, whether they stimulate the production of IL-37 remains unclear. OBJECTIVES To assess the ability of hBDs to stimulate IL-37 expression/production by human keratinocytes and to determine the mechanism involved. METHODS Real-time PCR and Western blotting were used to evaluate IL-37 expression. Caspase activities were assessed using colorimetric assay kits. A CCR6 antibody, siRNA, and caspase, Smad3, MAPK and NF-κB inhibitors were used to investigate the signaling mechanism of hBDs. RESULTS Among the four hBDs used, only hBD-3 up-regulated the mRNA and protein expression of IL-37. The combination of TNF-α, EGF and poly (I:C) with hBD-3 synergistically enhanced the mRNA but not the protein expression of IL-37. Furthermore, hBD-3 increased the release of IL-37 into the culture supernatants. Evaluation of the signaling mechanism of hBD-3 suggested that caspases 1 and 4, Smad3, CCR6, MAPKs and NF-κB were required for hBD-3-mediated IL-37 expression. CONCLUSIONS The finding that hBD-3 stimulates IL-37 expression, a novel target for the pathogenesis and therapy of cutaneous inflammatory diseases, provides evidence that hBDs contribute to the suppression of inflammatory and innate immune responses through the regulation of IL-37 expression.
Collapse
Affiliation(s)
- Rithee Smithrithee
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Chanisa Kiatsurayanon
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroko Ushio
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
88
|
González-Navajas JM, Corr MP, Raz E. The immediate protective response to microbial challenge. Eur J Immunol 2014; 44:2536-49. [PMID: 24965684 DOI: 10.1002/eji.201344291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 03/20/2024]
Abstract
The innate immune system detects infection and tissue injury through different families of pattern-recognition receptors (PRRs), such as Toll-like receptors. Most PRR-mediated responses initiate elaborate processes of signaling, transcription, translation, and secretion of effector mediators, which together require time to achieve. Therefore, PRR-mediated processes are not active in the early phases of infection. These considerations raise the question of how the host limits microbial replication and invasion during this critical period. Here, we examine the crucial defense mechanisms, such as antimicrobial peptides or extracellular traps, typically activated within minutes of the initial infection phase, which we term the "immediate protective response". Deficiencies in different components of the immediate protective response are often associated with severe and recurrent infectious diseases in humans, highlighting their physiologic importance.
Collapse
Affiliation(s)
- José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General de Alicante, Alicante, Spain; Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|