51
|
Hnoonual A, Thammachote W, Tim-Aroon T, Rojnueangnit K, Hansakunachai T, Sombuntham T, Roongpraiwan R, Worachotekamjorn J, Chuthapisith J, Fucharoen S, Wattanasirichaigoon D, Ruangdaraganon N, Limprasert P, Jinawath N. Chromosomal microarray analysis in a cohort of underrepresented population identifies SERINC2 as a novel candidate gene for autism spectrum disorder. Sci Rep 2017; 7:12096. [PMID: 28935972 PMCID: PMC5608768 DOI: 10.1038/s41598-017-12317-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/07/2017] [Indexed: 01/11/2023] Open
Abstract
Chromosomal microarray (CMA) is now recognized as the first-tier genetic test for detection of copy number variations (CNVs) in patients with autism spectrum disorder (ASD). The aims of this study were to identify known and novel ASD associated-CNVs and to evaluate the diagnostic yield of CMA in Thai patients with ASD. The Infinium CytoSNP-850K BeadChip was used to detect CNVs in 114 Thai patients comprised of 68 retrospective ASD patients (group 1) with the use of CMA as a second line test and 46 prospective ASD and developmental delay patients (group 2) with the use of CMA as the first-tier test. We identified 7 (6.1%) pathogenic CNVs and 22 (19.3%) variants of uncertain clinical significance (VOUS). A total of 29 patients with pathogenic CNVs and VOUS were found in 22% (15/68) and 30.4% (14/46) of the patients in groups 1 and 2, respectively. The difference in detected CNV frequencies between the 2 groups was not statistically significant (Chi square = 1.02, df = 1, P = 0.31). In addition, we propose one novel ASD candidate gene, SERINC2, which warrants further investigation. Our findings provide supportive evidence that CMA studies using population-specific reference databases in underrepresented populations are useful for identification of novel candidate genes.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Graduate Program in Biomedical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Weerin Thammachote
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kitiwan Rojnueangnit
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Thammasart University, Pathumthani, Thailand
| | - Tippawan Hansakunachai
- Division of Child Development, Department of Pediatrics, Faculty of Medicine, Thammasart University, Pathumthani, Thailand
| | - Tasanawat Sombuntham
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rawiwan Roongpraiwan
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juthamas Worachotekamjorn
- Division of Child Development, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jariya Chuthapisith
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nichara Ruangdaraganon
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornprot Limprasert
- Division of Human Genetics, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. .,Integrative Computational Bioscience Center, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
52
|
Yue W, Yu X, Zhang D. Progress in genome-wide association studies of schizophrenia in Han Chinese populations. NPJ SCHIZOPHRENIA 2017; 3:24. [PMID: 28798405 PMCID: PMC5552785 DOI: 10.1038/s41537-017-0029-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/01/2023]
Abstract
Since 2006, genome-wide association studies of schizophrenia have led to the identification of numerous novel risk loci for this disease. However, there remains a geographical imbalance in genome-wide association studies, which to date have primarily focused on Western populations. During the last 6 years, genome-wide association studies in Han Chinese populations have identified both the sharing of susceptible loci across ethnicities and genes unique to Han Chinese populations. Here, we review recent progress in genome-wide association studies of schizophrenia in Han Chinese populations. Researchers have identified and replicated the sharing of susceptible genes, such as within the major histocompatibility complex, microRNA 137 (MIR137), zinc finger protein 804A (ZNF804A), vaccinia related kinase 2 (VRK2), and arsenite methyltransferase (AS3MT), across both European and East Asian populations. Several copy number variations identified in European populations have also been validated in the Han Chinese, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. However, these studies have identified some potential confounding factors, such as genetic heterogeneity and the effects of natural selection on tetraspanin 18 (TSPAN18) or zinc finger protein 323 (ZNF323), which may explain the population differences in genome-wide association studies. In the future, genome-wide association studies in Han Chinese populations should include meta-analyzes or mega-analyses with enlarged sample sizes across populations, deep sequencing, precision medicine treatment, and functional exploration of the risk genes for schizophrenia.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, the Sixth Hospital, Peking University, 100191, Beijing, China.
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), 100191, Beijing, China.
| | - Xin Yu
- Institute of Mental Health, the Sixth Hospital, Peking University, 100191, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), 100191, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, the Sixth Hospital, Peking University, 100191, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), 100191, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences & PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| |
Collapse
|
53
|
Le Gall J, Nizon M, Pichon O, Andrieux J, Audebert-Bellanger S, Baron S, Beneteau C, Bilan F, Boute O, Busa T, Cormier-Daire V, Ferec C, Fradin M, Gilbert-Dussardier B, Jaillard S, Jønch A, Martin-Coignard D, Mercier S, Moutton S, Rooryck C, Schaefer E, Vincent M, Sanlaville D, Le Caignec C, Jacquemont S, David A, Isidor B. Sex chromosome aneuploidies and copy-number variants: a further explanation for neurodevelopmental prognosis variability? Eur J Hum Genet 2017; 25:930-934. [PMID: 28612834 PMCID: PMC5567159 DOI: 10.1038/ejhg.2017.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/19/2023] Open
Abstract
Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.
Collapse
Affiliation(s)
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | | - Joris Andrieux
- Laboratoire de Génétique Médicale, CHRU Lille, Lille, France
| | | | - Sabine Baron
- Service d’endocrinologie Pédiatrique, CHU Nantes, Nantes, France
| | | | - Frédéric Bilan
- Service de Génétique, CHU Poitiers, France; EA 3808 Université Poitiers, France
| | - Odile Boute
- Génétique Médicale, CHRU Lille, Lille, France
| | - Tiffany Busa
- Génétique Médicale, CHU Timone Enfants, AP-HM, Marseille, France
| | | | - Claude Ferec
- Laboratoire de Génétique Moléculaire et d'histocompatibilité, CHU Brest, Brest, France
| | | | | | | | - Aia Jønch
- Service de Génétique Médicale, CHU Vaudois, Lausanne, Switzerland
| | | | - Sandra Mercier
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | | | | - Elise Schaefer
- Service de Génétique Médicale, CHU Strasbourg, Strasbourg, France
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | | | | | | - Albert David
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | |
Collapse
|
54
|
Zhuo C, Hou W, Lin C, Hu L, Li J. Potential Value of Genomic Copy Number Variations in Schizophrenia. Front Mol Neurosci 2017; 10:204. [PMID: 28680393 PMCID: PMC5478687 DOI: 10.3389/fnmol.2017.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs) are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China.,Department of Psychological Medicine, Tianjin Anding HospitalTianjin, China
| | - Weihong Hou
- Department of Biology, University of North Carolina at CharlotteCharlotte, NC, United States.,Department of Biochemistry and Molecular Biology, Zhengzhou UniversityZhengzhou, China
| | - Chongguang Lin
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China
| | - Lirong Hu
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China
| | - Jie Li
- Department of Psychological Medicine, Tianjin Anding HospitalTianjin, China
| |
Collapse
|
55
|
Kanemitsu Y, Fujitani M, Fujita Y, Zhang S, Su YQ, Kawahara Y, Yamashita T. The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Sci Rep 2017; 7:1155. [PMID: 28442784 PMCID: PMC5430739 DOI: 10.1038/s41598-017-01317-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/27/2017] [Indexed: 01/14/2023] Open
Abstract
Cortical neurogenesis is a fundamental process of brain development that is spatiotemporally regulated by both intrinsic and extrinsic cues. Although recent evidence has highlighted the significance of transcription factors in cortical neurogenesis, little is known regarding the role of RNA-binding proteins (RBPs) in the post-transcriptional regulation of cortical neurogenesis. Here, we report that meiosis arrest female 1 (MARF1) is an RBP that is expressed during neuronal differentiation. Cortical neurons expressed the somatic form of MARF1 (sMARF1) but not the oocyte form (oMARF1). sMARF1 was enriched in embryonic brains, and its expression level decreased as brain development progressed. Overexpression of sMARF1 in E12.5 neuronal progenitor cells promoted neuronal differentiation, whereas sMARF1 knockdown decreased neuronal progenitor differentiation in vitro. We also examined the function of sMARF1 in vivo using an in utero electroporation technique. Overexpression of sMARF1 increased neuronal differentiation, whereas knockdown of sMARF1 inhibited differentiation in vivo. Moreover, using an RNase domain deletion mutant of sMARF1, we showed that the RNase domain is required for the effects of sMARF1 on cortical neurogenesis in vitro. Our results further elucidate the mechanisms of post-transcriptional regulation of cortical neurogenesis by RBPs.
Collapse
Affiliation(s)
- Yoshitaka Kanemitsu
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Interdisciplinary Program for Biomedical Sciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan. .,Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suxiang Zhang
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
56
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
57
|
Sanders AR, Drigalenko EI, Duan J, Moy W, Freda J, Göring HHH, Gejman PV. Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis. Transl Psychiatry 2017; 7:e1093. [PMID: 28418402 PMCID: PMC5416689 DOI: 10.1038/tp.2017.47] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022] Open
Abstract
We undertook an RNA sequencing (RNAseq)-based transcriptomic profiling study on lymphoblastoid cell lines of a European ancestry sample of 529 schizophrenia cases and 660 controls, and found 1058 genes to be differentially expressed by affection status. These differentially expressed genes were enriched for involvement in immunity, especially the 697 genes with higher expression in cases. Comparing the current RNAseq transcriptomic profiling to our previous findings in an array-based study of 268 schizophrenia cases and 446 controls showed a highly significant positive correlation over all genes. Fifteen (18%) of the 84 genes with significant (false discovery rate<0.05) expression differences between cases and controls in the previous study and analyzed here again were differentially expressed by affection status here at a genome-wide significance level (Bonferroni P<0.05 adjusted for 8141 analyzed genes in total, or P<~6.1 × 10-6), all with the same direction of effect, thus providing corroborative evidence despite each sample of fully independent subjects being studied by different technological approaches. Meta-analysis of the RNAseq and array data sets (797 cases and 1106 controls) showed 169 additional genes (besides those found in the primary RNAseq-based analysis) to be differentially expressed, and provided further evidence of immune gene enrichment. In addition to strengthening our previous array-based gene expression differences in schizophrenia cases versus controls and providing transcriptomic support for some genes implicated by other approaches for schizophrenia, our study detected new genes differentially expressed in schizophrenia. We highlight RNAseq-based differential expression of various genes involved in neurodevelopment and/or neuronal function, and discuss caveats of the approach.
Collapse
Affiliation(s)
- A R Sanders
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, USA,Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, 1001 University Place, Evanston, IL 60201, USA. E-mail:
| | - E I Drigalenko
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - J Duan
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, USA,Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, IL, USA
| | - W Moy
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, USA
| | - J Freda
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, USA
| | - H H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA
| | - P V Gejman
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, USA,Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
58
|
Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy Number Variants in Alzheimer's Disease. J Alzheimers Dis 2017; 55:37-52. [PMID: 27662298 PMCID: PMC5115612 DOI: 10.3233/jad-160469] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating disease mainly afflicting elderly people, characterized by decreased cognition, loss of memory, and eventually death. Although risk and deterministic genes are known, major genetics research programs are underway to gain further insights into the inheritance of AD. In the last years, in particular, new developments in genome-wide scanning methodologies have enabled the association of a number of previously uncharacterized copy number variants (CNVs, gain or loss of DNA) in AD. Because of the exceedingly large number of studies performed, it has become difficult for geneticists as well as clinicians to systematically follow, evaluate, and interpret the growing number of (sometime conflicting) CNVs implicated in AD. In this review, after a brief introduction of this type of structural variation, and a description of available databases, computational analyses, and technologies involved, we provide a systematic review of all published data showing statistical and scientific significance of pathogenic CNVs and discuss the role they might play in AD.
Collapse
Affiliation(s)
- Denis Cuccaro
- Institute of Neurological Sciences, National Research Council, Section of Catania, Italy
| | | | - Rita Cittadella
- Institute of Neurological Sciences, National Research Council, Section of Mangone, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, National Research Council, Section of Catania, Italy
- Institute of Neurological Sciences, National Research Council, Section of Mangone, Italy
| |
Collapse
|
59
|
Govaerts L, Srebniak M, Diderich K, Joosten M, Riedijk S, Knapen M, Go A, Papatsonis D, de Graaf K, Toolenaar T, van der Steen S, Huijbregts G, Knijnenburg J, de Vries F, Van Opstal D, Galjaard RJ. Prenatal diagnosis of susceptibility loci for neurodevelopmental disorders - genetic counseling and pregnancy outcome in 57 cases. Prenat Diagn 2016; 37:73-80. [DOI: 10.1002/pd.4979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/15/2016] [Accepted: 11/26/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lutgarde Govaerts
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Malgorzata Srebniak
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Karin Diderich
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Sam Riedijk
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Maarten Knapen
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam The Netherlands
- Foundation Prenatal Screening Southwest region of the Netherlands; Rotterdam The Netherlands
| | - Attie Go
- Department of Obstetrics and Gynecology; Erasmus Medical Center; Rotterdam The Netherlands
| | - Dimitri Papatsonis
- Department of Obstetrics and Gynecology; Amphia Hospital; Breda The Netherlands
| | - Katja de Graaf
- Department of Obstetrics and Gynecology; Reinier de Graaf Gasthuis; Delft The Netherlands
| | - Toon Toolenaar
- Department of Gynecology; Albert Schweitzer Hospital Dordrecht; Dordrecht The Netherlands
| | - Sanne van der Steen
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Gido Huijbregts
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Jeroen Knijnenburg
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Femke de Vries
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Diane Van Opstal
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| | - Robert-Jan Galjaard
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
60
|
Nazeen S, Palmer NP, Berger B, Kohane IS. Integrative analysis of genetic data sets reveals a shared innate immune component in autism spectrum disorder and its co-morbidities. Genome Biol 2016; 17:228. [PMID: 27842596 PMCID: PMC5108086 DOI: 10.1186/s13059-016-1084-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that tends to co-occur with other diseases, including asthma, inflammatory bowel disease, infections, cerebral palsy, dilated cardiomyopathy, muscular dystrophy, and schizophrenia. However, the molecular basis of this co-occurrence, and whether it is due to a shared component that influences both pathophysiology and environmental triggering of illness, has not been elucidated. To address this, we deploy a three-tiered transcriptomic meta-analysis that functions at the gene, pathway, and disease levels across ASD and its co-morbidities. RESULTS Our analysis reveals a novel shared innate immune component between ASD and all but three of its co-morbidities that were examined. In particular, we find that the Toll-like receptor signaling and the chemokine signaling pathways, which are key pathways in the innate immune response, have the highest shared statistical significance. Moreover, the disease genes that overlap these two innate immunity pathways can be used to classify the cases of ASD and its co-morbidities vs. controls with at least 70 % accuracy. CONCLUSIONS This finding suggests that a neuropsychiatric condition and the majority of its non-brain-related co-morbidities share a dysregulated signal that serves as not only a common genetic basis for the diseases but also as a link to environmental triggers. It also raises the possibility that treatment and/or prophylaxis used for disorders of innate immunity may be successfully used for ASD patients with immune-related phenotypes.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA USA
| | - Nathan P. Palmer
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck Street, Boston, 02115 MA USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA USA
| | - Isaac S. Kohane
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck Street, Boston, 02115 MA USA
| |
Collapse
|
61
|
Schmitt A, Rujescu D, Gawlik M, Hasan A, Hashimoto K, Iceta S, Jarema M, Kambeitz J, Kasper S, Keeser D, Kornhuber J, Koutsouleris N, Lanzenberger R, Malchow B, Saoud M, Spies M, Stöber G, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part II: Cognition, neuroimaging and genetics. World J Biol Psychiatry 2016; 17:406-428. [PMID: 27311987 DOI: 10.1080/15622975.2016.1183043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Schizophrenia is a group of severe psychiatric disorders with high heritability but only low odds ratios of risk genes. Despite progress in the identification of pathophysiological processes, valid biomarkers of the disease are still lacking. METHODS This comprehensive review summarises recent efforts to identify genetic underpinnings, clinical and cognitive endophenotypes and symptom dimensions of schizophrenia and presents findings from neuroimaging studies with structural, functional and spectroscopy magnetic resonance imaging and positron emission tomography. The potential of findings to be biomarkers of schizophrenia is discussed. RESULTS Recent findings have not resulted in clear biomarkers for schizophrenia. However, we identified several biomarkers that are potential candidates for future research. Among them, copy number variations and links between genetic polymorphisms derived from genome-wide analysis studies, clinical or cognitive phenotypes, multimodal neuroimaging findings including positron emission tomography and magnetic resonance imaging, and the application of multivariate pattern analyses are promising. CONCLUSIONS Future studies should address the effects of treatment and stage of the disease more precisely and apply combinations of biomarker candidates. Although biomarkers for schizophrenia await validation, knowledge on candidate genomic and neuroimaging biomarkers is growing rapidly and research on this topic has the potential to identify psychiatric endophenotypes and in the future increase insight on individual treatment response in schizophrenia.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
- b Laboratory of Neuroscience (LIM27), Institute of Psychiatry , University of Sao Paulo , Sao Paulo , Brazil
| | - Dan Rujescu
- c Department of Psychiatry, Psychotherapy and Psychosomatics , University of Halle , Germany
| | - Micha Gawlik
- d Department of Psychiatry, Psychotherapy and Psychosomatics , University of Würzburg , Germany
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenji Hashimoto
- e Division of Clinical Neuroscience , Chiba University Center for Forensic Mental Health , Chiba , Japan
| | - Sylvain Iceta
- f INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PsyR2 Team , Lyon , F-69000 , France ; Hospices Civils De Lyon, France
| | - Marek Jarema
- g Department of Psychiatry , Institute of Psychiatry and Neurology , Warsaw , Poland
| | - Joseph Kambeitz
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Siegfried Kasper
- h Department of Psychiatry and Psychotherapy , Medical University of Vienna , Austria
| | - Daniel Keeser
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Johannes Kornhuber
- i Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Rupert Lanzenberger
- h Department of Psychiatry and Psychotherapy , Medical University of Vienna , Austria
| | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Mohamed Saoud
- f INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PsyR2 Team , Lyon , F-69000 , France ; Hospices Civils De Lyon, France
| | - Marie Spies
- h Department of Psychiatry and Psychotherapy , Medical University of Vienna , Austria
| | - Gerald Stöber
- d Department of Psychiatry, Psychotherapy and Psychosomatics , University of Würzburg , Germany
| | - Florence Thibaut
- j Department of Psychiatry , University Hospital Cochin (Site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- k Center of Psychic Health; Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| |
Collapse
|
62
|
Li Z, Chen J, Xu Y, Yi Q, Ji W, Wang P, Shen J, Song Z, Wang M, Yang P, Wang Q, Feng G, Liu B, Sun W, Xu Q, Li B, He L, He G, Li W, Wen Z, Liu K, Huang F, Zhou J, Ji J, Li X, Shi Y. Genome-wide Analysis of the Role of Copy Number Variation in Schizophrenia Risk in Chinese. Biol Psychiatry 2016; 80:331-337. [PMID: 26795442 DOI: 10.1016/j.biopsych.2015.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Compelling evidence suggested the role of copy number variations (CNVs) in schizophrenia susceptibility. Most of the evidence was from studies in populations with European ancestry. We tried to validate the associated CNV loci in a Han Chinese population and identify novel loci conferring risk of schizophrenia. METHODS We performed a genome-wide CNV analysis on 6588 patients with schizophrenia and 11,904 control subjects of Han Chinese ancestry. RESULTS Our data confirmed increased genome-wide CNV (>500 kb and <1%) burden in schizophrenia, and the increasing trend was more significant when only >1 Mb CNVs were considered. We also replicated several associated loci that were previously identified in European populations, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. In addition, we discovered three additional new potential loci (odds ratio >6, p < .05): duplications at 1p36.32, 10p12.1, and 13q13.3, involving many neurodevelopmental and synaptic related genes. CONCLUSIONS Our findings provide further support for the role of CNVs in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai
| | - Jianhua Chen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qizhong Yi
- Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi
| | - Weidong Ji
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai; Changning Mental Health Center, Shanghai
| | | | - Jiawei Shen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Zhijian Song
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Meng Wang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | | | - Qingzhong Wang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Guoyin Feng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Benxiu Liu
- Longquan Mountain Hospital of Guangxi Province, Liuzhou
| | - Wensheng Sun
- Longquan Mountain Hospital of Guangxi Province, Liuzhou
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Baojie Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai; Institutes of Biomedical Sciences, Fudan University, Shanghai
| | - Guang He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Wenjin Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Zujia Wen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Ke Liu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Fang Huang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Juan Zhou
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Jue Ji
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Xingwang Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Yongyong Shi
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai; Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi; Changning Mental Health Center, Shanghai; The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
63
|
Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016; 17:E842. [PMID: 27240359 PMCID: PMC4926376 DOI: 10.3390/ijms17060842] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Dan-Dan Cao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Lu Li
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| |
Collapse
|
64
|
Siu WK, Lam CW, Mak CM, Lau ETK, Tang MHY, Tang WF, Poon-Mak RSM, Lee CC, Hung SF, Leung PWL, Kwong KL, Yau EKC, Ng GSF, Fong NC, Chan KY. Diagnostic yield of array CGH in patients with autism spectrum disorder in Hong Kong. Clin Transl Med 2016; 5:18. [PMID: 27271878 PMCID: PMC4896892 DOI: 10.1186/s40169-016-0098-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
Background Chromosomal microarray offers superior sensitivity for identification of submicroscopic copy number variants (CNV) and it is advocated to be the first tier genetic testing for patients with autism spectrum disorder (ASD). In this regard, diagnostic yield of array comparative genomic hybridization (CGH) for ASD patients is determined in a cohort of Chinese patients in Hong Kong. Methods A combined adult and paediatric cohort of 68 Chinese ASD patients (41 patients in adult group and 27 patients in paediatric group). The genomic DNA extracted from blood samples were analysed by array CGH using NimbleGen CGX-135K oligonucleotide array. Results We identified 15 CNV and eight of them were clinically significant. The overall diagnostic yield was 11.8 %. Five clinically significant CNV were detected in the adult group and three were in the paediatric group, providing diagnostic yields of 12.2 and 11.1 % respectively. The most frequently detected CNV was 16p13.11 duplications which were present in 4 patients (5.9 % of the cohort). Conclusions In this study, a satisfactory diagnostic yield of array CGH was demonstrated in a Chinese ASD patient cohort which supported the clinical usefulness of array CGH as the first line testing of ASD in Hong Kong. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0098-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai-Kwan Siu
- Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.,Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| | - Chloe Miu Mak
- Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Elizabeth Tak-Kwong Lau
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Mary Hoi-Yin Tang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wing-Fai Tang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | - Chi-Chiu Lee
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China
| | - Se-Fong Hung
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China
| | | | - Karen Ling Kwong
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong, China
| | - Eric Kin-Cheong Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Grace Sui-Fun Ng
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Nai-Chung Fong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Kwok-Yin Chan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| |
Collapse
|
65
|
Fry AE, Rees E, Thompson R, Mantripragada K, Blake P, Jones G, Morgan S, Jose S, Mugalaasi H, Archer H, McCann E, Clarke A, Taylor C, Davies S, Gibbon F, Te Water Naude J, Hartley L, Thomas G, White C, Natarajan J, Thomas RH, Drew C, Chung SK, Rees MI, Holmans P, Owen MJ, Kirov G, Pilz DT, Kerr MP. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC MEDICAL GENETICS 2016; 17:34. [PMID: 27113213 PMCID: PMC4845474 DOI: 10.1186/s12881-016-0294-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/14/2016] [Indexed: 11/10/2022]
Abstract
Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0294-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK. .,Institute of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rose Thompson
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Kiran Mantripragada
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Penny Blake
- Llwyneryr Unit, Learning Disability Services, Clasemont Road, Morriston, Swansea, SA6 6AH, UK
| | - Glyn Jones
- Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff, CF5 5WF, UK
| | - Sian Morgan
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Sian Jose
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hood Mugalaasi
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Hayley Archer
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Emma McCann
- Department of Clinical Genetics, Glan Clwyd Hospital, Betsi Cadwaladr University Health Board, Rhyl, Denbighshire, LL18 5UJ, UK
| | - Angus Clarke
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK.,Institute of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | - Clare Taylor
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Sally Davies
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Frances Gibbon
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Johann Te Water Naude
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Louise Hartley
- Department of Paediatric Neurology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Gareth Thomas
- Department of Paediatric Neurology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, SA6 6NL, UK
| | - Catharine White
- Department of Paediatric Neurology, Morriston Hospital, Abertawe Bro Morgannwg University Health Board, Swansea, SA6 6NL, UK
| | - Jaya Natarajan
- Department of Paediatrics, Royal Glamorgan Hospital, Cwm Taf University Health Board, Pontyclun, Mid Glamorgan, CF72 8XR, UK
| | - Rhys H Thomas
- Welsh Epilepsy Centre, Neurosciences Directorate, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Cheney Drew
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Daniela T Pilz
- Institute of Medial Genetics, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Michael P Kerr
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, CF24 4HQ, UK.,Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff, CF5 5WF, UK
| |
Collapse
|
66
|
Bradshaw NJ. Cloning of the promoter of NDE1, a gene implicated in psychiatric and neurodevelopmental disorders through copy number variation. Neuroscience 2016; 324:262-70. [PMID: 26975893 DOI: 10.1016/j.neuroscience.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
Copy number variation at 16p13.11 has been associated with a range of neurodevelopmental and psychiatric conditions, with duplication of this region being more common in individuals with schizophrenia. A prominent candidate gene within this locus is NDE1 (Nuclear Distribution Element 1) given its known importance for neurodevelopment, previous associations with mental illness and its well characterized interaction with the Disrupted in Schizophrenia 1 (DISC1) protein. In order to accurately model the effect of NDE1 duplication, it is important to first gain an understanding of how the gene is expressed. The complex promoter system of NDE1, which produces three distinct transcripts, each encoding for the same full-length NDE1 protein (also known as NudE), was therefore cloned and tested in human cell lines. The promoter for the longest of these three NDE1 transcripts was found to be responsible for the majority of expression in these systems, with its extended 5' untranslated region (UTR) having a limiting effect on its expression. These results thus highlight and clone the promoter elements required to generate systems in which the NDE1 protein is exogenously expressed under its native promoter, providing a biologically relevant model of 16p13.11 duplication in major mental illness.
Collapse
Affiliation(s)
- N J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
67
|
Brownstein CA, Kleiman RJ, Engle EC, Towne MC, D'Angelo EJ, Yu TW, Beggs AH, Picker J, Fogler JM, Carroll D, Schmitt RCO, Wolff RR, Shen Y, Lip V, Bilguvar K, Kim A, Tembulkar S, O'Donnell K, Gonzalez-Heydrich J. Overlapping 16p13.11 deletion and gain of copies variations associated with childhood onset psychosis include genes with mechanistic implications for autism associated pathways: Two case reports. Am J Med Genet A 2016; 170A:1165-73. [PMID: 26887912 PMCID: PMC4833544 DOI: 10.1002/ajmg.a.37595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/16/2016] [Indexed: 12/15/2022]
Abstract
Copy number variability at 16p13.11 has been associated with intellectual disability, autism, schizophrenia, epilepsy, and attention-deficit hyperactivity disorder. Adolescent/adult- onset psychosis has been reported in a subset of these cases. Here, we report on two children with CNVs in 16p13.11 that developed psychosis before the age of 7. The genotype and neuropsychiatric abnormalities of these patients highlight several overlapping genes that have possible mechanistic relevance to pathways previously implicated in Autism Spectrum Disorders, including the mTOR signaling and the ubiquitin-proteasome cascades. A careful screening of the 16p13.11 region is warranted in patients with childhood onset psychosis.
Collapse
Affiliation(s)
- Catherine A Brownstein
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Elizabeth C Engle
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Meghan C Towne
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Eugene J D'Angelo
- Division of Psychology, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, Massachusetts
| | - Timothy W Yu
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jason M Fogler
- Division of Psychology, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Developmental Medicine Center, Boston Children's Hospital, Boston, Massachusetts
| | - Devon Carroll
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, Massachusetts
| | - Rachel C O Schmitt
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Division of Psychology, Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Robert R Wolff
- Department of Neurology, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Yiping Shen
- Claritas Genomics, Cambridge, Massachusetts.,Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut
| | - Va Lip
- Claritas Genomics, Cambridge, Massachusetts
| | - Kaya Bilguvar
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - April Kim
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, Massachusetts
| | - Sahil Tembulkar
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, Massachusetts
| | - Kyle O'Donnell
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, Massachusetts
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
68
|
Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K. Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 2015; 5:16264. [PMID: 26537429 PMCID: PMC4633681 DOI: 10.1038/srep16264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Animal personality and coping styles are basic concepts for evaluating animal welfare. Struggling response of piglets in so-called backtests early in life reflects their coping strategy. Behavioral reactions of piglets in backtests have a moderate heritability, but their genetic basis largely remains unknown. Here, latency, duration and frequency of struggling attempts during one-minute backtests were repeatedly recorded of piglets at days 5, 12, 19, and 26. A genome-wide association study for backtest traits revealed 465 significant SNPs (FDR ≤ 0.05) mostly located in QTL (quantitative trait locus) regions on chromosome 3, 5, 12 and 16. In order to capture genes in these regions, 37 transcripts with significant SNPs were selected for expressionQTL analysis in the hypothalamus. Eight genes (ASGR1, CPAMD8, CTC1, FBXO39, IL19, LOC100511790, RAD51B, UBOX5) had cis- and five (RANGRF, PER1, PDZRN3, SH2D4B, LONP2) had trans-expressionQTL. In particular, for PER1, with known physiological implications for maintenance of circadian rhythms, a role in coping behavior was evidenced by confirmed association in an independent population. For CTC1 a cis-expression QTL and the consistent relationship of gene polymorphism, mRNA expression level and backtest traits promoted its link to coping style. GWAS and eQTL analyses uncovered positional and functional gene candidates for coping behavior.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Joachim Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Birger Puppe
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manfred Schwerin
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
69
|
New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. Eur J Med Genet 2015; 58:704-14. [PMID: 26493318 DOI: 10.1016/j.ejmg.2015.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023]
Abstract
Schizophrenia research has undergone a recent transformation. By leveraging large sample sizes, genome-wide association studies of common genetic variants have approximately tripled the number of candidate genetic loci. Rare variant studies have identified copy number variants that are schizophrenia risk loci. Among these, the 3q29 microdeletion is now known to be the single largest schizophrenia risk factor. Next-generation sequencing studies are increasingly used for rare variant association testing, and have already facilitated identification of large effect alleles. Collectively, recent findings implicate voltage-gated calcium channel and cytoskeletal pathways in the pathogenesis of schizophrenia. Taken together, these results suggest the possibility of imminent breakthroughs in the molecular understanding of schizophrenia.
Collapse
|
70
|
Johnstone M, Maclean A, Heyrman L, Lenaerts AS, Nordin A, Nilsson LG, De Rijk P, Goossens D, Adolfsson R, St Clair DM, Hall J, Lawrie SM, McIntosh AM, Del-Favero J, Blackwood DHR, Pickard BS. Copy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness. MOLECULAR NEUROPSYCHIATRY 2015; 1:175-190. [PMID: 27239468 PMCID: PMC4872463 DOI: 10.1159/000438788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023]
Abstract
Robust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan Maclean
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lien Heyrman
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - An-Sofie Lenaerts
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Annelie Nordin
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | | | - Peter De Rijk
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Dirk Goossens
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - David M St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeremy Hall
- Neurosciences & Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jurgen Del-Favero
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Douglas H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
71
|
Abstract
Large-scale genomic investigations have just begun to illuminate the molecular genetic contributions to major psychiatric illnesses, ranging from small-effect-size common variants to larger-effect-size rare mutations. The findings provide causal anchors from which to understand their neurobiological basis. Although these studies represent enormous success, they highlight major challenges reflected in the heterogeneity and polygenicity of all of these conditions and the difficulty of connecting multiple levels of molecular, cellular, and circuit functions to complex human behavior. Nevertheless, these advances place us on the threshold of a new frontier in the pathophysiological understanding, diagnosis, and treatment of psychiatric disease.
Collapse
Affiliation(s)
- Daniel H Geschwind
- Departments of Neurology, Psychiatry, and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jonathan Flint
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
72
|
Schmock H, Vangkilde A, Larsen KM, Fischer E, Birknow MR, Jepsen JRM, Olesen C, Skovby F, Plessen KJ, Mørup M, Hulme O, Baaré WFC, Didriksen M, Siebner HR, Werge T, Olsen L. The Danish 22q11 research initiative. BMC Psychiatry 2015; 15:220. [PMID: 26384214 PMCID: PMC4574168 DOI: 10.1186/s12888-015-0594-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurodevelopmental brain disorders such as schizophrenia, autism and attention deficit hyperactivity disorder are complex disorders with heterogeneous etiologies. Schizophrenia and autism are difficult to treat and often cause major individual suffering largely owing to our limited understanding of the disease biology. Thus our understanding of the biological pathogenesis needs to be substantiated to enable development of more targeted treatment options with improved efficacy. Insights into the pre-morbid disease dynamics, the morbid condition and the underlying biological disease mechanisms may come from studies of subjects with homogenous etiologies. Breakthroughs in psychiatric genetics have shown that several genetic anomalies predispose for neurodevelopmental brain disorders. We have established a Danish research initiative to study the common microdeletion at chromosome 22q11.2, which is one of the genetic anomalies that confer high risk of schizophrenia, autism and attention deficit hyperactivity disorder. METHODS/DESIGN The study applies a "cause-to-outcome" strategy to identify pre-morbid pathogenesis and underlying biological disease mechanisms of psychosis and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional effects across behavioral and neurophysiological traits of the 22q11 deletion in a recruited sample of Danish individuals. DISCUSSION Identification of predictive pre-morbid clinical, cognitive, functional and structural brain alterations in 22q11 deletion carriers may alter current clinical practice from symptomatic therapy of manifest mental illness into early intervention strategies, which may also be applicable to at risk subjects without known etiology. Hopefully new insights into the biological disease mechanisms, which are mandatory for novel drug developments, can improve the outcome of the pharmacological interventions in psychiatry.
Collapse
Affiliation(s)
- Henriette Schmock
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, DK-4000 Roskilde, Denmark ,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - Anders Vangkilde
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, DK-4000 Roskilde, Denmark ,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - Kit Melissa Larsen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, DK-4000 Roskilde, Denmark ,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark ,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark ,DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, DK-2800 Kgs Lyngby, Denmark
| | - Elvira Fischer
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, DK-4000 Roskilde, Denmark ,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark
| | | | - Jens Richardt Møllegaard Jepsen
- Child and Adolescent Mental Health Center, Copenhagen University Hospital, Mental Health Services, Capital Region of Denmark, Bispebjerg Bakke 30, 2400 København NV, Denmark ,Lundbeck Foundation Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital, Mental Health Services, Capital Region of Denmark, Ndr. Ringvej 29-67, DK- 2600 Glostrup, Denmark
| | - Charlotte Olesen
- Department of Pediatrics, Aarhus University Hospital, Norrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Flemming Skovby
- Department of Clinical Genetics, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Kerstin Jessica Plessen
- Child and Adolescent Mental Health Center, Copenhagen University Hospital, Mental Health Services, Capital Region of Denmark, Bispebjerg Bakke 30, 2400 København NV, Denmark ,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 København N, Denmark
| | - Morten Mørup
- DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads Building 324, DK-2800 Kgs Lyngby, Denmark
| | - Ollie Hulme
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark
| | - William Frans Christiaan Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark
| | | | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark ,Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, DK-4000 Roskilde, Denmark ,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark ,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 København N, Denmark
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, DK-4000, Roskilde, Denmark. .,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark.
| |
Collapse
|
73
|
Houcinat N, Llanas B, Moutton S, Toutain J, Cailley D, Arveiler B, Combe C, Lacombe D, Rooryck C. Homozygous 16p13.11 duplication associated with mild intellectual disability and urinary tract malformations in two siblings born from consanguineous parents. Am J Med Genet A 2015; 167A:2714-9. [PMID: 26114937 DOI: 10.1002/ajmg.a.37212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/04/2015] [Indexed: 11/10/2022]
Abstract
The use of array-comparative genomic hybridization (array-CGH) in routine clinical work has allowed the identification of many new copy number variations (CNV). The 16p13.11 duplication has been implicated in various congenital anomalies and neurodevelopmental disorders, but it has also been identified in healthy individuals. We report a clinical observation of two brothers from related parents each carrying a homozygous 16p13.11 duplication. The propositus had mild intellectual disability and posterior urethral valves with chronic renal disease. His brother was considered a healthy child with only learning disabilities and poor academic performances. However, a routine medical examination at 25-years-old revealed a mild chronic renal disease and ureteropelvic junction obstruction. Furthermore, the father presented with a unilateral renal agenesis, thus it seemed that a "congenital anomalies of kidney and urinary tract" (CAKUT) phenotype segregated in this family. This may be related to the duplication, but we cannot exclude the involvement of additional genetic or non-genetic factors in the urological phenotype. Several cohort studies showed association between this chromosomal imbalance and different clinical manifestations, but rarely with CAKUT. The duplication reported here was similar to the larger one of 3.4 Mb previously described versus the more common of 1.6 Mb. It encompassed at least 11 known genes, including the five ohnologs previously identified. Our observation, in addition to expanding the clinical spectrum of the duplication provides further support to understanding the underlying pathogenic mechanism.
Collapse
Affiliation(s)
- N Houcinat
- Génétique médicale, CHU, Bordeaux, France.,Univ. Bordeaux, Maladies Rares : Génétique et Métabolisme (MRGM), EA 4576,, F-33000 Bordeaux, France
| | - B Llanas
- Néphrologie pédiatrique, CHU, Bordeaux, France
| | - S Moutton
- Génétique médicale, CHU, Bordeaux, France.,Univ. Bordeaux, Maladies Rares : Génétique et Métabolisme (MRGM), EA 4576,, F-33000 Bordeaux, France
| | - J Toutain
- Génétique médicale, CHU, Bordeaux, France
| | - D Cailley
- Génétique médicale, CHU, Bordeaux, France
| | - B Arveiler
- Génétique médicale, CHU, Bordeaux, France.,Univ. Bordeaux, Maladies Rares : Génétique et Métabolisme (MRGM), EA 4576,, F-33000 Bordeaux, France
| | - C Combe
- Néphrologie Transplantation Dialyse, CHU, Bordeaux, France.,Univ. Bordeaux, Unité INSERM 1026, F-33000 Bordeaux, France
| | - D Lacombe
- Génétique médicale, CHU, Bordeaux, France.,Univ. Bordeaux, Maladies Rares : Génétique et Métabolisme (MRGM), EA 4576,, F-33000 Bordeaux, France
| | - C Rooryck
- Génétique médicale, CHU, Bordeaux, France.,Univ. Bordeaux, Maladies Rares : Génétique et Métabolisme (MRGM), EA 4576,, F-33000 Bordeaux, France
| |
Collapse
|
74
|
Gross JA, Bureau A, Croteau J, Galfalvy H, Oquendo MA, Haghighi F, Mérette C, Giegling I, Hodgkinson C, Goldman D, Rujescu D, Mann JJ, Turecki G. A genome-wide copy number variant study of suicidal behavior. PLoS One 2015; 10:e0128369. [PMID: 26010658 PMCID: PMC4444178 DOI: 10.1371/journal.pone.0128369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/01/2015] [Indexed: 12/22/2022] Open
Abstract
Suicide and suicide attempts are complex behaviors that result from the interaction of different factors, including genetic variants that increase the predisposition to suicidal behaviors. Copy number variations (CNVs) are deletions or duplications of a segment of DNA usually larger than one kilobase. These structural genetic changes, although quite rare, have been associated with genetic liability to mental disorders, such as autism, schizophrenia, and bipolar disorder. No genome-wide level studies have been published investigating the potential role of CNVs in suicidal behaviors. Based on single-nucleotide polymorphism array data, we followed the Penn-CNV standards to detect CNVs in 1,608 subjects, comprising 475 suicide and suicide attempt cases and 1,133 controls. Although the initial algorithms determined the presence of CNVs on chromosomes 6 and 12 in seven and eight cases, respectively, compared with none of the controls, visual inspection of the raw data did not support this finding. Furthermore we were unable to validate these findings by CNV-specific real-time polymerase chain reaction. Additionally, rare CNV burden analysis did not find an association between the frequency or length of rare CNVs and suicidal behavior in our sample population. Although our findings suggest CNVs do not play an important role in the etiology of suicidal behaviors, they are not inconsistent with the strong evidence from the literature suggesting that other genetic variants account for a portion of the total phenotypic variability in suicidal behavior.
Collapse
Affiliation(s)
- Jeffrey A. Gross
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Alexandre Bureau
- Centre de recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Jordie Croteau
- Centre de recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Hanga Galfalvy
- Division of Biostatistics, Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Maria A. Oquendo
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Fatemeh Haghighi
- Division of Biostatistics, Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Chantal Mérette
- Centre de recherche de l’Institut Universitaire en Santé Mentale de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Ina Giegling
- Psychiatric Clinic, Martin-Luther-Universität, Halle, Saxony-Anhalt, Germany
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dan Rujescu
- Psychiatric Clinic, Martin-Luther-Universität, Halle, Saxony-Anhalt, Germany
| | - J. John Mann
- Molecular Imaging and Neuropathology Division, Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
75
|
Kimura H, Tsuboi D, Wang C, Kushima I, Koide T, Ikeda M, Iwayama Y, Toyota T, Yamamoto N, Kunimoto S, Nakamura Y, Yoshimi A, Banno M, Xing J, Takasaki Y, Yoshida M, Aleksic B, Uno Y, Okada T, Iidaka T, Inada T, Suzuki M, Ujike H, Kunugi H, Kato T, Yoshikawa T, Iwata N, Kaibuchi K, Ozaki N. Identification of Rare, Single-Nucleotide Mutations in NDE1 and Their Contributions to Schizophrenia Susceptibility. Schizophr Bull 2015; 41:744-53. [PMID: 25332407 PMCID: PMC4393687 DOI: 10.1093/schbul/sbu147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nuclear distribution E homolog 1 (NDE1), located within chromosome 16p13.11, plays an essential role in microtubule organization, mitosis, and neuronal migration and has been suggested by several studies of rare copy number variants to be a promising schizophrenia (SCZ) candidate gene. Recently, increasing attention has been paid to rare single-nucleotide variants (SNVs) discovered by deep sequencing of candidate genes, because such SNVs may have large effect sizes and their functional analysis may clarify etiopathology. METHODS AND RESULTS We conducted mutation screening of NDE1 coding exons using 433 SCZ and 145 pervasive developmental disorders samples in order to identify rare single nucleotide variants with a minor allele frequency ≤5%. We then performed genetic association analysis using a large number of unrelated individuals (3554 SCZ, 1041 bipolar disorder [BD], and 4746 controls). Among the discovered novel rare variants, we detected significant associations between SCZ and S214F (P = .039), and between BD and R234C (P = .032). Furthermore, functional assays showed that S214F affected axonal outgrowth and the interaction between NDE1 and YWHAE (14-3-3 epsilon; a neurodevelopmental regulator). CONCLUSIONS This study strengthens the evidence for association between rare variants within NDE1 and SCZ, and may shed light into the molecular mechanisms underlying this severe psychiatric disorder.
Collapse
Affiliation(s)
- Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Tsuboi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Koide
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Noriko Yamamoto
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shohko Kunimoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Banno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mami Yoshida
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Iidaka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Seiwa Hospital, Institute of Neuropsychiatry, Shinjuku, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroshi Ujike
- Department of Psychiatry, Ujike Nishiguchi Clinic (HU), Okayama, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
76
|
Quintela I, Barros F, Lago-Leston R, Castro-Gago M, Carracedo A, Eiris J. A maternally inherited 16p13.11-p12.3 duplication concomitant with a de novoSOX5deletion in a male patient with global developmental delay, disruptive and obsessive behaviors and minor dysmorphic features. Am J Med Genet A 2015; 167:1315-22. [DOI: 10.1002/ajmg.a.36909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 11/14/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica - Universidad de Santiago de Compostela; Centro Nacional de Genotipado - Instituto Carlos III; Santiago de Compostela Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica - USC, CIBERER; Fundacion Publica Galega de Medicina Xenomica - SERGAS; Santiago de Compostela Spain
| | - Ramon Lago-Leston
- Grupo de Medicina Xenomica - USC; Fundacion Publica Galega de Medicina Xenomica - SERGAS; Santiago de Compostela Spain
| | - Manuel Castro-Gago
- Departamento de Pediatria; Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica; Santiago de Compostela Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica - Universidad de Santiago de Compostela; Centro Nacional de Genotipado - Instituto Carlos III; Santiago de Compostela Spain
- Grupo de Medicina Xenomica - USC, CIBERER; Fundacion Publica Galega de Medicina Xenomica - SERGAS; Santiago de Compostela Spain
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Jesus Eiris
- Departamento de Pediatria; Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica; Santiago de Compostela Spain
| |
Collapse
|
77
|
Tassano E, De Santis LR, Corona MF, Parmigiani S, Zanetti D, Porta S, Gimelli G, Cuoco C. Concomitant deletion of chromosome 16p13.11 and triplication of chromosome 19p13.3 in a child with developmental disorders, intellectual disability, and epilepsy. Mol Cytogenet 2015; 8:9. [PMID: 25705258 PMCID: PMC4335438 DOI: 10.1186/s13039-015-0115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 04/09/2024] Open
Abstract
Background Rare copy number variations (CNVs) are today recognized as an important cause of various neurodevelopmental disorders, including mental retardation and epilepsy. In some cases, a second CNV may contribute to a more severe clinical presentation. Results Here we describe a patient with epilepsy, mental retardation, developmental disorders, and dysmorphic features, who inherited a deletion of 16p13.11 and a triplication of 19p13.3 from his father and mother, respectively. The mother presented mild mental retardation and language delay too. Conclusions We discuss the phenotypic consequences of the two CNVs and suggest that their synergistic effect is likely responsible for the complicated clinical features observed in our patient.
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| | | | | | | | - Dalila Zanetti
- SSD Genetica Medica, Ospedale S. Andrea, La Spezia, Italy
| | - Simona Porta
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| | - Cristina Cuoco
- Laboratorio di Citogenetica, Istituto G.Gaslini, L.go G.Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
78
|
Chen J, Cao F, Liu L, Wang L, Chen X. Genetic studies of schizophrenia: an update. Neurosci Bull 2015; 31:87-98. [PMID: 25652814 DOI: 10.1007/s12264-014-1494-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia (SCZ) is a complex and heterogeneous mental disorder that affects about 1% of global population. In recent years, considerable progress has been made in genetic studies of SCZ. A number of common variants with small effects and rare variants with relatively larger effects have been identified. These variants include risk loci identified by genome-wide association studies, rare copy-number variants identified by comparative genomic analyses, and de novo mutations identified by high-throughput DNA sequencing. Collectively, they contribute to the heterogeneity of the disease. In this review, we update recent discoveries in the field of SCZ genetics, and outline the perspectives of future directions.
Collapse
Affiliation(s)
- Jingchun Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA,
| | | | | | | | | |
Collapse
|
79
|
Abstract
Schizophrenia is a common mental disorder, affecting 0.5-1% of the population. The mode of inheritance is complex and non-Mendelian with a high heritability of ca. 65-80%. Given this complexity, until most recently it was difficult to identify disease genes. But fortunately this has changed. Due to new technologies the last few years have brought highest interest in human genetics of complex diseases. The knowledge resulting from the availability of the complete sequence of the human genome, the systematic identification of single nucleotide polymorphisms (SNPs) throughout the genome, and the development of parallel genotyping technology (microarrays) established the conditions that brought about the current successful time in our ability to probe the genome for identifying disease genes. All these studies showed up new avenues for the biology of common complex diseases and yielded a multitude of genes showing strong association with complex diseases.
Collapse
|
80
|
Tassano E, Alpigiani MG, Calcagno A, Salvati P, De Miglio L, Fiorio P, Cuoco C, Gimelli G. Clinical and molecular delineation of a 16p13.2p13.13 microduplication. Eur J Med Genet 2015; 58:194-8. [PMID: 25596524 DOI: 10.1016/j.ejmg.2014.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022]
Abstract
The 16p13.3p13.1 region has been reported as a "critical" hotspot region for recurrent microdeletions/duplications, which may contribute to epilepsy, learning difficulties and facial dysmorphisms. Cytogenetic and array-CGH analyses were performed because of the clinical characteristics of the patient. The girl showed de novo 16p13.3p13.13 duplication spanning a region of ∼5.3 Mb. She presented brain anomalies, intellectual disability, epilepsy, facial and vertebral dysmorphisms. To our knowledge, this is the first reported case of 16p13.3p13.13 duplication; only three patients with an overlapping deletion in 16p13.2p13.13 were previously described. The duplicated region contains 21 OMIM genes and, six of them (RBFOX1, TMEM114, ABAT, PMM2, GRIN2A and, LITAF) were found to be associated with known diseases. Although no duplication of these genes has been described in the literature, we discuss here if they had some role in determining phenotype of our patient.
Collapse
Affiliation(s)
- E Tassano
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genova, Italy.
| | - M G Alpigiani
- Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - A Calcagno
- Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - P Salvati
- Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - L De Miglio
- Clinica Pediatrica, Istituto Giannina Gaslini, Genova, Italy
| | - P Fiorio
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genova, Italy
| | - C Cuoco
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genova, Italy
| | - G Gimelli
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
81
|
Miteff CI, Smith RL, Bain NL, Subramanian G, Brown JE, Kamien B. 16p13.11 microdeletion in a patient with hemiconvulsion-hemiplegia-epilepsy syndrome: a case report. J Child Neurol 2015; 30:83-6. [PMID: 24453159 DOI: 10.1177/0883073813516382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe a patient with hemiconvulsion-hemiplegia-epilepsy syndrome. The pathophysiology of hemiconvulsion-hemiplegia-epilepsy syndrome remains uncertain and there are probably multiple potential contributing factors. Our patient had a chromosomal 16p13.11 microdeletion that confers susceptibility to various types of epilepsy. This is the first report detailing an association of hemiconvulsion-hemiplegia-epilepsy syndrome with a 16p13.11 deletion and identifies another potential causal factor for hemiconvulsion-hemiplegia-epilepsy syndrome.
Collapse
Affiliation(s)
- Christina I Miteff
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Robert L Smith
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia
| | - Nicole L Bain
- Department of Molecular Medicine, Hunter Area Pathology Service, John Hunter Hospital, Rankin Park, Australia
| | - Gopinath Subramanian
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Janis E Brown
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Ben Kamien
- The University of Newcastle, School of Medicine and Public Health, Newcastle, New South Wales, Australia Hunter Genetics, Newcastle, New South Wales, Australia
| |
Collapse
|
82
|
Li X, Teng S. RNA Sequencing in Schizophrenia. Bioinform Biol Insights 2015; 9:53-60. [PMID: 27053919 PMCID: PMC4818022 DOI: 10.4137/bbi.s28992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a serious psychiatric disorder that affects 1% of general population and places a heavy burden worldwide. The underlying genetic mechanism of SCZ remains unknown, but studies indicate that the disease is associated with a global gene expression disturbance across many genes. Next-generation sequencing, particularly of RNA sequencing (RNA-Seq), provides a powerful genome-scale technology to investigate the pathological processes of SCZ. RNA-Seq has been used to analyze the gene expressions and identify the novel splice isoforms and rare transcripts associated with SCZ. This paper provides an overview on the genetics of SCZ, the advantages of RNA-Seq for transcriptome analysis, the accomplishments of RNA-Seq in SCZ cohorts, and the applications of induced pluripotent stem cells and RNA-Seq in SCZ research.
Collapse
Affiliation(s)
- Xin Li
- Department of Biology, Howard University, Washington, DC, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC, USA
| |
Collapse
|
83
|
Mohamed AM, Kamel A, Mahmoud W, Abdelraouf E, Meguid N. Intellectual disability secondary to a 16p13 duplication in a 1;16 translocation. Extended phenotype in a four-generation family. Am J Med Genet A 2014; 167A:128-36. [PMID: 25425358 DOI: 10.1002/ajmg.a.36834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
We describe a large family from the Gaza Strip presented with multiple congenital anomalies. The proband was presented with intellectual disability and multiple congenital anomalies including cleft palate, low-set ears, everted upper lip, diaphragmatic hernia, and arthrogryposis. Pedigree analysis showed 19 affected patients over five generations, only 6 were alive and 11 individuals were obligate carriers. The proband had an apparently normal karyotype, although FISH studies showed a derivative chromosome 1 with duplication of 16p13.3 and deletion of the 1p subtelomere. Her father however had a balanced translocation. The seven affected patients had a similar phenotype, one of them died before genetic testing was carried out and the living six patients had the same unbalanced translocation. Array CGH revealed an 8.8 Mb duplication in 16p13 and 200,338 bp deletion in 1p36.3. Accordingly, intellectual disability, hypertelorism, cupped ears, everted upper lip, and limb anomalies were presenting clinical features of the 16p13 duplication syndrome while deep set eyes were perhaps related to the 1p terminal deletion. Prevention of recurrent intellectual disability in this family can be achieved through carrier detection and prenatal genetic diagnosis.
Collapse
|
84
|
Merico D, Costain G, Butcher NJ, Warnica W, Ogura L, Alfred SE, Brzustowicz LM, Bassett AS. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome. Front Neurol 2014; 5:238. [PMID: 25484875 PMCID: PMC4240070 DOI: 10.3389/fneur.2014.00238] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/02/2014] [Indexed: 01/20/2023] Open
Abstract
The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways.
Collapse
Affiliation(s)
- Daniele Merico
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children , Toronto, ON , Canada
| | - Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Nancy J Butcher
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Institute of Medical Science, University of Toronto , Toronto, ON , Canada
| | - William Warnica
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Lucas Ogura
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Simon E Alfred
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada
| | - Linda M Brzustowicz
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University , Piscataway, NJ , USA
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Institute of Medical Science, University of Toronto , Toronto, ON , Canada ; The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network , Toronto, ON , Canada ; Department of Psychiatry, Toronto General Research Institute, University Health Network , Toronto, ON , Canada ; Department of Psychiatry, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
85
|
Zhang S, Kanemitsu Y, Fujitani M, Yamashita T. The newly identified migration inhibitory protein regulates the radial migration in the developing neocortex. Sci Rep 2014; 4:5984. [PMID: 25099998 PMCID: PMC5380009 DOI: 10.1038/srep05984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/21/2014] [Indexed: 02/03/2023] Open
Abstract
Neuronal migration is a crucial process in the organization of the developing cerebral cortex. Although a number of positive regulatory mechanisms of radial migration have been identified, negative cell-autonomous mechanisms have yet to be fully described. Here we report a newly identified Migration Inhibitory Protein (MINP, formerly known as 2900011O08Rik) that negatively regulates radial migration. MINP mRNA was specifically detected in the central and peripheral nervous system, and especially enriched in the cerebral cortex. MINP immunoreactivity co-localized with the neuronal marker Tuj1 and was detected in the cytoplasm of post-mitotic neurons. To elucidate the function of MINP in the developing brain, we performed in utero electroporation of MINP siRNA, MINP shRNA, or MINP-overexpressing vectors into mouse cortices and carried out in vivo migration assays. Whereas knockdown of MINP did not alter neuronal morphology, the radial migration was found accelerated by MINP knockdown, and reduced by MINP overexpression. This migration phenotype was also confirmed in vitro, indicating that MINP regulates neuronal migration in a cell-autonomous fashion. Furthermore, downregulation of MINP affected microtubule stability by interacting with tubulin that is a potential mechanism involved in the regulation of neuronal migration.
Collapse
Affiliation(s)
- Suxiang Zhang
- 1] Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan [2] JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshitaka Kanemitsu
- 1] Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan [2] JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masashi Fujitani
- 1] Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan [2] JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan [3] Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0872, Japan
| | - Toshihide Yamashita
- 1] Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan [2] JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
86
|
Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 2014; 19:872-9. [PMID: 24126926 DOI: 10.1038/mp.2013.127] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 02/03/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P=0.02). This effect was stronger when analysis was limited to singleton LoF variants (P=0.0007) and the excess was present in both SZ (P=0.002) and ASD (P=0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P=0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder. These data support synapse formation and maintenance as key molecular mechanisms for SZ and ASD.
Collapse
|
87
|
Martin J, Cooper M, Hamshere ML, Pocklington A, Scherer SW, Kent L, Gill M, Owen MJ, Williams N, O'Donovan MC, Thapar A, Holmans P. Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder: evidence from copy number variants. J Am Acad Child Adolesc Psychiatry 2014; 53:761-70.e26. [PMID: 24954825 PMCID: PMC4074351 DOI: 10.1016/j.jaac.2014.03.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/24/2014] [Accepted: 04/11/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) often co-occur and share genetic risks. The aim of this analysis was to determine more broadly whether ADHD and ASD share biological underpinnings. METHOD We compared copy number variant (CNV) data from 727 children with ADHD and 5,081 population controls to data from 996 individuals with ASD and an independent set of 1,287 controls. Using pathway analyses, we investigated whether CNVs observed in individuals with ADHD have an impact on genes in the same biological pathways as on those observed in individuals with ASD. RESULTS The results suggest that the biological pathways affected by CNVs in ADHD overlap with those affected by CNVs in ASD more than would be expected by chance. Moreover, this was true even when specific CNV regions common to both disorders were excluded from the analysis. After correction for multiple testing, genes involved in 3 biological processes (nicotinic acetylcholine receptor signalling pathway, cell division, and response to drug) showed significant enrichment for case CNV hits in the combined ADHD and ASD sample. CONCLUSION The results of this study indicate the presence of significant overlap of shared biological processes disrupted by large rare CNVs in children with these 2 neurodevelopmental conditions.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK.
| | - Miriam Cooper
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Andrew Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Stephen W Scherer
- Hospital for Sick Children and University of Toronto, Ontario, Canada
| | - Lindsey Kent
- Bute Medical School, University of St. Andrews, Fife, Scotland
| | - Michael Gill
- Trinity Centre for Health Sciences, Dublin, Ireland
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Nigel Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, UK
| |
Collapse
|
88
|
Risk genes for schizophrenia: Translational opportunities for drug discovery. Pharmacol Ther 2014; 143:34-50. [DOI: 10.1016/j.pharmthera.2014.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
|
89
|
Yuan J, Jin C, Sha W, Zhou Z, Zhang F, Wang M, Wang J, Li J, Feng X, Yu S, Wang J. A competitive PCR assay confirms the association of a copy number variation in the VIPR2 gene with schizophrenia in Han Chinese. Schizophr Res 2014; 156:66-70. [PMID: 24794882 DOI: 10.1016/j.schres.2014.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/13/2014] [Accepted: 04/02/2014] [Indexed: 01/18/2023]
Abstract
Evidence from genetic studies has revealed that genome-wide rare copy number variations (CNVs) are risk factors for neurodevelopmental disorders and this evidence has given rise to a new understanding of disease etiology, including that of schizophrenia (SCZ). Recent studies have indicated that duplication in the vasoactive intestinal peptide receptor-2 (VIPR2) gene confers the susceptibility to SCZ in Caucasians, but so far this finding has still not been confirmed in Chinese populations. In this study, we investigated the association between CNVs in VIPR2 and SCZ risk in an independent case-control study of Han Chinese using 1035 cases and 1535 controls. The CNVs were genotyped using the multiplex fluorescence competitive PCR method. In contrast with a common genotype (2-copy), a microduplication variant genotype (3-copy) was only carried by SCZ patients (4/1035). This finding indicated that CNVs in VIPR2 may impose a significantly increased risk of SCZ in Han Chinese (P=0.02646, OR=infinity, 95% CI=1.327-infinity). Thus, our results suggest that carriers of microduplication genotypes of VIPR2 are predisposed to SCZ in Han Chinese.
Collapse
Affiliation(s)
- Jianmin Yuan
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China
| | - Chunhui Jin
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China
| | - Weiwei Sha
- Yangzhou Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China
| | - Fuquan Zhang
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China
| | - Mingzhong Wang
- Nanjing Qinglongshan Mental Hospital, Nanjing, Jiangsu Province, China
| | - Jun Wang
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China
| | - Jianfeng Li
- Nanjing Qinglongshan Mental Hospital, Nanjing, Jiangsu Province, China
| | - Xuwei Feng
- Yangzhou Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Shui Yu
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China
| | - Jidong Wang
- Wuxi Mental Health Center, Wuxi 214151, Jiangsu Province, China.
| |
Collapse
|
90
|
High rate of disease-related copy number variations in childhood onset schizophrenia. Mol Psychiatry 2014; 19:568-72. [PMID: 23689535 PMCID: PMC5157161 DOI: 10.1038/mp.2013.59] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 12/15/2022]
Abstract
Copy number variants (CNVs) are risk factors in neurodevelopmental disorders, including autism, epilepsy, intellectual disability (ID) and schizophrenia. Childhood onset schizophrenia (COS), defined as onset before the age of 13 years, is a rare and severe form of the disorder, with more striking array of prepsychotic developmental disorders and abnormalities in brain development. Because of the well-known phenotypic variability associated with pathogenic CNVs, we conducted whole genome genotyping to detect CNVs and then focused on a group of 46 rare CNVs that had well-documented risk for adult onset schizophrenia (AOS), autism, epilepsy and/or ID. We evaluated 126 COS probands, 69 of which also had a healthy full sibling. When COS probands were compared with their matched related controls, significantly more affected individuals carried disease-related CNVs (P=0.017). Moreover, COS probands showed a higher rate than that found in AOS probands (P<0.0001). A total of 15 (11.9%) subjects exhibited at least one such CNV and four of these subjects (26.7%) had two. Five of 15 (4.0% of the sample) had a 2.5-3 Mb deletion mapping to 22q11.2, a rate higher than that reported for adult onset (0.3-1%) (P<0.001) or autism spectrum disorder and, indeed, the highest rate reported for any clinical population to date. For one COS subject, a duplication found at 22q13.3 had previously only been associated with autism, and for four patients CNVs at 8q11.2, 10q22.3, 16p11.2 and 17q21.3 had only previously been associated with ID. Taken together, these findings support the well-known pleiotropic effects of these CNVs suggesting shared abnormalities early in brain development. Clinically, broad CNV-based population screening is needed to assess their overall clinical burden.
Collapse
|
91
|
Pei Z, Lang B, Fragoso YD, Shearer KD, Zhao L, Mccaffery PJA, Shen S, Ding YQ, McCaig CD, Collinson JM. The expression and roles of Nde1 and Ndel1 in the adult mammalian central nervous system. Neuroscience 2014; 271:119-36. [PMID: 24785679 PMCID: PMC4048543 DOI: 10.1016/j.neuroscience.2014.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/08/2014] [Accepted: 04/18/2014] [Indexed: 11/01/2022]
Abstract
Mental and neurological illnesses affect one in four people. While genetic linkage analyses have shown an association of nuclear distribution factor E (NDE1, or NudE) and its ohnolog NDE-like 1 (NDEL1, or Nudel) with mental disorders, the cellular mechanisms remain unclear. In the present study, we have demonstrated that Nde1 and Ndel1 are differentially localised in the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus, two regions where neurogenesis actively occurs in the adult brain. Nde1, but not Ndel1, is localized to putative SVZ stem cells, and to actively dividing progenitors of the SGZ. The influence of these proteins on neural stem cell differentiation was investigated by overexpression in a hippocampal neural stem cell line, HCN-A94. Increasing Nde1 expression in this neural stem cell line led to increased neuronal differentiation while decreasing levels of astroglial differentiation. In primary cultured neurons and astrocytes, Nde1 and Ndel1 were found to have different but comparable subcellular localizations. In addition, we have shown for the first time that Nde1 is heterogeneously distributed in cortical astrocytes of human brains. Our data indicate that Nde1 and Ndel1 have distinct but overlapping distribution patterns in mouse brain and cultured nerve cells. They may function differently and therefore their dosage changes may contribute to some aspects of mental disorders.
Collapse
Affiliation(s)
- Z Pei
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - B Lang
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Y D Fragoso
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Department of Neurology, Medical Faculty, Universidade Metropolitana de Santos, Sao Paulo, Brazil
| | - K D Shearer
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - L Zhao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - P J A Mccaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - S Shen
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Regenerative Medicine Institute, School of Medicine, NUI Galway, Galway, Ireland
| | - Y Q Ding
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - C D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - J M Collinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
92
|
Doherty JL, Owen MJ. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med 2014; 6:29. [PMID: 24944580 PMCID: PMC4062063 DOI: 10.1186/gm546] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, attention-deficit/hyperactivity disorder and autism spectrum disorder are common and result in significant morbidity and mortality. Although currently classified into distinct disorder categories, they show clinical overlap and familial co-aggregation, and share genetic risk factors. Recent advances in psychiatric genomics have provided insight into the potential mechanisms underlying the overlap between these disorders, implicating genes involved in neurodevelopment, synaptic plasticity, learning and memory. Furthermore, evidence from copy number variant, exome sequencing and genome-wide association studies supports a gradient of neurodevelopmental psychopathology indexed by mutational load or mutational severity, and cognitive impairment. These findings have important implications for psychiatric research, highlighting the need for new approaches to stratifying patients for research. They also point the way for work aiming to advance our understanding of the pathways from genotype to clinical phenotype, which will be required in order to inform new classification systems and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Joanne L Doherty
- The MRC Centre for Neuropsychiatric Genetics and Genomics and The Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Buildin, Maindy Road, Cardiff CF24 4HQ, UK
| | - Michael J Owen
- The MRC Centre for Neuropsychiatric Genetics and Genomics and The Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Buildin, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
93
|
Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet 2014; 15:215-244. [PMID: 24773319 DOI: 10.1146/annurev-genom-091212-153408] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal abnormalities, including microdeletions and microduplications, have long been associated with abnormal developmental outcomes. Early discoveries relied on a common clinical presentation and the ability to detect chromosomal abnormalities by standard karyotype analysis or specific assays such as fluorescence in situ hybridization. Over the past decade, the development of novel genomic technologies has allowed more comprehensive, unbiased discovery of microdeletions and microduplications throughout the human genome. The ability to quickly interrogate large cohorts using chromosome microarrays and, more recently, next-generation sequencing has led to the rapid discovery of novel microdeletions and microduplications associated with disease, including very rare but clinically significant rearrangements. In addition, the observation that some microdeletions are associated with risk for several neurodevelopmental disorders contributes to our understanding of shared genetic susceptibility for such disorders. Here, we review current knowledge of microdeletion/duplication syndromes, with a particular focus on recurrent rearrangement syndromes.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra/CSIC, 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Centro Nacional de Análisis Genómico, 08023 Barcelona, Spain
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
94
|
Rees E, Walters JTR, Georgieva L, Isles AR, Chambert KD, Richards AL, Mahoney-Davies G, Legge SE, Moran JL, McCarroll SA, O'Donovan MC, Owen MJ, Kirov G. Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 2014; 204:108-14. [PMID: 24311552 PMCID: PMC3909838 DOI: 10.1192/bjp.bp.113.131052] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. AIMS To determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. METHOD We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. RESULTS We found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader-Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10(-4)). CONCLUSIONS We strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.
Collapse
Affiliation(s)
- Elliott Rees
- Elliott Rees, MRes, James T. R. Walters, PhD, MRCPsych, Lyudmila Georgieva, PhD, Anthony R. Isles, PhD, MRC, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; Kimberly D. Chambert, MS, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachuetts, USA; Alexander L. Richards, PhD, Gerwyn Mahoney-Davies, BSc, Sophie E. Legge, BSc, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; Jennifer L. Moran, PhD, Steven A. McCarroll, PhD, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, Massachuetts, USA; Michael C. O'Donovan, FRCPsych, PhD, Michael J. Owen, FRCPsych, PhD, George Kirov, MRCPsych, PhD, Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan. Mol Psychiatry 2014; 19:141-3. [PMID: 24457522 PMCID: PMC4238281 DOI: 10.1038/mp.2013.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, Lee D, Kim S. Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls. Sci Rep 2014; 4:3807. [PMID: 24448323 PMCID: PMC3897957 DOI: 10.1038/srep03807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
While somatic DNA copy number variations (CNVs) have been identified in multiple tissues from normal people, they have not been well studied in brain tissues from individuals with psychiatric disorders. With ultrahigh depth sequencing data, we developed an integrated pipeline for calling somatic deletions using data from multiple tissues of the same individual or a single tissue type taken from multiple individuals. Using the pipelines, we identified 106 somatic deletions in DNA from prefrontal cortex (PFC) and/or cerebellum of two normal controls subjects and/or three individuals with schizophrenia. We then validated somatic deletions in 18 genic and in 1 intergenic region. Somatic deletions in BOD1 and CBX3 were reconfirmed using DNA isolated from non-pyramidal neurons and from cells in white matter using laser capture microdissection (LCM). Our results suggest that somatic deletions may affect metabolic processes and brain development in a region specific manner.
Collapse
Affiliation(s)
- Junho Kim
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Jong-Yeon Shin
- 1] Genomic Medicine Institute (GMI), Medical Research Center, Seoul National, University, Seoul 110-799, Korea [2] Psoma Therapeutics Inc., Seoul, 153-781, Korea
| | - Jong-Il Kim
- 1] Genomic Medicine Institute (GMI), Medical Research Center, Seoul National, University, Seoul 110-799, Korea [2] Psoma Therapeutics Inc., Seoul, 153-781, Korea [3] Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, Korea [4] Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | - Jeong-Sun Seo
- 1] Genomic Medicine Institute (GMI), Medical Research Center, Seoul National, University, Seoul 110-799, Korea [2] Psoma Therapeutics Inc., Seoul, 153-781, Korea [3] Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 110-799, Korea [4] Department of Biochemistry and Molecular Biology, Seoul National University, College of Medicine, Seoul 110-799, Korea [5] Macrogen Inc., Seoul 153-781, Korea
| | - Maree J Webster
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850
| |
Collapse
|
97
|
Nieratschker V, Meyer-Lindenberg A, Witt SH. Genome-wide investigation of rare structural variants identifiesVIPR2as a new candidate gene for schizophrenia. Expert Rev Neurother 2014; 11:937-41. [DOI: 10.1586/ern.11.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
98
|
Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 2014; 133:e54-63. [PMID: 24323995 PMCID: PMC3876178 DOI: 10.1542/peds.2013-0819] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The distinct trajectories of patients with autism spectrum disorders (ASDs) have not been extensively studied, particularly regarding clinical manifestations beyond the neurobehavioral criteria from the Diagnostic and Statistical Manual of Mental Disorders. The objective of this study was to investigate the patterns of co-occurrence of medical comorbidities in ASDs. METHODS International Classification of Diseases, Ninth Revision codes from patients aged at least 15 years and a diagnosis of ASD were obtained from electronic medical records. These codes were aggregated by using phenotype-wide association studies categories and processed into 1350-dimensional vectors describing the counts of the most common categories in 6-month blocks between the ages of 0 to 15. Hierarchical clustering was used to identify subgroups with distinct courses. RESULTS Four subgroups were identified. The first was characterized by seizures (n = 120, subgroup prevalence 77.5%). The second (n = 197) was characterized by multisystem disorders including gastrointestinal disorders (prevalence 24.3%) and auditory disorders and infections (prevalence 87.8%), and the third was characterized by psychiatric disorders (n = 212, prevalence 33.0%). The last group (n = 4316) could not be further resolved. The prevalence of psychiatric disorders was uncorrelated with seizure activity (P = .17), but a significant correlation existed between gastrointestinal disorders and seizures (P < .001). The correlation results were replicated by using a second sample of 496 individuals from a different geographic region. CONCLUSIONS Three distinct patterns of medical trajectories were identified by unsupervised clustering of electronic health record diagnoses. These may point to distinct etiologies with different genetic and environmental contributions. Additional clinical and molecular characterizations will be required to further delineate these subgroups.
Collapse
Affiliation(s)
- Finale Doshi-Velez
- Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115.
| | - Yaorong Ge
- Center for Biomedical Informatics, Wake Forest University, Winston-Salem, North Carolina
| | - Isaac Kohane
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
99
|
Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S, Pietiläinen OPH, Lin K, Papiol S, Huttenlocher J, Sigurdsson E, Vassos E, Giegling I, Breuer R, Fraser G, Walker N, Melle I, Djurovic S, Agartz I, Tuulio-Henriksson A, Suvisaari J, Lönnqvist J, Paunio T, Olsen L, Hansen T, Ingason A, Pirinen M, Strengman E, GROUP, Hougaard DM, Ørntoft T, Didriksen M, Hollegaard MV, Nordentoft M, Abramova L, Kaleda V, Arrojo M, Sanjuán J, Arango C, Etain B, Bellivier F, Méary A, Schürhoff F, Szoke A, Ribolsi M, Magni V, Siracusano A, Sperling S, Rossner M, Christiansen C, Kiemeney LA, Franke B, van den Berg LH, Veldink J, Curran S, Bolton P, Poot M, Staal W, Rehnstrom K, Kilpinen H, Freitag CM, Meyer J, Magnusson P, Saemundsen E, Martsenkovsky I, Bikshaieva I, Martsenkovska I, Vashchenko O, Raleva M, Paketchieva K, Stefanovski B, Durmishi N, Milovancevic MP, Tosevski DL, Silagadze T, Naneishvili N, Mikeladze N, Surguladze S, Vincent JB, Farmer A, Mitchell PB, Wright A, Schofield PR, Fullerton JM, Montgomery GW, Martin NG, Rubino IA, van Winkel R, Kenis G, De Hert M, Réthelyi JM, Bitter I, Terenius L, Jönsson EG, Bakker S, van Os J, Jablensky A, Leboyer M, Bramon E, Powell J, et alSteinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S, Pietiläinen OPH, Lin K, Papiol S, Huttenlocher J, Sigurdsson E, Vassos E, Giegling I, Breuer R, Fraser G, Walker N, Melle I, Djurovic S, Agartz I, Tuulio-Henriksson A, Suvisaari J, Lönnqvist J, Paunio T, Olsen L, Hansen T, Ingason A, Pirinen M, Strengman E, GROUP, Hougaard DM, Ørntoft T, Didriksen M, Hollegaard MV, Nordentoft M, Abramova L, Kaleda V, Arrojo M, Sanjuán J, Arango C, Etain B, Bellivier F, Méary A, Schürhoff F, Szoke A, Ribolsi M, Magni V, Siracusano A, Sperling S, Rossner M, Christiansen C, Kiemeney LA, Franke B, van den Berg LH, Veldink J, Curran S, Bolton P, Poot M, Staal W, Rehnstrom K, Kilpinen H, Freitag CM, Meyer J, Magnusson P, Saemundsen E, Martsenkovsky I, Bikshaieva I, Martsenkovska I, Vashchenko O, Raleva M, Paketchieva K, Stefanovski B, Durmishi N, Milovancevic MP, Tosevski DL, Silagadze T, Naneishvili N, Mikeladze N, Surguladze S, Vincent JB, Farmer A, Mitchell PB, Wright A, Schofield PR, Fullerton JM, Montgomery GW, Martin NG, Rubino IA, van Winkel R, Kenis G, De Hert M, Réthelyi JM, Bitter I, Terenius L, Jönsson EG, Bakker S, van Os J, Jablensky A, Leboyer M, Bramon E, Powell J, Murray R, Corvin A, Gill M, Morris D, O’Neill FA, Kendler K, Riley B, Wellcome Trust Case Control Consortium 2, Craddock N, Owen MJ, O’Donovan MC, Thorsteinsdottir U, Kong A, Ehrenreich H, Carracedo A, Golimbet V, Andreassen OA, Børglum AD, Mors O, Mortensen PB, Werge T, Ophoff RA, Nöthen MM, Rietschel M, Cichon S, Ruggeri M, Tosato S, Palotie A, St Clair D, Rujescu D, Collier DA, Stefansson H, Stefansson K. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry 2014; 19:108-14. [PMID: 23164818 PMCID: PMC3872086 DOI: 10.1038/mp.2012.157] [Show More Authors] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/29/2023]
Abstract
Epidemiological and genetic data support the notion that schizophrenia and bipolar disorder share genetic risk factors. In our previous genome-wide association study, meta-analysis and follow-up (totaling as many as 18 206 cases and 42 536 controls), we identified four loci showing genome-wide significant association with schizophrenia. Here we consider a mixed schizophrenia and bipolar disorder (psychosis) phenotype (addition of 7469 bipolar disorder cases, 1535 schizophrenia cases, 333 other psychosis cases, 808 unaffected family members and 46 160 controls). Combined analysis reveals a novel variant at 16p11.2 showing genome-wide significant association (rs4583255[T]; odds ratio=1.08; P=6.6 × 10(-11)). The new variant is located within a 593-kb region that substantially increases risk of psychosis when duplicated. In line with the association of the duplication with reduced body mass index (BMI), rs4583255[T] is also associated with lower BMI (P=0.0039 in the public GIANT consortium data set; P=0.00047 in 22 651 additional Icelanders).
Collapse
Affiliation(s)
| | - Simone de Jong
- Center for Neurobehavioral Genetics, UCLA, Los Angeles, California, USA
| | - Manuel Mattheisen
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Genomic Mathematics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Javier Costas
- Galician Foundation of Genomic Medicine-SERGAS, Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Ditte Demontis
- Department of Biomedicine, Human Genetics, and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH
| | - Stéphane Jamain
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
| | - Olli P H Pietiläinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Institute for Health and Welfare, Public Genomics Unit, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Kuang Lin
- Department of Neuroscience, NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King’s College, London, UK
| | - Sergi Papiol
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Johanna Huttenlocher
- deCODE genetics, Reykjavik, Iceland
- Department of Medical Genetics, Institute of Human Genetics, University of Tübingen, Tübingen, Germany
| | - Engilbert Sigurdsson
- Department of Psychiatry, National University Hospital, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK
| | - Ina Giegling
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany
| | - René Breuer
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Gillian Fraser
- Department of Mental Health, University of Aberdeen, Royal Cornhill Hospital, Aberdeen, UK
| | | | - Ingrid Melle
- KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Annamari Tuulio-Henriksson
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Suvisaari
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Jouko Lönnqvist
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Paunio
- Public Health Genomics Unit, National Institute for Health and Welfare THL, Helsinki, Finland
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans & Copenhagen University, Roskilde, Denmark
| | - Thomas Hansen
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans & Copenhagen University, Roskilde, Denmark
| | - Andres Ingason
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans & Copenhagen University, Roskilde, Denmark
| | - Matti Pirinen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eric Strengman
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - David M Hougaard
- Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Torben Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | | | - Mads V Hollegaard
- Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH
- Psychiatric Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lilia Abramova
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vasily Kaleda
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Manuel Arrojo
- Service of Psychiatry, Complexo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Julio Sanjuán
- Unit of Psychiatry, Faculty of Medicine, University of Valencia, Network Center of Biomedical Research on Mental Health (CIBERSAM), Valencia, Spain
| | - Celso Arango
- Hospital General Universitario Gregorio Marañón, IiSGM, Universidad Complutense, CIBERSAM, Madrid, Spain
| | - Bruno Etain
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France
| | - Frank Bellivier
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France
- Université Paris Est, Faculté de Médecine, Créteil, France
| | - Alexandre Méary
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France
| | - Franck Schürhoff
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France
- Université Paris Est, Faculté de Médecine, Créteil, France
| | - Andrei Szoke
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France
| | - Michele Ribolsi
- Department of Neuroscience, Section of Psychiatry, University of Rome-Tor Vergata, Rome, Italy
| | - Valentina Magni
- Department of Neuroscience, Section of Psychiatry, University of Rome-Tor Vergata, Rome, Italy
| | - Alberto Siracusano
- Department of Neuroscience, Section of Psychiatry, University of Rome-Tor Vergata, Rome, Italy
| | - Swetlana Sperling
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Moritz Rossner
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Lambertus A Kiemeney
- Department of Epidemiology and Biostatistics and Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Leonard H van den Berg
- Rudolf Magnus Institute of Neuroscience and Department of Neurology, University Medical Center, Utrecht, the Netherlands
| | - Jan Veldink
- Rudolf Magnus Institute of Neuroscience and Department of Neurology, University Medical Center, Utrecht, the Netherlands
| | - Sarah Curran
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College, London UK
| | - Patrick Bolton
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King’s College, London UK
| | - Martin Poot
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Wouter Staal
- Department of Cognitive Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Karola Rehnstrom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Helena Kilpinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Jobst Meyer
- Department of Neurobehavioural Genetics, University of Trier, Trier, Germany
| | - Pall Magnusson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | | | - Igor Martsenkovsky
- Department of Child, Adolescent Psychiatry and Medical-Social Rehabilitation, Ukrainian Research Institute of Social, Forensic Psychiatry and Drug Abuse, Kyiv, Ukraine
| | - Iana Bikshaieva
- Department of Child, Adolescent Psychiatry and Medical-Social Rehabilitation, Ukrainian Research Institute of Social, Forensic Psychiatry and Drug Abuse, Kyiv, Ukraine
| | - Inna Martsenkovska
- Department of Child, Adolescent Psychiatry and Medical-Social Rehabilitation, Ukrainian Research Institute of Social, Forensic Psychiatry and Drug Abuse, Kyiv, Ukraine
| | - Olesya Vashchenko
- Department of Child, Adolescent Psychiatry and Medical-Social Rehabilitation, Ukrainian Research Institute of Social, Forensic Psychiatry and Drug Abuse, Kyiv, Ukraine
| | - Marija Raleva
- Department of Child and Adolescent Psychiatry, University of Skopje, Skopje, Macedonia
| | - Kamka Paketchieva
- Department of Child and Adolescent Psychiatry, University of Skopje, Skopje, Macedonia
| | - Branislav Stefanovski
- Department of Child and Adolescent Psychiatry, University of Skopje, Skopje, Macedonia
| | - Naser Durmishi
- Department of Child and Adolescent Psychiatry, University of Skopje, Skopje, Macedonia
| | | | - Dusica Lecic Tosevski
- Institute of Mental Health, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Teimuraz Silagadze
- Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| | - Nino Naneishvili
- Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| | - Nina Mikeladze
- Department of Psychiatry and Drug Addiction, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| | - Simon Surguladze
- Social & Affective Neuroscience Lab, Ilia State University, Tbilisi, Georgia
| | - John B Vincent
- Molecular Neuropsychiatry and Development Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Anne Farmer
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK
| | - Philip B Mitchell
- Black Dog Institute, Prince of Wales Hospital, Randwick, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Adam Wright
- Black Dog Institute, Prince of Wales Hospital, Randwick, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Barker Street, Randwick, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | - I Alex Rubino
- Department of Neuroscience, Section of Psychiatry, University of Rome-Tor Vergata, Rome, Italy
| | - Ruud van Winkel
- University Psychiatric Center, Catholic University Leuven, Kortenberg, Belgium
- Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marc De Hert
- University Psychiatric Center, Catholic University Leuven, Kortenberg, Belgium
| | - János M Réthelyi
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - István Bitter
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Lars Terenius
- Department of Clinical Neuroscience, HUBIN project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Erik G Jönsson
- Department of Clinical Neuroscience, HUBIN project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Steven Bakker
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center, Utrecht, the Netherlands
| | - Jim van Os
- Department of Psychiatry, Maastricht University Medical Centre, the Netherlands
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry (CCRN), Graylands Hospital, the University of Western Australia, Perth, Australia
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France
- INSERM U 955, Psychiatrie Génétique, Créteil, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Pôle de Psychiatrie, Créteil France
- Université Paris Est, Faculté de Médecine, Créteil, France
| | - Elvira Bramon
- Mental Health Sciences Unit and Institute of Cognitive Neuroscience, University College London, London, UK
| | - John Powell
- Department of Neuroscience, NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King’s College, London, UK
| | - Robin Murray
- Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King’s College, London, UK
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, School of Medicine, Trinity College, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, School of Medicine, Trinity College, Dublin, Ireland
| | - Derek Morris
- Neuropsychiatric Genetics Research Group, School of Medicine, Trinity College, Dublin, Ireland
| | | | - Ken Kendler
- Department of Human Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Brien Riley
- Department of Human Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Nick Craddock
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Michael C O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
| | - Unnur Thorsteinsdottir
- deCODE genetics, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Hannelore Ehrenreich
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Angel Carracedo
- Genomic Medicine Group - Galician Foundation of Genomic Medicine-Biomedical Network Research Centre on Rare Diseases (CIBERER), University of Santiago de Compostela, Spain
| | - Vera Golimbet
- Mental Health Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ole A Andreassen
- KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anders D Børglum
- Department of Biomedicine, Human Genetics, and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans & Copenhagen University, Roskilde, Denmark
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, UCLA, Los Angeles, California, USA
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center, Utrecht, the Netherlands
| | - Markus M Nöthen
- German Center for Neurodegenerative Disorders (DZNE), Bonn Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Sven Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute of Neurosciences and Medicine (INM-1), Juelich, Germany
| | | | - Sarah Tosato
- Section of Psychiatry, University of Verona, Verona, Italy
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - David St Clair
- Department of Mental Health, University of Aberdeen, Royal Cornhill Hospital, Aberdeen, UK
| | - Dan Rujescu
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - David A Collier
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College, London, UK
- Eli Lilly and Co. Ltd, Erl Wood Manor, Windlesham, Surrey, UK
| | | | - Kari Stefansson
- deCODE genetics, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
100
|
Enggaard Hoeffding LK, Hansen T, Ingason A, Doung L, Thygesen JH, Møller RS, Tommerup N, Kirov G, Rujescu D, Larsen LA, Werge T. Sequence analysis of 17 NRXN1 deletions. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:52-61. [PMID: 24339137 DOI: 10.1002/ajmg.b.32204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Genome instability plays fundamental roles in human evolution and phenotypic variation within our population. This instability leads to genomic rearrangements that are involved in a wide variety of human disorders, including congenital and neurodevelopmental disorders, and cancers. Insight into the molecular mechanisms governing such genomic rearrangements may increase our understanding of disease pathology and evolutionary processes. Here we analyse 17 carriers of non-recurrent deletions in the NRXN1 gene, which have been associated with neurodevelopmental disorders, e.g. schizophrenia, autism and epilepsies. METHODS 17 non-recurrent NRXN1 deletions identified by GWA were sequenced to map the breakpoints of each. Meme … etc. was used to identify shared patterns between the deletions and compare these were previously studies on non-recurrent deletions. RESULTS We discovered two novel sequence motifs shared between all 17 NRXN1 deletions and a significantly higher AT nucleotide content at the breakpoints, compared to the overall nucleotide content on chromosome 2. We found different alteration of sequence at the breakpoint; small insertions and duplications giving rise to short microhomology sequences. CONCLUSIONS No single mechanism seems to be implicated in the deletion events, but the results suggest that NHEJ, FoSTeS or MMBIR is implicated. The two novel sequence motifs together with a high AT content in all in NRXN1 deletions may lead to increased instability leading to a increase susceptibility to a single stranded structures. This favours potentially repaired by NHEJ mechanism of double strand breaks or may leading to replication errors. © 2013 Wiley Periodicals, Inc.
Collapse
|