51
|
Ladd-Acosta C, Shu C, Lee BK, Gidaya N, Singer A, Schieve LA, Schendel DE, Jones N, Daniels JL, Windham GC, Newschaffer CJ, Croen LA, Feinberg AP, Daniele Fallin M. Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood. ENVIRONMENTAL RESEARCH 2016; 144:139-148. [PMID: 26610292 PMCID: PMC4915563 DOI: 10.1016/j.envres.2015.11.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 05/20/2023]
Abstract
Prenatal exposure to tobacco smoke has lifelong health consequences. Epigenetic signatures such as differences in DNA methylation (DNAm) may be a biomarker of exposure and, further, might have functional significance for how in utero tobacco exposure may influence disease risk. Differences in infant DNAm associated with maternal smoking during pregnancy have been identified. Here we assessed whether these infant DNAm patterns are detectible in early childhood, whether they are specific to smoking, and whether childhood DNAm can classify prenatal smoke exposure status. Using the Infinium 450K array, we measured methylation at 26 CpG loci that were previously associated with prenatal smoking in infant cord blood from 572 children, aged 3-5, with differing prenatal exposure to cigarette smoke in the Study to Explore Early Development (SEED). Striking concordance was found between the pattern of prenatal smoking associated DNAm among preschool aged children in SEED and those observed at birth in other studies. These DNAm changes appear to be tobacco-specific. Support vector machine classification models and 10-fold cross-validation were applied to show classification accuracy for childhood DNAm at these 26 sites as a biomarker of prenatal smoking exposure. Classification models showed prenatal exposure to smoking can be assigned with 81% accuracy using childhood DNAm patterns at these 26 loci. These findings support the potential for blood-derived DNAm measurements to serve as biomarkers for prenatal exposure.
Collapse
Affiliation(s)
- Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chang Shu
- Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Brian K Lee
- Drexel University School of Public Health, Philadelphia, PA, USA
| | - Nicole Gidaya
- Drexel University School of Public Health, Philadelphia, PA, USA
| | - Alison Singer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Laura A Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana E Schendel
- Department of Public Health, Institute of Epidemiology and Social Medicine, Department of Economics and Business, National Centre for Register-based Research, Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| | - Nicole Jones
- Biomedical Research Informatics Core, Michigan State University, East Lansing, MI, USA
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Gayle C Windham
- Division of Environmental and Occupational Disease Control, California Department of Public Health, Richmond, CA, USA
| | - Craig J Newschaffer
- Drexel University School of Public Health, Philadelphia, PA, USA; The A.J. Drexel Autism Institute, Drexel University School of Public Health, Philadelphia, PA, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Andrew P Feinberg
- Center for Epigenetics, Institute for Basic Biomedical Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
52
|
Pal M, Ebrahimi S, Oh G, Khare T, Zhang A, Kaminsky ZA, Wang SC, Petronis A. High Precision DNA Modification Analysis of HCG9 in Major Psychosis. Schizophr Bull 2016; 42:170-7. [PMID: 26078387 PMCID: PMC4681545 DOI: 10.1093/schbul/sbv079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
New epigenetic technologies may uncover etiopathogenic mechanisms of major psychosis. In this study, we applied padlock probe-based ultra-deep bisulfite sequencing for fine mapping of modified cytosines of the HLA complex group 9 (nonprotein coding) gene in the postmortem brains of individuals affected with schizophrenia or bipolar disorder and unaffected controls. Significant differences between patients and controls were detected in both CpG and CpH modifications. In addition, we identified epigenetic age effects, DNA modification differences between sense and anti-sense strands, and demonstrated how DNA modification data can be used in clustering of patient populations. Our findings revealed new epigenetic complexities but also highlighted the potential of DNA modification approaches in the search of heterogeneous causes of major psychiatric disease.
Collapse
Affiliation(s)
- Mrinal Pal
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada
| | - Sasha Ebrahimi
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada
| | - Gabriel Oh
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada
| | - Tarang Khare
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada
| | - Aiping Zhang
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada
| | - Zachary A. Kaminsky
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sun-Chong Wang
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada;,Institute of Systems Biology and Bioinformatics, National Central University, Chungli City 32001, Taiwan
| | - Arturas Petronis
- Krembil Family Epigenetics Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario M5T 1R8, Canada;
| |
Collapse
|
53
|
Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology. Epigenomics 2015; 8:271-83. [PMID: 26505319 DOI: 10.2217/epi.15.102] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epidemiology is the branch of science that investigates the causes and distribution of disease in populations in order to provide preventative measures and promote human health. The fields of genetic and environmental epidemiology primarily seek to identify genetic and environmental risk factors for disease, respectively. Epigenetics is emerging as an important piece of molecular data to include in these studies because it can provide mechanistic insights into genetic and environmental risk factors for disease, identify potential intervention targets, provide biomarkers of exposure, illuminate gene-environment interactions and help localize disease-relevant genomic regions. Here, we describe the importance of including epigenetics in genetic and environmental epidemiology studies, provide a conceptual framework when considering epigenetic data in population-based studies and touch upon the many challenges that lie ahead.
Collapse
Affiliation(s)
- Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
54
|
Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic Basis of Mental Illness. Neuroscientist 2015; 22:447-63. [PMID: 26450593 DOI: 10.1177/1073858415608147] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Psychiatric disorders are complex multifactorial illnesses involving chronic alterations in neural circuit structure and function as well as likely abnormalities in glial cells. While genetic factors are important in the etiology of most mental disorders, the relatively high rates of discordance among identical twins, particularly for depression and other stress-related syndromes, clearly indicate the importance of additional mechanisms. Environmental factors such as stress are known to play a role in the onset of these illnesses. Exposure to such environmental insults induces stable changes in gene expression, neural circuit function, and ultimately behavior, and these maladaptations appear distinct between developmental versus adult exposures. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and the aberrant epigenetic regulation that underlies this dysregulation is a unifying theme in psychiatric disorders. Here, we provide a progress report of epigenetic studies of the three major psychiatric syndromes, depression, schizophrenia, and bipolar disorder. We review the literature derived from animal models of these disorders as well as from studies of postmortem brain tissue from human patients. While epigenetic studies of mental illness remain at early stages, understanding how environmental factors recruit the epigenetic machinery within specific brain regions to cause lasting changes in disease susceptibility and pathophysiology is revealing new insight into the etiology and treatment of these conditions.
Collapse
Affiliation(s)
- Eric J Nestler
- Departments of Neuroscience and Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine J Peña
- Departments of Neuroscience and Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marija Kundakovic
- Departments of Neuroscience and Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Mitchell
- Departments of Neuroscience and Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Departments of Neuroscience and Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
55
|
Goldstein BI, Carnethon MR, Matthews KA, McIntyre RS, Miller GE, Raghuveer G, Stoney CM, Wasiak H, McCrindle BW. Major Depressive Disorder and Bipolar Disorder Predispose Youth to Accelerated Atherosclerosis and Early Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2015; 132:965-86. [PMID: 26260736 DOI: 10.1161/cir.0000000000000229] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the 2011 "Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents," several medical conditions among youth were identified that predispose to accelerated atherosclerosis and early cardiovascular disease (CVD), and risk stratification and management strategies for youth with these conditions were elaborated. Major depressive disorder (MDD) and bipolar disorder (BD) among youth satisfy the criteria set for, and therefore merit inclusion among, Expert Panel tier II moderate-risk conditions. The combined prevalence of MDD and BD among adolescents in the United States is ≈10%, at least 10 times greater than the prevalence of the existing moderate-risk conditions combined. The high prevalence of MDD and BD underscores the importance of positioning these diseases alongside other pediatric diseases previously identified as moderate risk for CVD. The overall objective of this statement is to increase awareness and recognition of MDD and BD among youth as moderate-risk conditions for early CVD. To achieve this objective, the primary specific aims of this statement are to (1) summarize evidence that MDD and BD are tier II moderate-risk conditions associated with accelerated atherosclerosis and early CVD and (2) position MDD and BD as tier II moderate-risk conditions that require the application of risk stratification and management strategies in accordance with Expert Panel recommendations. In this scientific statement, there is an integration of the various factors that putatively underlie the association of MDD and BD with CVD, including pathophysiological mechanisms, traditional CVD risk factors, behavioral and environmental factors, and psychiatric medications.
Collapse
|
56
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics 2015; 7:427-49. [DOI: 10.2217/epi.14.85] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The examination of potential roles of epigenetic alterations in the pathogenesis of psychotic diseases have become an essential alternative in recent years as genetic studies alone are yet to uncover major gene(s) for psychosis. Here, we describe the current state of knowledge from the gene-specific and genome-wide studies of postmortem brain and blood cells indicating that aberrant DNA methylation, histone modifications and dysregulation of micro-RNAs are linked to the pathogenesis of mental diseases. There is also strong evidence supporting that all classes of psychiatric drugs modulate diverse features of the epigenome. While comprehensive environmental and genetic/epigenetic studies are uncovering the origins, and the key genes/pathways affected in psychotic diseases, characterizing the epigenetic effects of psychiatric drugs may help to design novel therapies in psychiatry.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory at Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Departments of Medicine (Biomedical Genetics Section), Genetics & Genomics, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
57
|
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6:107. [PMID: 26074864 PMCID: PMC4443738 DOI: 10.3389/fneur.2015.00107] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by problems with social communication, social interaction, and repetitive or restricted behaviors. ASD are comorbid with other disorders including attention deficit hyperactivity disorder, epilepsy, Rett syndrome, and Fragile X syndrome. Neither the genetic nor the environmental components have been characterized well enough to aid diagnosis or treatment of non-syndromic ASD. However, genome-wide association studies have amassed evidence suggesting involvement of hundreds of genes and a variety of associated genetic pathways. Recently, investigators have turned to epigenetics, a prime mediator of environmental effects on genomes and phenotype, to characterize changes in ASD that constitute a molecular level on top of DNA sequence. Though in their infancy, such studies have the potential to increase our understanding of the etiology of ASD and may assist in the development of biomarkers for its prediction, diagnosis, prognosis, and eventually in its prevention and intervention. This review focuses on the first few epigenome-wide association studies of ASD and discusses future directions.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| | - Anthony John Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC , Australia
| | - Jeffrey Mark Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
58
|
Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol 2015; 13:35. [PMID: 25928123 PMCID: PMC4455614 DOI: 10.1186/s12958-015-0028-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, there has been a significant increase in average paternal age when the first child is conceived, either due to increased life expectancy, widespread use of contraception, late marriages and other factors. While the effect of maternal ageing on fertilization and reproduction is well known and several studies have shown that women over 35 years have a higher risk of infertility, pregnancy complications, spontaneous abortion, congenital anomalies, and perinatal complications. The effect of paternal age on semen quality and reproductive function is controversial for several reasons. First, there is no universal definition for advanced paternal ageing. Secondly, the literature is full of studies with conflicting results, especially for the most common parameters tested. Advancing paternal age also has been associated with increased risk of genetic disease. Our exhaustive literature review has demonstrated negative effects on sperm quality and testicular functions with increasing paternal age. Epigenetics changes, DNA mutations along with chromosomal aneuploidies have been associated with increasing paternal age. In addition to increased risk of male infertility, paternal age has also been demonstrated to impact reproductive and fertility outcomes including a decrease in IVF/ICSI success rate and increasing rate of preterm birth. Increasing paternal age has shown to increase the incidence of different types of disorders like autism, schizophrenia, bipolar disorders, and childhood leukemia in the progeny. It is thereby essential to educate the infertile couples on the disturbing links between increased paternal age and rising disorders in their offspring, to better counsel them during their reproductive years.
Collapse
Affiliation(s)
- Rakesh Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Vikram K Rohra
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia.
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia.
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Rola F Turki
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
- Obstetrics and Gynecology Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
| |
Collapse
|
59
|
Toperoff G, Kark JD, Aran D, Nassar H, Ahmad WA, Sinnreich R, Azaiza D, Glaser B, Hellman A. Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence. Clin Epigenetics 2015; 7:35. [PMID: 25829970 PMCID: PMC4379765 DOI: 10.1186/s13148-015-0069-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 01/02/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2D) is highly prevalent in Middle-Eastern and North African Arab populations, but the molecular basis for this susceptibility is unknown. Altered DNA methylation levels were reported in insulin-secreting and responding tissues, but whether methylation in accessible tissues such as peripheral blood is associated with T2D risk remains an open question. Age-related alteration of DNA methylation level was reported in certain methylation sites, but no association with T2D has been shown. Here we report on a population-based study of 929 men and women representing the East Jerusalem Palestinian (EJP) Arab population and compare with the findings among Israeli Ashkenazi Jews. This is the first reported epigenetic study of an Arab population with a characteristic high prevalence of T2D. Results We found that DNA methylation of a prespecified regulatory site in peripheral blood leukocytes (PBLs) is associated with impaired glucose metabolism and T2D independent of sex, body mass index, and white blood cell composition. This CpG site (Chr16: 53,809,231-2; hg19) is located in a region within an intron of the FTO gene, suspected to serve as a tissue-specific enhancer. The association between PBL hypomethylation and T2D varied by age, revealing differential patterns of methylation aging in healthy and diabetic individuals and between ethnic groups: T2D patients displayed prematurely low methylation levels, and this hypomethylation was greater and occurred earlier in life among Palestinian Arabs than Ashkenazi Jews. Conclusions Our study suggests that premature DNA methylation aging is associated with increased risk of T2D. These findings should stimulate the search for more such sites and may pave the way to improved T2D risk prediction within and between human populations. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0069-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gidon Toperoff
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| | - Jeremy D Kark
- Epidemiology Unit, Braun School of Public Health and Community Medicine, Hebrew University and Hadassah Medical Organization, Jerusalem, Israel
| | - Dvir Aran
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel ; School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Hisham Nassar
- Cardiology Department, Hadassah-Hebrew University Medical Center, Hadassah Medical Organization, Ein Kerem, Jerusalem, Israel ; St Joseph Hospital (East Jerusalem), Jerusalem, Israel
| | - Wiessam Abu Ahmad
- Epidemiology Unit, Braun School of Public Health and Community Medicine, Hebrew University and Hadassah Medical Organization, Jerusalem, Israel
| | - Ronit Sinnreich
- Epidemiology Unit, Braun School of Public Health and Community Medicine, Hebrew University and Hadassah Medical Organization, Jerusalem, Israel
| | - Dima Azaiza
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Hadassah Medical Organization, Ein Kerem, Jerusalem, Israel
| | - Asaf Hellman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| |
Collapse
|
60
|
Kaminsky Z, Jones I, Verma R, Saleh L, Trivedi H, Guintivano J, Akman R, Zandi P, Lee RS, Potash JB. DNA methylation and expression of KCNQ3 in bipolar disorder. Bipolar Disord 2015; 17:150-9. [PMID: 25041603 DOI: 10.1111/bdi.12230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.
Collapse
Affiliation(s)
- Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc Natl Acad Sci U S A 2015; 112:3308-13. [PMID: 25675509 DOI: 10.1073/pnas.1422096112] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene (OXTR). DNA methylation of OXTR, an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease.
Collapse
|
62
|
Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, Eley TC. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry 2014; 76:977-83. [PMID: 24929637 PMCID: PMC4252163 DOI: 10.1016/j.biopsych.2014.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adolescent depression is a common neuropsychiatric disorder that often continues into adulthood and is associated with a wide range of poor outcomes including suicide. Although numerous studies have looked at genetic markers associated with depression, the role of epigenetic variation remains relatively unexplored. METHODS Monozygotic (MZ) twins were selected from an adolescent twin study designed to investigate the interplay of genetic and environmental factors in the development of emotional and behavioral difficulties. There were 18 pairs of MZ twins identified in which one member scored consistently higher (group mean within the clinically significant range) on self-rated depression than the other. We assessed genome-wide patterns of DNA methylation in twin buccal cell DNA using the Infinium HumanMethylation450 BeadChip from Illumina. Quality control and data preprocessing was undertaken using the wateRmelon package. Differentially methylated probes (DMPs) were identified using an analysis strategy taking into account both the significance and the magnitude of DNA methylation differences. The top differentially methylated DMP was successfully validated by bisulfite-pyrosequencing, and identified DMPs were tested in postmortem brain samples obtained from patients with major depressive disorder (n = 14) and matched control subjects (n = 15). RESULTS Two reproducible depression-associated DMPs were identified, including the top-ranked DMP that was located within STK32C, which encodes a serine/threonine kinase, of unknown function. CONCLUSIONS Our data indicate that DNA methylation differences are apparent in MZ twins discordant for adolescent depression and that some of the disease-associated variation observed in buccal cell DNA is mirrored in adult brain tissue obtained from individuals with clinical depression.
Collapse
Affiliation(s)
- Emma L. Dempster
- University of Exeter Medical School, Exeter University, Exeter,Address correspondence to Emma L. Dempster, Ph.D., University of Exeter Medical School, Exeter University, RILD-Medical Research, Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Chloe C.Y. Wong
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Kathryn J. Lester
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Joe Burrage
- University of Exeter Medical School, Exeter University, Exeter
| | - Alice M. Gregory
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter,Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Thalia C. Eley
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| |
Collapse
|
63
|
Abstract
The last several years have been breakthrough ones in bipolar disorder (BPD) genetics, as the field has identified robust risk variants for the first time. Leading the way have been genome-wide association studies (GWAS) that have assessed common genetic markers across very large groups of patients and controls. These have resulted in findings in genes including ANK3, CACNA1C, SYNE1, ODZ4, and TRANK1. Additional studies have begun to examine the biology of these genes and how risk variants influence aspects of brain and behavior that underlie BPD. For example, carriers of the CACNA1C risk variant have been found to exhibit hippocampal and anterior cingulate dysfunction during episodic memory recall. This work has shed additional light on the relationship of bipolar susceptibility variants to other disorders, particularly schizophrenia. Even larger BPD GWAS are expected with samples now amassed of 21,035 cases and 28,758 controls. Studies have examined the pharmacogenomics of BPD with studies of lithium response, yielding high profile results that remain to be confirmed. The next frontier in the field is the identification of rare bipolar susceptibility variants through large-scale DNA sequencing. While only a couple of papers have been published to date, many studies are underway. The Bipolar Sequencing Consortium has been formed to bring together all of the groups working in this area, and to perform meta-analyses of the data generated. The consortium, with 13 member groups, now has exome data on ~3,500 cases and ~5,000 controls, and on ~162 families. The focus will likely shift within several years from exome data to whole genome data as costs of obtaining such data continue to drop. Gene-mapping studies are now providing clear results that provide insights into the pathophysiology of the disorder. Sequencing studies should extend this process further. Findings could eventually set the stage for rational therapeutic development.
Collapse
Affiliation(s)
- Gen Shinozaki
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | |
Collapse
|
64
|
A Bayesian framework to identify methylcytosines from high-throughput bisulfite sequencing data. PLoS Comput Biol 2014; 10:e1003853. [PMID: 25255082 PMCID: PMC4177668 DOI: 10.1371/journal.pcbi.1003853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/09/2014] [Indexed: 12/27/2022] Open
Abstract
High-throughput bisulfite sequencing technologies have provided a comprehensive and well-fitted way to investigate DNA methylation at single-base resolution. However, there are substantial bioinformatic challenges to distinguish precisely methylcytosines from unconverted cytosines based on bisulfite sequencing data. The challenges arise, at least in part, from cell heterozygosis caused by multicellular sequencing and the still limited number of statistical methods that are available for methylcytosine calling based on bisulfite sequencing data. Here, we present an algorithm, termed Bycom, a new Bayesian model that can perform methylcytosine calling with high accuracy. Bycom considers cell heterozygosis along with sequencing errors and bisulfite conversion efficiency to improve calling accuracy. Bycom performance was compared with the performance of Lister, the method most widely used to identify methylcytosines from bisulfite sequencing data. The results showed that the performance of Bycom was better than that of Lister for data with high methylation levels. Bycom also showed higher sensitivity and specificity for low methylation level samples (<1%) than Lister. A validation experiment based on reduced representation bisulfite sequencing data suggested that Bycom had a false positive rate of about 4% while maintaining an accuracy of close to 94%. This study demonstrated that Bycom had a low false calling rate at any methylation level and accurate methylcytosine calling at high methylation levels. Bycom will contribute significantly to studies aimed at recalibrating the methylation level of genomic regions based on the presence of methylcytosines. High-throughput bisulfite sequencing (BS-seq) has advanced tremendously the study of DNA methylation and the determination of methylcytosines at single-base resolution. In BS-seq data analysis, sequencing errors, incomplete bisulfite conversion, and cell heterozygosis affect the accuracy of methylcytosine detection in quite a major way. Simple filtering methods using predefined thresholds have proved to have extremely low efficiency. The commonly used Lister uses binomial distribution to overcome the impacts of non-conversion rate and sequencing errors, but the impact of the cell heterozygosis is not considered. Here, we present Bycom, a novel algorithm based on the Bayesian inference model. To improve the accuracy of methylcytosine calling, Bycom considers sequencing errors, non-conversion rate, and cell heterozygosis integratively to identify methylcytosines from BS-seq data. We evaluated the performance of Bycom using different kinds of BS-seq data. Our results demonstrated that Bycom identified methylcytosines more accurately than Lister, especially in BS-seq data with extremely low genome-wide methylation levels.
Collapse
|
65
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
66
|
Hayashi-Takagi A, Vawter MP, Iwamoto K. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol Psychiatry 2014; 75:920-8. [PMID: 24286759 PMCID: PMC4964959 DOI: 10.1016/j.biopsych.2013.09.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | | | | |
Collapse
|
67
|
|
68
|
Weder N, Zhang H, Jensen K, Yang BZ, Simen A, Jackowski A, Lipschitz D, Douglas-Palumberi H, Ge M, Perepletchikova F, O'Loughlin K, Hudziak JJ, Gelernter J, Kaufman J. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry 2014; 53:417-24.e5. [PMID: 24655651 PMCID: PMC4126411 DOI: 10.1016/j.jaac.2013.12.025] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/22/2013] [Accepted: 01/10/2014] [Indexed: 02/09/2023]
Abstract
OBJECTIVES To determine whether epigenetic markers predict dimensional ratings of depression in maltreated children. METHOD A genome-wide methylation study was completed using the Illumina 450K BeadChip array in 94 maltreated and 96 healthy nontraumatized children with saliva-derived DNA. The 450K BeadChip does not include any methylation sites in the exact location as sites in candidate genes previously examined in the literature, so a test for replication of prior research findings was not feasible. RESULTS Methylation in 3 genes emerged as genome-wide-significant predictors of depression: DNA-Binding Protein Inhibitor ID-3 (ID3); Glutamate Receptor, Ionotropic N-methyl-D-aspartate (NMDA) 1 (GRIN1); and Tubulin Polymerization Promoting Protein (TPPP) (p < 5.0 × 10(-7), all analyses). These genes are all biologically relevant with ID3 involved in the stress response, GRIN1 involved in neural plasticity, and TPPP involved in neural circuitry development. Methylation in CpG sites in candidate genes were not predictors of depression at significance levels corrected for whole genome testing, but maltreated and control children did have significantly different β values after Bonferroni correction at multiple methylation sites in these candidate genes (e.g., BDNF, NR3C1, FKBP5). CONCLUSIONS This study suggests that epigenetic changes in ID3, GRIN1, and TPPP genes, in combination with experiences of maltreatment, may confer risk for depression in children. The study adds to a growing body of literature supporting a role for epigenetic mechanisms in the pathophysiology of stress-related psychiatric disorders. Although epigenetic changes are frequently long lasting, they are not necessarily permanent. Consequently, interventions to reverse the negative biological and behavioral sequelae associated with child maltreatment are briefly discussed.
Collapse
Affiliation(s)
| | | | | | | | - Arthur Simen
- Yale University School of Medicine; Merck Research Laboratories
| | | | | | | | | | | | - Kerry O'Loughlin
- University of Vermont, Vermont Center for Children, Youth, and Families
| | - James J Hudziak
- University of Vermont, Vermont Center for Children, Youth, and Families
| | | | - Joan Kaufman
- Child Mind Institute; Yale University School of Medicine.
| |
Collapse
|
69
|
Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry 2014; 19:495-503. [PMID: 23608919 PMCID: PMC3906213 DOI: 10.1038/mp.2013.41] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/21/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) defines a group of common, complex neurodevelopmental disorders. Although the aetiology of ASD has a strong genetic component, there is considerable monozygotic (MZ) twin discordance indicating a role for non-genetic factors. Because MZ twins share an identical DNA sequence, disease-discordant MZ twin pairs provide an ideal model for examining the contribution of environmentally driven epigenetic factors in disease. We performed a genome-wide analysis of DNA methylation in a sample of 50 MZ twin pairs (100 individuals) sampled from a representative population cohort that included twins discordant and concordant for ASD, ASD-associated traits and no autistic phenotype. Within-twin and between-group analyses identified numerous differentially methylated regions associated with ASD. In addition, we report significant correlations between DNA methylation and quantitatively measured autistic trait scores across our sample cohort. This study represents the first systematic epigenomic analyses of MZ twins discordant for ASD and implicates a role for altered DNA methylation in autism.
Collapse
|
70
|
Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry 2014. [PMID: 24655651 DOI: 10.1016/j.molmed.2014.11.008.mitochondria] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine whether epigenetic markers predict dimensional ratings of depression in maltreated children. METHOD A genome-wide methylation study was completed using the Illumina 450K BeadChip array in 94 maltreated and 96 healthy nontraumatized children with saliva-derived DNA. The 450K BeadChip does not include any methylation sites in the exact location as sites in candidate genes previously examined in the literature, so a test for replication of prior research findings was not feasible. RESULTS Methylation in 3 genes emerged as genome-wide-significant predictors of depression: DNA-Binding Protein Inhibitor ID-3 (ID3); Glutamate Receptor, Ionotropic N-methyl-D-aspartate (NMDA) 1 (GRIN1); and Tubulin Polymerization Promoting Protein (TPPP) (p < 5.0 × 10(-7), all analyses). These genes are all biologically relevant with ID3 involved in the stress response, GRIN1 involved in neural plasticity, and TPPP involved in neural circuitry development. Methylation in CpG sites in candidate genes were not predictors of depression at significance levels corrected for whole genome testing, but maltreated and control children did have significantly different β values after Bonferroni correction at multiple methylation sites in these candidate genes (e.g., BDNF, NR3C1, FKBP5). CONCLUSIONS This study suggests that epigenetic changes in ID3, GRIN1, and TPPP genes, in combination with experiences of maltreatment, may confer risk for depression in children. The study adds to a growing body of literature supporting a role for epigenetic mechanisms in the pathophysiology of stress-related psychiatric disorders. Although epigenetic changes are frequently long lasting, they are not necessarily permanent. Consequently, interventions to reverse the negative biological and behavioral sequelae associated with child maltreatment are briefly discussed.
Collapse
|
71
|
Kato T, Iwamoto K. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology 2014; 80:133-9. [PMID: 24389572 DOI: 10.1016/j.neuropharm.2013.12.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/14/2013] [Accepted: 12/18/2013] [Indexed: 01/02/2023]
Abstract
Covalent modifications of nucleotides, such as methylation or hydroxymethylation of cytosine, regulate gene expression. Early environmental risk factors play a role in mental disorders in adulthood. This may be in part mediated by epigenetic DNA modifications. Methods for comprehensive analysis of DNA methylation and hydroxymethylation include DNA modification methods such as bisulfite sequencing, or collection of methylated, hydroxymethylated, or unmethylated DNA by specific binding proteins, antibodies, or restriction enzymes, followed by sequencing or microarray analysis. Results from these experiments should be interpreted with caution because each method gives different result. Cytosine hydroxymethylation has different effects on gene expression than cytosine methylation; methylation of CpG islands is associated with lower gene expression, whereas hydroxymethylation in intragenic regions is associated with higher gene expression. The role of hydroxymethylcytosine is of particular interest in mental disorders because the modification is enriched in the brain and synapse related genes, and it exhibits dynamic regulation during development. Many DNA methylation patterns are conserved across species, but there are also human specific signatures. Comprehensive analysis of DNA methylation shows characteristic changes associated with tissues, brain regions, cell types, and developmental states. Thus, differences in DNA methylation status between tissues, brain regions, cell types, and developmental stages should be considered when the role of DNA methylation in mental disorders is studied. Several disease-associated changes in methylation have been reported: hypermethylation of SOX10 in schizophrenia, hypomethylation of HCG9 (HLA complex group 9) in bipolar disorder, hypermethylation of PRIMA1, hypermethylation of SLC6A4 (serotonin transporter) in bipolar disorder, and hypomethylation of ST6GALNAC1 in bipolar disorder. These findings need to be replicated in different patient populations to be generalized. Further studies including animal experiments are necessary to understand the roles of DNA methylation in mental disorders.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Psychiatry, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
72
|
Weaver ICG. Integrating early life experience, gene expression, brain development, and emergent phenotypes: unraveling the thread of nature via nurture. ADVANCES IN GENETICS 2014; 86:277-307. [PMID: 25172353 DOI: 10.1016/b978-0-12-800222-3.00011-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptation to environmental changes is based on the perpetual generation of new phenotypes. Modern biology has focused on the role of epigenetic mechanisms in facilitating the adaptation of organisms to changing environments through alterations in gene expression. Inherited and/or acquired epigenetic factors are relatively stable and have regulatory roles in numerous genomic activities that translate into phenotypic outcomes. Evidence that dietary and pharmacological interventions have the potential to reverse environment-induced modification of epigenetic states (e.g., early life experience, nutrition, medication, infection) has provided an additional stimulus for understanding the biological basis of individual differences in cognitive abilities and disorders of the brain. It has been suggested that accurate quantification of the relative contribution of heritable genetic and epigenetic variation is essential for understanding phenotypic divergence and adaptation in changing environments, a process requiring stable modulation of gene expression. The main challenge for epigenetics in psychology and psychiatry is to determine how experiences and environmental cues, including the nature of our nurture, influence the expression of neuronal genes to produce long-term individual differences in behavior, cognition, personality, and mental health. To this end, focusing on DNA and histone modifications and their initiators, mediators and readers may provide new inroads for understanding the molecular basis of phenotypic plasticity and disorders of the brain. In this chapter, we review recent discoveries highlighting epigenetic aspects of normal brain development and mental illness, as well as discuss some future directions in the field of behavioral epigenetics.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
73
|
Abstract
Unraveling the epigenetic status of neuronal cells in the brain is critical to our understanding of the pathophysiology of psychiatric disorders, which may reflect a complex interaction between genetic and environmental factors. Several epigenetic studies of mood disorders have been conducted with postmortem brains. However, proper interpretation of the results is hampered by our scant understanding of the effects of mood stabilizers on the epigenetic status of neuronal cells. We performed both comprehensive and gene-specific analyses to examine DNA methylation in human neuroblastoma SK-N-SH cells treated with three mood stabilizers: lithium, valproate and carbamazepine. Measurement of the level of DNA methylation of about 27 000 CpG sites revealed a profound epigenetic effect of lithium, compared with the two other mood stabilizers. In addition, we found that the mood stabilizers have common epigenetic targets and a propensity to increase DNA methylation. Gene-specific analysis involved detailed analysis of the methylation of promoter regions of SLC6A4 and BDNF, both of which have been reported to show altered DNA methylation in bipolar disorder patients or suicide victims, by extensive bisulfite sequencing. We did not observe significant changes in DNA methylation at BDNF promoter IV. However, we found that CpG sites of SLC6A4, which were hypermethylated in patients with bipolar disorder, were hypomethylated in the neuroblastoma cells treated with mood stabilizers. Our results will contribute to a better understanding of the epigenetic changes associated with mood disorders, and they also provide new insight into the mechanisms of action of mood stabilizers.
Collapse
|
74
|
Tylee DS, Kawaguchi DM, Glatt SJ. On the outside, looking in: a review and evaluation of the comparability of blood and brain "-omes". Am J Med Genet B Neuropsychiatr Genet 2013; 162B:595-603. [PMID: 24132893 DOI: 10.1002/ajmg.b.32150] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
In this article, we review studies detailing the correspondence between peripheral blood and brain tissue across various domains of high-throughput -omic analysis in order to provide a context for evaluating blood-based biomarker studies. Specifically, we reviewed seven studies comparing patterns of DNA methylation (i.e., an aspect of the epigenome), eight articles comparing patterns of gene expression (i.e., the transcriptome), and three articles comparing patterns of protein expression (i.e., the proteome). Our review of the epigenomic literature suggests that CpG-island methylation levels are generally highly correlated (r = 0.90) between blood and brain. Our review of transcriptomic studies suggests that between 35% and 80% of known transcripts are present in both brain and blood tissue samples; estimates of cross-tissue correlation in expression levels were found to range from 0.25 to 0.64, with stronger correlations observed among particular subsets of genes. Relative to the epigenome and transcriptome, the proteome has not been as fully compared between brain and blood samples, highlighting an important area for future work as whole-proteome profiling methods mature. Beyond reviewing the relevant studies, we discuss some of the assumptions, methodological issues, and gaps in knowledge that should be addressed in order to better understand how the multiple "-omes" of the brain are reflected in the peripheral blood. A better understanding of these relationships is a critical precursor to the validation of biomarkers for brain disorders.
Collapse
Affiliation(s)
- Daniel S Tylee
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry and Behavioral Sciences & Neuroscience and Physiology, Medical Genetics Research Center, SUNY Upstate Medical University, Syracuse, New York
| | | | | |
Collapse
|
75
|
Abstract
Bipolar disorder is now known to be associated not only with highly prevalent co-occurring psychiatric and substance use disorders but also with medical comorbidities, such as cardiovascular diseases, diabetes mellitus, obesity and thyroid dysfunction. Inflammatory disturbances repeatedly observed in bipolar disorder, can explain some of the comorbidity between bipolar disorder and medical disorder. This revised perspective of bipolar disorders should promote the development of therapeutic tools. Immuno-inflammatory dysfunction may well represent a significant component of the underlying pathophysiology of the disorder. We therefore propose to review the immuno-inflammatory hypothesis in bipolar disorder considering the co-occurence with autoimmune diseases, immunological and inflammatory markers, as well as immuno-genetic markers which could lead to personalized treatments.
Collapse
|
76
|
Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, Kawamura Y, Hibino H, Tochigi M, Kakiuchi C, Sasaki T, Kato T, Kasai K, Iwamoto K. DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res 2013; 77:208-14. [PMID: 23973796 DOI: 10.1016/j.neures.2013.08.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 02/09/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations in brain-derived neurotrophic factor (BDNF) promoters are associated with the pathophysiology of psychiatric disorders. Epigenetic changes in BDNF were reported not only in brain tissues but also in other tissues, including peripheral blood cells (PBC) and saliva. We examined DNA methylation levels of BDNF promoters I and IV using genomic DNA derived from PBC of healthy controls (n=100), and patients with schizophrenia (n=100), all from the Japanese population, by pyrosequencing. The examined CpG sites were chosen based on previous epigenetic studies that reported altered DNA methylation. We found a significantly higher level of methylation at BDNF promoter I in patients with schizophrenia compared to controls, although the difference was small. Subsequent analysis revealed that in controls, the methylation level of BDNF promoters was associated with sex, and the methylation difference observed in promoter I was more prominent in male patients with schizophrenia. Epigenetic alteration of BDNF in the PBC might reflect the pathophysiology of schizophrenia, and could be a potential biomarker.
Collapse
Affiliation(s)
- Tempei Ikegame
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Coding and noncoding gene expression biomarkers in mood disorders and schizophrenia. DISEASE MARKERS 2013; 35:11-21. [PMID: 24167345 PMCID: PMC3774957 DOI: 10.1155/2013/748095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/20/2013] [Indexed: 12/13/2022]
Abstract
Mood disorders and schizophrenia are common and complex disorders with consistent evidence of genetic and environmental influences on predisposition. It is generally believed that the consequences of disease, gene expression, and allelic heterogeneity may be partly the explanation for the variability observed in treatment response. Correspondingly, while effective treatments are available for some patients, approximately half of the patients fail to respond to current neuropsychiatric treatments. A number of peripheral gene expression studies have been conducted to understand these brain-based disorders and mechanisms of treatment response with the aim of identifying suitable biomarkers and perhaps subgroups of patients based upon molecular fingerprint. In this review, we summarize the results from blood-derived gene expression studies implemented with the aim of discovering biomarkers for treatment response and classification of disorders. We include data from a biomarker study conducted in first-episode subjects with schizophrenia, where the results provide insight into possible individual biological differences that predict antipsychotic response. It is concluded that, while peripheral studies of expression are generating valuable results in pathways involving immune regulation and response, larger studies are required which hopefully will lead to robust biomarkers for treatment response and perhaps underlying variations relevant to these complex disorders.
Collapse
|
78
|
Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:49-62. [PMID: 22813842 DOI: 10.1016/j.pnpbp.2012.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder with a complex genetic contribution. Although multiple genetic, immunological and environmental factors are known to contribute to schizophrenia susceptibility, the underlying neurobiological mechanism(s) is yet to be established. The immune system dysfunction theory of schizophrenia is experiencing a period of renewal due to a growth in evidence implicating components of the immune system in brain function and human behavior. Current evidence indicates that certain immune molecules such as Major Histocompatibility Complex (MHC) and cytokines, the key regulators of immunity and inflammation are directly involved in the neurobiological processes related to neurodevelopment, neuronal plasticity, learning, memory and behavior. However, the strongest support in favor of the immune hypothesis has recently emerged from on-going genome wide association studies advocating MHC region variants as major determinants of one's risk for developing schizophrenia. Further identification of the interacting partners and receptors of MHC molecules in the brain and their role in down-stream signaling pathways of neurotransmission have implicated these molecules as potential schizophrenia risk factors. More recently, combined brain imaging and genetic studies have revealed a relationship between genetic variations within the MHC region and neuromorphometric changes during schizophrenia. Furthermore, MHC molecules play a significant role in the immune-infective and neurodevelopmental pathogenetic pathways, currently hypothesized to contribute to the pathophysiology of schizophrenia. Herein, we review the immunological, genetic and expression studies assessing the role of the MHC in conferring risk for developing schizophrenia, we summarize and discuss the possible mechanisms involved, making note of the challenges to, and future directions of, immunogenetic research in schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore-560029, India.
| | | | | |
Collapse
|
79
|
Guintivano J, Arad M, Tamashiro KLK, Gould TD, Kaminsky ZA. BioTile, a Perl based tool for the identification of differentially enriched regions in tiling microarray data. BMC Bioinformatics 2013; 14:76. [PMID: 23452827 PMCID: PMC3599767 DOI: 10.1186/1471-2105-14-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide tiling array experiments are increasingly used for the analysis of DNA methylation. Because DNA methylation patterns are tissue and cell type specific, the detection of differentially methylated regions (DMRs) with small effect size is a necessary feature of tiling microarray 'peak' finding algorithms, as cellular heterogeneity within a studied tissue may lead to a dilution of the phenotypically relevant effects. Additionally, the ability to detect short length DMRs is necessary as biologically relevant signal may occur in focused regions throughout the genome. RESULTS We present a free open-source Perl application, Binding Intensity Only Tile array analysis or "BioTile", for the identification of differentially enriched regions (DERs) in tiling array data. The application of BioTile to non-smoothed data allows for the identification of shorter length and smaller effect-size DERs, while correcting for probe specific variation by inversely weighting on probe variance through a permutation corrected meta-analysis procedure employed at identified regions. BioTile exhibits higher power to identify significant DERs of low effect size and across shorter genomic stretches as compared to other peak finding algorithms, while not sacrificing power to detect longer DERs. CONCLUSION BioTile represents an easy to use analysis option applicable to multiple microarray platforms, allowing for its integration into the analysis workflow of array data analysis.
Collapse
Affiliation(s)
- Jerry Guintivano
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
80
|
Booij L, Wang D, Lévesque ML, Tremblay RE, Szyf M. Looking beyond the DNA sequence: the relevance of DNA methylation processes for the stress-diathesis model of depression. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120251. [PMID: 23440465 DOI: 10.1098/rstb.2012.0251] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The functioning of the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic (5-HT) system are known to be intertwined with mood. Alterations in these systems are often associated with depression. However, neither are sufficient to cause depression in and of themselves. It is now becoming increasingly clear that the environment plays a crucial role, particularly, the perinatal environment. In this review, we posit that early environmental stress triggers a series of epigenetic mechanisms that adapt the genome and programme the HPA axis and 5-HT system for survival in a harsh environment. We focus on DNA methylation as it is the most stable epigenetic mark. Given that DNA methylation patterns are in large part set within the perinatal period, long-term gene expression programming by DNA methylation is especially vulnerable to environmental insults during this period. We discuss specific examples of genes in the 5-HT system (serotonin transporter) and HPA axis (glucocorticoid receptor and arginine vasopressin enhancer) whose DNA methylation state is associated with early life experience and may potentially lead to depression vulnerability. We conclude with a discussion on the relevance of studying epigenetic mechanisms in peripheral tissue as a proxy for those occurring in the human brain and suggest avenues for future research.
Collapse
Affiliation(s)
- Linda Booij
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
81
|
Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 2013; 8:290-302. [PMID: 23426267 PMCID: PMC3669121 DOI: 10.4161/epi.23924] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain cellular heterogeneity may bias cell type specific DNA methylation patterns, influencing findings in psychiatric epigenetic studies. We performed fluorescence activated cell sorting (FACS) of neuronal nuclei and Illumina HM450 DNA methylation profiling in post mortem frontal cortex of 29 major depression and 29 matched controls. We identify genomic features and ontologies enriched for cell type specific epigenetic variation. Using the top cell epigenotype specific (CETS) marks, we generated a publically available R package, “CETS,” capable of quantifying neuronal proportions and generating in silico neuronal profiles from DNA methylation data. We demonstrate a significant overlap in major depression DNA methylation associations between FACS separated and CETS model generated neuronal profiles relative to bulk profiles. CETS derived neuronal proportions correlated significantly with age in the frontal cortex and cerebellum and accounted for epigenetic variation between brain regions. CETS based control of cellular heterogeneity will enable more robust hypothesis testing in the brain.
Collapse
Affiliation(s)
- Jerry Guintivano
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
82
|
Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, Gelernter J, Kaufman J. Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med 2013; 44:101-7. [PMID: 23332324 PMCID: PMC3758252 DOI: 10.1016/j.amepre.2012.10.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/24/2012] [Accepted: 10/05/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Child abuse is highly prevalent and associated with increased risk for a range of health problems, including cancer, cardiovascular disease, diabetes, psychiatric disorders, and other health problems. Little is currently known about the mechanism by which early adversity confers risk for health problems later in life. PURPOSE To determine if there are epigenetic differences associated with child maltreatment that may help explain association between adverse childhood experiences and later health problems. METHODS As part of a study examining genetic and environmental factors associated with depression, saliva DNA specimens were collected on 96 maltreated children removed from their parents due to abuse or neglect and 96 demographically matched control children between 2003 and 2010. In 2011, the Illumina 450K BeadChip was used on stored DNA specimens and analyzed to examine whole-genome methylation differences between maltreated and control children. RESULTS After controlling for multiple comparisons, maltreated and control children had significantly different methylation values at 2868 CpG sites (p<5.0 × 10(-7), all sites; average methylation difference per site=17%; range=1%-62%). The gene set contained numerous markers of diseases and biological processes related to the health problems associated with early childhood adversity. CONCLUSIONS Although replication is required, this study suggests that epigenetic mechanisms may be associated with risk for health problems later in life in maltreated children. This study lays the groundwork for future studies examining health and methylation measures to further characterize the role of epigenetic mechanisms in conferring risk for medical problems in individuals with histories of early adversity.
Collapse
Affiliation(s)
- Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Harris RA, Nagy-Szakal D, Kellermayer R. Human metastable epiallele candidates link to common disorders. Epigenetics 2013; 8:157-63. [PMID: 23321599 PMCID: PMC3592901 DOI: 10.4161/epi.23438] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastable epialleles (MEs) are mammalian genomic loci where epigenetic patterning occurs before gastrulation in a stochastic fashion leading to systematic interindividual variation within one species. Importantly, periconceptual nutritional influences may modulate the establishment of epigenetic changes, such as DNA methylation at MEs. Based on these characteristics, we exploited Infinium HumanMethylation450 BeadChip kits in a 2-tissue parallel screen on peripheral blood leukocyte and colonic mucosal DNA from 10 children without identifiable large intestinal disease. This approach led to the delineation of 1776 CpG sites meeting our criteria for MEs, which associated with 1013 genes. The list of ME candidates exhibited overlaps with recently identified human genes (including CYP2E1 and MGMT, where methylation has been associated with Parkinson disease and glioblastoma, respectively) in which perinatal DNA methylation levels where linked to maternal periconceptual nutrition. One hundred 18 (11.6%) of the ME candidates overlapped with genes where DNA methylation correlated (r > 0.871; p < 0.055) with expression in the colon mucosa of 5 independent control children. Genes involved in homophilic cell adhesion (including cadherin-associated genes) and developmental processes were significantly overrepresented in association with MEs. Additional filtering of gene expression-correlated MEs defined 35 genes, associated with 2 or more CpG sites within a 10 kb genomic region, fulfilling the ME criteria. DNA methylation changes at a number of these genes have been linked to various forms of human disease, including cancers, such as asthma and acute myeloid leukemia (ALOX12), gastric cancer (EBF3), breast cancer (NAV1), colon cancer and acute lymphoid leukemia (KCNK15), Wilms tumor (protocadherin gene cluster; PCDHAs) and colorectal cancer (TCERG1L), suggesting a potential etiologic role for MEs in tumorigenesis and underscoring the possible developmental origins of these malignancies. The presented compendium of ME candidates may accelerate our understanding of the epigenetic origins of common human disorders.
Collapse
Affiliation(s)
- R Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
84
|
Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, Araki T, Kasai K, Iwamoto K. Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J Hum Genet 2012; 58:91-7. [PMID: 23235336 DOI: 10.1038/jhg.2012.140] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have revealed that schizophrenia is highly heritable. However, genetic studies have not fully elucidated its etiology. Accumulating evidence suggests that epigenetic alterations may provide an additional explanation of its pathophysiology. We investigated the methylation profiles of DNA in peripheral blood cells from 18 patients with first-episode schizophrenia (FESZ) and from 15 normal controls. Schizophrenia patients were confined to those at the stage of first-episode psychosis. We analyzed the DNA methylation status of 27,578 CpG sites by means of the Illumina Infinium HumanMethylation27 BeadChip array. Differentially methylated CpG sites, which were particularly abundant within CpG islands, were enriched in genes related to the nuclear lumen, to transcription factor binding, and to nucleotide binding. We also observed differential methylation of the promoters of HTR1E and COMTD1, which are functionally related to genes found to be differentially methylated in schizophrenia patients in previous studies. Our results indicate the site-specific epigenetic alterations in patients with FESZ.
Collapse
Affiliation(s)
- Masaki Nishioka
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Nishioka M, Bundo M, Kasai K, Iwamoto K. DNA methylation in schizophrenia: progress and challenges of epigenetic studies. Genome Med 2012; 4:96. [PMID: 23234572 PMCID: PMC3580436 DOI: 10.1186/gm397] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a severe psychiatric disease affecting about 1% of the world's population, with significant effects on patients and society. Genetic studies have identified several candidate risk genes or genomic regions for schizophrenia, and epidemiological studies have revealed several environmental risk factors. However, the etiology of schizophrenia still remains largely unknown. Epigenetic mechanisms such as DNA methylation and histone modifications can explain the interaction between genetic and environmental factors at the molecular level, and accumulating evidence suggests that such epigenetic alterations are involved in the pathophysiology of schizophrenia. However, replication studies to validate previous findings and investigations of the causality of epigenetic alterations in schizophrenia are needed. Here, we review epigenetic studies of schizophrenia patients using postmortem brains or peripheral tissues, focusing mainly on DNA methylation. We also highlight the recent progress and challenges in characterizing the potentially complex and dynamic patterns of epigenomic variations. Such studies are expected to contribute to our understanding of schizophrenia etiology and should provide novel opportunities for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Masaki Nishioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 1138655, Japan
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 1138655, Japan
| | - Miki Bundo
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 1138655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 1138655, Japan
| | - Kazuya Iwamoto
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 1138655, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
86
|
Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol 2012; 34:144-50. [PMID: 23122051 DOI: 10.1016/j.it.2012.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/29/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
The role of microglia in central nervous system (CNS) pathology has been studied extensively, and more recently, examination of microglia in the healthy brain has yielded important insights into their many functions. It was long assumed that microglia were essentially quiescent cells, unless provoked into activation, which was considered a hallmark of disease. More recently, however, it has become increasingly clear that they are extraordinarily dynamic cells, constantly sampling their environment and adjusting to exquisitely delicate stimuli. Along these lines, our laboratory has identified a new and unexpected role for microglial phagocytosis - or lack thereof - in the pathophysiology of Rett syndrome, a neurodevelopmental disease caused by mutation of the gene encoding methyl-CpG binding protein (MECP)2. We have shown that specific expression of wild type Mecp2 in myeloid cells of Mecp2-null mice is sufficient to arrest major symptoms associated with this devastating disease. This beneficial effect, however, is abolished if phagocytic activity of microglia is inhibited. Here, we discuss microglial origins, the role of microglia in brain development and maintenance, and the phenomenon of microglial augmentation by myeloid progenitor cells in the adult brain. Finally, we address in some detail the beneficial roles of microglia as clinical targets in Rett syndrome and other neurological disorders.
Collapse
Affiliation(s)
- Noël C Derecki
- Center for Brain Immunology and Glia and Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
87
|
Jack A, Connelly JJ, Morris JP. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front Hum Neurosci 2012; 6:280. [PMID: 23087634 PMCID: PMC3467966 DOI: 10.3389/fnhum.2012.00280] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022] Open
Abstract
Oxytocin and its receptor (OXTR) play an important role in a variety of social perceptual and affiliative processes. Individual variability in social information processing likely has a strong heritable component, and as such, many investigations have established an association between common genetic variants of OXTR and variability in the social phenotype. However, to date, these investigations have primarily focused only on changes in the sequence of DNA without considering the role of epigenetic factors. DNA methylation is an epigenetic mechanism by which cells control transcription through modification of chromatin structure. DNA methylation of OXTR decreases expression of the gene and high levels of methylation have been associated with autism spectrum disorders (ASD). This link between epigenetic variability and social phenotype allows for the possibility that social processes are under epigenetic control. We hypothesized that the level of DNA methylation of OXTR would predict individual variability in social perception. Using the brain's sensitivity to displays of animacy as a neural endophenotype of social perception, we found significant associations between the degree of OXTR methylation and brain activity evoked by the perception of animacy. Our results suggest that consideration of DNA methylation may substantially improve our ability to explain individual differences in imaging genetic association studies.
Collapse
Affiliation(s)
- Allison Jack
- Department of Psychology, University of Virginia Charlottesville, VA, USA
| | | | | |
Collapse
|
88
|
Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 2012; 5:95. [PMID: 23060746 PMCID: PMC3459013 DOI: 10.3389/fnmol.2012.00095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a chronic relapsing disorder characterized by continued alcohol use despite numerous adverse consequences. Alcohol has been shown to interact with numerous neurotransmitter systems to exert its pharmacological effects. The endogenous opioid system (EOS) has been strongly implicated in the positive and negative reinforcing effects of alcohol. Traditionally recognized as dysphoric/anhedonic in nature, the dynorphin/kappa-opioid receptor (DYN/KOR) system has recently received considerable attention due to evidence suggesting that an upregulated DYN/KOR system may be a critical contributor to the complex factors that result in escalated alcohol consumption once dependent. The present review will discuss alcohol-induced plasticity in the DYN/KOR system and how these neuroadaptations could contribute to excessive alcohol seeking and consumption.
Collapse
Affiliation(s)
- Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University Pullman, WA, USA
| | | | | |
Collapse
|
89
|
DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromolecular Med 2012; 15:95-101. [PMID: 22961555 DOI: 10.1007/s12017-012-8198-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/24/2012] [Indexed: 01/13/2023]
Abstract
Schizophrenia (SCZ) is a complex psychiatric disease with a lifetime morbidity rate of 0.5-1.0 %. To date, aberrant DNA methylation in SCZ has been reported in several studies. However, no comprehensive studies using medication-free subjects with SCZ have been conducted. In addition, most of these studies have been limited to the analysis of the CpG sites in CpG islands (CGIs) in the gene promoter regions, so little is known about the DNA methylation signatures across the whole genome in SCZ. Genome-wide DNA methylation profiling (485,764 CpG sites) of peripheral leukocytes was conducted in the first set of samples (24 medication-free patients with SCZ and 23 non-psychiatric controls) using Infinium HumanMethylation450 Beadchips. Second, a monozygotic twin study was performed using three pairs of monozygotic twins that were discordant for SCZ. Finally, the data from these two independent cohorts were compared. A total of 234 differentially methylated CpG sites that were common between these two cohorts were identified. Of the 234 CpG sites, 153 sites (65.4 %) were located in the CGIs and in the regions flanking CGIs (CGI: 40.6 %; CGI shore: 13.3 %; CGI shelf: 11.5 %). Of the 95 differently methylated CpG sites in the CGIs, most of them were located in the promoter regions (promoter: 75.8 %; gene body: 14.7 %; 3'-UTR: 2.1 %). Aberrant DNA methylation in SCZ was identified at numerous loci across the whole genome in peripheral leukocytes using two independent sets of samples. These findings support the notion that altered DNA methylation could be involved in the pathophysiology of SCZ.
Collapse
|
90
|
Labrie V, Pai S, Petronis A. Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 2012; 28:427-35. [PMID: 22622229 PMCID: PMC3422438 DOI: 10.1016/j.tig.2012.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 01/26/2023]
Abstract
Understanding the origins of normal and pathological behavior is one of the most exciting opportunities in contemporary biomedical research. There is increasing evidence that, in addition to DNA sequence and the environment, epigenetic modifications of DNA and histone proteins may contribute to complex phenotypes. Inherited and/or acquired epigenetic factors are partially stable and have regulatory roles in numerous genomic activities, thus making epigenetics a promising research path in etiological studies of psychiatric disease. In this article, we review recent epigenetic studies examining the brain and other tissues, including those from individuals with schizophrenia (SCZ) and bipolar disorder (BPD). We also highlight heuristic aspects of the epigenetic theory of psychiatric disease and discuss the future directions of psychiatric epigenetics.
Collapse
Affiliation(s)
- Viviane Labrie
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, 250 College Street, Toronto, ONT, M5T 1R8, Canada
| | | | | |
Collapse
|
91
|
Nagy C, Turecki G. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes. Epigenomics 2012; 4:445-57. [PMID: 22920183 PMCID: PMC5293543 DOI: 10.2217/epi.12.37] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.
Collapse
Affiliation(s)
- Corina Nagy
- McGill Group for Suicide Studies, Douglas Hospital University Institute, 6875 Lasalle boul, Montreal, QC, Canada
| | | |
Collapse
|
92
|
Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 2012; 41:161-76. [PMID: 22422451 DOI: 10.1093/ije/dyr233] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The burgeoning interest in the field of epigenetics has precipitated the need to develop approaches to strengthen causal inference when considering the role of epigenetic mediators of environmental exposures on disease risk. Epigenetic markers, like any other molecular biomarker, are vulnerable to confounding and reverse causation. Here, we present a strategy, based on the well-established framework of Mendelian randomization, to interrogate the causal relationships between exposure, DNA methylation and outcome. The two-step approach first uses a genetic proxy for the exposure of interest to assess the causal relationship between exposure and methylation. A second step then utilizes a genetic proxy for DNA methylation to interrogate the causal relationship between DNA methylation and outcome. The rationale, origins, methodology, advantages and limitations of this novel strategy are presented.
Collapse
Affiliation(s)
- Caroline L Relton
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
93
|
Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Mol Cell Endocrinol 2012; 354:3-8. [PMID: 22020198 PMCID: PMC3312615 DOI: 10.1016/j.mce.2011.10.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022]
Abstract
Environmental epigenetics has an important role in regulating phenotype formation or disease etiology. The ability of environmental factors and exposures early in life to alter somatic cell epigenomes and subsequent development is a critical factor in how environment affects biology. Environmental epigenetics provides a molecular mechanism to explain long term effects of environment on the development of altered phenotypes and "emergent" properties, which the "genetic determinism" paradigm cannot. When environmental factors permanently alter the germ line epigenome, then epigenetic transgenerational inheritance of these environmentally altered phenotypes and diseases can occur. This environmental epigenetic transgenerational inheritance of phenotype and disease is reviewed with a systems biology perspective.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
94
|
Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 2012; 7:e36129. [PMID: 22570695 PMCID: PMC3343040 DOI: 10.1371/journal.pone.0036129] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/30/2012] [Indexed: 01/21/2023] Open
Abstract
The actions of environmental toxicants and relevant mixtures in promoting the epigenetic transgenerational inheritance of ovarian disease was investigated with the use of a fungicide, a pesticide mixture, a plastic mixture, dioxin and a hydrocarbon mixture. After transient exposure of an F0 gestating female rat during embryonic gonadal sex determination, the F1 and F3 generation progeny adult onset ovarian disease was assessed. Transgenerational disease phenotypes observed included an increase in cysts resembling human polycystic ovarian disease (PCO) and a decrease in the ovarian primordial follicle pool size resembling primary ovarian insufficiency (POI). The F3 generation granulosa cells were isolated and found to have a transgenerational effect on the transcriptome and epigenome (differential DNA methylation). Epigenetic biomarkers for environmental exposure and associated gene networks were identified. Epigenetic transgenerational inheritance of ovarian disease states was induced by all the different classes of environmental compounds, suggesting a role of environmental epigenetics in ovarian disease etiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael K. Skinner
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
95
|
Levenson VV, Melnikov AA. DNA methylation as clinically useful biomarkers-light at the end of the tunnel. Pharmaceuticals (Basel) 2012; 5:94-113. [PMID: 24288045 PMCID: PMC3763627 DOI: 10.3390/ph5010094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease. It also appears that disease-specific DNA methylation patterns undergo unique changes in response to treatment with a particular drug, thus raising the possibility of DNA methylation-based biomarkers for the monitoring of treatment efficacy, for prediction of response to treatment, and for the prognosis of outcome. While biomarkers for oncology are the most obvious applications, other fields of medicine are likely to benefit as well. This potential is demonstrated by DNA methylation-based biomarkers for neurological and psychiatric diseases. A special requirement for a biomarker is the possibility of longitudinal testing. In this regard cell-free circulating DNA from blood is especially interesting because it carries methylation markers specific for a particular disease. Although only a few DNA methylation-based biomarkers have attained clinical relevance, the ongoing efforts to decipher disease-specific methylation patterns are likely to produce additional biomarkers for detection, diagnosis, and monitoring of different diseases in the near future.
Collapse
Affiliation(s)
- Victor V Levenson
- Department of Radiation Oncology, Rush University Medical Center, 1750 West Harrison Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
96
|
Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, Kalidindi S, Picchioni M, Kravariti E, Toulopoulou T, Murray RM, Mill J. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011; 20:4786-96. [PMID: 21908516 PMCID: PMC3221539 DOI: 10.1093/hmg/ddr416] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/07/2011] [Indexed: 01/11/2023] Open
Abstract
Studies of the major psychoses, schizophrenia (SZ) and bipolar disorder (BD), have traditionally focused on genetic and environmental risk factors, although more recent work has highlighted an additional role for epigenetic processes in mediating susceptibility. Since monozygotic (MZ) twins share a common DNA sequence, their study represents an ideal design for investigating the contribution of epigenetic factors to disease etiology. We performed a genome-wide analysis of DNA methylation on peripheral blood DNA samples obtained from a unique sample of MZ twin pairs discordant for major psychosis. Numerous loci demonstrated disease-associated DNA methylation differences between twins discordant for SZ and BD individually, and together as a combined major psychosis group. Pathway analysis of our top loci highlighted a significant enrichment of epigenetic changes in biological networks and pathways directly relevant to psychiatric disorder and neurodevelopment. The top psychosis-associated, differentially methylated region, significantly hypomethylated in affected twins, was located in the promoter of ST6GALNAC1 overlapping a previously reported rare genomic duplication observed in SZ. The mean DNA methylation difference at this locus was 6%, but there was considerable heterogeneity between families, with some twin pairs showing a 20% difference in methylation. We subsequently assessed this region in an independent sample of postmortem brain tissue from affected individuals and controls, finding marked hypomethylation (>25%) in a subset of psychosis patients. Overall, our data provide further evidence to support a role for DNA methylation differences in mediating phenotypic differences between MZ twins and in the etiology of both SZ and BD.
Collapse
Affiliation(s)
| | - Ruth Pidsley
- MRC Social, Genetic and Developmental Psychiatry Centre and
| | | | - Sheena Owens
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Anna Georgiades
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Fergus Kane
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Sridevi Kalidindi
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Marco Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
- St Andrew's Academic Centre, Northampton NN1 5BG, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Timothea Toulopoulou
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK and
| | - Jonathan Mill
- MRC Social, Genetic and Developmental Psychiatry Centre and
| |
Collapse
|
97
|
Figueiredo TC, de Oliveira JRM. Reconsidering the association between the major histocompatibility complex and bipolar disorder. J Mol Neurosci 2011; 47:26-30. [PMID: 21987052 DOI: 10.1007/s12031-011-9656-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 09/20/2011] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a cyclical and chronic affective disorder, globally recognized as an important public health problem and characterized by mood changes with recurring phases such as mania and depression. It is considered a complex disease, depending on the interaction of genetic and environmental triggers (stressors factors), but with a poorly known pathogenesis. Recent studies have implicated immune factors in the pathogenesis of BD and more particularly associated with different human major histocompatibility complex (MHC) regions. A major consortium study have recently linked BD to hundreds of variations with stronger associations in the MHC region, such as the rs3130297 SNP, located in the NOTCH4 gene, with an additional overlapping association with schizophrenia. This short review focuses on studies that investigated the association between bipolar disorder and the MHC, and the involvement of the immune system in the pathogenesis of the disease, in order to provide further information for additional diagnostic and therapeutic strategies. Fully understanding the etiology and pathophysiology of BD is extremely important to define new approaches for intervention and prevention, maybe through the modulation of the immune system.
Collapse
|