51
|
Mitchell CB, Gasperini RJ, Small DH, Foa L. STIM1 is necessary for store-operated calcium entry in turning growth cones. J Neurochem 2012; 122:1155-66. [DOI: 10.1111/j.1471-4159.2012.07840.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Organization of cAMP signalling microdomains for optimal regulation by Ca2+ entry. Biochem Soc Trans 2012; 40:246-50. [PMID: 22260699 DOI: 10.1042/bst20110613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cross-talk between cAMP and Ca2+ signalling pathways plays a critical role in cellular homoeostasis. Several AC (adenylate cyclase) isoforms, catalysing the production of cAMP from ATP, display sensitivity to submicromolar changes in intracellular Ca2+ and, as a consequence, are key sites for Ca2+ and cAMP interplay. Interestingly, these Ca2+-regulated ACs are not equally responsive to equivalent Ca2+ rises within the cell, but display a remarkable selectivity for regulation by SOCE (store-operated Ca2+ entry). Over the years, considerable efforts at investigating this phenomenon have provided indirect evidence of an intimate association between Ca2+-sensitive AC isoforms and sites of SOCE. Now, recent identification of the molecular components of SOCE [namely STIM1 (stromal interaction molecule 1) and Orai1], coupled with significant advances in the generation of high-resolution targeted biosensors for Ca2+ and cAMP, have provided the first detailed insight into the organization of the cellular microdomains associated with Ca2+-regulated ACs. In the present review, I summarize the findings that have helped to provide our most definitive understanding of the selective regulation of cAMP signalling by SOCE.
Collapse
|
53
|
Kőszeghy Á, Vincze J, Rusznák Z, Fu Y, Paxinos G, Csernoch L, Szücs G. Activation of muscarinic receptors increases the activity of the granule neurones of the rat dorsal cochlear nucleus--a calcium imaging study. Pflugers Arch 2012; 463:829-44. [PMID: 22547003 DOI: 10.1007/s00424-012-1103-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 12/20/2022]
Abstract
Acetylcholine modulates the function of the cochlear nucleus via several pathways. In this study, the effects of cholinergic stimulation were studied on the cytoplasmic Ca(2+) concentration of granule neurones of the rat dorsal cochlear nucleus (DCN). Ca(2+) transients were recorded in Oregon-Green-BAPTA 1-loaded brain slices using a calcium imaging technique. For the detection, identification and characterisation of the Ca(2+) transients, a wavelet analysis-based method was developed. Granule cells were identified on the basis of their size and localisation. The action potential-coupled character of the Ca(2+) transients of the granule cells was established by recording fluorescence changes and electrical activity simultaneously. Application of the cholinergic agonist carbamyl-choline (CCh) significantly increased the frequency of the Ca(2+) transients (from 0.37 to 6.31 min(-1), corresponding to a 17.1-fold increase; n = 89). This effect was antagonised by atropine, whereas CCh could still evoke an 8.3-fold increase of the frequency of the Ca(2+) transients when hexamethonium was present. Using immunolabelling, the expression of both type 1 and type 3 muscarinic receptors (M1 and M3 receptors, respectively) was demonstrated in the granule cells. Application of 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (an M3-specific antagonist) prevented the onset of the CCh effect, whereas an M1-specific antagonist (pirenzepine) was less effective. We conclude that cholinergic stimulation increases the activity of granule cells, mainly by acting on their M3 receptors. The modulation of the firing activity of the granule cells, in turn, may modify the firing of projection neurones and may adjust signal processing in the entire DCN.
Collapse
Affiliation(s)
- Áron Kőszeghy
- Department of Physiology, Medical and Health Science Center, University of Debrecen, PO Box 22, Nagyerdei krt 98, 4012 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
54
|
Ganesan A, Levchenko A. Principles of model building: an experimentation-aided approach to development of models for signaling networks. Methods Cell Biol 2012; 110:1-17. [PMID: 22482943 DOI: 10.1016/b978-0-12-388403-9.00001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Living cells continuously probe their environment and respond to a multitude of external cues. The information about the environment is carried by signaling cascades that act as "internal transducing and computing modules," coupled into complex and interconnected networks. A comprehensive understanding of how cells make decisions therefore necessitates a sound theoretical framework, which can be achieved through mathematical modeling of the signaling networks. In this chapter, we conceptually describe the typical workflow involved in building mathematical models that are motivated by and are developed in a tight integration with experimental analysis. In particular, we delineate the steps involved in a generic, iterative experimentation-driven model-building process, both through informal discussion and using a recently published study as an example. Experiments guide the initial development of mathematical models, including choice of appropriate template model and parameter revision. The model can then be used to generate and test hypotheses quickly and inexpensively, aiding in judicious design of future experiments. These experiments, in turn, are used to update the model. The model developed at the end of this exercise not only predicts functional behavior of the system under study but also provides insight into the biophysical underpinnings of signaling networks.
Collapse
Affiliation(s)
- Ambhighainath Ganesan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
55
|
Tonelli FMP, Santos AK, Gomes DA, da Silva SL, Gomes KN, Ladeira LO, Resende RR. Stem cells and calcium signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:891-916. [PMID: 22453975 DOI: 10.1007/978-94-007-2888-2_40] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Nanomaterials Laboratory, Department of Physics, Insitute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
56
|
Hill SJ, Williams C, May LT. Insights into GPCR pharmacology from the measurement of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies. Br J Pharmacol 2011; 161:1266-75. [PMID: 21049583 DOI: 10.1111/j.1476-5381.2010.00779.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It is clear that the G protein-coupled receptor family play a key role in the pharmaceutical industry, with a significant proportion of approved drugs targeting this protein class. While our growing understanding of the complexity of G protein-coupled receptor pharmacology is playing a key role in the future success of these endeavours, with allosteric mechanisms now well integrated into the industrial community and G protein-independent signalling mechanisms establishing themselves as novel phenomenon to be exploited, it is still possible to underestimate the complexity of G protein signal transduction mechanisms and the impact that inappropriate study of these mechanisms can have on data interpretation. In this manuscript we review different approaches to measuring the cAMP signal transduction pathway, with particular emphasis on key parameters influencing the data quality and biological relevance.
Collapse
Affiliation(s)
- Stephen J Hill
- Institute of Cell Signalling, School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | | | |
Collapse
|
57
|
Kalil K, Li L, Hutchins BI. Signaling mechanisms in cortical axon growth, guidance, and branching. Front Neuroanat 2011; 5:62. [PMID: 22046148 PMCID: PMC3202218 DOI: 10.3389/fnana.2011.00062] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/08/2011] [Indexed: 11/14/2022] Open
Abstract
Precise wiring of cortical circuits during development depends upon axon extension, guidance, and branching to appropriate targets. Motile growth cones at axon tips navigate through the nervous system by responding to molecular cues, which modulate signaling pathways within axonal growth cones. Intracellular calcium signaling has emerged as a major transducer of guidance cues but exactly how calcium signaling pathways modify the actin and microtubule cytoskeleton to evoke growth cone behaviors and axon branching is still mysterious. Axons must often pause their extension in tracts while their branches extend into targets. Some evidence suggests a competition between growth of axons and branches but the mechanisms are poorly understood. Since it is difficult to study growing axons deep within the mammalian brain, much of what we know about signaling pathways and cytoskeletal dynamics of growth cones comes from tissue culture studies, in many cases, of non-mammalian species. Consequently it is not well understood how guidance cues relevant to mammalian neural development in vivo signal to the growth cone cytoskeleton during axon outgrowth and guidance. In this review we describe our recent work in dissociated cultures of developing rodent sensorimotor cortex in the context of the current literature on molecular guidance cues, calcium signaling pathways, and cytoskeletal dynamics that regulate growth cone behaviors. A major challenge is to relate findings in tissue culture to mechanisms of cortical development in vivo. Toward this goal, we describe our recent work in cortical slices, which preserve the complex cellular and molecular environment of the mammalian brain but allow direct visualization of growth cone behaviors and calcium signaling. Findings from this work suggest that mechanisms regulating axon growth and guidance in dissociated culture neurons also underlie development of cortical connectivity in vivo.
Collapse
Affiliation(s)
- Katherine Kalil
- Neuroscience Training Program, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
58
|
Ruffinatti F, Lovisolo D, Distasi C, Ariano P, Erriquez J, Ferraro M. Calcium signals: Analysis in time and frequency domains. J Neurosci Methods 2011; 199:310-20. [DOI: 10.1016/j.jneumeth.2011.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 02/04/2023]
|
59
|
Spatial and temporal second messenger codes for growth cone turning. Proc Natl Acad Sci U S A 2011; 108:13776-81. [PMID: 21795610 DOI: 10.1073/pnas.1100247108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic AMP (cAMP) and calcium are ubiquitous, interdependent second messengers that regulate a wide range of cellular processes. During development of neuronal networks they are critical for the first step of circuit formation, transducing signals required for axon pathfinding. Surprisingly, the spatial and temporal cAMP and calcium codes used by axon guidance molecules are unknown. Here, we identify characteristics of cAMP and calcium transients generated in growth cones during Netrin-1-dependent axon guidance. In filopodia, Netrin-1-dependent Deleted in Colorectal Cancer (DCC) receptor activation induces a transient increase in cAMP that causes a brief increase in calcium transient frequency. In contrast, activation of DCC in growth cone centers leads to a transient calcium-dependent cAMP increase and a sustained increase in frequency of calcium transients. We show that filopodial cAMP transients regulate spinal axon guidance in vitro and commissural axon pathfinding in vivo. These growth cone codes provide a basis for selective activation of specific downstream effectors.
Collapse
|
60
|
Jovic A, Wade SM, Miyawaki A, Neubig RR, Linderman JJ, Takayama S. Hi-Fi transmission of periodic signals amid cell-to-cell variability. MOLECULAR BIOSYSTEMS 2011; 7:2238-44. [PMID: 21559542 PMCID: PMC4449260 DOI: 10.1039/c1mb05031a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since information in intracellular calcium signaling is often frequency encoded, it is physiologically critical and experimentally useful to have reliable, convenient, and non-invasive methods to entrain it. Because of cell-to-cell variability, synchronization of intracellular signaling across a population of genetically identical cells can still be difficult to achieve. For intrinsically oscillatory signaling pathways, such as calcium, upon continuous stimulation, cell-to-cell variability is manifested as differences in intracellular response frequencies. Even with entrainment using periodic stimulation, cell-to-cell variability is manifested as differences in the fidelity with which extracellular inputs are converted into intracellular signals. Here we present a combined theoretical and experimental analysis that shows how to appropriately balance stimulation strength, duration, and rest intervals to achieve entrainment with high fidelity stimulation-to-response ratios for G-protein-coupled receptor-triggered intracellular calcium oscillations. We further demonstrate that stimulation parameters that give high fidelity entrainment are significantly altered upon changes in intracellular enzyme levels and cell surface receptor levels. Theoretical analysis suggests that, at key threshold values, even small changes in these protein concentrations or activities can result in precipitous changes in entrainment fidelity, with implications for pathophysiology.
Collapse
Affiliation(s)
- Andreja Jovic
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109
| | - Susan M. Wade
- Pharmacology Department, University of Michigan, MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Richard R. Neubig
- Pharmacology Department, University of Michigan, MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, H.H. Dow Building, 2300 Hayward St., Ann Arbor, MI 48109 USA
| | - Shuichi Takayama
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
61
|
Abstract
Gonadotrophin-releasing hormone (GnRH)-secreting neurones are the final output of the central nervous system driving fertility in all mammals. Although it has been known for decades that the efficiency of communication between the hypothalamus and the pituitary depends on the pulsatile profile of GnRH secretion, how GnRH neuronal activity is patterned to generate pulses at the median eminence is unknown. To date, the scattered distribution of the GnRH cell bodies remains the main limitation to assessing the cellular events that could lead to pulsatile GnRH secretion. Taking advantage of the unique developmental feature of GnRH neurones, the nasal explant model allows primary GnRH neurones to be maintained within a micro-network where pulsatile secretion is preserved and where individual cellular activity can be monitored simultaneously across the cell population. This review summarises the data obtained from work using this in vitro model, and brings some insights into GnRH cellular physiology.
Collapse
Affiliation(s)
- S Constantin
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
62
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|
63
|
Abstract
Interplay between the signaling pathways of the intracellular second messengers, cAMP and Ca(2+), has vital consequences for numerous essential physiological processes. Although cAMP can impact on Ca(2+)-homeostasis at many levels, Ca(2+) either directly, or indirectly (via calmodulin [CaM], CaM-binding proteins, protein kinase C [PKC] or Gβγ subunits) may also regulate cAMP synthesis. Here, we have evaluated the evidence for regulation of adenylyl cyclases (ACs) by Ca(2+)-signaling pathways, with an emphasis on verification of this regulation in a physiological context. The effects of compartmentalization and protein signaling complexes on the regulation of AC activity by Ca(2+)-signaling pathways are also addressed. Major gaps are apparent in the interactions that have been assumed, revealing a need to comprehensively clarify the effects of Ca(2+) signaling on individual ACs, so that the important ramifications of this critical interplay between Ca(2+) and cAMP are fully appreciated.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | |
Collapse
|
64
|
Kumada T, Komuro Y, Li Y, Hu T, Wang Z, Littner Y, Komuro H. Inhibition of cerebellar granule cell turning by alcohol. Neuroscience 2010; 170:1328-44. [PMID: 20691765 PMCID: PMC2949482 DOI: 10.1016/j.neuroscience.2010.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 01/24/2023]
Abstract
Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single intraperitoneal injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca(2+) and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca(2+) and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol.
Collapse
Affiliation(s)
- T Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Fridlyand LE, Tamarina N, Philipson LH. Bursting and calcium oscillations in pancreatic beta-cells: specific pacemakers for specific mechanisms. Am J Physiol Endocrinol Metab 2010; 299:E517-32. [PMID: 20628025 PMCID: PMC3396158 DOI: 10.1152/ajpendo.00177.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oscillatory phenomenon in electrical activity and cytoplasmic calcium concentration in response to glucose are intimately connected to multiple key aspects of pancreatic β-cell physiology. However, there is no single model for oscillatory mechanisms in these cells. We set out to identify possible pacemaker candidates for burst activity and cytoplasmic Ca(2+) oscillations in these cells by analyzing published hypotheses, their corresponding mathematical models, and relevant experimental data. We found that although no single pacemaker can account for the variety of oscillatory phenomena in β-cells, at least several separate mechanisms can underlie specific kinds of oscillations. According to our analysis, slowly activating Ca(2+)-sensitive K(+) channels can be responsible for very fast Ca(2+) oscillations; changes in the ATP/ADP ratio and in the endoplasmic reticulum calcium concentration can be pacemakers for both fast bursts and cytoplasmic calcium oscillations, and cyclical cytoplasmic Na(+) changes may underlie patterning of slow calcium oscillations. However, these mechanisms still lack direct confirmation, and their potential interactions raises new issues. Further studies supported by improved mathematical models are necessary to understand oscillatory phenomena in β-cell physiology.
Collapse
Affiliation(s)
- L E Fridlyand
- Dept. of Medicine, MC-1027, Univ. of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | |
Collapse
|
66
|
Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J 2010; 24:2859-68. [PMID: 20371630 PMCID: PMC2909282 DOI: 10.1096/fj.09-148007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/25/2010] [Indexed: 01/25/2023]
Abstract
Primary cilia are chemosensing and mechanosensing organelles that regulate remarkably diverse processes in a variety of cells. We previously showed that primary cilia play a role in mediating mechanosensing in bone cells through an unknown mechanism that does not involve extracellular Ca(2+)-dependent intracellular Ca(2+) release, which has been implicated in all other cells that transduce mechanical signals via the cilium. Here, we identify a molecular mechanism linking primary cilia and bone cell mechanotransduction that involves adenylyl cyclase 6 (AC6) and cAMP. Intracellular cAMP was quantified in MLO-Y4 cells exposed to dynamic flow, and AC6 and primary cilia were inhibited using RNA interference. When exposed to flow, cells rapidly (<2 min) and transiently decreased cAMP production in a primary cilium-dependent manner. RT-PCR revealed differential expression of the membrane-bound isoforms of adenylyl cyclase, while immunostaining revealed one, AC6, preferentially localized to the cilium. Further studies showed that decreases in cAMP in response to flow were dependent on AC6 and Gd(3+)-sensitive channels but not intracellular Ca(2+) release and that this response mediated flow-induced COX-2 gene expression. The signaling events identified provide important details of a novel early mechanosensing mechanism in bone and advances our understanding of how signal transduction occurs at the primary cilium.
Collapse
Affiliation(s)
- Ronald Y. Kwon
- Bone and Joint Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, California, USA
- Department of Mechanical Engineering and
| | - Sara Temiyasathit
- Bone and Joint Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA; and
| | - Padmaja Tummala
- Bone and Joint Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, California, USA
| | - Clarence C. Quah
- Bone and Joint Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, California, USA
| | - Christopher R. Jacobs
- Bone and Joint Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, California, USA
- Department of Mechanical Engineering and
- Department of Bioengineering, Stanford University, Stanford, California, USA; and
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
67
|
Marek KW, Kurtz LM, Spitzer NC. cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification. Nat Neurosci 2010; 13:944-50. [PMID: 20581840 PMCID: PMC2910808 DOI: 10.1038/nn.2582] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/19/2010] [Indexed: 12/02/2022]
Abstract
Neuronal differentiation is accomplished through cascades of intrinsic genetic factors initiated in neuronal progenitors by external gradients of morphogens. Activity was thought to be important only late in development, but recent evidence indicates that activity also regulates early neuronal differentiation. Activity in post-mitotic neurons prior to synapse formation can regulate phenotypic specification, including neurotransmitter choice, but the mechanisms are not clear. Here we identify a mechanism that links endogenous calcium spike activity with an intrinsic genetic pathway to specify neurotransmitter choice in neurons in the dorsal embryonic spinal cord of Xenopus tropicalis. Early activity modulates transcription of the GABAergic/glutamatergic selection gene tlx3 and requires a variant cAMP response element (CRE) in its promoter. The cJun transcription factor binds to this CRE site, modulates transcription, and regulates neurotransmitter phenotype through its transactivation domain. Calcium signals through cJun N-terminal phosphorylation, thus integrating activity-dependent and intrinsic neurotransmitter specification. This mechanism provides a basis for early activity to regulate genetic pathways at critical decision points, switching the phenotype of developing neurons.
Collapse
Affiliation(s)
- Kurt W Marek
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
68
|
Uhlén P, Fritz N. Biochemistry of calcium oscillations. Biochem Biophys Res Commun 2010; 396:28-32. [DOI: 10.1016/j.bbrc.2010.02.117] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
|
69
|
Hutchins BI. Competitive outgrowth of neural processes arising from long-distance cAMP signaling. Sci Signal 2010; 3:jc1. [PMID: 20407121 DOI: 10.1126/scisignal.3118jc1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During development, competition among undifferentiated neurites results in the growth of one neurite at the expense of the rest. This neurite becomes the axon. A similar competitive mechanism later governs the differential outgrowth of the axon and its branches. A long-range signal between different parts of the neuron is required to mediate this competition, but the nature of this signal was unknown. Recent work has shown that local cyclic adenosine monophosphate (cAMP) signaling promotes neurite growth but leads to decreased cAMP concentrations in distant neurites, thereby inhibiting their growth. The precise mechanism mediating long-distance cyclic nucleotide signaling is unclear but may involve localized calcium transients and autocrine signaling. Mutually inhibitory, competitive interactions during outgrowth of neural processes can emerge from these signaling events, both during axon specification and later during axon branching.
Collapse
Affiliation(s)
- B Ian Hutchins
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
70
|
Siso-Nadal F, Fox JJ, Laporte SA, Hébert TE, Swain PS. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP. PLoS One 2009; 4:e7189. [PMID: 19844582 PMCID: PMC2760754 DOI: 10.1371/journal.pone.0007189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. Methodology/Principal Findings Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP) and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate ‘bursting’ oscillations of calcium and may enable better filtering of noise. Conclusion We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.
Collapse
Affiliation(s)
- Fernando Siso-Nadal
- Gene Network Sciences, Cambridge, Massachusetts, United States of America
- Centre for Non-linear Dynamics, McGill University, Montreal, Canada
| | - Jeffrey J. Fox
- Centre for Applied Mathematics, Cornell University, Ithaca, New York, United States of America
| | - Stéphane A. Laporte
- Department of Medicine, McGill University, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Peter S. Swain
- Centre for Non-linear Dynamics, McGill University, Montreal, Canada
- Centre for Systems Biology at Edinburgh, University of Edinburgh, Edinburgh, Scotland
- * E-mail:
| |
Collapse
|
71
|
Pellegrino M, Orsini P, De Gregorio F. Use of scanning ion conductance microscopy to guide and redirect neuronal growth cones. Neurosci Res 2009; 64:290-6. [DOI: 10.1016/j.neures.2009.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/16/2022]
|
72
|
Autonomous turning of cerebellar granule cells in vitro by intrinsic programs. Dev Biol 2008; 326:237-49. [PMID: 19063877 DOI: 10.1016/j.ydbio.2008.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 10/05/2008] [Accepted: 11/17/2008] [Indexed: 11/23/2022]
Abstract
External guidance cues play a role in controlling neuronal cell turning in the developing brain, but little is known about whether intrinsic programs are also involved in controlling the turning. In this study, we examined whether granule cells undergo autonomous changes in the direction of migration in the microexplant cultures of the early postnatal mouse cerebellum. We found that granule cells exhibit spontaneous and periodical turning without cell-cell contact and in the absence of external guidance cues. The frequency of turning was increased by stimulating the Ca(2+) influx and the internal Ca(2+) release, or inhibiting the cAMP signaling pathway, while the frequency was reduced by inhibiting the Ca(2+) influx. Granule cell turning in vitro was classified into four distinct modes, which were characterized by the morphological changes in the leading process and the trailing process, such as bifurcating, turning, withdrawing, and changing the polarity. The occurrence of the 1st and 2nd modes of turning was differentially affected by altering the Ca(2+) and cAMP signaling pathways. Collectively, the results demonstrate that intrinsic programs regulate the autonomous turning of cerebellar granule cells in vitro. Furthermore, the results suggest that extrinsic signals play a role as essential modulators of intrinsic programs.
Collapse
|
73
|
Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons. Biomaterials 2008; 29:4383-91. [DOI: 10.1016/j.biomaterials.2008.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022]
|
74
|
Valeyev NV, Heslop-Harrison P, Postlethwaite I, Gizatullina AN, Kotov NV, Bates DG. Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels. MOLECULAR BIOSYSTEMS 2008; 5:43-51. [PMID: 19081930 DOI: 10.1039/b807993e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges.
Collapse
Affiliation(s)
- Najl V Valeyev
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, UKLE1 7RH.
| | | | | | | | | | | |
Collapse
|
75
|
Real-time monitoring of cyclic nucleotide signaling in neurons using genetically encoded FRET probes. ACTA ACUST UNITED AC 2008; 36:3-17. [PMID: 18941898 DOI: 10.1007/s11068-008-9035-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/04/2008] [Indexed: 01/28/2023]
Abstract
Signaling cascades involving cyclic nucleotides play key roles in signal transduction in virtually all cell types. Elucidation of the spatiotemporal regulation of cyclic nucleotide signaling requires methods for tracking the dynamics of cyclic nucleotides and the activities of their regulators and effectors in the native biological context. Here we review a series of genetically encoded FRET-based probes for real-time monitoring of cyclic nucleotide signaling with a particular focus on their implementation in neurons. Current data indicate that neurons have a very active metabolism in cyclic nucleotide signaling, which is tightly regulated through a variety of homeostatic regulations.
Collapse
|
76
|
Tovey SC, Dedos SG, Taylor EJA, Church JE, Taylor CW. Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. J Cell Biol 2008; 183:297-311. [PMID: 18936250 PMCID: PMC2568025 DOI: 10.1083/jcb.200803172] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/22/2008] [Indexed: 12/31/2022] Open
Abstract
Interactions between cyclic adenosine monophosphate (cAMP) and Ca(2+) are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP(3)R) to IP(3). We show that PTH communicates with IP(3)R via "cAMP junctions" that allow local delivery of a supramaximal concentration of cAMP to IP(3)R, directly increasing their sensitivity to IP(3). These junctions are robust binary switches that are digitally recruited by increasing concentrations of PTH. Human embryonic kidney cells express several isoforms of adenylyl cyclase (AC) and IP(3)R, but IP(3)R2 and AC6 are specifically associated, and inhibition of AC6 or IP(3)R2 expression by small interfering RNA selectively attenuates potentiation of Ca(2+) signals by PTH. We define two modes of cAMP signaling: binary, where cAMP passes directly from AC6 to IP(3)R2; and analogue, where local gradients of cAMP concentration regulate cAMP effectors more remote from AC. Binary signaling requires localized delivery of cAMP, whereas analogue signaling is more dependent on localized cAMP degradation.
Collapse
Affiliation(s)
- Stephen C Tovey
- Department of Pharmacology, Univesrsity of Cambridge, Cambridge, England, UK
| | | | | | | | | |
Collapse
|
77
|
Dyachok O, Idevall-Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008; 8:26-37. [PMID: 18590690 DOI: 10.1016/j.cmet.2008.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/11/2008] [Accepted: 06/13/2008] [Indexed: 01/28/2023]
Abstract
Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.
Collapse
Affiliation(s)
- Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification. J Neurosci 2008; 28:4777-84. [PMID: 18448654 DOI: 10.1523/jneurosci.4873-07.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter signaling in the mature nervous system is well understood, but the functions of transmitters in the immature nervous system are less clear. Although transmitters released during embryogenesis regulate neuronal proliferation and migration, little is known about their role in regulating early neuronal differentiation. Here, we show that GABA and glutamate drive calcium-dependent embryonic electrical activity that regulates transmitter specification. The number of neurons expressing different transmitters changes when GABA or glutamate signaling is blocked chronically, either using morpholinos to knock down transmitter-synthetic enzymes or applying pharmacological receptor antagonists during a sensitive period of development. We find that calcium spikes are triggered by metabotropic GABA and glutamate receptors, which engage protein kinases A and C. The results reveal a novel role for embryonically expressed neurotransmitters.
Collapse
|
79
|
Nicol X, Gaspar P. [Interaction between neuronal activity and ephrin signalling during the refinement of neuronal connections]. Med Sci (Paris) 2008; 24:144-6. [PMID: 18272074 DOI: 10.1051/medsci/2008242144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
80
|
Abstract
A characteristic feature of developing neural circuits is that they are spontaneously active. There are several examples, including the retina, spinal cord, and hippocampus, where spontaneous activity is highly correlated among neighboring cells, with large depolarizing events occurring with a periodicity on the order of minutes. One likely mechanism by which neurons can "decode" these slow oscillations is through activation of second messenger cascades that either influence transcriptional activity or drive posttranslational modifications. Here, we describe recent experiments where imaging has been used to characterize slow oscillations in the cAMP/PKA second messenger cascade in retinal neurons. We review the latest techniques in imaging this specific second messenger cascade, its intimate relationship with changes in intracellular calcium concentration, and several hypotheses regarding its role in neurodevelopment.
Collapse
Affiliation(s)
- Timothy A Dunn
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | | |
Collapse
|
81
|
Goraya TA, Masada N, Ciruela A, Willoughby D, Clynes MA, Cooper DMF. Kinetic properties of Ca2+/calmodulin-dependent phosphodiesterase isoforms dictate intracellular cAMP dynamics in response to elevation of cytosolic Ca2+. Cell Signal 2008; 20:359-74. [PMID: 18335582 DOI: 10.1016/j.cellsig.2007.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiply regulated adenylyl cyclases (AC) and phosphodiesterases (PDE) can yield complex intracellular cAMP signals. Ca2+-sensitive ACs have received far greater attention than the Ca2+/calmodulin-dependent PDE (PDE1) family in governing intracellular cAMP dynamics in response to changes in the cytosolic Ca2+ concentration ([Ca2+]i). Here, we have stably expressed two isoforms of PDE1, PDE1A2 and PDE1C4, in HEK-293 cells to determine whether they exert different impacts on cellular cAMP. Fractionation and imaging showed that both PDEs occurred mainly in the cytosol. However, PDE1A2 and PDE1C4 differed considerably in their ability to hydrolyze cAMP and in their susceptibility to inhibition by the non-selective PDE inhibitor, IBMX and the PDE1-selective inhibitor, MMX. PDE1A2 had an approximately 30-fold greater Km for cAMP than PDE1C4 and yet was more susceptible to inhibition by IBMX and MMX than was PDE1C4. These differences were mirrored in intact cells when thapsigargin-induced capacitative Ca2+ entry (CCE) activated the PDEs. Mirroring their kinetic properties, PDE1C4 was active at near basal cAMP levels, whereas PDE1A2 required agonist-triggered levels of cAMP, produced in response to stimulation of ACs. The effectiveness of IBMX and MMX to inhibit PDE1A2 and PDE1C4 in functional studies was inversely related to their respective affinities for cAMP. To assess the impact of the two isoforms on cAMP dynamics, real-time cAMP measurements were performed in single cells expressing the two PDE isoforms and a fluorescent Epac-1 cAMP biosensor, in response to CCE. These measurements showed that prostaglandin E1-mediated cAMP production was markedly attenuated in PDE1C4-expressing cells upon induction of CCE and cAMP hydrolysis occurred at a faster rate than in cells expressing PDE1A2 under similar conditions. These results prove that the kinetic properties of PDE isoforms play a major role in determining intracellular cAMP signals in response to physiological elevation of [Ca2+]i and thereby provide a rationale for the utility of diverse PDE1 species.
Collapse
Affiliation(s)
- Tasmina A Goraya
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | | | |
Collapse
|
82
|
Dai R, Ali MK, Lezcano N, Bergson C. A crucial role for cAMP and protein kinase A in D1 dopamine receptor regulated intracellular calcium transients. Neurosignals 2008; 16:112-23. [PMID: 18253052 DOI: 10.1159/000111557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | | | | | |
Collapse
|
83
|
Joanne Wang C, Li X, Lin B, Shim S, Ming GL, Levchenko A. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. LAB ON A CHIP 2008; 8:227-37. [PMID: 18231660 DOI: 10.1039/b713945d] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Neuronal growth cones contain sophisticated molecular machinery precisely regulating their migration in response to complex combinatorial gradients of diverse external cues. The details of this regulation are still largely unknown, in part due to limitations of the currently available experimental techniques. Microfluidic devices have been shown to be capable of generating complex, stable and precisely controlled chemical gradients, but their use in studying growth cone migration has been limited in part due to the effects of shear stress. Here we describe a microfluidics-based turning-assay chip designed to overcome this issue. In addition to generating precise gradients of soluble guidance cues, the chip can also fabricate complex composite gradients of diffusible and surface-bound guidance cues that mimic the conditions the growth cones realistically counter in vivo. Applying this assay to Xenopus embryonic spinal neurons, we demonstrate that the presence of a surface-bound laminin gradient can finely tune the polarity of growth cone responses (repulsion or attraction) to gradients of brain-derived neurotrophic factor (BDNF), with the guidance outcome dependent on the mean BDNF concentration. The flexibility inherent in this assay holds significant potential for refinement of our understanding of nervous system development and regeneration, and can be extended to elucidate other cellular processes involving chemotaxis of shear sensitive cells.
Collapse
Affiliation(s)
- C Joanne Wang
- Department of Biomedical Engineering and Whitaker Institute of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
84
|
Jablonka S, Beck M, Lechner BD, Mayer C, Sendtner M. Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. ACTA ACUST UNITED AC 2008; 179:139-49. [PMID: 17923533 PMCID: PMC2064743 DOI: 10.1083/jcb.200703187] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced beta-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)-deficient motoneurons exhibit severe defects in clustering Cav2.2 channels in axonal growth cones. These defects also correlate with a reduced frequency of local Ca2+ transients. In contrast, global spontaneous excitability measured in cell bodies and proximal axons is not reduced. Stimulation of Smn production from the transgenic SMN2 gene by cyclic adenosine monophosphate restores Cav2.2 accumulation and excitability. This may lead to the development of new therapies for SMA that are not focused on enhancing motoneuron survival but instead investigate restoration of growth cone excitability and function.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg D-97078, Germany
| | | | | | | | | |
Collapse
|
85
|
Constantin S, Wray S. Gonadotropin-releasing hormone-1 neuronal activity is independent of cyclic nucleotide-gated channels. Endocrinology 2008; 149:279-90. [PMID: 17916627 PMCID: PMC2194613 DOI: 10.1210/en.2007-0955] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 09/26/2007] [Indexed: 12/18/2022]
Abstract
Pulsatile release of GnRH-1 is essential for secretion of gonadotropin hormones. The frequency of GnRH-1 pulses is regulated during the reproductive cycle by numerous neurotransmitters. Cyclic nucleotide-gated (CNG) channels have been proposed as a mechanism to integrate the cAMP signal evoked by many neurotransmitters. This study reports the expression of the CNGA2 subunit in GnRH-1 neurons obtained from mouse nasal explants and shows the ability of GnRH-1 neurons to increase their activity in response to forskolin (activator of adenylyl cyclases), or 3-isobutyl-1-methylxanthine (inhibitor of phosphodiesterases) even after removal of gamma-aminobutyric acid (A)-ergic input. Next, the endogenous activity of adenylyl cyclases was evaluated as a component of the oscillatory mechanism of GnRH-1 neurons. Inhibition of endogenous activity of adenylyl cyclases did not alter GnRH-1 activity. The potential involvement of CNGA2 subunit in basal or induced activity was tested on GnRH-1 neurons obtained from CNGA2-deficient mice. Without up-regulation of CNGA1 or CNGA3, the absence of functional CNGA2 did not alter either the endogenous GnRH-1 neuronal activity or the response to forskolin, negating CNG channels from cAMP-sensitive mechanisms leading to changes in GnRH-1 neuronal activity. In addition, the potential role of CNGA2 subunit in the synchronization of calcium oscillations previously described was evaluated in GnRH-1 neurons from CNGA2-deficient explants. Synchronized calcium oscillations persisted in CNGA2-deficient GnRH-1 neurons. Taken together, these results indicate that CNGA2 channels are not necessary for either the response of GnRH-1 neurons to cAMP increases or the basal rhythmic activity of GnRH-1 neurons.
Collapse
Affiliation(s)
- Stéphanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
86
|
Abstract
Spatial and temporal compartmentalization of cAMP (and its target proteins) is central to the ability of this second messenger to govern cellular activity over timescales ranging from milliseconds to several hours. Recent years have witnessed a burgeoning of methodologies that enable researchers to directly monitor rapid subcellular cAMP dynamics, which are unobtainable by traditional cAMP assays. In this review, we examine cAMP biosensors that are currently available for measuring cAMP at the single-cell level, compare their various operating principles and discuss their applications.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
87
|
Fridlyand LE, Harbeck MC, Roe MW, Philipson LH. Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol Cell Physiol 2007; 293:C1924-33. [PMID: 17928534 DOI: 10.1152/ajpcell.00555.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic beta-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic beta-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca(2+)) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca(2+) oscillations in the beta-cell. Slow Ca(2+) oscillations (<1 min(-1)) produce low-frequency cAMP oscillations, and faster Ca(2+) oscillations (>3-4 min(-1)) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca(2+) oscillations. In contrast, observed antiphasic Ca(2+) and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca(2+)-dependent AC and PDE activation in coupling of Ca(2+) and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 beta-cells.
Collapse
Affiliation(s)
- Leonid E Fridlyand
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
88
|
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76:481-511. [PMID: 17376027 DOI: 10.1146/annurev.biochem.76.060305.150444] [Citation(s) in RCA: 937] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although cyclic nucleotide phosphodiesterases (PDEs) were described soon after the discovery of cAMP, their complexity and functions in signaling is only recently beginning to become fully realized. We now know that at least 100 different PDE proteins degrade cAMP and cGMP in eukaryotes. A complex PDE gene organization and a large number of PDE splicing variants serve to fine-tune cyclic nucleotide signals and contribute to specificity in signaling. Here we review some of the major concepts related to our understanding of PDE function and regulation including: (a) the structure of catalytic and regulatory domains and arrangement in holoenzymes; (b) PDE integration into signaling complexes; (c) the nature and function of negative and positive feedback circuits that have been conserved in PDEs from prokaryotes to human; (d) the emerging association of mutant PDE alleles with inherited diseases; and (e) the role of PDEs in generating subcellular signaling compartments.
Collapse
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 943095-5317, USA.
| | | |
Collapse
|
89
|
Garmendia-Torres C, Goldbeter A, Jacquet M. Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr Biol 2007; 17:1044-9. [PMID: 17570669 DOI: 10.1016/j.cub.2007.05.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/26/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
At intermediate intensities, stress induces oscillations in the nucleocytoplasmic shuttling of the transcription factor Msn2 in budding yeast. Activation by stress results in a reversible translocation of Msn2 from the cytoplasm to the nucleus. This translocation is negatively controlled by the cAMP-PKA pathway through Msn2 phosphorylation. Here we show that the nuclear localization signal (NLS) of Msn2 is necessary and sufficient to promote the nucleocytoplasmic oscillations of the transcription factor. Because the NLS is controlled by protein kinase A (PKA) phosphorylation, we use a computational model to investigate the possibility that the cAMP-PKA pathway could function as an oscillator driving the periodic shuttling of Msn2. The model indicates that sustained oscillations of cAMP can indeed occur in a range bounded by two critical values of stress intensity, owing to the negative feedback exerted by PKA on cAMP accumulation. We verify the predictions of the model in mutants by showing that suppressing this negative-feedback loop prevents the oscillatory shuttling but still promotes the stress-induced nuclear localization of Msn2. The physiological significance of Msn2 oscillations is discussed in the light of the frequency encoding of cellular rhythms.
Collapse
Affiliation(s)
- Cecilia Garmendia-Torres
- Université de Paris-Sud, Unité Mixte de Recherche 8621, Centre National de la Recherche Scientifique, Orsay, F-91405, France
| | | | | |
Collapse
|
90
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
91
|
Zhang Y, Golowasch J. Modeling Recovery of Rhythmic Activity: Hypothesis for the role of a calcium pump. Neurocomputing 2007; 70:1657-1662. [PMID: 18516214 DOI: 10.1016/j.neucom.2006.10.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yili Zhang
- Dept. Biological Sciences, Rutgers University
| | | |
Collapse
|
92
|
Abstract
We previously demonstrated that calcium propagation plays a crucial role in epidermal homeostasis when the epidermis was exposed to a dry environment. In the present study, we first demonstrated the intracellular calcium oscillation in cultured human skin keratinocytes. On partial exposure of cultured human keratinocytes to air, a transient increase of intracellular calcium concentration appeared, followed by a wave-like increase in the unexposed keratinocytes, showing oscillations with a frequency that varied from cell to cell. There appeared to be no correlation between the oscillation frequencies in adjacent cells. The increase of calcium concentration did not appear when calcium was removed from the medium or when suramin, a purinergic receptor antagonist, was added. The ATP concentration also increased immediately after keratinocytes were exposed to air. We hypothesize that ATP is secreted from keratinocytes on exposure to air, and induces an increase of intracellular calcium concentration.
Collapse
|
93
|
Mager DE, Abernethy DR. Use of wavelet and fast Fourier transforms in pharmacodynamics. J Pharmacol Exp Ther 2007; 321:423-30. [PMID: 17142645 DOI: 10.1124/jpet.106.113183] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progress has been made in the development and application of mechanism-based pharmacodynamic models for describing the drug-specific and physiological factors influencing the time course of responses to the diverse actions of drugs. However, the biological variability in biosignals and the complexity of pharmacological systems often complicate or preclude the direct application of traditional structural and nonstructural models. Mathematical transforms may be used to provide measures of drug effects, identify structural and temporal patterns, and visualize multidimensional data from analyses of biomedical signals and images. Fast Fourier transform (FFT) and wavelet analyses are two methodologies that have proven to be useful in this context. FFT converts a signal from the time domain to the frequency domain, whereas wavelet transforms colocalize in both domains and may be utilized effectively for nonstationary signals. Nonstationary drug effects are common but have not been well analyzed and characterized by other methods. In this review, we discuss specific applications of these transforms in pharmacodynamics and their potential role in ascertaining the dynamics of spatiotemporal properties of complex pharmacological systems.
Collapse
Affiliation(s)
- Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, the State Universitiy of New York, Buffalo, NY, USA
| | | |
Collapse
|
94
|
Huang J, Hamasaki T, Ozoe F, Ohta H, Enomoto KI, Kataoka H, Sawa Y, Hirota A, Ozoe Y. Identification of Critical Structural Determinants Responsible for Octopamine Binding to the α-Adrenergic-like Bombyx mori Octopamine Receptor. Biochemistry 2007; 46:5896-903. [PMID: 17469804 DOI: 10.1021/bi602593t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Octopamine (OA) is a biogenic amine with a widespread distribution in the insect nervous system. OA modulates and/or regulates various behavioral patterns of insects as a neurotransmitter, neuromodulator, and neurohormone. OA receptors (OARs) belong to one of the families of G protein-coupled receptors (GPCRs). The binding of OA to OARs is coupled to the activation of the specific G proteins, which induces the release of intracellular second messengers such as cAMP and/or calcium. We previously reported the isolation of an OAR (BmOAR1) from Bombyx mori. In the study presented here, five mutated BmOAR1s were constructed with a point mutation in the putative binding crevice and expressed in HEK-293 cells. The S202A mutant receptor was found to retain the cAMP response to OA as does the wild-type receptor, but such function was impaired in the other four mutants (D103A, S198A, Y412F, and S198A/S202A). Furthermore, competition binding assays using [3H]OA and calcium mobilization assays gave results that were approximately consistent with those of the cAMP assays. Taken together, the results indicate that D103 and S198 are involved in the binding and activation of BmOAR1 with OA through electrostatic or hydrogen bond interactions, but S202 does not appear to participate in this process. Y412 seems to be involved in one of the active forms of BmOAR1. These findings should prove helpful in designing new pest control chemicals.
Collapse
Affiliation(s)
- Jia Huang
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Pellegrino M, Pellegrini M. Mechanosensitive channels in neurite outgrowth. CURRENT TOPICS IN MEMBRANES 2007; 59:111-25. [PMID: 25168135 DOI: 10.1016/s1063-5823(06)59005-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This chapter focuses on the convergence of two areas of investigation in the past: the first is the study of the molecular basis for Ca(2+)-dependent axon pathfinding, and the second is the molecular and the functional characterization of mechanosensitive Ca(2+)-permeant cation channels (MscCa). The convergence of these two fields has reached a pivotal point when some ion channels belonging to the transient receptor potential (TRP) superfamily of proteins play essential roles in the growth cone guidance, and, independently, some of these channels are found to form MscCa of vertebrate cells. Various lines of evidence taken together make likely the idea that MscCa can substantially contribute to the spatial and temporal shaping of Ca(2+) responses in growing neurites. These findings are described and the possible contributions of MscCa to the neurite outgrowth are also discussed in the chapter.
Collapse
Affiliation(s)
- Mario Pellegrino
- Dipartimento di Fisiologia Umana "G. Moruzzi," Università di Pisa, Pisa, Italy
| | | |
Collapse
|
96
|
Tanaka M, Kawahara K, Kosugi T, Yamada T, Mioka T. Changes in the spontaneous calcium oscillations for the development of the preconditioning-induced ischemic tolerance in neuron/astrocyte co-culture. Neurochem Res 2007; 32:988-1001. [PMID: 17401678 DOI: 10.1007/s11064-006-9259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Spontaneous Ca(2+) oscillations are believed to contribute to the regulation of gene expression. Here we investigated whether and how the dynamics of Ca(2+) oscillations changed after sublethal preconditioning (PC) for PC-induced ischemic tolerance in neuron/astrocyte co-cultures. The frequency of spontaneous Ca(2+) oscillations significantly decreased between 4 and 8 h after the end of PC in both neurons and astrocytes. Treatment with 2-APB, an inhibitor of IP3 receptors, decreased the oscillatory frequency, induced ischemic tolerance and a down-regulation of glutamate transporter GLT-1 contributing to the increase in the extracellular glutamate during ischemia. The expression of GLT-1 is known to be up-regulated by PACAP. Treatment with PACAP38 increased the oscillatory frequency, and antagonized both the PC-induced down-regulation of GLT-1 and ischemic tolerance. These results suggested that the PC suppressed the spontaneous Ca(2+) oscillations regulating the gene expressions of various proteins, especially of astrocytic GLT-1, for the development of the PC-induced ischemic tolerance.
Collapse
Affiliation(s)
- Motoki Tanaka
- Laboratory of Cellular Cybernetics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
97
|
Cui W, Smith A, Darby-King A, Harley CW, McLean JH. A temporal-specific and transient cAMP increase characterizes odorant classical conditioning. Learn Mem 2007; 14:126-33. [PMID: 17337703 PMCID: PMC1838553 DOI: 10.1101/lm.496007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory bulb mitral cells. Using both drug and natural unconditioned stimuli we found effective learning was associated with an increase in cAMP at the end of the conditioning trial, followed by a decrease 5 min later. This early timing of a transient cAMP increase occurred only when the odor was paired with an effective drug or natural unconditioned stimulus (US). The data support the hypothesis that the rate of adenylate cyclase activation is enhanced by pairing calcium and G-protein activation and that the timing of transient cAMP signaling is critical to the initiation of classical conditioning.
Collapse
Affiliation(s)
- Wen Cui
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Andrew Smith
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Andrea Darby-King
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Carolyn W. Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X9, Canada
| | - John H. McLean
- Division of Basic Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
- Corresponding author.E-mail ; fax (709) 777-7010
| |
Collapse
|
98
|
Nicol X, Voyatzis S, Muzerelle A, Narboux-Nême N, Südhof TC, Miles R, Gaspar P. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 2007; 10:340-7. [PMID: 17259982 DOI: 10.1038/nn1842] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022]
Abstract
Spontaneous activity generated in the retina is necessary to establish a precise retinotopic map, but the underlying mechanisms are poorly understood. We demonstrate here that neural activity controls ephrin-A-mediated responses. In the mouse retinotectal system, we show that spontaneous activity of the retinal ganglion cells (RGCs) is needed, independently of synaptic transmission, for the ordering of the retinotopic map and the elimination of exuberant retinal axons. Activity blockade suppressed the repellent action of ephrin-A on RGC growth cones by cyclic AMP (cAMP)-dependent pathways. Unexpectedly, the ephrin-A5-induced retraction required cAMP oscillations rather than sustained increases in intracellular cAMP concentrations. Periodic photo-induced release of caged cAMP in growth cones rescued the response to ephrin-A5 when activity was blocked. These results provide a direct molecular link between spontaneous neural activity and axon guidance mechanisms during the refinement of neural maps.
Collapse
Affiliation(s)
- Xavier Nicol
- INSERM, U616, Hôpital Salpêtrière, 47 Blvd. de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Dinh AT, Theofanous T, Mitragotri S. Modeling of pattern regulation in melanophores. J Theor Biol 2007; 244:141-53. [PMID: 16959269 DOI: 10.1016/j.jtbi.2006.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 01/04/2023]
Abstract
Melanosomes, pigment granules in melanophores, play a principal role in physiological color adaptation of fish and frog. Melanophores regulate melanosome trafficking on cytoskeletal filaments to generate a range of spatiotemporal patterns. Here, we present the first comprehensive model of spatiotemporal evolution of melanosome patterns. The model encompasses both physical and biochemical aspects of melanosome dynamics. It consists of (i) a kinetic description of biochemical reactions involved in intracellular signaling, (ii) a system of macroscopic reaction-diffusion-convection equations for melanosome concentration, and (iii) a set of constitutive relationships for coupling transport with the biochemical network. The model relates molecular-level regulatory actions to cell-level melanosome distribution, allowing unification of existing experimental observations and qualitative hypotheses into an integrated, consistent framework. The model reproduces salient features of melanosome patterns, both during transient and steady state. It gives useful insights into how cells coordinate motor-assisted transport to maintain and adapt spatial organization of intracellular organelles. In particular, we calculate the optimal transition paths from aggregation to dispersion in fish melanophores. The calculations suggest that fish melanophores optimally control intracellular signaling to maximize the efficiency of motor-assisted transport during dispersion.
Collapse
Affiliation(s)
- Anh-Tuan Dinh
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
100
|
Abstract
Neuronal motility is a fundamental feature that underlies the development, regeneration, and plasticity of the nervous system. Two major developmental events--directed migration of neuronal precursor cells to the proper positions and guided elongation of axons to their target cells--depend on large-scale neuronal motility. At a finer scale, motility is also manifested in many aspects of neuronal structures and functions, ranging from differentiation and refinement of axonal and dendritic morphology during development to synapse remodeling associated with learning and memory in the adult brain. As a primary second messenger that conveys the cytoplasmic actions of electrical activity and many neuroactive ligands, Ca(2+) plays a central role in the regulation of neuronal motility. Recent studies have revealed common Ca(2+)-dependent signaling pathways that are deployed for regulating cytoskeletal dynamics associated with neuronal migration, axon and dendrite development and regeneration, and synaptic plasticity.
Collapse
Affiliation(s)
- James Q Zheng
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|