51
|
Genome-Wide Screen for Context-Dependent Tumor Suppressors Identified Using in Vivo Models for Neoplasia in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:2999-3008. [PMID: 32737065 PMCID: PMC7467006 DOI: 10.1534/g3.120.401545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic approaches in Drosophila have successfully identified many genes involved in regulation of growth control as well as genetic interactions relevant to the initiation and progression of cancer in vivo. Here, we report on large-scale RNAi-based screens to identify potential tumor suppressor genes that interact with known cancer-drivers: the Epidermal Growth Factor Receptor and the Hippo pathway transcriptional cofactor Yorkie. These screens were designed to identify genes whose depletion drove tissue expressing EGFR or Yki from a state of benign overgrowth into neoplastic transformation in vivo. We also report on an independent screen aimed to identify genes whose depletion suppressed formation of neoplastic tumors in an existing EGFR-dependent neoplasia model. Many of the positives identified here are known to be functional in growth control pathways. We also find a number of novel connections to Yki and EGFR driven tissue growth, mostly unique to one of the two. Thus, resources provided here would be useful to all researchers who study negative regulators of growth during development and cancer in the context of activated EGFR and/or Yki and positive regulators of growth in the context of activated EGFR. Resources reported here are available freely for anyone to use.
Collapse
|
52
|
Nielsen CP, Jernigan KK, Diggins NL, Webb DJ, MacGurn JA. USP9X Deubiquitylates DVL2 to Regulate WNT Pathway Specification. Cell Rep 2020; 28:1074-1089.e5. [PMID: 31340145 PMCID: PMC6884140 DOI: 10.1016/j.celrep.2019.06.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer. DVL2 is a signal transducing protein that participates in canonical and noncanonical WNT signaling relays. Here, Nielsen et al. report that the deubiquitylase USP9X and the E3 ubiquitin ligase WWP1 operate on DVL2 to establish a ubiquitin rheostat that contributes to WNT pathway specification in human breast cancer cells.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
53
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
54
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
55
|
Song X, Yang W, Wu C, Han Y, Lu Y. USP9X promotes the proliferation, invasion and metastasis of liver cancer cells through regulating the JAK2/STAT3 signaling. Oncol Lett 2020; 20:2897-2905. [PMID: 32782606 PMCID: PMC7400992 DOI: 10.3892/ol.2020.11824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
X-linked ubiquitin-specific peptidase 9 (USP9X) serves important roles in the development and progression of various human cancers. However, its role and molecular mechanism in liver cancer require further elucidation. In the present study, USP9X was found to be upregulated in liver cancer tissues. At the same time, overexpression of USP9X promoted the proliferation, invasiveness and migration of liver cancer cells, which were subsequently suppressed by USP9X silencing. On a molecular level, the results revealed that USP9X knockdown suppressed elements of the Janus kinase 2 (JAK2)/STAT3 signaling pathway, including JAK2, STAT3, matrix metalloproteinase-2 and c-Myc. By contrast, overexpression of USP9X had the opposite effect. In conclusion, the results of the present study suggest that USP9X is upregulated in patients with liver cancer, which may accelerate the proliferation, invasiveness and migration of liver cancer cells by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xingchao Song
- Department of General Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of General Surgery, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Weibin Yang
- Department of General Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of General Surgery, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chao Wu
- Department of General Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of General Surgery, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yamin Han
- Department of General Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of General Surgery, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Yaowu Lu
- Department of General Surgery, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of General Surgery, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
56
|
Wu X, Luo Q, Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis 2020; 11:556. [PMID: 32699213 PMCID: PMC7376237 DOI: 10.1038/s41419-020-02760-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
MCL1 is an important antiapoptotic member of the BCL-2 family that is distinguishable from other family members based on its relatively short half-life. Emerging studies have revealed the crucial role of MCL1 in the chemoresistance of cancer cells. The antiapoptotic function of MCL1 makes it a popular therapeutic target, although specific inhibitors have begun to emerge only recently. Notably, emerging studies have reported that several E3 ligases and deubiquitinases modulate MCL1 stability, providing an alternate means of targeting MCL1 activity. In addition, the emergence and development of proteolysis-targeting chimeras, the function of which is based on ubiquitination-mediated degradation, has shown great potential. In this review, we provide an overview of the studies investigating the ubiquitination and deubiquitination of MCL1, summarize the latest evidence regarding the development of therapeutic strategies targeting MCL1 in cancer treatment, and discuss the promising future of targeting MCL1 via the ubiquitin–proteasome system in clinical practice.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
57
|
He M, Henderson M, Muth S, Murphy A, Zheng L. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. ACTA ACUST UNITED AC 2020; 3. [PMID: 32832900 PMCID: PMC7440242 DOI: 10.21037/apc.2020.03.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is in urgent need of better diagnostic and therapeutic methods due to its late diagnosis, limited treatment options and poor prognosis. Finding the right animal models to recapitulate the tumor molecular pathogenesis and tumor microenvironment (TME) complexity is critical for preclinical immunotherapeutic and non-immunotherapeutic treatment developments. In this review, we summarize and evaluate popular preclinical animal models including patient-derived xenograft models, humanized mouse models, genetically engineered mouse models, and syngeneic mouse models. Through comparisons between these models in different research settings, we hope to provide guidance in finding the most relevant preclinical models to suit various research purposes.
Collapse
Affiliation(s)
- Mengni He
- Department of Cell Biology, Baltimore, MD, USA
| | - MacKenzie Henderson
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Murphy
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Precision Medicine Center of Excellence (PMCoE) Program for Pancreatic Cancer, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Precision Medicine Center of Excellence (PMCoE) Program for Pancreatic Cancer, Baltimore, MD, USA
| |
Collapse
|
58
|
The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020; 12:cancers12071898. [PMID: 32674429 PMCID: PMC7409207 DOI: 10.3390/cancers12071898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the main cellular degradation machinery designed for controlling turnover of critical proteins involved in cancer pathogenesis, including hematological malignancies. UPS plays a functional role in regulating turnover of key proteins involved in cell cycle arrest, apoptosis and terminal differentiation. When deregulated, it leads to several disorders, including cancer. Several studies indicate that, in some subtypes of human hematological neoplasms such as multiple myeloma and Burkitt’s lymphoma, abnormalities in the UPS made it an attractive therapeutic target due to pro-cancer activity. In this review, we discuss the aberrant role of UPS evaluating its impact in hematological malignancies. Finally, we also review the most promising therapeutic approaches to target UPS as powerful strategies to improve treatment of blood cancers.
Collapse
|
59
|
Gu JF, Fu W, Qian HX, Gu WX, Zong Y, Chen Q, Lu L. TBL1XR1 induces cell proliferation and inhibit cell apoptosis by the PI3K/AKT pathway in pancreatic ductal adenocarcinoma. World J Gastroenterol 2020; 26:3586-3602. [PMID: 32742128 PMCID: PMC7366057 DOI: 10.3748/wjg.v26.i25.3586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors. Identification of diagnostic and therapeutic biomarkers for PDAC is urgently needed. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) has been linked to the progression of various human cancers. Nevertheless, the function and role of TBL1XR1 in pancreatic cancers are unclear.
AIM To elucidate the function and potential mechanism of TBL1XR1 in the development of PDAC.
METHODS Ninety patients with histologically-confirmed PDAC were included in this study. PDAC tumor samples and cell lines were used to determine the expression of TBL1XR1. CCK-8 assays and colony formation assays were carried out to assess PDAC cell viability. Flow cytometry was performed to measure the changes in the cell cycle and cell apoptosis. Changes in related protein expression were measured by western blot analysis. Animal analysis was conducted to confirm the impact of TBL1XR1 in vivo.
RESULTS Patients with TBL1XR1-positive tumors had worse overall survival than those with TBL1XR1-negative tumors. Moreover, we found that TBL1XR1 strongly promoted PDAC cell proliferation and inhibited PDAC cell apoptosis. Moreover, knockdown of TBL1XR1 induced G0/G1 phase arrest. In vivo animal studies confirmed that TBL1XR1 accelerated tumor cell growth. The results of western blot analysis showed that TBL1XR1 might play a key role in regulating PDAC cell proliferation and apoptosis via the PI3K/AKT pathway.
CONCLUSION TBL1XR1 promoted PDAC cell progression and might be an effective diagnostic and therapeutic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jian-Feng Gu
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Wei Fu
- Department of Oncology, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Hai-Xin Qian
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wen-Xiu Gu
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Yang Zong
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Qian Chen
- Department of General Surgery, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| | - Long Lu
- Department of Oncology, Changshu No. 1 People’s Hospital Affiliated to Soochow University, Changshu 215500, Jiangsu Province, China
| |
Collapse
|
60
|
Tian T, Bi H, Liu Y, Li G, Zhang Y, Cao L, Hu F, Zhao Y, Yuan H. Copy number variation of ubiquitin- specific proteases genes in blood leukocytes and colorectal cancer. Cancer Biol Ther 2020; 21:637-646. [PMID: 32364424 PMCID: PMC7515516 DOI: 10.1080/15384047.2020.1750860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) play important roles in the regulation of many cancer-related biological processes. USPs copy number variation (CNVs) may affect the risk and prognosis of colorectal cancer (CRC). We detected CNVs of USPs genes in 468 matched CRC patients and controls, estimated the associations between the USPs genes CNVs and CRC risk and prognosis and their interactions with environmental factors on CRC risk. Finally, we generated five CRC risk predictive models with different CNVs patterns combining with environmental factors (EF). We identified significant association between CYLD deletion and CRC risk (ORadj = 4.18, 95% CI: 2.03-8.62), significant association between USP9X amplification and CRC risk (ORadj = 2.30, 95% CI: 1.48-3.57), and significant association between USP11 deletion and CRC risk (ORadj = 3.49, 95% CI: 1.49-8.64). There were significant gene-environment and gene-gene interactions on CRC risk. The area under the receiver operating characteristic curve (AUC) of EF + SIG (deletion of CYLD and USP11, amplification of USP9X) model was significantly larger than any other models (AUC = 0.75, 95% CI: 0.74-0.77). We did not identify significant associations between CNVs of the three genes and CRC prognosis. CNVs of CYLD, USP9X, and USP11 are significantly associated with the risk of CRC. Gene-gene and gene-environment interactions might also play an important role in the development of CRC.
Collapse
Affiliation(s)
- Tian Tian
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Haoran Bi
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Yupeng Liu
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Guangxiao Li
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Yiwei Zhang
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Liming Cao
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Fulan Hu
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, P.R. China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
61
|
Zhao Y, Wu Z, Chanal M, Guillaumond F, Goehrig D, Bachy S, Principe M, Ziverec A, Flaman JM, Collin G, Tomasini R, Pasternack A, Ritvos O, Vasseur S, Bernard D, Hennino A, Bertolino P. Oncogene-Induced Senescence Limits the Progression of Pancreatic Neoplasia through Production of Activin A. Cancer Res 2020; 80:3359-3371. [PMID: 32554750 DOI: 10.1158/0008-5472.can-19-3763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly and aggressive cancer. Understanding mechanisms that drive preneoplastic pancreatic lesions is necessary to improve early diagnostic and therapeutic strategies. Mutations and inactivation of activin-like kinase (ALK4) have been demonstrated to favor PDAC onset. Surprisingly, little is known regarding the ligands that drive ALK4 signaling in pancreatic cancer or how this signaling pathway limits the initiation of neoplastic lesions. In this study, data mining and histologic analyses performed on human and mouse tumor tissues revealed that activin A is the major ALK4 ligand that drives PDAC initiation. Activin A, which is absent in normal acinar cells, was strongly induced during acinar-to-ductal metaplasia (ADM), which was promoted by pancreatitis or the activation of KrasG12D in mice. Activin A expression during ADM was associated with the cellular senescence program that is induced in precursor lesions. Blocking activin A signaling through the use of a soluble form of activin receptor IIB (sActRIIB-Fc) and ALK4 knockout in mice expressing KrasG12D resulted in reduced senescence associated with decreased expression of p21, reduced phosphorylation of H2A histone family member X (H2AX), and increased proliferation. Thus, this study indicates that activin A acts as a protective senescence-associated secretory phenotype factor produced by Kras-induced senescent cells during ADM, which limits the expansion and proliferation of pancreatic neoplastic lesions. SIGNIFICANCE: This study identifies activin A to be a beneficial, senescence-secreted factor induced in pancreatic preneoplastic lesions, which limits their proliferation and ultimately slows progression into pancreatic cancers.
Collapse
Affiliation(s)
- Yajie Zhao
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France.,Department of Geriatrics, Ruijin Hospital, School of Medicine, Shanghai Jia Tong University, Shanghai, China
| | - Zhichong Wu
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Marie Chanal
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Unité Mixte de Recherche (UMR 7258), Centre national de la Recherche Scientifique, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - Delphine Goehrig
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Sophie Bachy
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Moitza Principe
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Audrey Ziverec
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Jean-Michel Flaman
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Guillaume Collin
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Richard Tomasini
- Centre de Recherche en Cancérologie de Marseille, Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Unité Mixte de Recherche (UMR 7258), Centre national de la Recherche Scientifique, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, Unité 1068, Institut National de la Santé et de la Recherche Médicale, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Unité Mixte de Recherche (UMR 7258), Centre national de la Recherche Scientifique, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - David Bernard
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Ana Hennino
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - Philippe Bertolino
- Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France.
| |
Collapse
|
62
|
Gatti V, Bernassola F, Talora C, Melino G, Peschiaroli A. The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:1595. [PMID: 32560247 PMCID: PMC7352818 DOI: 10.3390/cancers12061595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| |
Collapse
|
63
|
Wang Z, Hausmann S, Lyu R, Li TM, Lofgren SM, Flores NM, Fuentes ME, Caporicci M, Yang Z, Meiners MJ, Cheek MA, Howard SA, Zhang L, Elias JE, Kim MP, Maitra A, Wang H, Bassik MC, Keogh MC, Sage J, Gozani O, Mazur PK. SETD5-Coordinated Chromatin Reprogramming Regulates Adaptive Resistance to Targeted Pancreatic Cancer Therapy. Cancer Cell 2020; 37:834-849.e13. [PMID: 32442403 PMCID: PMC8187079 DOI: 10.1016/j.ccell.2020.04.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/11/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Molecular mechanisms underlying adaptive targeted therapy resistance in pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Here, we identify SETD5 as a major driver of PDAC resistance to MEK1/2 inhibition (MEKi). SETD5 is induced by MEKi resistance and its deletion restores refractory PDAC vulnerability to MEKi therapy in mouse models and patient-derived xenografts. SETD5 lacks histone methyltransferase activity but scaffolds a co-repressor complex, including HDAC3 and G9a. Gene silencing by the SETD5 complex regulates known drug resistance pathways to reprogram cellular responses to MEKi. Pharmacological co-targeting of MEK1/2, HDAC3, and G9a sustains PDAC tumor growth inhibition in vivo. Our work uncovers SETD5 as a key mediator of acquired MEKi therapy resistance in PDAC and suggests a context for advancing MEKi use in the clinic.
Collapse
Affiliation(s)
- Zhentian Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruitu Lyu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Tie-Mei Li
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shane M Lofgren
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary E Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcello Caporicci
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ze Yang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Cory Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Julien Sage
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
64
|
Lupo F, Piro G, Torroni L, Delfino P, Trovato R, Rusev B, Fiore A, Filippini D, De Sanctis F, Manfredi M, Marengo E, Lawlor RT, Martini M, Tortora G, Ugel S, Corbo V, Melisi D, Carbone C. Organoid-Transplant Model Systems to Study the Effects of Obesity on the Pancreatic Carcinogenesis in vivo. Front Cell Dev Biol 2020; 8:308. [PMID: 32411709 PMCID: PMC7198708 DOI: 10.3389/fcell.2020.00308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality among adults in developed countries. The discovery of the most common genetic alterations as well as the development of organoid models of pancreatic cancer have provided insight into the fundamental pathways driving tumor progression from a normal cell to non-invasive precursor lesion and finally to widely metastatic disease, offering new opportunities for identifying the key driver of cancer evolution. Obesity is one of the most serious public health challenges of the 21st century. Several epidemiological studies have shown the positive association between obesity and cancer-related morbidity/mortality, as well as poorer prognosis and treatment outcome. Despite strong evidence indicates a link between obesity and cancer incidence, the molecular basis of the initiating events remains largely elusive. This is mainly due to the lack of an accurate and reliable model of pancreatic carcinogenesis that mimics human obesity-associated PDAC, making data interpretation difficult and often confusing. Here we propose a feasible and manageable organoid-based preclinical tool to study the effects of obesity on pancreatic carcinogenesis. Therefore, we tracked the effects of obesity on the natural evolution of PDAC in a genetically defined transplantable model of the syngeneic murine pancreatic preneoplastic lesion (mP) and tumor (mT) derived-organoids that recapitulates the progression of human disease from early preinvasive lesions to metastatic disease. Our results suggest that organoid-derived transplant in obese mice represents a suitable system to study early steps of pancreatic carcinogenesis and supports the hypothesis that inflammation induced by obesity stimulates tumor progression and metastatization during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Francesca Lupo
- Section of Anatomical Pathology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorena Torroni
- Unit of Epidemiology and Medical Statistics, University of Verona, Verona, Italy
| | - Pietro Delfino
- Section of Anatomical Pathology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Borislav Rusev
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Alessandra Fiore
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Dea Filippini
- Section of Anatomical Pathology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | | | - Maurizio Martini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Section of Anatomical Pathology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy.,ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Davide Melisi
- Section of Medical Oncology, Department of Oncology, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
65
|
Arpalahti L, Haglund C, Holmberg CI. Proteostasis Dysregulation in Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:101-115. [PMID: 32274754 DOI: 10.1007/978-3-030-38266-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.
Collapse
Affiliation(s)
- Leena Arpalahti
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina I Holmberg
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
66
|
Michalopoulou E, Auciello FR, Bulusu V, Strachan D, Campbell AD, Tait-Mulder J, Karim SA, Morton JP, Sansom OJ, Kamphorst JJ. Macropinocytosis Renders a Subset of Pancreatic Tumor Cells Resistant to mTOR Inhibition. Cell Rep 2020; 30:2729-2742.e4. [PMID: 32101748 PMCID: PMC7043007 DOI: 10.1016/j.celrep.2020.01.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a near-universal mutation in KRAS. Additionally, the tumor suppressor PTEN is lost in ∼10% of patients, and in mouse models, this dramatically accelerates tumor progression. While oncogenic KRAS and phosphatidylinositol 3-kinase (PI3K) cause divergent metabolic phenotypes individually, how they synergize to promote tumor metabolic alterations and dependencies remains unknown. We show that in KRAS-driven murine PDAC cells, loss of Pten strongly enhances both mTOR signaling and macropinocytosis. Protein scavenging alleviates sensitivity to mTOR inhibition by rescuing AKT phosphorylation at serine 473 and consequently cell proliferation. Combined inhibition of mTOR and lysosomal processing of internalized protein eliminates the macropinocytosis-mediated resistance. Our results indicate that mTORC2, rather than mTORC1, is an important regulator of protein scavenging and that protein-mediated resistance could explain the lack of effectiveness of mTOR inhibitors in certain genetic backgrounds. Concurrent inhibition of mTOR and protein scavenging might be a valuable therapeutic approach.
Collapse
Affiliation(s)
- Evdokia Michalopoulou
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Francesca R Auciello
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Vinay Bulusu
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - David Strachan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jacqueline Tait-Mulder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Saadia A Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
67
|
Chen MY, Li ZP, Sun ZN, Ma M. USP9X promotes the progression of hepatocellular carcinoma by regulating beta-catenin. Ir J Med Sci 2020; 189:865-871. [PMID: 32065347 DOI: 10.1007/s11845-020-02199-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the malignant tumors with highest mortality. The role of USP9X in the carcinogenesis of HCC has not yet been determined. In this study, USP9X was found significantly highly expressed in the intratumor tissues. Expression of intratumor USP9X was associated with tumor size and microvascular invasion while USP9X is independent risk factor of HCC disease-free survival and overall survival. In vitro studies revealed that knockdown of USP9X significantly inhibited the proliferation of HCC cells. Mechanically, USP9X promotes HCC cell proliferation by regulating the expression of beta-catenin. The results of the present study demonstrated that high expression of USP9X in intratumoral cells is associated with poor HCC prognosis, which may serve as a potential target for an adjuvant therapy.
Collapse
Affiliation(s)
- Mei-Yuan Chen
- Department of General Surgery, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Zi-Ping Li
- Department of Neurology, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Zhao-Na Sun
- Department of Cardiology, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Ming Ma
- Department of Oncology, Linyi People's Hospital, Linyi, 276000, Shandong, China.
| |
Collapse
|
68
|
O'Dea R, Santocanale C. Non-canonical regulation of homologous recombination DNA repair by the USP9X deubiquitylase. J Cell Sci 2020; 133:jcs233437. [PMID: 31964704 DOI: 10.1242/jcs.233437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
In order to prevent the deleterious effects of genotoxic agents, cells have developed complex surveillance mechanisms and DNA repair pathways that allow them to maintain genome integrity. The ubiquitin-specific protease 9X (USP9X) contributes to genome stability during DNA replication and chromosome segregation. Depletion of USP9X leads to DNA double-strand breaks, some of which are triggered by replication fork collapse. Here, we identify USP9X as a novel regulator of homologous recombination (HR) DNA repair in human cells. By performing cellular HR reporter, irradiation-induced focus formation and colony formation assays, we show that USP9X is required for efficient HR. Mechanistically, we show USP9X is important to sustain the expression levels of key HR factors, namely BRCA1 and RAD51 through a non-canonical regulation of their mRNA abundance. Intriguingly, we find that the contribution of USP9X to BRCA1 and RAD51 expression is independent of its known catalytic activity. Thus, this work identifies USP9X as a regulator of HR, demonstrates a novel mechanism by which USP9X can regulate protein levels, and provides insights in to the regulation of BRCA1 and RAD51 mRNA.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel O'Dea
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91W2TY, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway H91W2TY, Ireland
| |
Collapse
|
69
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
70
|
Dijk F, Veenstra VL, Soer EC, Dings MPG, Zhao L, Halfwerk JB, Hooijer GK, Damhofer H, Marzano M, Steins A, Waasdorp C, Busch OR, Besselink MG, Tol JA, Welling L, van Rijssen LB, Klompmaker S, Wilmink HW, van Laarhoven HW, Medema JP, Vermeulen L, van Hooff SR, Koster J, Verheij J, van de Vijver MJ, Wang X, Bijlsma MF. Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Sci Rep 2020; 10:337. [PMID: 31941932 PMCID: PMC6962149 DOI: 10.1038/s41598-019-56826-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative (network) analysis showed high interconnectivity with previously identified classification schemes and high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed assessments of tumor growth in subtyped experimental models revealed that a highly invasive growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, by developing a classification system tailored to experimental models, we have uncovered subtype-specific biology that should be further explored to improve treatment of a group of PDAC patients that currently has little therapeutic benefit from surgical treatment.
Collapse
Affiliation(s)
- Frederike Dijk
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Eline C Soer
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mark P G Dings
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Johannes B Halfwerk
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gerrit K Hooijer
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Marco Marzano
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Johanna A Tol
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Lieke Welling
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lennart B van Rijssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sjors Klompmaker
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
71
|
Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology 2020; 20:79-88. [PMID: 31780287 DOI: 10.1016/j.pan.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the dangerous human cancers, is the 10th highly prevalent cancer, and the fourth sole cause of cancer-related mortality in the United States of America. Notwithstanding the significant commitment, the forecast for people with this burden continues to have a five-year survival rate of just 4-6%. The most critical altered genes within PDAC consist of K-ras the proto-oncogene which is usually mutationally activated above 90% cases and tumor suppressors likeTrp53 are altered at 55%. To face the burden of pancreatic ductal adenocarcinoma, a variety of genetically engineered pancreatic cancer mice models have been created over the last past years. These models have distinctive features and are not all appropriate for preclinical studies. In this review, we focus on differences between two mice models K-rasLSL.G12D/+;Pdx-1-Cre(KC) and K-rasLSL.G12D/+; Trp53R172H/+; Pdx-1-Cre(KPC) in terms of their modeling biology and their clinical relevance.
Collapse
|
72
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
73
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
74
|
Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, Cox TR, Timpson P. CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends Cancer 2019; 5:724-741. [PMID: 31735290 DOI: 10.1016/j.trecan.2019.09.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most significant components in the tumour microenvironment (TME), where they can perform several protumourigenic functions. Several studies have recently reported that CAFs are more heterogenous and plastic than was previously thought. As such, there has been a shift in the field to study CAF subpopulations and the emergent functions of these subsets in tumourigenesis. In this review, we explore how different aspects of CAF heterogeneity are defined and how these manifest in multiple cancers, with a focus on pancreatic ductal adenocarcinoma (PDAC). We also discuss therapeutic approaches to selectively target protumourigenic CAF functions, while avoiding normal fibroblasts, providing insight into the future of stromal targeting for the treatment of PDAC and other solid tumours.
Collapse
Affiliation(s)
- Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Claire Vennin
- Division of Molecular Pathology, Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands
| | - Michael Papanicolaou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Cecilia R Chambers
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - David Herrmann
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia.
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
75
|
Seo D, Jung SM, Park JS, Lee J, Ha J, Kim M, Park SH. The deubiquitinating enzyme PSMD14 facilitates tumor growth and chemoresistance through stabilizing the ALK2 receptor in the initiation of BMP6 signaling pathway. EBioMedicine 2019; 49:55-71. [PMID: 31685442 PMCID: PMC7113187 DOI: 10.1016/j.ebiom.2019.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Although bone morphogenetic protein 6 (BMP6) signaling pathway has been implicated in many types of cancer, its role of tumorigenesis seems to be controversial and its ubiquitin-modifying mechanisms have not been fully addressed. Our study was designed to investigate how BMP6 signaling pathway is regulated by ubiquitin-modifying systems and to address molecular and clinical significance in colorectal cancers. METHODS Human deubiquitnase (DUB) siRNA library was used to screen the specific DUB, named PSMD14, involved in BMP6 signaling pathway. Immunoblot, immunoprecipitation and ubiquitination assays were used to analyze targets of the PSMD14. A role of PSMD14-mediated BMP6 signaling pathway for malignant cancer progression was investigated using in vitro and in vivo model of colorectal cancers as well as clinical samples of colorectal cancer patients. FINDINGS The deubiquitinase PSMD14 acts as a positive regulator for the initiation of the BMP6 signaling pathway through deubiquitinating K48-linked ALK2 type I receptor ubiquitination mediated by Smurf1 E3 ligase, resulting in increased stability of the ALK2. This role of PSMD14 is independent of its intrinsic role in the 26S proteasome system. Furthermore, either PSMD14 or ALK2 depletion significantly decreases tumorigenesis of HCT116 colorectal cancer cells in a xenograft model as well as cancer stemness/chemoresistance, and expression of the PSMD14 and ALK2 gene are correlated with malignant progression and the survival of colorectal cancer patients. INTERPRETATION These findings suggest that the PSMD14-ALK2 axis plays an essential role in initiation of the BMP6 signaling pathway and contributes to tumorigenesis and chemoresistance of colorectal cancers.
Collapse
Affiliation(s)
- Dongyeob Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jin Seok Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaewon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihoon Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minbeom Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
76
|
Expression of La Ribonucleoprotein Domain Family Member 4B (LARP4B) in Liver Cancer and Their Clinical and Prognostic Significance. DISEASE MARKERS 2019; 2019:1569049. [PMID: 31772683 PMCID: PMC6854232 DOI: 10.1155/2019/1569049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Background and Objective Liver cancer is a common malignant tumor with few poor diagnostic and prognostic markers, which greatly shortens the potential life span of patients. The RNA-binding protein la ribonucleoprotein 4B (LARP4B) has a la motif (lam) that is important in the process of cancer. We aimed to explore the role of LARP4B in the diagnosis and prognosis of liver cancer. Methods The Cancer Genome Atlas (TCGA) database was searched to detect LARP4B gene expression in liver cancer. The clinical relevance and diagnostic ability of LARP4B were evaluated by a chi-squared test and a receiver operating characteristic (ROC) curve, respectively. Survival and risk factors of patients with liver cancer were assessed by survival analysis and univariate/multivariate Cox regression model. Additionally, we carried out gene set enrichment analysis (GSEA) to identify LARP4B-related signaling pathways in liver cancer. Results LARP4B mRNA was highly expressed in liver cancer tissues and was correlated with survival status. The chi-squared test showed that LARP4B had clinical relevance, while ROC curves showed that LARP4B had good diagnostic ability. Survival analysis showed that liver cancer patients with high LARP4B expression had shorter overall/relapse-free survival. The univariate/multivariate Cox regression model indicated that high LARP4B expression may be an independent risk factor for the prognosis of liver cancer patients. Finally, we found that genes involved in the G2M checkpoint, E2F targets, and mitotic spindle were differentially enriched in the high LARP4B-expression phenotype. Conclusions LARP4B is a potential independent biomarker for diagnosis and prognosis in liver cancer patients.
Collapse
|
77
|
Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World J Gastroenterol 2019; 25:5732-5772. [PMID: 31636470 PMCID: PMC6801186 DOI: 10.3748/wjg.v25.i38.5732] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a normal cell undergoes to be transformed into a cancer cell. The functions of ion channels in the gastrointestinal (GI) tract influence a variety of cellular processes, many of which overlap with these hallmarks of cancer. In this review we focus on the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of cellular processes such as control of the cell cycle, apoptosis, and migration. Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6 and TRPM2, have been implicated in GI cancers, especially through overexpression in pancreatic adenocarcinomas and down-regulation in colon cancer. Voltage-gated sodium channels (VGSCs) are classically associated with the initiation and conduction of action potentials in electrically excitable cells such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in human colorectal CRC cell lines as well as being highly expressed in primary CRC samples. Studies have demonstrated that conductance through NaV1.5 contributes significantly to CRC cell invasiveness and cancer progression. Zn2+ transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer (PC). More than 70 K+ channel genes, clustered in four families, are found expressed in the GI tract, where they regulate a range of cellular processes, including gastrin secretion in the stomach and anion secretion and fluid balance in the intestinal tract. Several distinct types of K+ channels are found dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are critical for a range of cellular and tissue processes in the GI tract, especially fluid balance in the colon. Most notable is CFTR, whose deficiency leads to mucus blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant risk for CRC and low levels of CFTR expression are associated with poor overall disease-free survival in sporadic CRC. Two other classes of chloride channels that are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 & 4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins have been reported to be down-regulated in CRC. In summary, it is clear, from the diverse influences of ion channels, that their aberrant expression and/or activity can contribute to malignant transformation and tumor progression. Further, because ion channels are often localized to the plasma membrane and subject to multiple layers of regulation, they represent promising clinical targets for therapeutic intervention including the repurposing of current drugs.
Collapse
Affiliation(s)
- Kyle J Anderson
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| |
Collapse
|
78
|
Mennerich D, Kubaichuk K, Kietzmann T. DUBs, Hypoxia, and Cancer. Trends Cancer 2019; 5:632-653. [PMID: 31706510 DOI: 10.1016/j.trecan.2019.08.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
Alterations in protein ubiquitylation and hypoxia are commonly associated with cancer. Ubiquitylation is carried out by three sequentially acting ubiquitylating enzymes and can be opposed by deubiquitinases (DUBs), which have emerged as promising drug targets. Apart from protein localization and activity, ubiquitylation regulates degradation of proteins, among them hypoxia-inducible factors (HIFs). Thereby, various E3 ubiquitin ligases and DUBs regulate HIF abundance. Conversely, several E3s and DUBs are regulated by hypoxia. While hypoxia is a powerful HIF regulator, less is known about hypoxia-regulated DUBs and their impact on HIFs. Here, we review current knowledge about the relationship of E3s, DUBs, and hypoxia signaling. We also discuss the reciprocal regulation of DUBs by hypoxia and use of DUB-specific drugs in cancer.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, 90570, Finland; Biocenter Oulu, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
79
|
Targeting USP9x/SOX2 axis contributes to the anti-osteosarcoma effect of neogambogic acid. Cancer Lett 2019; 469:277-286. [PMID: 31605775 DOI: 10.1016/j.canlet.2019.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
SOX2 has been viewed as a critical oncoprotein in osteosarcoma. Emerging evidence show that inducing the degradation of transcription factors such as SOX2 is a promising strategy to make them druggable. Here, we show that neogambogic acid (NGA), an active ingredient in garcinia, significantly inhibited the proliferation of osteosarcoma cells with ubiquitin proteasome-mediated degradation of SOX2 in vitro and in vivo. We further identified USP9x as a bona fide deubiquitinase for SOX2 and NGA directly interacts with USP9x in cells. Moreover, knockdown of USP9x inhibited the proliferation and colony formation of osteosarcoma cells, which could be rescued by overexpression of SOX2. Consistent with this, knockdown of USP9x inhibited the proliferation of osteosarcoma cells in a xenograft mouse model. Collectively, we identify USP9x as the first deubiquitinating enzyme for controlling the stability of SOX2 and USP9x is a direct target for NGA. We propose that targeting the USP9x/SOX2 axis represents a novel strategy for the therapeutic of osteosarcoma and other SOX2 related cancers.
Collapse
|
80
|
Hou P, Ma X, Zhang Q, Wu CJ, Liao W, Li J, Wang H, Zhao J, Zhou X, Guan C, Ackroyd J, Jiang S, Zhang J, Spring DJ, Wang YA, DePinho RA. USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes Dev 2019; 33:1361-1366. [PMID: 31488580 PMCID: PMC6771391 DOI: 10.1101/gad.326314.119] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The ubiquitin-specific protease (USP) family is the largest group of cysteine proteases. Cancer genomic analysis identified frequent amplification of USP21 (22%) in human pancreatic ductal adenocarcinoma (PDAC). USP21 overexpression correlates with human PDAC progression, and enforced expression of USP21 accelerates murine PDAC tumor growth and drives PanIN to PDAC progression in immortalized human pancreatic ductal cells. Conversely, depletion of USP21 impairs PDAC tumor growth. Mechanistically, USP21 deubiquitinates and stabilizes the TCF/LEF transcription factor TCF7, which promotes cancer cell stemness. Our work identifies and validates USP21 as a PDAC oncogene, providing a potential druggable target for this intractable disease.
Collapse
Affiliation(s)
- Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xin Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Carolyn Guan
- Princeton University, Princeton, New Jersey 08544, USA
| | - Jeffery Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
81
|
Lu Q, Zhang FL, Lu DY, Shao ZM, Li DQ. USP9X stabilizes BRCA1 and confers resistance to DNA-damaging agents in human cancer cells. Cancer Med 2019; 8:6730-6740. [PMID: 31512408 PMCID: PMC6825982 DOI: 10.1002/cam4.2528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
BRCA1, a multifunctional protein with an important role in DNA double‐strand break repair by homologous recombination (HR), is subjected to ubiquitin‐dependent degradation. To date, several E3 ubiquitin ligases have been identified to govern BRCA1 stability, but the deubiquitinase that counteracts its turnover remains undefined. In this study, we report that the ubiquitin‐specific protease 9X (USP9X) is a bona fide deubiquitinase for BRCA1 in human cancer cells. Reciprocal immunoprecipitation assays demonstrated that USP9X interacted with BRCA1. Depletion of USP9X by short interfering RNAs or inhibition of USP9X by the small‐molecular inhibitor WP1130 significantly reduced BRCA1 protein abundance, without affecting its mRNA levels. In contrast, overexpression of wild‐type USP9X, but not its deubiquitinase activity‐defective mutant (C1566S), resulted in an upregulation of BRCA1 protein levels. Moreover, USP9X depletion reduced the half‐life of BRCA1, accompanied by an increase in its ubiquitination. HR assays showed that knockdown of USP9X significantly reduced HR efficiency, which was partially rescued by reintroduction of BRCA1 into USP9X‐depleted cells. In support of these findings, USP9X knockdown significantly enhanced sensitivity to PARP inhibitor Olaparib and methyl methanesulfonate (MMS). Collectively, these results establish USP9X as a deubiquitinase for BRCA1 and reveal a previously unrecognized role of USP9X in the regulation of HR repair and the sensitivity of cancer cells to DNA‐damaging agents.
Collapse
Affiliation(s)
- Qin Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Yun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Ming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
82
|
Newberg JY, Black MA, Jenkins NA, Copeland NG, Mann KM, Mann MB. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors. Nucleic Acids Res 2019; 46:e94. [PMID: 29846651 PMCID: PMC6144815 DOI: 10.1093/nar/gky450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer driver prioritization for functional analysis of potential actionable therapeutic targets is a significant challenge. Meta-analyses of mutated genes across different human cancer types for driver prioritization has reaffirmed the role of major players in cancer, including KRAS, TP53 and EGFR, but has had limited success in prioritizing genes with non-recurrent mutations in specific cancer types. Sleeping Beauty (SB) insertional mutagenesis is a powerful experimental gene discovery framework to define driver genes in mouse models of human cancers. Meta-analyses of SB datasets across multiple tumor types is a potentially informative approach to prioritize drivers, and complements efforts in human cancers. Here, we report the development of SB Driver Analysis, an in-silico method for defining cancer driver genes that positively contribute to tumor initiation and progression from population-level SB insertion data sets. We demonstrate that SB Driver Analysis computationally prioritizes drivers and defines distinct driver classes from end-stage tumors that predict their putative functions during tumorigenesis. SB Driver Analysis greatly enhances our ability to analyze, interpret and prioritize drivers from SB cancer datasets and will continue to substantially increase our understanding of the genetic basis of cancer.
Collapse
Affiliation(s)
- Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nancy A Jenkins
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Gastrointestinal Oncology and Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael B Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Cutaneous Oncology and Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
83
|
Newberg JY, Mann KM, Mann MB, Jenkins NA, Copeland NG. SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers. Nucleic Acids Res 2019; 46:D1011-D1017. [PMID: 29059366 PMCID: PMC5753260 DOI: 10.1093/nar/gkx956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Large-scale oncogenomic studies have identified few frequently mutated cancer drivers and hundreds of infrequently mutated drivers. Defining the biological context for rare driving events is fundamentally important to increasing our understanding of the druggable pathways in cancer. Sleeping Beauty (SB) insertional mutagenesis is a powerful gene discovery tool used to model human cancers in mice. Our lab and others have published a number of studies that identify cancer drivers from these models using various statistical and computational approaches. Here, we have integrated SB data from primary tumor models into an analysis and reporting framework, the Sleeping Beauty Cancer Driver DataBase (SBCDDB, http://sbcddb.moffitt.org), which identifies drivers in individual tumors or tumor populations. Unique to this effort, the SBCDDB utilizes a single, scalable, statistical analysis method that enables data to be grouped by different biological properties. This allows for SB drivers to be evaluated (and re-evaluated) under different contexts. The SBCDDB provides visual representations highlighting the spatial attributes of transposon mutagenesis and couples this functionality with analysis of gene sets, enabling users to interrogate relationships between drivers. The SBCDDB is a powerful resource for comparative oncogenomic analyses with human cancer genomics datasets for driver prioritization.
Collapse
Affiliation(s)
- Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
84
|
Kodani A, Moyer T, Chen A, Holland A, Walsh CA, Reiter JF. SFI1 promotes centriole duplication by recruiting USP9X to stabilize the microcephaly protein STIL. J Cell Biol 2019; 218:2185-2197. [PMID: 31197030 PMCID: PMC6605807 DOI: 10.1083/jcb.201803041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
In mammals, centrioles participate in brain development, and human mutations affecting centriole duplication cause microcephaly. Here, we identify a role for the mammalian homologue of yeast SFI1, involved in the duplication of the yeast spindle pole body, as a critical regulator of centriole duplication in mammalian cells. Mammalian SFI1 interacts with USP9X, a deubiquitylase associated with human syndromic mental retardation. SFI1 localizes USP9X to the centrosome during S phase to deubiquitylate STIL, a critical regulator of centriole duplication. USP9X-mediated deubiquitylation protects STIL from degradation. Consistent with a role for USP9X in stabilizing STIL, cells from patients with USP9X loss-of-function mutations have reduced STIL levels. Together, these results demonstrate that SFI1 is a centrosomal protein that localizes USP9X to the centrosome to stabilize STIL and promote centriole duplication. We propose that the USP9X protection of STIL to facilitate centriole duplication underlies roles of both proteins in human neurodevelopment.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Tyler Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen Chen
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
85
|
Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance. Cells 2019; 8:cells8060598. [PMID: 31208103 PMCID: PMC6627837 DOI: 10.3390/cells8060598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin and hypoxia-inducible factor (HIF) pathways are cellular processes involved in the regulation of a variety of cellular functions. Enzymes called ubiquitin E3 ligases perform protein ubiquitylation. The action of these enzymes can be counteracted by another group of enzymes called deubiquitinases (DUBs), which remove ubiquitin from target proteins. The balanced action of these enzymes allows cells to adapt their protein content to a variety of cellular and environmental stress factors, including hypoxia. While hypoxia appears to be a powerful regulator of the ubiquitylation process, much less is known about the impact of DUBs on the HIF system and hypoxia-regulated DUBs. Moreover, hypoxia and DUBs play crucial roles in many diseases, such as cancer. Hence, DUBs are considered to be promising targets for cancer cell-specific treatment. Here, we review the current knowledge about the role DUBs play in the control of HIFs, the regulation of DUBs by hypoxia, and their implication in cancer progression.
Collapse
|
86
|
Li H, Zheng B. Overexpression of the Ubiquitin-Specific Peptidase 9 X-Linked (USP9X) Gene is Associated with Upregulation of Cyclin D1 (CCND1) and Downregulation of Cyclin-Dependent Inhibitor Kinase 1A (CDKN1A) in Breast Cancer Tissue and Cell Lines. Med Sci Monit 2019; 25:4207-4216. [PMID: 31169265 PMCID: PMC6568031 DOI: 10.12659/msm.914742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The role of the ubiquitin-specific peptidase 9 X-linked (USP9X) gene in breast cancer remains poorly understood. This study aimed to investigate the role of USP9X in breast cancer tissue and cell lines. Material/Methods Immunohistochemistry was used to examine the expression levels of USP9X in 102 breast cancer tissue samples and 41 normal breast tissue samples. Overexpression of USP9X in MCF-7 and MDA-MB-231 breast cancer cell lines were studied by USP9X lentivirus vector transfection. Clustered regularly interspaced short palindromic repeats (CRISPR)/caspase-9 USP9X gene knockout was performed. Cell proliferation, growth, and survival were examined using the cell counting kit-8 (CCK-8) assay, the colony formation assay, flow cytometry assays, and a tumor xenograft study. Results Immunohistochemistry showed that USP9X was significantly overexpressed in 93 of 102 (91.1%) breast cancer tissue samples compared with 41 normal breast tissue samples and was associated with tumor size ≥5.0 cm (P<0.05). USP9X overexpression in MCF-7 and MDA-MB-231 breast cancer increased cell proliferation and survival, significantly reduced the number of cells in the G1-phase cells and increased the number of cells in the S-phase cells, which were reversed by CRISPR/caspase-9 USP9X gene knockout. Overexpression of USP9X upregulated the CCND1 gene encoding cyclin D1 and downregulated cyclin-dependent inhibitor kinase 1A (CDKN1A) gene in breast cancer cells, which were reversed by USP9X knockout. Conclusions Overexpression of USP9X was associated with upregulation of the CCND1 gene and downregulation of the CDKN1A gene in breast cancer tissue and cell lines.
Collapse
Affiliation(s)
- Hang Li
- Department of the Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian, China (mainland)
| | - Bin Zheng
- Department of the Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian, China (mainland).,Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
87
|
Chen X, Lu D, Gao J, Zhu H, Zhou Y, Gao D, Zhou H. Identification of a USP9X Substrate NFX1-123 by SILAC-Based Quantitative Proteomics. J Proteome Res 2019; 18:2654-2665. [PMID: 31059266 DOI: 10.1021/acs.jproteome.9b00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The deubiquitinase USP9X is involved in multiple diseases including neurodegeneration, epilepsy, and various types of tumors by targeting different substrates. In the present study, we aimed to explore the potential substrates of USP9X and performed SILAC-based quantitative proteomics to compare these substrates in USP9X-knockdown and wild-type HeLa cells. We consequently carried out Flag-NFX1-123 tag affinity-based mass spectrometry and confirmed that the X-box binding nuclear factor NFX1-123 interacted with USP9X. Moreover, immunoprecipitation assays verified a direct interaction between USP9X and NFX1-123. Further experiments confirmed that NFX1-123 could be modified by ubiquitination and that USP9X stabilized NFX1-123 via efficient deubiquitination of NFX1-123. Knockdown of USP9X resulted in decreased NFX1-123 protein levels compared with their unchanged corresponding mRNA levels in different cell lines. In summary, we found that NFX1-123 was a bona fide substrate of the deubiquitinase USP9X and that it could be degraded by the ubiquitin-proteasome system. The present study provided new insight into understanding the biological function of USP9X by targeting its substrate NFX1-123.
Collapse
Affiliation(s)
- Xiangling Chen
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Number 19A Yuquan Road , Beijing 100049 , China
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Number 19A Yuquan Road , Beijing 100049 , China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yanting Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Daming Gao
- University of Chinese Academy of Sciences , Number 19A Yuquan Road , Beijing 100049 , China.,CAS Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Number 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
88
|
Wang A, Zhu F, Liang R, Li D, Li B. Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cell Immunol 2019; 340:103922. [PMID: 31078284 DOI: 10.1016/j.cellimm.2019.103922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
T cells play critical roles in immune responses to pathogens, autoimmunity, and antitumor immunity. During the past few decades, increasing numbers of studies have demonstrated the significance of protein ubiquitination in T cell-mediated immunity. Several E3 ubiquitin ligases and deubiquitinases (DUBs) have been identified as either positive or negative regulators of T cell development and function. In this review, we mainly focus on the roles of DUBs (especially ubiquitin-specific proteases (USPs)) in modulating T cell differentiation and function, as well as the molecular mechanisms. Understanding how T cell development and function is regulated by ubiquitination and deubiquitination will provide novel strategies for treating infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Aiting Wang
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Fangming Zhu
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Bio-energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
89
|
Zhang J, Wang J, Luan T, Zuo Y, Chen J, Zhang H, Ye Z, Wang H, Hai B. Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncol Rep 2019; 41:3292-3304. [PMID: 31002345 PMCID: PMC6489063 DOI: 10.3892/or.2019.7131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-specific protease 9X (USP9X) is a conserved deubiquitinase that has been investigated in several types of human cancer. However, the clinical significance and the biological roles of USP9X in prostate cancer remain unexplored. In the present study, an investigation into the expression and clinical significance of USP9X in prostate cancer revealed that USP9X expression was downregulated in prostate cancer tissues compared with that in healthy tissues. In addition, decreased USP9X expression was associated with a higher Gleason score and local invasion. Depletion of USP9X in prostate cancer LNCaP and PC-3 cells by small interfering RNA promoted cell invasion and migration. Furthermore, USP9X depletion upregulated matrix metalloproteinase 9 (MMP9) and the phosphorylation of dynamin-related protein 1 (DRP1). Notably, a significant increase in phosphorylated extracellular signal-regulated kinase (ERK), an upstream activator of MMP9 and DRP1, was observed. To investigate whether ERK activation was able to increase MMP9 protein levels and induce DRP1 phosphorylation, an ERK inhibitor was used, demonstrating that ERK-mediated MMP9 production and change in mitochondrial function was critical for the biological function of USP9X in prostate cancer cells. In conclusion, the present study demonstrated that USP9X is downregulated in prostate cancer and functions as an inhibitor of tumor cell invasion, possibly through the regulation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jian Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Heng Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Zhenni Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Bing Hai
- Department of Respiratory Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
90
|
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019; 68:742-758. [PMID: 30396902 PMCID: PMC6580874 DOI: 10.1136/gutjnl-2018-316822] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway.
Collapse
Affiliation(s)
- James RW Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - TR Jeffry Evans
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
91
|
Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, Lersch R, Öllinger R, Grau M, Menendez IG, Martella M, Kohlhofer U, Banerjee R, Turchaninova MA, Scherger A, Hoffman GJ, Hess J, Kuhn LB, Ammon T, Kim J, Schneider G, Unger K, Zimber-Strobl U, Heikenwälder M, Schmidt-Supprian M, Yang F, Saur D, Liu P, Steiger K, Chudakov DM, Lenz G, Quintanilla-Martinez L, Keller U, Vassiliou GS, Cadiñanos J, Bradley A, Rad R. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun 2019; 10:1415. [PMID: 30926791 PMCID: PMC6440946 DOI: 10.1038/s41467-019-09180-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
- Department of Haematology, PathWest and Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, 6009, Australia
| | - Markus Schick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Michael Grau
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Irene Gonzalez Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Manuela Martella
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Anna Scherger
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
| | - Julia Hess
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | - Laura B Kuhn
- Helmholtz Zentrum München, Research Unit Gene Vectors, Munich, 81377, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine Main, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | | | - Mathias Heikenwälder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Katja Steiger
- Comparative Experimental Pathology, Technische Universität München, Munich, 81675, Germany
| | - Dmitriy M Chudakov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Center of Molecular Medicine, CEITEC, Masaryk University, Brno, 601 77, Czech Republic
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Hematology and Oncology-Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin, 12203, Germany
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, CB2 0XY, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0PT, UK
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, 33193, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, 33006, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
92
|
Ghobadi A, Miller CA, Li T, O'Laughlin M, Lee YS, Ali M, Westervelt P, DiPersio JF, Wartman L. Shared cell of origin in a patient with Erdheim-Chester disease and acute myeloid leukemia. Haematologica 2019; 104:e373-e375. [PMID: 30923101 DOI: 10.3324/haematol.2019.217794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Armin Ghobadi
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Christopher A Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine.,McDonnell Genome Institute, Washington University School of Medicine
| | - Tiandao Li
- McDonnell Genome Institute, Washington University School of Medicine
| | | | - Yi-Shan Lee
- Department of Pathology, Washington University School of Medicine, St Louis, MO, USA
| | - Mohga Ali
- Department of Pathology, Washington University School of Medicine, St Louis, MO, USA
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Lukas Wartman
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| |
Collapse
|
93
|
Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, Tong Y, Zhou L, Yang L, Yang J, Lei H, Xu H, Liu C, Wu Y. WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int 2019; 19:56. [PMID: 30911287 PMCID: PMC6415346 DOI: 10.1186/s12935-019-0773-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background T-cell acute lymphoblastic leukemia (T-ALL) is a lymphoid malignancy caused by the oncogenic transformation of immature T-cell progenitors with poor outcomes. WP1130 has shown potent activity against a variety of cancer but whether WP1130 has anti-T-ALL activity is not clear. USP24, one target of WP1130, is one of the largest deubiquitinases and its detailed mechanism is poorly understood. The aim of this study was to explore whether WP1130 could suppress T-ALL and the role of USP24 in T-ALL. Methods Molecular docking and cellular thermal shift assay were performed to determine whether and how WP1130 directly interact with USP24. Mitochondrial transmembrane potential assay was measured via Rhodamine 123 staining. USP24 was reactivated using the deactivated CRISPR-associated protein 9 (dCas9)-synergistic activation mediator (SAM) system. The in vivo results were examined by tumor xenografts in NOD-SCID mice. All statistical analyses were performed with the SPSS software package. Results WP1130 treatment decreased the viability and induces apoptosis of T-ALL cells both in vitro and in vivo. Furthermore, we demonstrated that knockdown of USP24 but not USP9X could significantly induce growth inhibition and apoptosis of T-ALL cells. Oncomine database showed that USP24 expression was upregulated in T-ALL samples and Kaplan–Meier results indicated that the USP24 was negatively but USP9X was positively associated with survival in T-ALL patients. Additionally, we proposed that WP1130 directly interacts with the activity site pocket of USP24 in T-ALL cells, which leads to the decrease of its substrates Mcl-1. Mechanistically, WP1130 induces apoptosis by accelerating the collapse of mitochondrial transmembrane potential via USP24-Mcl-1 axis. Conclusions Altogether, using WP1130 as a chemical probe, we demonstrate that USP24 but not USP9X is a novel target in T-ALL cells. Moreover, we uncovered that WP1130 induces apoptosis by accelerating the collapse of mitochondrial transmembrane potential via USP24-Mcl-1 axis. These results provide that USP24-Mcl-1 axis may represent a novel strategy in the treatment of T-ALL and WP1130 is a promising lead compound for developing anti-T-ALL drugs. Electronic supplementary material The online version of this article (10.1186/s12935-019-0773-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Luo
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Bo Jing
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yu Xia
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yugen Zhang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Meng Hu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Haiyan Cai
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yin Tong
- 2Department of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Zhou
- 3State Key Laboratory of Medical Genomics, Department of Hematology, Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Li Yang
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Junmei Yang
- 4Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018 China
| | - Hu Lei
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hanzhang Xu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Chuanxu Liu
- 5Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yingli Wu
- 1Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
94
|
Lu Q, Lu D, Shao ZM, Li DQ. Deubiquitinase ubiquitin-specific protease 9X regulates the stability and function of E3 ubiquitin ligase ring finger protein 115 in breast cancer cells. Cancer Sci 2019; 110:1268-1278. [PMID: 30689267 PMCID: PMC6447854 DOI: 10.1111/cas.13953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022] Open
Abstract
The E3 ubiquitin ligase ring finger protein 115 (RNF115) is overexpressed in more than half of human breast tumors and is implicated in the pathogenesis and progression of breast cancer. However, the mechanism behind RNF115 overexpression in breast tumors remains largely unknown. Here we report that ubiquitin‐specific protease 9X (USP9X), a substrate‐specific deubiquitinating enzyme, stabilizes RNF115 and thereby regulates its biological functions in breast cancer cells. Immunoprecipitation and GST pull‐down assays showed that USP9X interacted with RNF115. Depletion of RNF115 by siRNAs or overexpression of RNF115 did not significantly affect USP9X expression. In contrast, knockdown of USP9X in breast cancer cells by siRNAs reduced RNF115 protein abundance, which was partially restored following treatment with proteasome inhibitor MG‐132. Moreover, depletion of USP9X reduced the half‐life of RNF115 and increased its ubiquitination. Conversely, overexpression of USP9X resulted in an accumulation of RNF115 protein, accompanied by a decrease in its ubiquitination. RNF115 mRNA levels were unaffected by overexpression or knockdown of USP9X. Furthermore, USP9X protein expression levels correlated positively with RNF115 in breast cancer cell lines and breast tumor samples. Importantly, reintroduction of RNF115 in USP9X‐depleted cells partially rescued the reduced proliferation, migration, and invasion of breast cancer cells by USP9X knockdown. Collectively, these findings indicate that USP9X is a stabilizer of RNF115 protein and that the USP9X‐RNF115 signaling axis is implicated in the breast cancer malignant phenotype.
Collapse
Affiliation(s)
- Qin Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dayun Lu
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Ming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
95
|
Kinzy TG, Starr TK, Tseng GC, Ho YY. Meta-analytic framework for modeling genetic coexpression dynamics. Stat Appl Genet Mol Biol 2019; 18:/j/sagmb.2019.18.issue-1/sagmb-2017-0052/sagmb-2017-0052.xml. [PMID: 30735484 DOI: 10.1515/sagmb-2017-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Methods for exploring genetic interactions have been developed in an attempt to move beyond single gene analyses. Because biological molecules frequently participate in different processes under various cellular conditions, investigating the changes in gene coexpression patterns under various biological conditions could reveal important regulatory mechanisms. One of the methods for capturing gene coexpression dynamics, named liquid association (LA), quantifies the relationship where the coexpression between two genes is modulated by a third "coordinator" gene. This LA measure offers a natural framework for studying gene coexpression changes and has been applied increasingly to study regulatory networks among genes. With a wealth of publicly available gene expression data, there is a need to develop a meta-analytic framework for LA analysis. In this paper, we incorporated mixed effects when modeling correlation to account for between-studies heterogeneity. For statistical inference about LA, we developed a Markov chain Monte Carlo (MCMC) estimation procedure through a Bayesian hierarchical framework. We evaluated the proposed methods in a set of simulations and illustrated their use in two collections of experimental data sets. The first data set combined 10 pancreatic ductal adenocarcinoma gene expression studies to determine the role of possible coordinator gene USP9X in the Hippo pathway. The second experimental data set consisted of 907 gene expression microarray Escherichia coli experiments from multiple studies publicly available through the Many Microbe Microarray Database website (http://m3d.bu.edu/) and examined genes that coexpress with serA in the presence of coordinator gene Lrp.
Collapse
Affiliation(s)
| | | | | | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, SC29209,USA
| |
Collapse
|
96
|
Lee JJ, Kim SK. Spheroid Culture of Human Pancreatic Ductal Cells to Reconstitute Development of Pancreatic Intraepithelial Neoplasia. Methods Mol Biol 2019; 1882:63-71. [PMID: 30378044 DOI: 10.1007/978-1-4939-8879-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) presents poor 5-year survival rate, mainly attributable to late diagnosis due to its asymptomatic nature. Therefore, building human cell-based systems that reconstitute hallmark features of the PDA precursors, pancreatic intraepithelial neoplasia (PanINs), will accelerate development of new strategies for early diagnostics and intervention. We previously demonstrated that systematic introduction of genetic modification (KRAS, CDKN2A, SMAD4, and TP53) leads to immortalization of primary human pancreatic cells and, upon orthotopic transplantation, their development to human PanIN-like lesions. Here, we describe detailed methods for fluorescence-activated cell sorting, lentiviral transduction, and three-dimensional spheroid culture of primary adult human pancreatic ductal cells, as well as a method for clonal selection of human pancreatic ductal spheres.
Collapse
MESH Headings
- AC133 Antigen/metabolism
- Adult
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Separation/instrumentation
- Cell Separation/methods
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Flow Cytometry/instrumentation
- Flow Cytometry/methods
- Healthy Volunteers
- Humans
- Lentivirus/genetics
- Mutation
- Pancreatic Ducts/cytology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Primary Cell Culture/instrumentation
- Primary Cell Culture/methods
- Smad4 Protein/genetics
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transduction, Genetic/instrumentation
- Transduction, Genetic/methods
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- James J Lee
- Calico Life Sciences, LLC, South San Francisco, CA, USA.
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
97
|
Abstract
While sequencing and array-based studies are creating catalogues of genetic alterations in cancer, discriminating cancer drivers among the large sets of epigenetically, transcriptionally or posttranslationally dysregulated genes remains a challenge. Transposon-based genetic screening in mice has proven to be a powerful approach to address this challenge. Insertional mutagenesis directly flags biologically relevant genes and, combined with the transposon's unique molecular fingerprint, facilitates the recovery of insertion sites. We have generated transgenic mouse lines harboring different versions of PiggyBac-based oncogenic transposons, which in conjunction with PiggyBac transposase mice can be used for whole-body or tissue-specific insertional mutagenesis screens. We have also developed QiSeq, a method for (semi-)quantitative transposon insertion site sequencing, which overcomes biasing limitations of previous library preparation methods. QiSeq can be used in multiplexed high-throughput formats for candidate cancer gene discovery and gives insights into the clonal distribution of insertions for the study of genetic tumor evolution.
Collapse
|
98
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
99
|
Chen W, Zhou Y, Zhi X, Ma T, Liu H, Chen BW, Zheng X, Xie S, Zhao B, Feng X, Dang X, Liang T. Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials 2018; 192:590-600. [PMID: 30553134 DOI: 10.1016/j.biomaterials.2018.11.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a destructive cancer with poor prognosis. Both novel therapeutic targets and approaches are needed to improve the overall survival of PDAC patients. MicroRNA-212 (miR-212) has been reported as a tumor suppressor in multiple cancers, but its definitive role and exact mechanism in the progression of pancreatic cancer is unclear. In this study, we developed a new chimeric peptide (PL-1) composed of plectin-1-targeted PDAC-specific and arginine-rich RNA-binding motifs which could condense miRNA to self-assemble supramolecular nanoparticles. These nanoparticles could deliver miR-212 into PDAC cells specifically and efficiently which also showed good stability in RNase and serum. Moreover, we demonstrated that PL-1/miR-212 nanoparticles could dramatically enhance the chemotherapeutic effect of doxorubicin for PDAC both in vitro and in vivo. In terms of mechanism, combined miR-212 intervention by PL-1/miR-212 nanoparticles resulted in obvious decrease of USP9X expression (ubiquitin specific peptidase 9, X-linked, USP9X) and eventually enhanced the doxorubicin induced apoptosis and autophagy of PDAC cells. These findings provide a new promising anti-cancer strategy via PL-1/miR-212 nanoparticles and identify miR-212/USP9X as a new potential target for future systemic therapy against human PDAC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Brayant Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shangzhi Xie
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhao
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xinhua Feng
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xiaowei Dang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
| |
Collapse
|
100
|
Bianchetti E, Bates SJ, Carroll SL, Siegelin MD, Roth KA. Usp9X Regulates Cell Death in Malignant Peripheral Nerve Sheath Tumors. Sci Rep 2018; 8:17390. [PMID: 30478285 PMCID: PMC6255814 DOI: 10.1038/s41598-018-35806-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are the leading cause of death in neurofibromatosis type 1 (NF1) patients. Current treatment modalities have been largely unsuccessful in improving MPNST patient survival, making the identification of new therapeutic targets urgent. In this study, we found that interference with Usp9X, a deubiquitinating enzyme which is overexpressed in nervous system tumors, or Mcl-1, an anti-apoptotic member of the Bcl-2 family whose degradation is regulated by Usp9X, causes rapid death in human MPNST cell lines. Although both Usp9X and Mcl-1 knockdown elicited some features of apoptosis, broad spectrum caspase inhibition was ineffective in preventing knockdown-induced MPNST cell death suggesting that caspase-independent death pathways were also activated. Ultrastructural examination of MPNST cells following either Usp9X interference or pharmacological inhibition showed extensive cytoplasmic vacuolization and swelling of endoplasmic reticulum (ER) and mitochondria most consistent with paraptotic cell death. Finally, the Usp9X pharmacological inhibitor WP1130 significantly reduced human MPNST growth and induced tumor cell death in an in vivo xenograft model. In total, these findings indicate that Usp9X and Mcl-1 play significant roles in maintaining human MPNST cell viability and that pharmacological inhibition of Usp9X deubiquitinase activity could be a therapeutic target for MPNST treatment.
Collapse
Affiliation(s)
- E Bianchetti
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA.
| | - S J Bates
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - S L Carroll
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, South Carolina, USA
| | - M D Siegelin
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - K A Roth
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| |
Collapse
|