51
|
Zhang J, Qin L, Chang Y, He Y, Zhao W, Zhao Y, Ding Y, Gao J, Zhao X. One-Pot Assay for Rapid Detection of Stenotrophomonas maltophilia by RPA-CRISPR/Cas12a. ACS Synth Biol 2024; 13:3400-3412. [PMID: 39358950 DOI: 10.1021/acssynbio.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Stenotrophomonas maltophilia (S. maltophilia, SMA) is a common opportunistic pathogen that poses a serious threat to the food industry and human health. Traditional detection methods for SMA are time-consuming, have low detection rates, require complex and expensive equipment and professional technical personnel for operation, and are unsuitable for on-site detection. Therefore, establishing an efficient on-site detection method has great significance in formulating appropriate treatment strategies and ensuring food safety. In the present study, a rapid one-pot detection method was established for SMA using a combination of Recombinase Polymerase Amplification (RPA) and CRISPR/Cas12a, referred to as ORCas12a-SMA (one-pot RPA-CRISPR/Cas12a platform). In the ORCas12a-SMA detection method, all components were added into a single tube simultaneously to achieve one-pot detection and address the problems of nucleic acid cross-contamination and reduced sensitivity caused by frequent cap opening during stepwise detection. The ORCas12a-SMA method could detect at least 3 × 10° copies·μL-1 of SMA genomic DNA within 30 min at 37 °C. Additionally, this method exhibited sensitivity compared to the typical two-step RPA-CRISPR/Cas12a method. Overall, the ORCas12a-SMA detection offered the advantages of rapidity, simplicity, high sensitivity and specificity, and decreased need for complex large-scale instrumentation. This assay is the first application of the one-pot platform based on the combination of RPA and CRISPR/Cas12a in SMA detection and is highly suitable for point-of-care testing. It helps reduce losses in the food industry and provides assistance in formulating timely and appropriate antimicrobial treatment plans.
Collapse
Affiliation(s)
- Jiangli Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province/Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ling Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yingying Chang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province/Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yulong He
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Weichao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Yongyou Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yanan Ding
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jin Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Xiting Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province/Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
52
|
Qi Q, Liu X, Xiong W, Zhang K, Shen W, Zhang Y, Xu X, Zhong C, Zhang Y, Tian T, Zhou X. Reducing CRISPR-Cas9 off-target effects by optically controlled chemical modifications of guide RNA. Cell Chem Biol 2024; 31:1839-1851.e8. [PMID: 39383877 DOI: 10.1016/j.chembiol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
A photocatalytic click chemistry approach, offering a significant advancement over conventional methods in RNA function modulation is described. This innovative method, utilizing light-activated small molecules, provides a high level of precision and control in RNA regulation, particularly effective in intricate cellular processes. By applying this strategy to CRISPR-Cas9 gene editing, we demonstrate its effectiveness in enhancing gene editing specificity and markedly reducing off-target effects. Our approach employs a vinyl ether modification in RNA, which activated under visible light with a phenanthrenequinone derivative, creating a CRISPR-OFF switch that precisely regulates CRISPR system activity. This method not only represents an advancement in genomic interventions but also offers broad applications in gene regulation, paving the way for safer and more reliable gene editing in therapeutic genomics.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Kaisong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuanyuan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xinyan Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Cheng Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, The Institute of Molecular Medicine, Wuhan University People's Hospital, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
53
|
Dou Y, He Y, Zhang H, Yang M, Liu Q, Ma W, Fu X, Chen Y. T7 RNA polymerase-mediated rolling circle transcription and the CRISPR-Cas13a cascade reaction for sensitive and specific detection of piRNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6810-6818. [PMID: 39263843 DOI: 10.1039/d4ay01131g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The aberrant expression of piRNAs in germ cells is a potential cause of male infertility. Establishing diagnostic methods with highly specific biomarkers for male infertility is important for accurate diagnosis and treatment of male infertility. In this study, we proposed a novel method combining rolling circle transcription (RCT) and Cas13a techniques, which utilized the high amplification efficiency of RCT and the two different RNase activities possessed by Cas13a, establishing a highly sensitive and specific assay for male infertility-associated piRNA. First, a circular DNA template was synthesized by hybridizing linear ssDNA with the T7 promoter. The nick in the circular DNA was closed by T4 DNA ligase. In the presence of T7 RNA polymerase, the closed circular DNA produced tandemly repeated pre-crRNA. The RNase activity of Cas13a was used to process pre-crRNAs to form mature crRNA. Guided by crRNA, Cas13a specifically recognized piRNA and activated collateral activity. Activated Cas13a disaggregated thousands of fluorescent probes for each target RNA detected, resulting in powerful signal amplification. As a proof of concept, piR-hsa-14 was used as the validation target. The limit of detection was as low as 3.32 fM with a good linearity in the range of 100 fM to 50 pM. Recovery of piR-hsa-14 ranged from 91.33% to 112.63% in spiked recovery experiments using human serum samples. The results revealed that this method has the advantages of high sensitivity, sufficient accuracy and good reproducibility. We believe that this method could have a promising future as a potential tool for clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Yuhao Dou
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Yangui He
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Qiong Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Xin Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Yong Chen
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
54
|
Wu Q, Yi Z, Li H, Han G, Du J, Xiong J, Hu K, Gao H. Harnessing noncanonical trans-cleavage characteristics of Cas12 and Cas13a to enhance CRISPR-based diagnostics. Commun Biol 2024; 7:1312. [PMID: 39394452 PMCID: PMC11470125 DOI: 10.1038/s42003-024-07000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Cas12 and Cas13 are extensively utilized in molecular diagnostics for their trans-cleavage activities, yet their activation characteristics remain partially understood. Here, we conduct an in-depth investigation of Cas12a, Cas12f1, and Cas13a, uncovering the characteristics of their trans-DNase and trans-RNase activities with noncanonical activators. Our findings reveal that DNA can serve as a direct target for CRISPR-Cas13a, markedly increasing the detection sensitivity for single-base mismatches. Moreover, the trans-cleavage activities of Cas12a and Cas13a can be activated by diverse RNA:DNA and RNA:RNA duplexes, respectively, indicating that the presence of stem-loop structures in crRNAs is not essential for their activation. Notably, Cas12f1, unlike Cas12a, exhibits intrinsic RNase activity independently of activation. Leveraging these insights, we have improved the accuracy of a dual-gene target detection approach that employs the CRISPR-Cas12f1 and Cas13a systems. Our research advances the understanding of the noncanonical activation characteristics of Cas12 and Cas13a, contributing to the field of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Qing Wu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Zhengfei Yi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Haoran Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Guoxin Han
- Department of Emergency, People's Liberation Army (PLA) Strategic Support Force Medical Center (The 306th Hospital of PLA), Beijing, China
| | - Jianyong Du
- School of Health and Life Sciences, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jingwei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Keping Hu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Hai Gao
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
55
|
Moreno-Sanchez I, Hernandez-Huertas L, Nahon-Cano D, Gomez-Marin C, Martinez-García PM, Treichel AJ, Tomas-Gallardo L, da Silva Pescador G, Kushawah G, Díaz-Moscoso A, Cano-Ruiz A, Walker JA, Muñoz MJ, Holden K, Galcerán J, Nieto MÁ, Bazzini A, Moreno-Mateos MA. Enhanced RNA-targeting CRISPR-Cas technology in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617220. [PMID: 39416004 PMCID: PMC11482928 DOI: 10.1101/2024.10.08.617220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
CRISPR-Cas13 systems are widely used in basic and applied sciences. However, its application has recently generated controversy due to collateral activity in mammalian cells and mouse models. Moreover, its efficiency could be improved in vivo. Here, we optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. We i) used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, ii) improved nuclear RNA-targeting, and iii) compared different computational models and determined the most accurate to predict gRNA activity in vivo. Furthermore, we demonstrated that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Finally, we implemented alternative RNA-targeting CRISPR-Cas systems with reduced or absent collateral activity. Altogether, these findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and assist in the progression of in vivo applications.
Collapse
Affiliation(s)
- Ismael Moreno-Sanchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d’Alacant, Alicante, Spain
| | - Luis Hernandez-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Daniel Nahon-Cano
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Carlos Gomez-Marin
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Pedro Manuel Martinez-García
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Anthony J. Treichel
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Laura Tomas-Gallardo
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD) Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013 Seville, Spain
| | | | - Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alejandro Díaz-Moscoso
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD) Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013 Seville, Spain
| | - Alejandra Cano-Ruiz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - Manuel J. Muñoz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d’Alacant, Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Spain
| | - María Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d’Alacant, Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Spain
| | - Ariel Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Miguel A. Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| |
Collapse
|
56
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
57
|
Tang Z, Gao M, Gong F, Shan X, Yang Y, Zhang Y, Chen L, Wang F, Ji X, Zhou F, He Z. Quantum Dot Reporters Designed for CRISPR-Based Detection of Viral Nucleic Acids. Anal Chem 2024; 96:16017-16026. [PMID: 39324802 DOI: 10.1021/acs.analchem.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Diagnostic methods based on CRISPR technology have shown great potential due to their highly specific, efficient, and sensitive detection capabilities. Although the majority of the current studies rely on fluorescent dye-quencher reporters, the limitations of fluorescent dyes, such as poor photostability and small Stokes shifts, urgently necessitate the optimization of reporters. In this study, we developed innovative quantum dot (QD) reporters for the CRISPR/Cas systems, which not only leveraged the advantages of high photoluminescence quantum yield and large Stokes shifts of QDs but were also easily synthesized through a simple one-step hydrothermal method. Based on the trans-cleavage characteristics of Cas12a and Cas13a, two types of QD reporters were designed, the short DNA strand and the hybridization-based QD reporters, achieving the detection of DNA and RNA at the pM level, respectively, and validating the performance in the analysis of clinical samples. Furthermore, based on the unique property of QDs that allowed multicolor emission under one excitation, the application potential for simultaneous detection of diseases was further investigated. Taken together, this work proposed novel QD reporters that could be applied to the various CRISPR/Cas systems, providing a new toolbox to expand the diagnosis of bioanalytical and biomedical fields.
Collapse
Affiliation(s)
- Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Menglu Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Shan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yeling Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
58
|
Guo Y, Zhou Y, Duan H, Xu D, Wei M, Wu Y, Xiong Y, Chen X, Wang S, Liu D, Huang X, Xin H, Xiong Y, Tang BZ. CRISPR/Cas-mediated "one to more" lighting-up nucleic acid detection using aggregation-induced emission luminogens. Nat Commun 2024; 15:8560. [PMID: 39362874 PMCID: PMC11450156 DOI: 10.1038/s41467-024-52931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
CRISPR diagnostics are effective but suffer from low signal transduction efficiency, limited sensitivity, and poor stability due to their reliance on the trans-cleavage of single-stranded nucleic acid fluorescent reporters. Here, we present CrisprAIE, which integrates CRISPR/Cas reactions with "one to more" aggregation-induced emission luminogen (AIEgen) lighting-up fluorescence generated by the trans-cleavage of Cas proteins to AIEgen-incorporated double-stranded DNA labeled with single-stranded nucleic acid linkers and Black Hole Quencher groups at both ends (Q-dsDNA/AIEgens-Q). CrisprAIE demonstrates superior performance in the clinical nucleic acid detection of norovirus and SARS-CoV-2 regardless of amplification. Moreover, the diagnostic potential of CrisprAIE is further enhanced by integrating it with spherical nucleic acid-modified AIEgens (SNA/AIEgens) and a portable cellphone-based readout device. The improved CrisprAIE system, utilizing Q-dsDNA/AIEgen-Q and SNA/AIEgen reporters, exhibits approximately 80- and 270-fold improvements in sensitivity, respectively, compared to conventional CRISPR-based diagnostics. We believe CrisprAIE can be readily extended as a universal signal generation strategy to significantly enhance the detection efficiency of almost all existing CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Yuqian Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hong Duan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Derong Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Min Wei
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Xiong
- National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Daofeng Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
59
|
Gu X, Tang Q, Zhu Y, Sun C, Wu L, Ji H, Wang Q, Wu L, Qin Y. Advancements of CRISPR technology in public health-related analysis. Biosens Bioelectron 2024; 261:116449. [PMID: 38850734 DOI: 10.1016/j.bios.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Pathogens and contaminants in food and the environment present significant challenges to human health, necessitating highly sensitive and specific diagnostic methods. Traditional approaches often struggle to meet these requirements. However, the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized nucleic acid diagnostics. The present review provides a comprehensive overview of the biological sensing technology based on the CRISPR/Cas system and its potential applications in public health-related analysis. Additionally, it explores the enzymatic cleavage capabilities mediated by Cas proteins, highlighting the promising prospects of CRISPR technology in addressing bioanalysis challenges. We discuss commonly used CRISPR-Cas proteins and elaborate on their application in detecting foodborne bacteria, viruses, toxins, other chemical pollution, and drug-resistant bacteria. Furthermore, we highlight the advantages of CRISPR-based sensors in the field of public health-related analysis and propose that integrating CRISPR-Cas biosensing technology with other technologies could facilitate the development of more diverse detection platforms, thereby indicating promising prospects in this field.
Collapse
Affiliation(s)
- Xijuan Gu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China; Xinglin College, Nantong University, Qidong, Jiangsu, 226236, PR China
| | - Qu Tang
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Chenling Sun
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Lingwei Wu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China; School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
60
|
Liu P, Zeng J, Jiang C, Du J, Jiang L, Li S, Zeng F, Xiong E. Poly(vinylpyrrolidone)-Enhanced CRISPR-Cas System for Robust Nucleic Acid Diagnostics. Anal Chem 2024; 96:15797-15807. [PMID: 39285721 DOI: 10.1021/acs.analchem.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has opened a new path for molecular diagnostics based on RNA programmed trans-cleavage activity. However, their accessibility for highly sensitive clinical diagnostics remains insufficient. In this study, we systematically investigated the impact of various surfactants on the CRISPR-Cas12a system and found that poly(vinylpyrrolidone) (PVP), a nonionic surfactant, showed the highest enhancement effect among these tested surfactants. Additionally, the enhancement effects of PVP are compatible and versatile to CRISPR-Cas12b and Cas13a systems, improving the sensitivity of these CRISPR-Cas systems toward synthetic targets by 1-2 orders of magnitude. By integrating the PVP-enhanced CRISPR system with isothermal nucleic acid amplification, both the two- and one-step assays exhibited comparable sensitivity and specificity to gold-standard quantitative polymerase chain reaction (qPCR) in the assay of clinical human papillomavirus (HPV) samples, thereby holding significant promise for advancing clinical diagnostics and biomedical research.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chengchuan Jiang
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Jinlian Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Jiang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Sheng Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Fanxu Zeng
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
61
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024; 33:323-357. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
62
|
Wachholz Junior D, Kubota LT. CRISPR-based electrochemical biosensors: an alternative for point-of-care diagnostics? Talanta 2024; 278:126467. [PMID: 38968657 DOI: 10.1016/j.talanta.2024.126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
The combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases. This article navigates through fundamental principles, research developments, and applications of CRISPR-based electrochemical sensors, highlighting their potential to revolutionize healthcare accessibility and patient outcomes. In addition, some key points and challenges regarding applying CRISPR-powered electrochemical sensors in real POC settings are presented. By discussing recent advancements and challenges in this interdisciplinary field, this review evaluates the potential of these innovative sensors as an alternative for decentralized, rapid, and accurate POC testing, offering some insights into their applications across clinical scenarios and their impact on the future of diagnostics.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Brazil; National Institute of Science and Technology in Bioanalytic (INCTBio), Brazil
| | - Lauro Tatsuo Kubota
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Brazil; National Institute of Science and Technology in Bioanalytic (INCTBio), Brazil.
| |
Collapse
|
63
|
Chen SS, Yang YL, Wang HY, Guo TK, Azeem RM, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. CRISPR/Cas13a-based genome editing for establishing the detection method of H9N2 subtype avian influenza virus. Poult Sci 2024; 103:104068. [PMID: 39096825 PMCID: PMC11345561 DOI: 10.1016/j.psj.2024.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024] Open
Abstract
Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/μL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.
Collapse
Affiliation(s)
- Sha-Sha Chen
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yong-Lei Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hong-Yun Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tian-Kui Guo
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Riaz-M Azeem
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
64
|
Greensmith R, Lape IT, Riella CV, Schubert AJ, Metzger JJ, Dighe AS, Tan X, Hemmer B, Rau J, Wendlinger S, Diederich N, Schütz A, Riella LV, Kaminski MM. CRISPR-enabled point-of-care genotyping for APOL1 genetic risk assessment. EMBO Mol Med 2024; 16:2619-2637. [PMID: 39271961 PMCID: PMC11473833 DOI: 10.1038/s44321-024-00126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Detecting genetic variants enables risk factor identification, disease screening, and initiation of preventative therapeutics. However, current methods, relying on hybridization or sequencing, are unsuitable for point-of-care settings. In contrast, CRISPR-based-diagnostics offer high sensitivity and specificity for point-of-care applications. While these methods have predominantly been used for pathogen sensing, their utilization for genotyping is limited. Here, we report a multiplexed CRISPR-based genotyping assay using LwaCas13a, PsmCas13b, and LbaCas12a, enabling the simultaneous detection of six genotypes. We applied this assay to identify genetic variants in the APOL1 gene prevalent among African Americans, which are associated with an 8-30-fold increase in the risk of developing kidney disease. Machine learning facilitated robust analysis across a multicenter clinical cohort of more than 100 patients, accurately identifying their genotypes. In addition, we optimized the readout using a multi-analyte lateral-flow assay demonstrating the ability for simplified genotype determination of clinical samples. Our CRISPR-based genotyping assay enables cost-effective point-of-care genetic variant detection due to its simplicity, versatility, and fast readout.
Collapse
Affiliation(s)
- Robert Greensmith
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Isadora T Lape
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristian V Riella
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander J Schubert
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jakob J Metzger
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anand S Dighe
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Josefine Rau
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sarah Wendlinger
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Diederich
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Schütz
- Protein Production & Characterization, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Leonardo V Riella
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Michael M Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
65
|
Wang H, Zhou G, Liu H, Peng R, Sun T, Li S, Chen M, Wang Y, Shi Q, Xie X. Detection of Porcine Circovirus (PCV) Using CRISPR-Cas12a/13a Coupled with Isothermal Amplification. Viruses 2024; 16:1548. [PMID: 39459882 PMCID: PMC11512303 DOI: 10.3390/v16101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed and primarily divided into two categories focusing on nucleic acid or serum antibody identification. The methodologies encompass conventional polymerase chain reaction (PCR), real-time fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), loop-mediated isothermal amplification (LAMP), immunofluorescence assay (IFA), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Despite their efficacy, these techniques are often impeded by the necessity for substantial investment in equipment, specialized knowledge, and intricate procedural steps, which complicate their application in real-time field detections. To surmount these challenges, a sensitive, rapid, and specific PCV detection method using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a/13a coupled with isothermal amplification, such as enzymatic recombinase amplification (ERA), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP), has been developed. This novel method has undergone meticulous optimization for detecting PCV types 2, 3, and 4, boasting a remarkable sensitivity to identify a single copy per microliter. The specificity of this technique is exemplary, with no observable interaction with other porcine viruses such as PEDV, PRRSV, PRV, and CSFV. Its reliability has been validated with clinical samples, where it produced a perfect alignment with qPCR findings, showcasing a 100% coincidence rate. The elegance of merging CRISPR-Cas technology with isothermal amplification assays lies in its on-site testing without the need for expensive tools or trained personnel, rendering it exceptionally suitable for on-site applications, especially in resource-constrained swine farming environments. This review assesses and compares the process and characteristics inherent in the utilization of ERA/LAMP/RPA-CRISPR-Cas12a/Cas13a methodologies for the detection of PCV, providing critical insights into their practicality and effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.W.); (G.Z.); (H.L.); (R.P.); (T.S.); (S.L.); (M.C.); (Y.W.); (Q.S.)
| |
Collapse
|
66
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
67
|
Zhang Y, Miao P, Wang J, Sun Y, Zhang J, Wang B, Yan M. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21. SENSORS (BASEL, SWITZERLAND) 2024; 24:6138. [PMID: 39338884 PMCID: PMC11436169 DOI: 10.3390/s24186138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Direct detection of miRNA is currently limited by the complex amplification and reverse transcription processes of existing methods, leading to low sensitivity and high operational demands. Herein, we developed a CRISPR/Cas13a-mediated photoelectrochemical (PEC) biosensing platform for direct and sensitive detection of miRNA-21. The direct and specific recognition of target miRNA-21 by crRNA-21 eliminates the need for pre-amplification and reverse transcription of miRNA-21, thereby preventing signal distortion and enhancing the sensitivity and precision of target detection. When crRNA-21 binds to miRNA-21, it activates the trans-cleavage activity of CRISPR/Cas13a, leading to the non-specific cleavage of biotin-modified DNA with uracil bases (biotin-rU-DNA). This cleavage prevents the biotin-rU-DNA from being immobilized on the electrode surface. As a result, streptavidin cannot attach to the electrode via specific biotin binding, reducing spatial resistance and causing a positively correlated increase in the photocurrent response. This Cas-PEC biosensor has good analytical capabilities, linear responses between 10 fM and 10 nM, a minimum detection limit of 9 fM, and an excellent recovery rate in the analysis of real human serum samples. This work presented an innovative solution for detecting other biomarkers in bioanalysis and clinical diagnostics.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.Z.); (P.M.); (J.W.); (Y.S.); (J.Z.)
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (Y.Z.); (P.M.); (J.W.); (Y.S.); (J.Z.)
| |
Collapse
|
68
|
Yao Z, Li W, He K, Wang H, Xu Y, Xu X, Wu Q, Wang L. Precise pathogen quantification by CRISPR-Cas: a sweet but tough nut to crack. Crit Rev Microbiol 2024:1-19. [PMID: 39287550 DOI: 10.1080/1040841x.2024.2404041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Pathogen detection is increasingly applied in medical diagnosis, food processing and safety, and environmental monitoring. Rapid, sensitive, and accurate pathogen quantification is the most critical prerequisite for assessing protocols and preventing risks. Among various methods evolved, those based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) have been developed as important pathogen detection strategies due to their distinct advantages of rapid target recognition, programmability, ultra-specificity, and potential for scalability of point-of-care testing (POCT). However, arguments and concerns on the quantitative capability of CRISPR-based strategies are ongoing. Herein, we systematically overview CRISPR-based pathogen quantification strategies according to the principles, properties, and application scenarios. Notably, we review future challenges and perspectives to address the of precise pathogen quantification by CRISPR-Cas. We hope the insights presented in this review will benefit development of CRISPR-based pathogen detection methods.
Collapse
Affiliation(s)
- Zhihao Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanglu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
69
|
Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B, Herrera-Carrillo E. Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102278. [PMID: 39220269 PMCID: PMC11364014 DOI: 10.1016/j.omtn.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
Collapse
Affiliation(s)
- Mouraya Hussein
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ye Liu
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Monique Vink
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Atze T. Das
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
70
|
Zeng W, Chen W, Liu Y, Zhang T, Zhai C, Li W, Wang L, Zhang C, Zeng Q, Wang F, Ma L. Preamplification-free ultra-fast and ultra-sensitive point-of-care testing via LwaCas13a. Biosens Bioelectron 2024; 259:116400. [PMID: 38776799 DOI: 10.1016/j.bios.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
CRISPR based nucleic acid detection technology provides a deployable approach to point of care testing. While, there remain challenges limiting its practical applications, such as the need for pre-amplification and the long turnaround time. Here, we present a self-cascade signal amplification method with LwaCas13a and an artificially designed "U" rich RNA of stem-loop structure (URH) for pre-amplification-free ultra-fast and ultra-sensitive point-of-care testing (PASSPORT). The PASSPORT system contains: URH, crRNA targeted the URH, crRNA targeted the interesting RNA, fluorescent RNA reporter and LwaCas13a. The assay realized the detection of 100 copies/mL, within 5 min. The PASSPORT platform was further adopted for the detection of marker gene from SASR-CoV-2 and Severe fever with thrombocytopenia syndrome virus (SFTSV), respectively, and 100% accuracy for the analysis of clinical specimens (100 SASR-CoV-2 specimens and 16 SFTSV specimens) was obtained. Integrated with a lateral flow assay device, this assay could provide an alternative platform for the development of point of care testing (POCT) biosensors. PASSPORT has the potential to enable sensitive, specific, user-friendly, rapid, affordable, equipment-free and point-of-care testing for the purpose of large-scale screening and in case of epidemic outbreak.
Collapse
Affiliation(s)
- Wanting Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qili Zeng
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
71
|
Lei W, Hao L, Qiu H, Bian K, Cui T, Zeng W, Zhang Y, Yang W, Zhang B. Quantum-Dot-Encoded Beads-Enhanced CRISPR/Cas-Based Lateral-Flow Assay for the Amplification-Free, Sensitive, and Rapid Detection of Nucleic Acids in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44399-44408. [PMID: 39145508 DOI: 10.1021/acsami.4c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Nucleic acid detection plays a pivotal role in the accurate diagnosis of diseases. The CRISPR/Cas detection system, noted for its significant utility in a variety of applications, often necessitates enhanced sensitivity or specific signal amplification strategies, particularly for detecting low-abundance biomarkers. In this study, we present a quantum-dot-encoded beads (QDB)-energized CRISPR/Cas12-based lateral-flow assay (QDB-CRISPR-LFA). This method enables amplification-free, sensitive, and rapid detection (<40 min) of BRCA-1. We validated our method using contrived reference samples and nucleic acids extracted from tumor cells. The QDB-CRISPR-LFA provides a visual, more rapid alternative to the traditional BRCA-1 real-time RT-PCR assay. Significantly, through the integration of CRISPR's specificity and the high signal output of QDB, the detection threshold for BRCA-1 has been reduced to the femtomolar level, representing an enhancement of 2-4 orders of magnitude over existing CRISPR/Cas detection methods. This advancement underscores the potential of our approach in advancing nucleic acid detection techniques, which is crucial for the early and precise diagnosis of diseases.
Collapse
Affiliation(s)
- Wenjing Lei
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Liangwen Hao
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Han Qiu
- Galactophore Department, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou 434200, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Tianming Cui
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Weiwei Zeng
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yu Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering &Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
72
|
Li S, Yin H, Zheng J, Wan Y, Wang K, Yang C, Zhou J, Zhao M, Yuan X, Wang J. DECODE: Contamination-Free Digital CRISPR Platform for Point-of-Care Detection of Viral DNA/RNA. ACS Sens 2024; 9:4256-4264. [PMID: 39031497 DOI: 10.1021/acssensors.4c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Rapid and precise nucleic acid testing at the point-of-care (POC) is essential for effective screening and management of infectious diseases. Current polymerase-based molecular diagnostics often suffer from potential cross-contamination issues, particularly in POC settings. Here, we introduce DECODE, a contamination-free nucleic acid detection platform integrating digital microfluidics (DMF) for nucleic acid extraction and a digital CRISPR amplification-free assay for pathogen detection. The digital CRISPR assay demonstrates sensitivity, detecting target DNA and RNA in the reaction mixture at concentrations of 10 and 5 copies/μL, respectively. Leveraging DMF-extracted samples enhances the performance of the digital CRISPR amplification-free assay. DECODE offers a sample-to-result workflow of 75 min using compact devices. Validation studies using clinical samples confirm DECODE's robust performance, achieving 100% sensitivity and specificity in detecting HPV18 from cervical epithelial cells and influenza A from nasal swabs. DECODE represents a versatile, contamination-free detection platform poised to enhance integrated public health surveillance efforts.
Collapse
Affiliation(s)
- Sheng Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Haofan Yin
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiale Zheng
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong 510000, China
| | - Yunzhu Wan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ke Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Meng Zhao
- Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, Guangdong 510000, China
| | - Xiaopeng Yuan
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
73
|
Chen Y, Zhang X, Hu G, Pan Y, Guan Y, Yang J, Chen H. A LAMP-CRISPR/Cas12b rapid detection platform for canine parvovirus detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5519-5526. [PMID: 39049599 DOI: 10.1039/d4ay00977k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Canine parvovirus (CPV) is one of the main pathogens causing toxic diarrhea in Chinese dogs, is the cause of large-scale epidemic of dogs, and poses a great threat to the dog industry in China. Rapid, sensitive, and specific CPV testing facilitates the timely diagnosis and treatment of sick dogs. The aim of this study was to build a LAMP-CRISPR/Cas12b platform for CPV detection. The loop mediated isothermal amplification (LAMP) technique was combined with CRISPR-Cas12b analysis to establish a "two-step" and "one-tube" CRISPR/Cas12b rapid CPV method, respectively. The detection system was constructed with specific LAMP primers and single guide RNA (sgRNA) for the highly conserved short fragment of the CPV gene, which could be detected within 1 h without cross-reaction with the other viruses causing canine diarrhea. The detection limits of both "two-step" and "one-tube" CRISPR/Cas12b reactions were 10-1 copies per μL, which was 100 times more sensitive than qPCR and LAMP. In order to achieve point-of-care testing (POCT) of CPV, a one-tube LAMP-CRISPR/Cas12b nucleic acid extraction and detection platform based on magnetic nanoparticle enrichment technology was established to achieve "sample in-result out". The results of this method for simulated samples were compared with those of quantitative real-time PCR; the results showed 100% consistency, and the time was shorter, which could be used to detect the diseased dogs earlier and provide a basis for clinical diagnosis. The LAMP-CRISPR/Cas12b method established in this study provides a sensitive and specific method for rapid detection of CPV, and provides technical support for rapid diagnosis of CPV.
Collapse
Affiliation(s)
- Yuting Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
| | - Xinyu Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
| | - Gui Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
| | - Yueying Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
| | - Yuhong Guan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
| | - Jinquan Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
74
|
Yoon PH, Zhang Z, Loi KJ, Adler BA, Lahiri A, Vohra K, Shi H, Rabelo DB, Trinidad M, Boger RS, Al-Shimary MJ, Doudna JA. Structure-guided discovery of ancestral CRISPR-Cas13 ribonucleases. Science 2024; 385:538-543. [PMID: 39024377 DOI: 10.1126/science.adq0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The RNA-guided ribonuclease CRISPR-Cas13 enables adaptive immunity in bacteria and programmable RNA manipulation in heterologous systems. Cas13s share limited sequence similarity, hindering discovery of related or ancestral systems. To address this, we developed an automated structural-search pipeline to identify an ancestral clade of Cas13 (Cas13an) and further trace Cas13 origins to defense-associated ribonucleases. Despite being one-third the size of other Cas13s, Cas13an mediates robust programmable RNA depletion and defense against diverse bacteriophages. However, unlike its larger counterparts, Cas13an uses a single active site for both CRISPR RNA processing and RNA-guided cleavage, revealing that the ancestral nuclease domain has two modes of activity. Discovery of Cas13an deepens our understanding of CRISPR-Cas evolution and expands opportunities for precision RNA editing, showcasing the promise of structure-guided genome mining.
Collapse
Affiliation(s)
- Peter H Yoon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
| | - Zeyuan Zhang
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Kenneth J Loi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kamakshi Vohra
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
| | - Daniel Bellieny Rabelo
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Marena Trinidad
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
| | - Ron S Boger
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Muntathar J Al-Shimary
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
75
|
Basu M, Zurla C, Auroni TT, Vanover D, Chaves LCS, Sadhwani H, Pathak H, Basu R, Beyersdorf JP, Amuda OO, Elsharkawy A, Mosur V, Arthur RA, Claussen H, Sasser LE, Wroe JA, Peck HE, Kumar M, Brinton MA, Santangelo PJ. mRNA-encoded Cas13 can be used to treat dengue infections in mice. Nat Microbiol 2024; 9:2160-2172. [PMID: 38839984 DOI: 10.1038/s41564-024-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Dengue is a major global health threat, and there are no approved antiviral agents. Prior research using Cas13 only demonstrated dengue mitigation in vitro. Here we demonstrate that systemic delivery of mRNA-encoded Cas13a and guide RNAs formulated in lipid nanoparticles can be used to treat dengue virus (DENV) 2 and 3 in mice. First, we identified guides against DENV 2 and 3 that demonstrated in vitro efficacy. Next, we confirmed that Cas13 enzymatic activity is necessary for DENV 2 or DENV 3 mitigation in vitro. Last, we show that a single dose of lipid-nanoparticle-formulated mRNA-encoded Cas13a and guide RNA, administered 1 day post-infection, promotes survival of all infected animals and serum viral titre decreases on days 2 and 3 post-infection after lethal challenge in mice. Off-target analysis in mice using RNA sequencing showed no collateral cleavage. Overall, these data demonstrate the potential of mRNA-encoded Cas13 as a pan-DENV drug.
Collapse
Affiliation(s)
- Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lorena C S Chaves
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Heather Pathak
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rahul Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Jared P Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Amany Elsharkawy
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Varun Mosur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Loren E Sasser
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay A Wroe
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
76
|
Ding L, Wang X, Chen X, Xu X, Wei W, Yang L, Ji Y, Wu J, Xu J, Peng C. Development of a novel Cas13a/Cas12a-mediated 'one-pot' dual detection assay for genetically modified crops. J Adv Res 2024:S2090-1232(24)00311-4. [PMID: 39084403 DOI: 10.1016/j.jare.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation. OBJECTIVE In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection. METHODS The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically. RESULTS Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability. CONCLUSION The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.
Collapse
Affiliation(s)
- Lin Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
77
|
Li Q, Wang N, Pang M, Miao H, Dai X, Li B, Yang X, Li C, Liu Y. Rapid and Highly Sensitive Detection of Mycobacterium tuberculosis Utilizing the Recombinase Aided Amplification-Based CRISPR-Cas13a System. Microorganisms 2024; 12:1507. [PMID: 39203350 PMCID: PMC11356214 DOI: 10.3390/microorganisms12081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (MTB) infection, remains a major threat to global public health. To facilitate early TB diagnosis, an IS6110 gene-based recombinase aided amplification (RAA) assay was coupled to a clustered, regularly interspaced short palindromic repeats (CRISPR)-Cas13a fluorescence assay to create a rapid MTB detection assay (named RAA-CRISPR-MTB). Its diagnostic efficacy was evaluated for sensitivity and specificity through sequential testing of recombinant plasmids, mycobacterium strains, and clinical specimens. RAA-CRISPR detected IS6110 genes at levels approaching 1 copy/μL with pUC57-6110 as the template and 10 copies/μL with H37Rv as the template. There was no observed cross detection of non-tuberculosis mycobacteria (NTM) with either template. Furthermore, RAA-CRISPR testing of 151 clinical specimens yielded a diagnostic specificity rate of 100% and a diagnostic sensitivity rate of 69% that exceeded the corresponding Xpert MTB/RIF assay rate (60%). In conclusion, we established a novel RAA-CRISPR assay that achieved highly sensitive and specific MTB detection for use as a clinical TB diagnostic tool in resource-poor settings.
Collapse
Affiliation(s)
- Qiao Li
- Biobank of Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Nenhan Wang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Mengdi Pang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Honghao Miao
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaowei Dai
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bo Li
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xinyu Yang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Chuanyou Li
- Biobank of Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Yi Liu
- Biobank of Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
78
|
Mohanty B, Ahmad Mir R, Priyadarshini A, Ahmad Bhat K, Barati S, Roshani Asl E, Choi JR, Rasmi Y. Potential use of
CRISPR/Cas13
system for vaccine development against various RNA-viral infections. Future Virol 2024; 19:401-418. [DOI: 10.1080/17460794.2024.2403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 03/07/2025]
Affiliation(s)
- Barsha Mohanty
- Centre for Biotechnology, Siksha‘O’Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Ankita Priyadarshini
- Centre for Biotechnology, Siksha‘O’Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, BGSB University, Rajouri, J&K, 185234, India
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Jane Ru Choi
- Life Science Centre, University of British Columbia, Vancouver, Canada
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
79
|
Wang H, Wang H, Pian H, Su F, Tang F, Chen D, Chen J, Wen Y, Le XC, Li Z. CRISPR/Cas13a-Responsive and RNA-Bridged DNA Hydrogel Capillary Sensor for Point-of-Care Detection of RNA. Anal Chem 2024; 96:12022-12029. [PMID: 39001804 PMCID: PMC11270516 DOI: 10.1021/acs.analchem.4c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Disease diagnostics and surveillance increasingly highlight the importance of portable, cost-effective, and sensitive point-of-care (POC) detection of nucleic acids. Here, we report a CRISPR/Cas13a-responsive and RNA-bridged DNA hydrogel capillary sensor for the direct and visual detection of specific RNA with high sensitivity. The capillary sensor was simply prepared by loading RNA-cross-linking DNA hydrogel film (∼0.2 mm ± 0.02 mm) at the end of a capillary. When CRISPR/Cas13a specifically recognizes the target RNA, the RNA bridge in the hydrogel film is cleaved by the trans-cleavage activity of CRISPR/Cas13a, increasing the permeability of the hydrogel film. Different concentrations of target RNA activate different amounts of Cas13a, cleaving different amounts of the RNA bridge in the hydrogel and causing corresponding changes in the permeability of the hydrogel. Therefore, samples containing different amounts of the target RNA travel to different distances in the capillary. Visual reading of the distance provides quantitative detection of the RNA target without the need for any nucleic acid amplification or auxiliary equipment. The technique was successfully used for the determination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in clinical nasopharyngeal (NP) swab and saliva samples. Easily quantifiable distance using a ruler eliminates the need for any optical or electrochemical detection equipment, making this assay potentially useful for POC and on-site applications.
Collapse
Affiliation(s)
- Hui Wang
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Honghong Wang
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongru Pian
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Fengxia Su
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Fu Tang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Desheng Chen
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junjie Chen
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yongqiang Wen
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Zhengping Li
- Beijing
Key Laboratory for Bioengineering and Sensing Technology; School of
Chemistry and Biological Engineering, University
of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
80
|
Carrier L. RNA Editing Holds Promise for Hypertrophic Cardiomyopathy Therapy. Circulation 2024; 150:299-301. [PMID: 39038091 DOI: 10.1161/circulationaha.124.070137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Affiliation(s)
- Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
81
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
82
|
He Q, Chen Q, Lian L, Qu J, Yuan X, Wang C, Xu L, Wei J, Zeng S, Yu D, Dong Y, Zhang Y, Deng L, Du K, Zhang C, Pandey V, Gul I, Qin P. Unraveling the influence of CRISPR/Cas13a reaction components on enhancing trans-cleavage activity for ultrasensitive on-chip RNA detection. Mikrochim Acta 2024; 191:466. [PMID: 39017814 DOI: 10.1007/s00604-024-06545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The CRISPR/Cas13 nucleases have been widely documented for nucleic acid detection. Understanding the intricacies of CRISPR/Cas13's reaction components is pivotal for harnessing its full potential for biosensing applications. Herein, we report on the influence of CRISPR/Cas13a reaction components on its trans-cleavage activity and the development of an on-chip total internal reflection fluorescence microscopy (TIRFM)-powered RNA sensing system. We used SARS-CoV-2 synthetic RNA and pseudovirus as a model system. Our results show that optimizing Mg2+ concentration, reporter length, and crRNA combination significantly improves the detection sensitivity. Under optimized conditions, we detected 100 fM unamplified SARS-CoV-2 synthetic RNA using a microtiter plate reader. To further improve sensitivity and provide a new amplification-free RNA sensing toolbox, we developed a TIRFM-based amplification-free RNA sensing system. We were able to detect RNA down to 100 aM. Furthermore, the TIRM-based detection system developed in this study is 1000-fold more sensitive than the off-coverslip assay. The possible clinical applicability of the system was demonstrated by detecting SARS-CoV-2 pseudovirus RNA. Our proposed sensing system has the potential to detect any target RNA with slight modifications to the existing setup, providing a universal RNA detection platform.
Collapse
Affiliation(s)
- Qian He
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lijin Lian
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Jiuxin Qu
- Clinical Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518115, Guangdong Province, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Chuhui Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Lidan Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China
| | - Shaoling Zeng
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, 518010, Guangdong Province, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, 264209, Shandong, China
| | - Yuhan Dong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Yongbing Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, USA
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China
| | - Ijaz Gul
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| | - Peiwu Qin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
83
|
Xia C, Colognori D, Jiang X, Xu K, Doudna JA. Single-molecule live-cell RNA imaging with CRISPR-Csm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603457. [PMID: 39071319 PMCID: PMC11275710 DOI: 10.1101/2024.07.14.603457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
High-resolution, real-time imaging of RNA is essential for understanding the diverse, dynamic behaviors of individual RNA molecules in single cells. However, single-molecule live-cell imaging of unmodified endogenous RNA has not yet been achieved. Here, we present single-molecule live-cell fluorescence in situ hybridization (smLiveFISH), a robust approach that combines the programmable RNA-guided, RNA-targeting CRISPR-Csm complex with multiplexed guide RNAs for efficient, direct visualization of single RNA molecules in a range of cell types, including primary cells. Using smLiveFISH, we tracked individual endogenous NOTCH2 and MAP1B mRNA transcripts in living cells and identified two distinct localization mechanisms: co-translational translocation of NOTCH2 mRNA at the endoplasmic reticulum, and directional transport of MAP1B mRNA toward the cell periphery. This method has the potential to unlock principles governing the spatiotemporal organization of native transcripts in health and disease.
Collapse
Affiliation(s)
- Chenglong Xia
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xueyang Jiang
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ke Xu
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
84
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
85
|
Chen F, Zhang C, Xue J, Wang F, Li Z. Molecular mechanism for target RNA recognition and cleavage of Cas13h. Nucleic Acids Res 2024; 52:7279-7291. [PMID: 38661236 PMCID: PMC11229369 DOI: 10.1093/nar/gkae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
RNA-targeting type VI CRISPR-Cas effectors are widely used in RNA applications. Cas13h is a recently identified subtype of Cas13 ribonuclease, with strong RNA cleavage activity and robust in vivo RNA knockdown efficiency. However, little is known regarding its biochemical properties and working mechanisms. Biochemical characterization of Cas13h1 indicated that it lacks in vitro pre-crRNA processing activity and adopts a central seed. The cleavage activity of Cas13h1 is enhanced by a R(G/A) 5'-PFS, and inhibited by tag:anti-tag RNA pairing. We determined the structures of Cas13h1-crRNA binary complex at 3.1 Å and Cas13h1-crRNA-target RNA ternary complex at 3.0 Å. The ternary complex adopts an elongated architecture, and encodes a nucleotide-binding pocket within Helical-2 domain to recognize the guanosine at the 5'-end of the target RNA. Base pairing between crRNA guide and target RNA disrupts Cas13h1-guide interactions, leading to dramatic movement of HEPN domains. Upon target RNA engagement, Cas13h1 adopts a complicated activation mechanism, including separation of HEPN catalytic residues and destabilization of the active site loop and NTD domain, to get activated. Collectively, these insights expand our understanding into Cas13 effectors.
Collapse
Affiliation(s)
- Fugen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jialin Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Feng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
86
|
Xu C, Cao J, Qiang H, Liu Y, Wu J, Luo Q, Wan M, Wang Y, Wang P, Cheng Q, Zhou G, Sima J, Guo Y, Xu S. TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA. Genome Biol 2024; 25:179. [PMID: 38972974 PMCID: PMC11229350 DOI: 10.1186/s13059-024-03326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APPswe mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.
Collapse
Affiliation(s)
- Chong Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiyanuo Cao
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialin Wu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiudan Luo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng Wan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujie Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jian Sima
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
87
|
Jung JK, Dreyer KS, Dray KE, Muldoon JJ, George J, Shirman S, Cabezas MD, D’Aquino AE, Verosloff MS, Seki K, Rybnicky GA, Alam KK, Bagheri N, Jewett MC, Leonard JN, Mangan NM, Lucks JB. Developing, characterizing and modeling CRISPR-based point-of-use pathogen diagnostics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601853. [PMID: 39005318 PMCID: PMC11244977 DOI: 10.1101/2024.07.03.601853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.
Collapse
Affiliation(s)
- Jaeyoung K. Jung
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Center for Water Research, Northwestern University (Evanston, IL, USA)
| | - Kathleen S. Dreyer
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
| | - Kate E. Dray
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
| | - Joseph J. Muldoon
- Department of Medicine, University of California, San Francisco (San Francisco, CA, USA)
- Gladstone-UCSF Institute of Genomic Immunology (San Francisco, CA, USA)
| | - Jithin George
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Department of Engineering Sciences and Applied Mathematics, Northwestern University (Evanston, IL, USA)
- NSF-Simons Center for Quantitative Biology, Northwestern University (Evanston, IL, USA)
| | - Sasha Shirman
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- NSF-Simons Center for Quantitative Biology, Northwestern University (Evanston, IL, USA)
| | - Maria D. Cabezas
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Department of Biomedical Engineering, Northwestern University (Evanston, IL, USA)
| | - Anne E. D’Aquino
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Stemloop, Inc. (Evanston, IL, USA)
- Interdisciplinary Biological Sciences Program, Northwestern University (Evanston, IL, USA)
| | - Matthew S. Verosloff
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Interdisciplinary Biological Sciences Program, Northwestern University (Evanston, IL, USA)
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
| | - Grant A. Rybnicky
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Interdisciplinary Biological Sciences Program, Northwestern University (Evanston, IL, USA)
- Chemistry of Life Processes Institute, Northwestern University (Evanston, IL, USA)
| | | | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Interdisciplinary Biological Sciences Program, Northwestern University (Evanston, IL, USA)
- Departments of Biology and Chemical Engineering, University of Washington (Seattle, WA, USA)
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Department of Bioengineering, Stanford University (Stanford, CA)
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Interdisciplinary Biological Sciences Program, Northwestern University (Evanston, IL, USA)
| | - Niall M. Mangan
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Department of Engineering Sciences and Applied Mathematics, Northwestern University (Evanston, IL, USA)
- NSF-Simons Center for Quantitative Biology, Northwestern University (Evanston, IL, USA)
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University (Evanston IL, USA)
- Center for Synthetic Biology, Northwestern University (Evanston, IL, USA)
- Center for Water Research, Northwestern University (Evanston, IL, USA)
- Chemistry of Life Processes Institute, Northwestern University (Evanston, IL, USA)
| |
Collapse
|
88
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
89
|
Song B, Bae S. Genome editing using CRISPR, CAST, and Fanzor systems. Mol Cells 2024; 47:100086. [PMID: 38909984 PMCID: PMC11278801 DOI: 10.1016/j.mocell.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
Genetic engineering technologies are essential not only for basic science but also for generating animal models for therapeutic applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system, derived from adapted prokaryotic immune responses, has led to unprecedented advancements in the field of genome editing because of its ability to precisely target and edit genes in a guide RNA-dependent manner. The discovery of various types of CRISPR-Cas systems, such as CRISPR-associated transposons (CASTs), has resulted in the development of novel genome editing tools. Recently, research has expanded to systems associated with obligate mobile element guided activity (OMEGA) RNAs, including ancestral CRISPR-Cas and eukaryotic Fanzor systems, which are expected to complement the conventional CRISPR-Cas systems. In this review, we briefly introduce the features of various CRISPR-Cas systems and their application in diverse animal models.
Collapse
Affiliation(s)
- Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea.
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
90
|
Das B, Datta S, Vanlalhmuaka, Reddy PVB. Comprehensive evaluation on progressive development strategies in DENV surveillance and monitoring infection rate among vector population. J Vector Borne Dis 2024; 61:327-339. [PMID: 39374492 DOI: 10.4103/jvbd.jvbd_86_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/05/2024] [Indexed: 10/09/2024] Open
Abstract
The elevated rise in dengue infection rate has been a health burden worldwide and it will continue to impact global health for years to come. Accumulated literature holds accountable the geographical expansion of the mosquito species transmitting the dengue virus DENV. The frequency of this viral disease outbreaks has increased rapidly in the recent years, owing to various geo-climatic and anthropological activities. Due to scarcity of any effective control measures, there has been a continuous traceable rise in mortality and morbidity rates. However, it has been reported that the spate of incidences is directly related to density of the virus infected vector (mosquito) population in a given region. In such a scenario, systems capable of detecting virus infected vector population would aid in estimating prediction of outbreak, as well as provide time to deploy suitable management strategies for vector control, and to break the vector-human transmission chain. This would also help in identifying areas, where much improvement is needed for vector management. To this context, we illustrate an exhaustive overview of both gold standards and as well as emerging advents for sensitive and specific mosquito population strategized viral detection technologies. We summarize the cutting-edge technologies and the challenges faced in pioneering to field application. Regardless the proven popularity of the gold standards for detection purpose, they offer certain limitations. Thus with the surge in the infection rate globally, approaches for development of newer advancements and technique upgradation to arrest the infection escalation and for early detection as a part of vector management should be prioritized.
Collapse
Affiliation(s)
- Bidisha Das
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
- Department of Life Science & Bio-Informatics, Assam University Diphu Campus, Diphu, Assam, India
| | - Sibnarayan Datta
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
| | - Vanlalhmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
| | | |
Collapse
|
91
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
92
|
Shi C, Zou W, Liu X, Zhang H, Li X, Fu G, Fei Q, Qian Q, Shang L. Programmable RNA N 6-methyladenosine editing with CRISPR/dCas13a in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1867-1880. [PMID: 38363049 PMCID: PMC11182597 DOI: 10.1111/pbi.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/07/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
N6-methyladenonsine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) and plays critical roles in mRNA processing and metabolism. However, perturbation of individual m6A modification to reveal its function and the phenotypic effects is still lacking in plants. Here, we describe the construction and characterization of programmable m6A editing tools by fusing the m6A writers, the core catalytic domain of the MTA and MTB complex, and the AlkB homologue 5 (ALKBH5) eraser, to catalytically dead Cas13a (dCas13a) to edit individual m6A sites on mRNAs. We demonstrated that our m6A editors could efficiently and specifically deposit and remove m6A modifications on specific RNA transcripts in both Nicotiana benthamiana and Arabidopsis thaliana. Moreover, we found that targeting SHORT-ROOT (SHR) transcripts with a methylation editor could significantly increase its m6A levels with limited off-target effects and promote its degradation. This leads to a boost in plant growth with enlarged leaves and roots, increased plant height, plant biomass, and total grain weight in Arabidopsis. Collectively, these findings suggest that our programmable m6A editing tools can be applied to study the functions of individual m6A modifications in plants, and may also have potential applications for future crop improvement.
Collapse
Affiliation(s)
- Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Wenli Zou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Guiling Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- College of AgricultureShanxi Agricultural UniversityTaiyuanShanxiChina
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| |
Collapse
|
93
|
Kansal R. The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes (Basel) 2024; 15:863. [PMID: 39062641 PMCID: PMC11276294 DOI: 10.3390/genes15070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has begun to transform the treatment landscape of genetic diseases. The history of the discovery of CRISPR/CRISPR-associated (Cas) proteins/single-guide RNA (sgRNA)-based gene editing since the first report of repetitive sequences of unknown significance in 1987 is fascinating, highly instructive, and inspiring for future advances in medicine. The recent approval of CRISPR-Cas9-based gene therapy to treat patients with severe sickle cell anemia and transfusion-dependent β-thalassemia has renewed hope for treating other hematologic diseases, including patients with a germline predisposition to hematologic malignancies, who would benefit greatly from the development of CRISPR-inspired gene therapies. The purpose of this paper is three-fold: first, a chronological description of the history of CRISPR-Cas9-sgRNA-based gene editing; second, a brief description of the current state of clinical research in hematologic diseases, including selected applications in treating hematologic diseases with CRISPR-based gene therapy, preceded by a brief description of the current tools being used in clinical genome editing; and third, a presentation of the current progress in gene therapies in inherited hematologic diseases and bone marrow failure syndromes, to hopefully stimulate efforts towards developing these therapies for patients with inherited bone marrow failure syndromes and other inherited conditions with a germline predisposition to hematologic malignancies.
Collapse
Affiliation(s)
- Rina Kansal
- Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA;
- Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
94
|
Yang Y, Sun L, Zhao J, Jiao Y, Han T, Zhou X. Improving trans-cleavage activity of CRISPR-Cas13a using engineered crRNA with a uridinylate-rich 5'-overhang. Biosens Bioelectron 2024; 255:116239. [PMID: 38552526 DOI: 10.1016/j.bios.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
The engieering of Cas13a crRNA to enhance its binding affinity with the Cas enzyme or target is a promising method of improving the collateral cleavage efficiency of CRISPR-Cas13a systems, thereby amplifying the sensitivity of nucleic acid detection. An examination of the top-performing engineered crRNA (24 nt 5'7U LbuCas13a crRNA, where the 5'-end was extended using 7-mer uridinylates) and optimized conditions revealed an increased rate of LbuCas13a-mediated collateral cleavage activity that was up to seven-fold higher than that of the original crRNA. Particularly, the 7-mer uridinylates extension to crRNA was determined to be spacer-independent for enhancing the LbuCas13a-mediacted collateral cleavage activity, and also benefited the LwaCas13a system. The improved trans-cleavage activity was explained by the interactions between crRNA and LbuCas13a at the molecular level, i.e. the 5'-overhangs were anchored in the cleft formed between the Helical-1 and HEPN2 domains with the consequence of more stable complex, and experimentally verified. Consequently, the improved CRISPR-Cas13a system detected the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA with a sensitivity of 2.36 fM that was 160-times higher than that of the original system. Using isothermal amplification via reverse transcription-recombinase polymerase amplification (RT-RPA), the system was capable to detect SARS-CoV-2 with attomolar sensitivity and accurately identified the SARS-CoV-2 Omicron variant (20/21 agreement) in clinical samples within 40 min.
Collapse
Affiliation(s)
- Yihan Yang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing, 100021, PR China
| | - Jianhong Zhao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing, 100021, PR China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing, 100021, PR China
| | - Taoli Han
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing, 100021, PR China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
95
|
Tong X, Zhang K, Han Y, Li T, Duan M, Ji R, Wang X, Zhou X, Zhang Y, Yin H. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat Chem Biol 2024; 20:885-893. [PMID: 38332130 DOI: 10.1038/s41589-023-01534-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Despite the great potential of CRISPR-based detection, it has not been competitive with other market diagnostics for on-site and in-home testing. Here we dissect the rate-limiting factors that undermine the performance of Cas12b- and Cas13a-mediated detection. In one-pot testing, Cas12b interferes with loop-mediated isothermal amplification by binding to and cleaving the amplicon, while Cas13a directly degrades the viral RNA, reducing its amplification. We found that the protospacer-adjacent motif-interacting domain engineered Cas12b accelerated one-pot testing with 10-10,000-fold improved sensitivity, and detected 85 out of 85 SARS-CoV-2 clinical samples with a sensitivity of 0.5 cp μl-1, making it superior to wild-type Cas12b. In parallel, by diminishing the interference of Cas13a with viral RNA, the optimized Cas13a-based assay detected 86 out of 87 SARS-CoV-2 clinical samples at room temperature in 30 min with a sensitivity of 0.5 cp μl-1. The relaxed reaction conditions and improved performance of CRISPR-based assays make them competitive for widespread use in pathogen detection.
Collapse
Affiliation(s)
- Xiaohan Tong
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kun Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Tianle Li
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Min Duan
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Ruijin Ji
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xianguang Wang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zhang
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hao Yin
- Department of Clinical Laboratory, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology, TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
96
|
Kim G, Kim HJ, Kim K, Kim HJ, Yang J, Seo SW. Tunable translation-level CRISPR interference by dCas13 and engineered gRNA in bacteria. Nat Commun 2024; 15:5319. [PMID: 38909033 PMCID: PMC11193725 DOI: 10.1038/s41467-024-49642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Although CRISPR-dCas13, the RNA-guided RNA-binding protein, was recently exploited as a translation-level gene expression modulator, it has still been difficult to precisely control the level due to the lack of detailed characterization. Here, we develop a synthetic tunable translation-level CRISPR interference (Tl-CRISPRi) system based on the engineered guide RNAs that enable precise and predictable down-regulation of mRNA translation. First, we optimize the Tl-CRISPRi system for specific and multiplexed repression of genes at the translation level. We also show that the Tl-CRISPRi system is more suitable for independently regulating each gene in a polycistronic operon than the transcription-level CRISPRi (Tx-CRISPRi) system. We further engineer the handle structure of guide RNA for tunable and predictable repression of various genes in Escherichia coli and Vibrio natriegens. This tunable Tl-CRISPRi system is applied to increase the production of 3-hydroxypropionic acid (3-HP) by 14.2-fold via redirecting the metabolic flux, indicating the usefulness of this system for the flux optimization in the microbial cell factories based on the RNA-targeting machinery.
Collapse
Affiliation(s)
- Giho Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ho Joon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Keonwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, Jeju-si, South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea.
- Institute of Chemical Processes, Seoul National University, Seoul, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, South Korea.
- Institute of Bio Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
97
|
Pang F, Zhang T, Dai F, Wang K, Jiao T, Zhang Z, Zhang L, Liu M, Hu P, Song J. A handheld isothermal fluorescence detector for duplex visualization of aquatic pathogens via enhanced one-pot LAMP-PfAgo assay. Biosens Bioelectron 2024; 254:116187. [PMID: 38518558 DOI: 10.1016/j.bios.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/21/2024] [Indexed: 03/24/2024]
Abstract
The expansion of large-scale aquaculture has exacerbated the challenge of aquatic diseases, resulting in substantial economic losses annually. Currently, traditional laboratory-based diagnostic methods are time-consuming and costly, hindering on-site testing for individual farmers. We address this issue by developing a state-of-the-art handheld isothermal nucleic acid amplification device (WeD-1) capable of fluorescence tracking of reactions and integrating it with an enhanced one-pot Prokaryotic Argonaute based nucleic acid detection method, enabling duplex visual detection of aquatic pathogens. WeD-1 is portable, reusable, user-friendly, and cost-effective, offering real-time smartphone interaction and enabling real-time fluorescence observation during the reaction. The enhanced one-pot Loop-Mediated Isothermal Amplification (LAMP)-PfAgo method, incorporating paraffin-encapsulated lyophilized PfAgo protein, achieves precise target-specific cleavage, significantly enhancing multiplex nucleic acid detection. This innovation streamlines on-site testing, negating the need for specialized laboratory conditions while ensuring an aerosol-free system. With newly developed and highly sensitive LAMP primer sets, our compact WeD-1/LAMP-PfAgo nucleic acid rapid testing system exhibits remarkable sensitivity, readily detecting aquatic pathogens with naked eyes from rapidly prepared fish and shrimp samples within 40 min, even when the Ct values are as high as 34.
Collapse
Affiliation(s)
- Feibiao Pang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Hangzhou EzDx Technology Co., Ltd., Hangzhou, Zhejiang, 311231, China
| | - Tao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Fengyi Dai
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Kaizheng Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Tianjiao Jiao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Zuoying Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Liyi Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jinzhao Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
98
|
Yang H, Patel DJ. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol 2024; 20:673-688. [PMID: 38702571 PMCID: PMC11375968 DOI: 10.1038/s41589-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
99
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
100
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|