51
|
Bennett NR, Jarvis CM, Alam MM, Zwick DB, Olson JM, Nguyen HVT, Johnson JA, Cook ME, Kiessling LL. Modular Polymer Antigens To Optimize Immunity. Biomacromolecules 2019; 20:4370-4379. [PMID: 31609600 DOI: 10.1021/acs.biomac.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Subunit vaccines can have excellent safety profiles, but their ability to give rise to robust immune responses is often compromised. For glycan-based vaccines, insufficient understanding of B and T cell epitope combinations that yield optimal immune activation hinders optimization. To determine which antigen features promote desired IgG responses, we synthesized epitope-functionalized polymers using ring-opening metathesis polymerization (ROMP) and assessed the effect of B and T cell epitope loading. The most robust responses were induced by polymers with a high valency of B and T cell epitopes. Additionally, IgG responses were greater for polymers with T cell epitopes that are readily liberated upon endosomal processing. Combining these criteria, we used ROMP to generate a nontoxic, polymeric antigen that elicited stronger antibody responses than a comparable protein conjugate. These findings highlight principles for designing synthetic antigens that elicit strong IgG responses against inherently weak immune targets such as glycans.
Collapse
|
52
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
53
|
Du JJ, Zou SY, Chen XZ, Xu WB, Wang CW, Zhang L, Tang YK, Zhou SH, Wang J, Yin XG, Gao XF, Liu Z, Guo J. Liposomal Antitumor Vaccines Targeting Mucin 1 Elicit a Lipid-Dependent Immunodominant Response. Chem Asian J 2019; 14:2116-2121. [PMID: 31042017 DOI: 10.1002/asia.201900448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Indexed: 12/30/2022]
Abstract
The tumor-associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti-MUC1 immunodominant responses. Herein, we prepared synthetic anti-MUC1 vaccines in which the hydrophilic MUC1 antigen was N-terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam-MUC1 or Pam2 -MUC1). These amphiphilic lipid-tailed MUC1 antigens were self-assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid-conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti-MUC1 IgG antibody titers induced by the Pam2 -MUC1 vaccine were more than 30- and 190-fold higher than those induced by the Pam-MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3 CSK4 as an adjuvant also induced conjugated lipid-dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3 CSK4 adjuvant. Therefore, the non-covalent assembly of the amphiphilic lipo-MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti-MUC1 cancer vaccines.
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shi-Yao Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chang-Wei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yuan-Kai Tang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
54
|
Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines 2019; 4:16. [PMID: 31069118 PMCID: PMC6494827 DOI: 10.1038/s41541-019-0110-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/16/2019] [Indexed: 01/11/2023] Open
Abstract
Glycoconjugate vaccines against bacteria are one of the success stories of modern medicine and have led to a significant reduction in the global occurrence of bacterial meningitis and pneumonia. Glycoconjugate vaccines are produced by covalently linking a bacterial polysaccharide (usually capsule, or more recently O-antigen), to a carrier protein. Given the success of glycoconjugate vaccines, it is surprising that to date only vaccines against Haemophilus influenzae type b, Neisseria meningitis and Streptococcus pneumoniae have been fully licenced. This is set to change through the glycoengineering of recombinant vaccines in bacteria, such as Escherichia coli, that act as mini factories for the production of an inexhaustible and renewable supply of pure vaccine product. The recombinant process, termed Protein Glycan Coupling Technology (PGCT) or bioconjugation, offers a low-cost option for the production of pure glycoconjugate vaccines, with the in-built flexibility of adding different glycan/protein combinations for custom made vaccines. Numerous vaccine candidates have now been made using PGCT, which include those improving existing licenced vaccines (e.g., pneumococcal), entirely new vaccines for both Gram-positive and Gram-negative bacteria, and (because of the low production costs) veterinary pathogens. Given the continued threat of antimicrobial resistance and the potential peril of bioterrorist agents, the production of new glycoconjugate vaccines against old and new bacterial foes is particularly timely. In this review, we will outline the component parts of bacterial PGCT, including recent advances, the advantages and limitations of the technology, and future applications and perspectives.
Collapse
|
55
|
Compton BJ, Farrand KJ, Tang CW, Osmond TL, Speir M, Authier-Hall A, Wang J, Ferguson PM, Chan STS, Anderson RJ, Cooney TR, Hayman CM, Williams GM, Brimble MA, Brooks CR, Yong LK, Metelitsa LS, Zajonc DM, Godfrey DI, Gasser O, Weinkove R, Painter GF, Hermans IF. Enhancing T cell responses and tumour immunity by vaccination with peptides conjugated to a weak NKT cell agonist. Org Biomol Chem 2019; 17:1225-1237. [PMID: 30656346 DOI: 10.1039/c8ob02982b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activated NKT cells can stimulate antigen-presenting cells leading to enhanced peptide antigen-specific immunity. However, administration of potent NKT cell agonists like α-galactosylceramide (α-GalCer) can be associated with release of high levels of cytokines, and in some situations, hepatotoxicity. Here we show that it is possible to provoke sufficient NKT cell activity to stimulate strong antigen-specific T cell responses without these unwanted effects. This was achieved by chemically conjugating antigenic peptides to α-galactosylphytosphingosine (α-GalPhs), an NKT cell agonist with very weak activity based on structural characterisation and biological assays. Conjugation improved delivery to antigen-presenting cells in vivo, while use of a cathepsin-sensitive linker to release the α-GalPhs and peptide within the same cell promoted strong T cell activation and therapeutic anti-tumour responses in mice. The conjugates activated human NKT cells and enhanced human T cell responses to a viral peptide in vitro. Accordingly, we have demonstrated a means to safely exploit the immunostimulatory properties of NKT cells to enhance T cell activation for virus- and tumour-specific immunity.
Collapse
Affiliation(s)
- Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Chen XZ, Zhang RY, Wang XF, Yin XG, Wang J, Wang YC, Liu X, Du JJ, Liu Z, Guo J. Peptide-free Synthetic Nicotine Vaccine Candidates with α-Galactosylceramide as Adjuvant. Mol Pharm 2019; 16:1467-1476. [DOI: 10.1021/acs.molpharmaceut.8b01095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ya-Cong Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
57
|
Oldenkamp HF, Vela Ramirez JE, Peppas NA. Re-evaluating the importance of carbohydrates as regenerative biomaterials. Regen Biomater 2019; 6:1-12. [PMID: 30740237 PMCID: PMC6362819 DOI: 10.1093/rb/rby023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Julia E Vela Ramirez
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
58
|
Wu JJ, Li WH, Chen PG, Zhang BD, Hu HG, Li QQ, Zhao L, Chen YX, Zhao YF, Li YM. Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chem Commun (Camb) 2018; 54:9655-9658. [PMID: 30101273 DOI: 10.1039/c8cc04860f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic di-GMP (CDG) was applied to MUC1 glycopeptide-based cancer vaccines with physical mixing and built-in (at 2'-OH of CDG) strategies for activating the STING pathway. CDG in both strategies behaved as a potent immunostimulant and contributed to high titers of IgG antibodies and the expression of multiple cytokines.
Collapse
Affiliation(s)
- Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Sartorius R, D'Apice L, Barba P, Cipria D, Grauso L, Cutignano A, De Berardinis P. Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response. Front Immunol 2018; 9:1496. [PMID: 30002659 PMCID: PMC6031736 DOI: 10.3389/fimmu.2018.01496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023] Open
Abstract
We have exploited the properties of filamentous bacteriophage fd to deliver immunologically active lipids together with antigenic peptides. Filamentous bacteriophages resemble for size, capability to be permeable to blood vessels, and high density antigen expression, a nature-made nanoparticle. In addition, their major coat protein pVIII, which is arranged to form a tubular shield surrounding the phage genome, has a high content of hydrophobic residues promoting lipid association. We conjugated bacteriophages to alpha-GalactosylCeramide (α-GalCer), a lipid antigen-stimulating invariant natural killer T (iNKT) cells and capable of inducing their anti-tumoral activities. We found that bacteriophage fd/α-GalCer conjugates could repeatedly stimulate iNKT cells in vitro and in vivo, without inducing iNKT anergy. Moreover, co-delivery of α-GalCer and a MHC class I restricted tumor-associated antigenic determinant to antigen-presenting cells via bacteriophages strongly boosted adaptive CD8+ T cell response and efficiently delayed tumor progression. Co-delivery of a tumor antigen and iNKT-stimulatory lipid on the surface of filamentous bacteriophages is a novel approach to potentiate adaptive anti-cancer immune responses, overcoming the current limitations in the use of free α-GalCer and may represent an attractive alternative to existing delivery methods, opening the path to a potential translational usage of this safe, inexpensive, and versatile tool.
Collapse
Affiliation(s)
| | | | - Pasquale Barba
- Institute of Genetics and Biophysics "A. Buzzati Traverso", Naples, Italy
| | | | - Laura Grauso
- Institute of Biomolecular Chemistry (ICB), CNR, Pozzuoli, Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry (ICB), CNR, Pozzuoli, Italy
| | | |
Collapse
|
60
|
Micoli F, Adamo R, Costantino P. Protein Carriers for Glycoconjugate Vaccines: History, Selection Criteria, Characterization and New Trends. Molecules 2018; 23:E1451. [PMID: 29914046 PMCID: PMC6100388 DOI: 10.3390/molecules23061451] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Currently licensed glycoconjugate vaccines are composed of a carbohydrate moiety covalently linked to a protein carrier. Polysaccharides are T-cell independent antigens able to directly stimulate B cells to produce antibodies. Disease burden caused by polysaccharide-encapsulated bacteria is highest in the first year of life, where plain polysaccharides are not generally immunogenic, limiting their use as vaccines. This limitation has been overcome by covalent coupling carbohydrate antigens to proteins that provide T cell epitopes. In addition to the protein carriers currently used in licensed glycoconjugate vaccines, there is a search for new protein carriers driven by several considerations: (i) concerns that pre-exposure or co-exposure to a given carrier can lead to immune interference and reduction of the anti-carbohydrate immune response; (ii) increasing interest to explore the dual role of proteins as carrier and protective antigen; and (iii) new ways to present carbohydrates antigens to the immune system. Protein carriers can be directly coupled to activated glycans or derivatized to introduce functional groups for subsequent conjugation. Proteins can be genetically modified to pre-determine the site of glycans attachment by insertion of unnatural amino acids bearing specific functional groups, or glycosylation consensus sequences for in vivo expression of the glycoconjugate. A large portion of the new protein carriers under investigation are recombinant ones, but more complex systems such as Outer Membrane Vesicles and other nanoparticles are being investigated. Selection criteria for new protein carriers are based on several aspects including safety, manufacturability, stability, reactivity toward conjugation, and preclinical evidence of immunogenicity of corresponding glycoconjugates. Characterization panels of protein carriers include tests before conjugation, after derivatization when applicable, and after conjugation. Glycoconjugate vaccines based on non-covalent association of carrier systems to carbohydrates are being investigated with promising results in animal models. The ability of these systems to convert T-independent carbohydrate antigens into T-dependent ones, in comparison to traditional glycoconjugates, needs to be assessed in humans.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy.
| | | | | |
Collapse
|
61
|
Kinjo Y, Takatsuka S, Kitano N, Kawakubo S, Abe M, Ueno K, Miyazaki Y. Functions of CD1d-Restricted Invariant Natural Killer T Cells in Antimicrobial Immunity and Potential Applications for Infection Control. Front Immunol 2018; 9:1266. [PMID: 29928278 PMCID: PMC5997780 DOI: 10.3389/fimmu.2018.01266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-type lymphocytes that express a T-cell receptor (TCR) containing an invariant α chain encoded by the Vα14 gene in mice and Vα24 gene in humans. These iNKT cells recognize endogenous, microbial, and synthetic glycolipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule CD1d. Upon TCR stimulation by glycolipid antigens, iNKT cells rapidly produce large amounts of cytokines, including interferon-γ (IFNγ) and interleukin-4 (IL-4). Activated iNKT cells contribute to host protection against a broad spectrum of microbial pathogens, and glycolipid-mediated stimulation of iNKT cells ameliorates many microbial infections by augmenting innate and acquired immunity. In some cases, however, antigen-activated iNKT cells exacerbate microbial infections by promoting pathogenic inflammation. Therefore, it is important to identify appropriate microbial targets for the application of iNKT cell activation as a treatment or vaccine adjuvant. Many studies have found that iNKT cell activation induces potent adjuvant activities promoting protective vaccine effects. In this review, we summarize the functions of CD1d-restricted iNKT cells in immune responses against microbial pathogens and describe the potential applications of glycolipid-mediated iNKT cell activation for preventing and controlling microbial infections.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Kitano
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shun Kawakubo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
62
|
Broecker F, Götze S, Hudon J, Rathwell DCK, Pereira CL, Stallforth P, Anish C, Seeberger PH. Synthesis, Liposomal Formulation, and Immunological Evaluation of a Minimalistic Carbohydrate-α-GalCer Vaccine Candidate. J Med Chem 2018; 61:4918-4927. [PMID: 29742893 DOI: 10.1021/acs.jmedchem.8b00312] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fully synthetic glycan-based vaccines hold great potential as preventive and therapeutic vaccines against infectious diseases as well as cancer. Here, we present a two-component platform based on the facile conjugation of carbohydrate antigens to α-galactosylceramide (α-GalCer) to yield fully synthetic vaccine candidates. Formulation of the cancer-associated Tn antigen glycolipid model vaccine candidate into liposomes of different sizes and subsequent immunization of mice generated specific, high-affinity antibodies against the carbohydrate antigen with characteristics of T cell-dependent immunity. Liposome formulation elicited more reproducible glycan immunity than a conventional glycoconjugate vaccine bearing the same glycan antigen did. Further evaluation of the immune response revealed that the size of the liposomes influenced the glycan antibody responses toward either a cellular (Th1) or a humoral (Th2) immune phenotype. The glycolipid vaccine platform affords strong and robust antiglycan antibody responses in vivo without the need for an external adjuvant.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Sebastian Götze
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Jonathan Hudon
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Dominea C K Rathwell
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Claney L Pereira
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Pierre Stallforth
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
63
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
64
|
Chen Z, Zhu S, Wang L, Xie D, Zhang H, Li X, Zheng X, Du Z, Li J, Bai L. Memory Follicular Helper Invariant NKT Cells Recognize Lipid Antigens on Memory B Cells and Elicit Antibody Recall Responses. THE JOURNAL OF IMMUNOLOGY 2018; 200:3117-3127. [DOI: 10.4049/jimmunol.1701026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
|
65
|
Weyant KB, Mills DC, DeLisa MP. Engineering a new generation of carbohydrate-based vaccines. Curr Opin Chem Eng 2018; 19:77-85. [PMID: 30568873 DOI: 10.1016/j.coche.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent advances in chemical synthesis, conjugation chemistry, engineered biosynthesis, and formulation design have spawned a new generation of vaccines that incorporate carbohydrate antigens. By providing better immunity against a variety of pathogens or malignant cells and lowering the cost of production, these developments overcome many of the limitations associated with conventional vaccines involving polysaccharides. Moreover, the resulting vaccine candidates are shedding light on how the immune system responds to carbohydrates and providing mechanistic insight that can help guide future vaccine design. Here, we review recent engineering efforts to develop and manufacture carbohydrate-based vaccines that are efficacious, durable, and cost-effective.
Collapse
Affiliation(s)
- Kevin B Weyant
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Dominic C Mills
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA.,Comparative Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA.,Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
66
|
Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:355-378. [PMID: 30143807 DOI: 10.1007/10_2018_71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines. Graphical Abstract.
Collapse
|
67
|
Liu Z, Guo J. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine. Carbohydr Res 2017; 452:78-90. [DOI: 10.1016/j.carres.2017.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023]
|
68
|
Yao D, Liu Y, Gao Q, Sui Q, Liu X, Ding N. A comparison of benzyl and 2-naphthylmethyl ethers as permanent hydroxyl protecting groups in the synthesis of α-galactoglycosphingolipids KRN7000 and PBS-57. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1375114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dongming Yao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yichu Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qiang Sui
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xiaoping Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
69
|
Kaufmann SHE, Dockrell HM, Drager N, Ho MM, McShane H, Neyrolles O, Ottenhoff THM, Patel B, Roordink D, Spertini F, Stenger S, Thole J, Verreck FAW, Williams A. TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Front Immunol 2017; 8:1203. [PMID: 29046674 PMCID: PMC5632681 DOI: 10.3389/fimmu.2017.01203] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hazel M Dockrell
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Drager
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | - Mei Mei Ho
- Bacteriology Division, MHRA-NIBSC, Potters Bar, United Kingdom
| | | | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Brij Patel
- RegExcel Consulting Ltd, Surrey, United Kingdom
| | | | | | | | - Jelle Thole
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | | | | | | |
Collapse
|
70
|
Tsvetkov YE, Gening ML, Kurbatova EA, Akhmatova NK, Nifantiev NE. Oligosaccharide ligand tuning in design of third generation carbohydrate pneumococcal vaccines. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStreptococcus pneumoniae can cause many types of dangerous infectious diseases such as otitis media, pneumonia, meningitis and others that are more common in the very young and very old age. Available to date commercial vaccines based on capsular polysaccharides of S. pneumoniae of clinically important strains (first generation carbohydrate vaccines) and conjugated vaccines based on these polysaccharides (second generation carbohydrate vaccines) have certain limitations in protective efficiency. However, the efficiency of vaccines can be increased by the use of third generation vaccines based on synthetic oligosaccharide ligands representing in their structures the protective epitopes of capsular polysaccharides. The proper choice of an optimal oligosaccharide ligand is the most important step in the design of third generation carbohydrate vaccines. Herein we overview our works on the synthesis of three oligosaccharides corresponding to one, “one and a half” and two repeating units of S. pneumoniae type 14 capsular polysaccharide, immunogenic conjugates thereof and comparative immunological study of their conjugates with bovine serum albumin, which was used as a model protein carrier. The ability of obtained products to raise antibodies specific to capsular polysaccharide and homologous oligosaccharides, the induction of phagocytosis by immune antisera and active protection of immunized animals from S. pneumoniae type 14 infection were evaluated. On the basis of the results obtained tetrasaccharide comprising the repeating unit of S. pneumoniae type 14 capsular polysaccharide is an optimal carbohydrate ligand to be used as a part of the third generation carbohydrate pneumococcal vaccine.
Collapse
Affiliation(s)
- Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi Pereulok 5a, 105064 Moscow, Russia
| | - Nelly K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi Pereulok 5a, 105064 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia, e-mail:
| |
Collapse
|
71
|
|
72
|
Jaurigue JA, Seeberger PH. Parasite Carbohydrate Vaccines. Front Cell Infect Microbiol 2017; 7:248. [PMID: 28660174 PMCID: PMC5467010 DOI: 10.3389/fcimb.2017.00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.
Collapse
Affiliation(s)
- Jonnel A. Jaurigue
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
73
|
Liu Y, Xu X, Gao Q, Yan S, Li Y, Ding N. Rapid access to 6″-functionalized α-galactosyl ceramides by using 2-naphthylmethyl ether as the permanent protecting group. Bioorg Med Chem Lett 2017; 27:1795-1798. [DOI: 10.1016/j.bmcl.2017.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/25/2022]
|
74
|
Polonskaya Z, Deng S, Sarkar A, Kain L, Comellas-Aragones M, McKay CS, Kaczanowska K, Holt M, McBride R, Palomo V, Self KM, Taylor S, Irimia A, Mehta SR, Dan JM, Brigger M, Crotty S, Schoenberger SP, Paulson JC, Wilson IA, Savage PB, Finn MG, Teyton L. T cells control the generation of nanomolar-affinity anti-glycan antibodies. J Clin Invest 2017; 127:1491-1504. [PMID: 28287405 DOI: 10.1172/jci91192] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
Vaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell-independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients. Here, we hypothesized that these limitations result from suboptimal T cell help. To produce the next generation of more efficacious conjugate vaccines, we have explored a synthetic design aimed at focusing both B cell and T cell recognition to a single short glycan displayed at the surface of a virus-like particle. We tested and established the proof of concept of this approach for 2 serotypes of Streptococcus pneumoniae. In both cases, these vaccines elicited serotype-specific, protective, and long-lasting IgG antibodies of nanomolar affinity against the target glycans in mice. We further identified a requirement for CD4 T cells in the anti-glycan antibody response. Our findings establish the design principles for improved glycan conjugate vaccines. We surmise that the same approach can be used for any microbial glycan of interest.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/chemistry
- Antibody Affinity
- B-Lymphocytes/immunology
- Bacterial Proteins/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child
- Crystallography, X-Ray
- Female
- Glycopeptides/immunology
- Humans
- Hybridomas
- Immunoglobulin G/blood
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Models, Molecular
- Pneumococcal Infections/immunology
- Pneumococcal Infections/prevention & control
- Pneumococcal Vaccines/chemistry
- Pneumococcal Vaccines/immunology
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Protein Binding
- Streptococcus pneumoniae/immunology
- Vaccination
- Vaccine Potency
Collapse
|
75
|
From Immunologically Archaic to Neoteric Glycovaccines. Vaccines (Basel) 2017; 5:vaccines5010004. [PMID: 28134792 PMCID: PMC5371740 DOI: 10.3390/vaccines5010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection.
Collapse
|
76
|
Yin XG, Chen XZ, Sun WM, Geng XS, Zhang XK, Wang J, Ji PP, Zhou ZY, Baek DJ, Yang GF, Liu Z, Guo J. IgG Antibody Response Elicited by a Fully Synthetic Two-Component Carbohydrate-Based Cancer Vaccine Candidate with α-Galactosylceramide as Built-in Adjuvant. Org Lett 2017; 19:456-459. [DOI: 10.1021/acs.orglett.6b03591] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Wen-Mei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Shan Geng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Kang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Pan-Pan Ji
- Department
of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Zhong-Yin Zhou
- Department
of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Dong Jae Baek
- College
of Pharmacy, Natural Medicine Research Institute, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Korea
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
77
|
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand.
- Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
- Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand.
- Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
78
|
Exploring human glycosylation for better therapies. Mol Aspects Med 2016; 51:125-43. [DOI: 10.1016/j.mam.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
|
79
|
Sun L, Middleton DR, Wantuch PL, Ozdilek A, Avci FY. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology 2016; 26:1029-1040. [PMID: 27236197 DOI: 10.1093/glycob/cww062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Lina Sun
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
80
|
Abstract
CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.
Collapse
Affiliation(s)
- Lucia Mori
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| | - Marco Lepore
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , ,
| | - Gennaro De Libero
- Department of Biomedicine, Basel University Hospital and Basel University, CH-4031 Basel, Switzerland; , , .,Singapore Immunology Network, A*STAR, 138648 Singapore
| |
Collapse
|
81
|
Liao G, Zhou Z, Suryawanshi S, Mondal M, Guo Z. Fully Synthetic Self-Adjuvanting α-2,9-Oligosialic Acid Based Conjugate Vaccines against Group C Meningitis. ACS CENTRAL SCIENCE 2016; 2:210-8. [PMID: 27163051 PMCID: PMC4850515 DOI: 10.1021/acscentsci.5b00364] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 05/04/2023]
Abstract
α-2,9-Polysialic acid is an important capsular polysaccharide expressed by serotype C Neisseria meningitidis. Its protein conjugates are current vaccines against group C meningitis. To address some concerns about traditional protein conjugate vaccines, a new type of fully synthetic vaccines composed of oligosialic acids and glycolipids was explored. In this regard, α-2,9-linked di-, tri-, tetra-, and pentasialic acids were prepared and conjugated with monophosphoryl lipid A (MPLA). Immunological studies of the conjugates in C57BL/6J mouse revealed that they alone elicited robust immune responses comparable to that induced by corresponding protein conjugates plus adjuvant, suggesting the self-adjuvanting properties of MPLA conjugates. The elicited antibodies were mainly IgG2b and IgG2c, suggesting T cell dependent immunities. The antisera had strong and specific binding to α-2,9-oligosialic acids and to group C meningococcal polysaccharide and cell, indicating the ability of antibodies to selectively target the bacteria. The antisera also mediated strong bactericidal activities. Structure-activity relationship analysis of the MPLA conjugates also revealed that the immunogenicity of oligosialic acids decreased with elongated sugar chain, but all tested MPLA conjugates elicited robust immune responses. It is concluded that tri- and tetrasialic acid-MPLA conjugates are worthy of further investigation as the first fully synthetic and self-adjuvanting vaccines against group C meningitis.
Collapse
Affiliation(s)
| | | | - Sharad Suryawanshi
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mohabul
A. Mondal
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zhongwu Guo
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
82
|
Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat Commun 2016; 7:11224. [PMID: 27091615 PMCID: PMC4838876 DOI: 10.1038/ncomms11224] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort. Immunologically-active glycans are promising vaccine candidates but can be difficult to synthesize. Here, the authors show that pentavalent display of a minimal disaccharde epitope on a chemical scaffold can mimic a native C. difficile glycan antigen, representing a simple approach to synthetic vaccine production.
Collapse
|
83
|
Wang Z, Qin C, Hu J, Guo X, Yin J. Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virol Sin 2016; 31:110-7. [PMID: 26992403 DOI: 10.1007/s12250-015-3691-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special viruses have attracted much attention. Significant efforts in carbohydrate synthesis and immunogenicity research have resulted in the development of multiple carbohydrate-based HIV vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines design strategies and the applications of these vaccines in the prevention of HIV.
Collapse
Affiliation(s)
- Zhenyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqiang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
84
|
Compton BJ, Tang CW, Johnston KA, Osmond TL, Hayman CM, Larsen DS, Hermans IF, Painter GF. Synthesis and Activity of 6″-Deoxy-6″-thio-α-GalCer and Peptide Conjugates. Org Lett 2015; 17:5954-7. [PMID: 26606283 DOI: 10.1021/acs.orglett.5b02836] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A major challenge in the development of highly defined synthetic vaccines is the codelivery of vaccine components (i.e., antigen and adjuvant) to secondary lymphoid tissue to induce optimal immune responses. This problem can be addressed by synthesizing vaccines that comprise peptide antigens covalently attached to glycolipid adjuvants through biologically cleavable linkers. Toward this, a strategy utilizing previously unreported 6″-deoxy-6″-thio analogues of α-GalCer that can undergo chemoselective conjugation with peptide antigens is described. Administration of these conjugate vaccines leads to enhanced priming of antigen specific T cells. This simple vaccine design is broadly applicable to multiple disease indications such as cancer and infectious disease.
Collapse
Affiliation(s)
- Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington , P.O. Box 600, Wellington 6140, New Zealand
| | - Ching-wen Tang
- Malaghan Institute of Medical Research , P.O. Box 7060, Wellington 6242, New Zealand
| | - Karen A Johnston
- The Ferrier Research Institute, Victoria University of Wellington , P.O. Box 600, Wellington 6140, New Zealand
| | - Taryn L Osmond
- Malaghan Institute of Medical Research , P.O. Box 7060, Wellington 6242, New Zealand
| | - Colin M Hayman
- The Ferrier Research Institute, Victoria University of Wellington , P.O. Box 600, Wellington 6140, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research , P.O. Box 7060, Wellington 6242, New Zealand.,School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington 6140, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , 3 Symonds Street, Auckland Central 1142, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington , P.O. Box 600, Wellington 6140, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , 3 Symonds Street, Auckland Central 1142, New Zealand
| |
Collapse
|
85
|
Su LH, Kuo AJ, Chia JH, Li HC, Wu TL, Feng Y, Chiu CH. Evolving pneumococcal serotypes and sequence types in relation to high antibiotic stress and conditional pneumococcal immunization. Sci Rep 2015; 5:15843. [PMID: 26522920 PMCID: PMC4629140 DOI: 10.1038/srep15843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
In Taiwan, beginning in 2013, the 13-valent pneumococcal conjugate vaccine (PCV13) was provided free of charge to children 2–5 years of age. In 2014, this was extended to children 1–5 years old. During 2012–2014, 953 cases of culture-confirmed pneumococcal disease (CCPD), including 104 invasive pneumococcal disease (IPD), were prospectively identified and analyzed at a 3,700-bed hospital in Taiwan. From 2012 to 2014, the incidence per 10,000 admissions decreased from 26.7 to 20.4 for CCPD (P < 0.001) and from 3.2 to 1.9 for IPD (P < 0.05). Significant reduction of PCV13 serotypes was firstly noted in children in 2013 and extended to both paediatric and adult populations in 2014. Simultaneously, the incidence per 10,000 admissions of non-PCV13 serotypes increased from 6.1 in 2012 to 9.3 in 2014 (P < 0.005). The most prevalent non-PCV13 serotypes were 15A, 15B, and 23A, each containing a predominant clone, ST6315A, ST8315B, and ST33823A. From 2012 to 2014, isolates with penicillin minimum inhibitory concentrations >2 mg/L decreased from 27.8% to 8.1% (P < 0.001) among all isolates. PCV13 immunization in young children demonstrated an early protective effect in all ages. However, in the elderly, the effect was compromised by an emergence of non-PCV13 serotypes.
Collapse
Affiliation(s)
- Lin-Hui Su
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Chang Gung University College of Medicine, Taoyuan, 333, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - An-Jing Kuo
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ju-Hsin Chia
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Hsin-Chieh Li
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Tsu-Lan Wu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Ye Feng
- Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng-Hsun Chiu
- Chang Gung University College of Medicine, Taoyuan, 333, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| |
Collapse
|
86
|
|
87
|
Anderson RJ, Compton BJ, Tang CW, Authier-Hall A, Hayman CM, Swinerd GW, Kowalczyk R, Harris P, Brimble MA, Larsen DS, Gasser O, Weinkove R, Hermans IF, Painter GF. NKT cell-dependent glycolipid-peptide vaccines with potent anti-tumour activity. Chem Sci 2015; 6:5120-5127. [PMID: 28717498 PMCID: PMC5500832 DOI: 10.1039/c4sc03599b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Glycolipid–peptide conjugates designed to release vaccine components within target cells ensuring potent CD1d dependent T cell responses.
It is known that T cells can eliminate tumour cells through recognition of unique or aberrantly expressed antigens presented as peptide epitopes by major histocompatibility complex (MHC) molecules on the tumour cell surface. With recent advances in defining tumour-associated antigens, it should now be possible to devise therapeutic vaccines that expand specific populations of anti-tumour T cells. However there remains a need to develop simpler efficacious synthetic vaccines that possess clinical utility. We present here the synthesis and analysis of vaccines based on conjugation of MHC-binding peptide epitopes to α-galactosylceramide, a glycolipid presented by the nonpolymorphic antigen-presenting molecule CD1d to provoke the stimulatory activity of type I natural killer T (NKT) cells. The chemical design incorporates an enzymatically cleavable linker that effects controlled release of the active components in vivo. Chemical and biological analysis of different linkages with different enzymatic targets enabled selection of a synthetic vaccine construct with potent therapeutic anti-tumour activity in mice, and marked in vitro activity in human blood.
Collapse
Affiliation(s)
- Regan J Anderson
- The Ferrier Research Institute , Victoria University of Wellington , PO Box 33436 , Lower Hutt 5046 , New Zealand .
| | - Benjamin J Compton
- The Ferrier Research Institute , Victoria University of Wellington , PO Box 33436 , Lower Hutt 5046 , New Zealand .
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research , PO Box 7060 , Wellington 6242 , New Zealand .
| | - Astrid Authier-Hall
- Malaghan Institute of Medical Research , PO Box 7060 , Wellington 6242 , New Zealand .
| | - Colin M Hayman
- The Ferrier Research Institute , Victoria University of Wellington , PO Box 33436 , Lower Hutt 5046 , New Zealand .
| | - Gene W Swinerd
- Malaghan Institute of Medical Research , PO Box 7060 , Wellington 6242 , New Zealand . .,School of Biological Sciences , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences , The University of Auckland , 3 Symonds St , Auckland Central , 1142 , New Zealand
| | - Paul Harris
- School of Biological Sciences , The University of Auckland , 3 Symonds St , Auckland Central , 1142 , New Zealand
| | - Margaret A Brimble
- School of Biological Sciences , The University of Auckland , 3 Symonds St , Auckland Central , 1142 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , 3 Symonds St , Auckland Central , 1142 , New Zealand
| | - David S Larsen
- Department of Chemistry , University of Otago , PO Box 56 , Dunedin 9054 , New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research , PO Box 7060 , Wellington 6242 , New Zealand .
| | - Robert Weinkove
- Malaghan Institute of Medical Research , PO Box 7060 , Wellington 6242 , New Zealand . .,Department of Pathology & Molecular Medicine , University of Otago Wellington , New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research , PO Box 7060 , Wellington 6242 , New Zealand . .,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , 3 Symonds St , Auckland Central , 1142 , New Zealand.,School of Biological Sciences , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute , Victoria University of Wellington , PO Box 33436 , Lower Hutt 5046 , New Zealand .
| |
Collapse
|
88
|
Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry 2015; 21:10616-28. [PMID: 26095198 DOI: 10.1002/chem.201500831] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins.
Collapse
Affiliation(s)
| | - F Javier Cañada
- Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Infectious Disease Programme, Center for Cooperative Research in Biosciences, CIC-bioGUNE, Bizkaia Technology Park, 48160 Derio (Spain). .,Ikerbasque, Basque Foundation for Science, María López de Haro 13, 48009 Bilbao (Spain).
| |
Collapse
|
89
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
90
|
Ananikov VP, Khokhlova EA, Egorov MP, Sakharov AM, Zlotin SG, Kucherov AV, Kustov LM, Gening ML, Nifantiev NE. Organic and hybrid molecular systems. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.03.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
91
|
Affiliation(s)
- Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
92
|
Abstract
Vaccination is one of the key developments in the fight against infectious diseases. It is based on the principle that immunization with pathogen-derived antigens provides protection from the respective infection by inducing an antigen-specific immune response. The discovery by Avery and Heidelberger in the 1920s that capsular polysaccharides (CPS) from Streptococcus pneumoniae are immunoreactive was the starting point of the development of carbohydrate-based vaccines. CPS-specific neutralizing antibodies were found to mediate protection against S. pneumoniae infection. Since the majority of bacterial pathogens carry a dense array of polysaccharides on their surface, the carbohydrate-based vaccine approach was applied to a variety of bacterial strains. The first CPS-based vaccines against S. pneumoniae were licensed in the 1940s. The increasing emergence of antibiotic-resistant bacterial strains since the 1960s boosted the development of carbohydrate-based vaccines and led to the approval of CPS-based vaccines against Neisseria meningitidis, Haemophilus influenzae type b (Hib), and Salmonella typhi. Meanwhile, it was observed that CPS generally do not elicit protective antibody responses in children below the age of 2 years who are at the greatest risk of infection. As a consequence, studies refocused on the conjugation of oligosaccharides to proteins in order to increase vaccine immunogenicity which led to the introduction of the first glycoconjugate vaccine against Hib in 1987. Due to the success of the first glycoconjugate vaccines, higher valent formulations were developed against numerous bacterial infections to achieve broad serotype coverage. Current research also focuses on the development of carbohydrate-based vaccines against other pathogens such as viruses, fungi, protozoan parasites, or helminths.
Collapse
|