51
|
Li H, Yu X, Meng F, Zhao Z, Guan S, Wang L. Ferulic Acid Supplementation Increases Lifespan and Stress Resistance via Insulin/IGF-1 Signaling Pathway in C. elegans. Int J Mol Sci 2021; 22:4279. [PMID: 33924155 PMCID: PMC8074393 DOI: 10.3390/ijms22084279] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/18/2023] Open
Abstract
Ferulic acid (FA) is a naturally-occurring well-known potent antioxidant and free radical scavenger. FA supplementation is an effective strategy to delay aging, but the underlying mechanism remains unknown. In the present study, we examined the effects of FA on lifespan extension and its mechanism of FA in Caenorhabditis elegans (C. elegans). Results suggested that FA increased the lifespan of C. elegans, rather than altering the growth of E. coli OP50. Meanwhile, FA promoted the healthspan of C. elegans by improving locomotion and reducing fat accumulation and polyQ aggregation. FA increased the resistance to heat and oxidative stress through reducing ROS. The upregulating of the expression of the hlh-30, skn-1, and hsf-1 were involved in the FA-mediated lifespan extension. Furthermore, FA treatment had no impact on the lifespan of daf-2, hlh-30, skn-1, and hsf-1 mutants, confirming that insulin/IGF-1 signaling pathway and multiple longevity mechanisms were associated with the longevity mechanism of FA. We further found that mitochondrial signaling pathway was modulation involved in FA-mediated lifespan extension. With the results from RNA-seq results and mutants lifespan assay. These findings contribute to our knowledge of the lifespan extension and underlying mechanism of action of FA in C. elegans.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (H.L.); (S.G.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Xiaoxuan Yu
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Fanwei Meng
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Zhenyu Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Shuwen Guan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (H.L.); (S.G.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (H.L.); (S.G.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| |
Collapse
|
52
|
Rasulova M, Zečić A, Monje Moreno JM, Vandemeulebroucke L, Dhondt I, Braeckman BP. Elevated Trehalose Levels in C. elegans daf-2 Mutants Increase Stress Resistance, Not Lifespan. Metabolites 2021; 11:metabo11020105. [PMID: 33673074 PMCID: PMC7917784 DOI: 10.3390/metabo11020105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
The C. elegans insulin/IGF-1 (insulin-like growth factor 1) signaling mutant daf-2 recapitulates the dauer metabolic signature—a shift towards lipid and carbohydrate accumulation—which may be linked to its longevity and stress resistance phenotypes. Trehalose, a disaccharide of glucose, is highly upregulated in daf‑2 mutants and it has been linked to proteome stabilization and protection against heat, cold, desiccation, and hypoxia. Earlier studies suggested that elevated trehalose levels can explain up to 43% of the lifespan extension observed in daf-2 mutants. Here we demonstrate that trehalose accumulation is responsible for increased osmotolerance, and to some degree thermotolerance, rather than longevity in daf-2 mutants. This indicates that particular stress resistance phenotypes can be uncoupled from longevity.
Collapse
|
53
|
Wu C, Liu J, Ma J, Yan Q, Jiang Z. Neoagarotetraose extends the lifespan of Caenorhabditis elegans through AMPK mediated signaling pathways and activation of autophagy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
54
|
Lipopolysaccharide exposure induces oxidative damage in Caenorhabditis elegans: protective effects of carnosine. BMC Pharmacol Toxicol 2020; 21:85. [PMID: 33272314 PMCID: PMC7713333 DOI: 10.1186/s40360-020-00455-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background The present study was designed to investigate the protective effects and mechanisms of carnosine on lipopolysaccharide (LPS)-induced injury in Caenorhabditis elegans. Methods C. elegans individuals were stimulated for 24 h with LPS (100 μg/mL), with or without carnosine (0.1, 1, 10 mM). The survival rates and behaviors were determined. The activities of superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and levels of malondialdehyde (MDA) and glutathione (GSH) were determined using the respective kits. Reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the differential expression of sod-1, sod-2, sod-3, daf-16, ced-3, ced-9, sek-1, and pmk-1. Western blotting was used to determine the levels of SEK1, p38 mitogen-activated protein kinase (MAPK), cleaved caspase3, and Bcl-2. C. elegans sek-1 (km2) mutants and pmk-1 (km25) mutants were used to elucidate the role of the p38 MAPK signaling pathway. Results Carnosine improved the survival of LPS-treated C. elegans and rescued behavioral phenotypes. It also restrained oxidative stress by decreasing MDA levels and increasing SOD, GR, CAT, and GSH levels. RT-PCR results showed that carnosine treatment of wild-type C. elegans up-regulated the mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, and daf-16. The expression of the anti-apoptosis-related gene ced-9 and apoptosis-related gene ced-3 was reversed by carnosine. In addition, carnosine treatment significantly decreased cleaved caspase3 levels and increased Bcl-2 levels in LPS-treated C. elegans. Apoptosis in the loss-of-function strains of the p38 MAPK signaling pathway was suppressed under LPS stress; however, the apoptotic effects of LPS were blocked in the sek-1 and pmk-1 mutants. The expression levels of sek-1 and pmk-1 mRNAs were up-regulated by LPS and reversed by carnosine. Finally, the expression of p-p38MAPK and SEK1 was significantly increased by LPS, which was reversed by carnosine. Conclusion Carnosine treatment protected against LPS injury by decreasing oxidative stress and inhibiting apoptosis through the p38 MAPK pathway.
Collapse
|
55
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
56
|
Malinska D, Testoni G, Duran J, Brudnicka A, Guinovart JJ, Duszynski J. Hallmarks of oxidative stress in the livers of aged mice with mild glycogen branching enzyme deficiency. Arch Biochem Biophys 2020; 695:108626. [PMID: 33049291 DOI: 10.1016/j.abb.2020.108626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Glycogen branching enzyme (GBE1) introduces branching points in the glycogen molecule during its synthesis. Pathogenic GBE1 gene mutations lead to glycogen storage disease type IV (GSD IV), which is characterized by excessive intracellular accumulation of abnormal, poorly branched glycogen in affected tissues and organs, mostly in the liver. Using heterozygous Gbe1 knock-out mice (Gbe1+/-), we analyzed the effects of moderate GBE1 deficiency on oxidative stress in the liver. The livers of aged Gbe1+/- mice (22 months old) had decreased GBE1 protein levels, which caused a mild decrease in the degree of glycogen branching, but did not affect the tissue glycogen content. GBE1 deficiency was accompanied by increased protein carbonylation and elevated oxidation of the glutathione pool, indicating the existence of oxidative stress. Furthermore, we have observed increased levels of glutathione peroxidase and decreased activity of respiratory complex I in Gbe1+/- livers. Our data indicate that even mild changes in the degree of glycogen branching, which did not lead to excessive glycogen accumulation, may have broader effects on cellular bioenergetics and redox homeostasis. In young animals cellular homeostatic mechanisms are able to counteract those changes, while in aged tissues the changes may lead to increased oxidative stress.
Collapse
Affiliation(s)
- Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland.
| | - Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigation Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Alicja Brudnicka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigation Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), 28029 Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Jerzy Duszynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland
| |
Collapse
|
57
|
Wu D, Chen Y, Wan X, Liu D, Wen Y, Chen X, Zhao C. Structural characterization and hypoglycemic effect of green alga Ulva lactuca oligosaccharide by regulating microRNAs in Caenorhabditis elegans. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
58
|
Wang M, Liu Q, Kang X, Zhu Z, Yang H, Xi X, Zhang X, Du Y, Guo M, Tang D, Wang L. Glycogen Metabolism Impairment via Single Gene Mutation in the glgBXCAP Operon Alters the Survival Rate of Escherichia coli Under Various Environmental Stresses. Front Microbiol 2020; 11:588099. [PMID: 33101261 PMCID: PMC7546213 DOI: 10.3389/fmicb.2020.588099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Glycogen is a highly branched polysaccharide that is widely present in all life domains. It has been identified in many bacterial species and functions as an important energy storage compound. In addition, it plays important roles in bacterial transmission, pathogenicity, and environmental viability. There are five essential enzymes (coding genes) directly involved in bacterial glycogen metabolism, which forms a single operon glgBXCAP with a suboperonic promoter in glgC gene in Escherichia coli. Currently, there is no comparative study of how the disruptions of the five glycogen metabolism genes influence bacterial phenotypes, such as growth rate, biofilm formation, and environmental survival, etc. In this study, we systematically and comparatively studied five E. coli single-gene mutants (ΔglgC, ΔglgA, ΔglgB, ΔglgP, ΔglgX) in terms of glycogen metabolism and explored their phenotype changes with a focus on environmental stress endurance, such as nutrient deprivation, low temperature, desiccation, and oxidation, etc. Biofilm formation in wild-type and mutant strains was also compared. E. coli wild-type stores the highest glycogen content after around 20-h culture while disruption of degradation genes (glgP, glgX) leads to continuous accumulation of glycogen. However, glycogen primary structure was abnormally changed in ΔglgP and ΔglgX. Meanwhile, increased accumulation of glycogen facilitates the growth of E. coli mutants but reduces glucose consumption in liquid culture and vice versa. Glycogen metabolism disruption also significantly and consistently increases biofilm formation in all the mutants. As for environmental stress endurance, glycogen over-accumulating mutants have enhanced starvation viability and reduced desiccation viability while all mutants showed decreased survival rate at low temperature. No consistent results were found for oxidative stress resistance in terms of glycogen metabolism disruptions, though ΔglgA shows highest resistance toward oxidation with unknown mechanisms. In sum, single gene disruptions in glgBXCAP operon significantly influence bacterial growth and glucose consumption during culture. Accumulation and structure of intracellular glycogen were also significantly altered. In addition, we observed significant changes in E. coli environmental viabilities due to the deletions of certain genes in the operon. Further investigations shall be focused on the molecular mechanisms behind these phenotype changes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xingxing Kang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- School of Laboratory Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Xi
- Xuzhou Infectious Disease Hospital, Xuzhou, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
59
|
Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension. PLoS Genet 2020; 16:e1008982. [PMID: 32841230 PMCID: PMC7473531 DOI: 10.1371/journal.pgen.1008982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 09/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
High glucose diets are unhealthy, although the mechanisms by which elevated glucose is harmful to whole animal physiology are not well understood. In Caenorhabditis elegans, high glucose shortens lifespan, while chemically inflicted glucose restriction promotes longevity. We investigated the impact of glucose metabolism on aging quality (maintained locomotory capacity and median lifespan) and found that, in addition to shortening lifespan, excess glucose negatively impacts locomotory healthspan. Conversely, disrupting glucose utilization by knockdown of glycolysis-specific genes results in large mid-age physical improvements via a mechanism that requires the FOXO transcription factor DAF-16. Adult locomotory capacity is extended by glycolysis disruption, but maximum lifespan is not, indicating that limiting glycolysis can increase the proportion of life spent in mobility health. We also considered the largely ignored role of glucose biosynthesis (gluconeogenesis) in adult health. Directed perturbations of gluconeogenic genes that specify single direction enzymatic reactions for glucose synthesis decrease locomotory healthspan, suggesting that gluconeogenesis is needed for healthy aging. Consistent with this idea, overexpression of the central gluconeogenic gene pck-2 (encoding PEPCK) increases health measures via a mechanism that requires DAF-16 to promote pck-2 expression in specific intestinal cells. Dietary restriction also features DAF-16-dependent pck-2 expression in the intestine, and the healthspan benefits conferred by dietary restriction require pck-2. Together, our results describe a new paradigm in which nutritional signals engage gluconeogenesis to influence aging quality via DAF-16. These data underscore the idea that promotion of gluconeogenesis might be an unappreciated goal for healthy aging and could constitute a novel target for pharmacological interventions that counter high glucose consequences, including diabetes. It is known that high levels of dietary sugar can negatively impact human health, but the mechanisms underlying this remain unclear. Here we use the facile Caenorhabditis elegans genetic model to extend understanding of the impact of glucose and glucose metabolism on health and aging. We show that the two opposing glucose metabolism pathways–glycolysis and gluconeogenesis–have dramatically opposite effects on health: glycolytic activity responsible for sugar catabolism is detrimental, but driving gluconeogenesis promotes healthy aging. The powerful longevity regulator DAF-16 is required for the healthspan effects of gluconeogenesis. Our data highlight the intriguing possibility that driving the biosynthetic gluconeogenesis pathway could be a novel strategy for healthspan promotion. Indeed, we find that increasing levels of the core gluconeogenic enzyme PEPCK (PCK-2) in just a few intestinal cells can increase overall health in a DAF-16-dependent manner. Dietary restriction, which can promote health and longevity across species, increases PCK-2 levels in the intestine via DAF-16, and PCK-2 is required for the health benefits seen when calories are limited. Our results define gluconeogenic metabolism as a key component of healthy aging, and suggest that interventions that promote gluconeogenesis may help combat the onset of age-related diseases, including diabetes.
Collapse
|
60
|
Wan QL, Meng X, Fu X, Chen B, Yang J, Yang H, Zhou Q. Intermediate metabolites of the pyrimidine metabolism pathway extend the lifespan of C. elegans through regulating reproductive signals. Aging (Albany NY) 2020; 11:3993-4010. [PMID: 31232697 PMCID: PMC6629003 DOI: 10.18632/aging.102033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
Abstract
The pyrimidine metabolism pathway has important biological functions; it not only maintains appropriate pyrimidine pools but also produces bioactive intermediate metabolites. In a previous study, we identified that the pyrimidine metabolism pathway is associated with aging regulation. However, the molecular mechanism by which the pyrimidine metabolism pathway regulates aging remains unclear. Here, we investigated the longevity effect of pyrimidine intermediates on Caenorhabditis elegans (C. elegans). Our results demonstrated that the supplementation of some pyrimidine intermediates could extend the lifespan of C. elegans. In addition, the RNAi knockdown of essential enzymes involved in pyrimidine metabolism could also significantly affect lifespan. We further investigated the molecular mechanism by which a representative intermediate metabolite, thymine, extends the lifespan of worms and found that thymine-induced longevity required the nuclear receptors DAF-12 and NHR-49, and the transcription factor DAF-16/FOXO. Further pathway analysis revealed that the longevity effect of thymine depended on the inhibition of reproductive signals. Additionally, we found that other pyrimidine intermediates functioned in a manner similar to thymine to prolong lifespan in C. elegans. Taken together, our results revealed that pyrimidine intermediates increased lifespan by inhibiting reproductive signals and subsequently inducing the function of DAF-12, NHR-49 and DAF-16 in C. elegans.
Collapse
Affiliation(s)
- Qin-Li Wan
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiao Meng
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiaodie Fu
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Bohui Chen
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Hengwen Yang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Qinghua Zhou
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
61
|
Effects of titanium dioxide nanoparticles on the myocardium of the adult albino rats and the protective role of β-carotene (histological, immunohistochemical and ultrastructural study). J Mol Histol 2020; 51:485-501. [PMID: 32671652 DOI: 10.1007/s10735-020-09897-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterials. TiO2 NPs are used as a drug carrier and molecular imaging vehicle in the cardiovascular system. We aimed to study TiO2 NPs effects on the ventricular myocardium and evaluate the ameliorative effects of β-carotene (βC). Forty adult albino rats were divided into four groups: negative control group (Ι) received a distilled water. Treated group (II): received 20 mg/kg/day TiO2NPs intraperitoneally. Protected group (III): received 10 mg/kg/day βC orally together with TiO2 NPs in a dose of 20 mg/kg/day intraperitoneally. Positive control group (IV) was given βC orally in a dose of 10 mg/kg/day for 14 days. Sections were stained with hematoxylin & eosin, bromphenol blue (BPB), and periodic acid Schiff (PAS). Anti-desmin & anti-CD45 immunohistochemical staining and electron microscopic examination were performed. Group (II) revealed fragmented myofibrils and inflammatory infiltrations. In group (III), normal cardiomyocytes with less inflammatory infiltrations. The optical density of PAS and BPB staining and anti-desmin showed a very highly significant decrease in the group (II) versus the control groups (P < 0.001). A highly significant increase in the optical density of group (III) versus group (II) (P < 0.01). Also, the area percentage mean values of collagen fibers and anti-CD45 in the group (II) showed a very highly significant increase versus the control groups (P < 0.001). Group (III) revealed a very highly significant decrease in the area percentage versus group (II) (P < 0.001). In conclusion: TiO2 NPs adversely affected the histological structure of the adult rat ventricular myocardium in acute exposure (14 days) and the damage was less with βC.
Collapse
|
62
|
Poisa-Beiro L, Thoma J, Landry J, Sauer S, Yamamoto A, Eckstein V, Romanov N, Raffel S, Hoffmann GF, Bork P, Benes V, Gavin AC, Tanaka M, Ho AD. Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells. Sci Rep 2020; 10:11597. [PMID: 32665666 PMCID: PMC7360735 DOI: 10.1038/s41598-020-68396-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Inspired by recent proteomic data demonstrating the upregulation of carbon and glycogen metabolism in aging human hematopoietic stem and progenitor cells (HPCs, CD34+ cells), this report addresses whether this is caused by elevated glycolysis of the HPCs on a per cell basis, or by a subpopulation that has become more glycolytic. The average glycogen content in individual CD34+ cells from older subjects (> 50 years) was 3.5 times higher and more heterogeneous compared to younger subjects (< 35 years). Representative glycolytic enzyme activities in HPCs confirmed a significant increase in glycolysis in older subjects. The HPCs from older subjects can be fractionated into three distinct subsets with high, intermediate, and low glucose uptake (GU) capacity, while the subset with a high GU capacity could scarcely be detected in younger subjects. Thus, we conclude that upregulated glycolysis in aging HPCs is caused by the expansion of a more glycolytic HPC subset. Since single-cell RNA analysis has also demonstrated that this subpopulation is linked to myeloid differentiation and increased proliferation, isolation and mechanistic characterization of this subpopulation can be utilized to elucidate specific targets for therapeutic interventions to restore the lineage balance of aging HPCs.
Collapse
Affiliation(s)
- Laura Poisa-Beiro
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sven Sauer
- Division of Child Neurology and Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438, Frankfurt am Main, Germany
| | - Simon Raffel
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Peer Bork
- Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anne-Claude Gavin
- Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany. .,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany. .,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
63
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
64
|
Gao C, Kwong CHT, Sun C, Li Z, Lu S, Yang YW, Lee SMY, Wang R. Selective Decoating-Induced Activation of Supramolecularly Coated Toxic Nanoparticles for Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25604-25615. [PMID: 32406668 DOI: 10.1021/acsami.0c05013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In spite of the rapid emergence of numerous nanoparticles (NPs) for biomedical applications, it is often challenging to precisely control, or effectively tame, the bioactivity/toxicity of NPs, thereby exhibiting limited applications in biomedical areas. Herein, we report the construction of hyaluronic acid (HA)-laminated, otherwise toxic methylviologen (MV), NPs via ternary host-guest complexation among cucurbit[8]uril, trans-azobenzene-conjugated HA, and MV-functionalized polylactic acid NPs (MV-NPs). The high, nonspecific toxicity of MV-NPs was effectively shielded (turned off) by HA lamination, as demonstrated in cells, zebrafish, and mouse models. The supramolecular host-guest interaction-mediated HA coating offered several HA-MV-NP modalities, including hyaluronidase locally and photoirradiation remotely, to precisely remove HA lamination on demand, thereby endowing materials with the capability of selective decoating-induced activation (DIA) for applications as a user-friendly herbicide, a selective antibacterial agent, or an anticancer nanomedicine. This work offers facile supramolecular coating and DIA strategies to effectively tame and precisely control the bioactivity and toxicity of functional nanomaterials for diverse applications.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
65
|
Jung Y, Kwon S, Ham S, Lee D, Park HH, Yamaoka Y, Jeong D, Artan M, Altintas O, Park S, Hwang W, Lee Y, Son HG, An SWA, Kim EJE, Seo M, Lee SV. Caenorhabditis elegans Lipin 1 moderates the lifespan-shortening effects of dietary glucose by maintaining ω-6 polyunsaturated fatty acids. Aging Cell 2020; 19:e13150. [PMID: 32475074 PMCID: PMC7294780 DOI: 10.1111/acel.13150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Excessive glucose causes various diseases and decreases lifespan by altering metabolic processes, but underlying mechanisms remain incompletely understood. Here, we show that Lipin 1/LPIN-1, a phosphatidic acid phosphatase and a putative transcriptional coregulator, prevents life-shortening effects of dietary glucose on Caenorhabditis elegans. We found that depletion of lpin-1 decreased overall lipid levels, despite increasing the expression of genes that promote fat synthesis and desaturation, and downregulation of lipolysis. We then showed that knockdown of lpin-1 altered the composition of various fatty acids in the opposite direction of dietary glucose. In particular, the levels of two ω-6 polyunsaturated fatty acids (PUFAs), linoleic acid and arachidonic acid, were increased by knockdown of lpin-1 but decreased by glucose feeding. Importantly, these ω-6 PUFAs attenuated the short lifespan of glucose-fed lpin-1-inhibited animals. Thus, the production of ω-6 PUFAs is crucial for protecting animals from living very short under glucose-rich conditions.
Collapse
Affiliation(s)
- Yoonji Jung
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Sujeong Kwon
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Seokjin Ham
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Dongyeop Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Hae‐Eun H. Park
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Yasuyo Yamaoka
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Dae‐Eun Jeong
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Murat Artan
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| | - Sangsoon Park
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Wooseon Hwang
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Yujin Lee
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Heehwa G. Son
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Seon Woo A. An
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Eun Ji E. Kim
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| | - Mihwa Seo
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Seung‐Jae V. Lee
- Department of Biological Sciences Korea Advanced Institute of Science and Technology Daejeon South Korea
| |
Collapse
|
66
|
Knudsen JR, Li Z, Persson KW, Li J, Henriquez-Olguin C, Jensen TE. Contraction-regulated mTORC1 and protein synthesis: Influence of AMPK and glycogen. J Physiol 2020; 598:2637-2649. [PMID: 32372406 DOI: 10.1113/jp279780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS AMP-activated protein kinase (AMPK)-dependent Raptor Ser792 phosphorylation does not influence mechanistic target of rapamycin complex 1 (mTORC1)-S6K1 activation by intense muscle contraction. α2 -AMPK activity-deficient mice have lower contraction-stimulated protein synthesis. Increasing glycogen activates mTORC1-S6K1. Normalizing muscle glycogen content rescues reduced protein synthesis in AMPK-deficient mice. ABSTRACT The mechansitic target of rapamycin complex 1 (mTORC1)-S6K1 signalling pathway regulates muscle growth-related protein synthesis and is antagonized by AMP-activated protein kinase (AMPK) in multiple cell types. Resistance exercise stimulates skeletal muscle mTORC1-S6K1 and AMPK signalling and post-contraction protein synthesis. Glycogen inhibits AMPK and has been proposed as a pro-anabolic stimulus. The present study aimed to investigate how muscle mTORC1-S6K1 signalling and protein synthesis respond to resistance exercise-mimicking contraction in the absence of AMPK and with glycogen manipulation. Resistance exercise-mimicking unilateral in situ contraction of musculus quadriceps femoris in anaesthetized wild-type and dominant negative α2 AMPK kinase dead transgenic (KD-AMPK) mice, measuring muscle mTORC1 and AMPK signalling immediately (0 h) and 4 h post-contraction, and protein-synthesis at 4 h. Muscle glycogen manipulation by 5 day oral gavage of the glycogen phosphorylase inhibitor CP316819 and sucrose (80 g L-1 ) in the drinking water prior to in situ contraction. The mTORC1-S6K1 and AMPK signalling axes were coactivated immediately post-contraction, despite potent AMPK-dependent Ser792 phosphorylation on the mTORC1 subunit raptor. KD-AMPK muscles displayed normal mTORC1-S6K1 activation at 0 h and 4 h post-exercise, although there was impaired contraction-stimulated protein synthesis 4 h post-contraction. Pharmacological/dietary elevation of muscle glycogen content augmented contraction-stimulated mTORC1-S6K1-S6 signalling and rescued the reduced protein synthesis-response in KD-AMPK to wild-type levels. mTORC-S6K1 signalling is not influenced by α2 -AMPK during or after intense muscle contraction. Elevated glycogen augments mTORC1-S6K1 signalling. α2 -AMPK-deficient KD-AMPK mice display impaired contraction-induced muscle protein synthesis, which can be rescued by normalizing muscle glycogen content.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar W Persson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
67
|
Jayarathne S, Ramalingam L, Edwards H, Vanapalli SA, Moustaid-Moussa N. Tart Cherry Increases Lifespan in Caenorhabditis elegans by Altering Metabolic Signaling Pathways. Nutrients 2020; 12:E1482. [PMID: 32443669 PMCID: PMC7285199 DOI: 10.3390/nu12051482] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Aging and healthspan are determined by both environmental and genetic factors. The insulin/insulin-like growth factor-1(IGF-1) pathway is a key mediator of aging in Caenorhabditis elegans and mammals. Specifically, DAF-2 signaling, an ortholog of human IGF, controls DAF-16/FOXO transcription factor, a master regulator of metabolism and longevity. Moreover, mitochondrial dysfunction and oxidative stress are both linked to aging. We propose that daily supplementation of tart cherry extract (TCE), rich in anthocyanins with antioxidant properties may exert dual benefits for mitochondrial function and oxidative stress, resulting in beneficial effects on aging in C. elegans. We found that TCE supplementation at 6 μg or 12 μg/mL, increased (p < 0.05) the mean lifespan of wild type N2 worms, respectively, when compared to untreated control worms. Consistent with these findings, TCE upregulated (p < 0.05) expression of longevity-related genes such as daf-16 and aak-2 (but not daf-2 or akt-1 genes) and genes related to oxidative stress such as sod-2. Further, we showed that TCE supplementation increased spare respiration in N2 worms. However, TCE did not change the mean lifespan of daf-16 and aak-2 mutant worms. In conclusion, our findings indicate that TCE confers healthspan benefits in C. elegans through enhanced mitochondrial function and reduced oxidative stress, mainly via the DAF-16 pathway.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (H.E.); (S.A.V.)
| | - Siva A. Vanapalli
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (H.E.); (S.A.V.)
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| |
Collapse
|
68
|
Johnson CK, Fernandez-Abascal J, Wang Y, Wang L, Bianchi L. The Na +-K +-ATPase is needed in glia of touch receptors for responses to touch in C. elegans. J Neurophysiol 2020; 123:2064-2074. [PMID: 32292107 PMCID: PMC7444924 DOI: 10.1152/jn.00636.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/15/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Four of the five types of mammalian mechanosensors are composed of nerve endings and accessory cells. In Caenorhabditis elegans we showed that glia support the function of nose touch neurons via the activity of glial Na+ and K+ channels. We show here that a third regulator of Na+ and K+, the Na+-K+-ATPase, is needed in glia of nose touch neurons for touch. Importantly, we show that two Na+-K+-ATPase genes are needed for the function rather than structural integrity and that their ion transport activity is crucial for touch. Finally, when glial Na+-K+-ATPase genes are knocked out, touch can be restored by activation of a third Na+-K+-ATPase. Taken together, these data show the requirement in glia of touch neurons of the function of the Na+-K+-ATPase. These data underscore the importance of the homeostasis of Na+ and K+, most likely in the space surrounding touch neurons, in touch sensation, a function that might be conserved across species.NEW & NOTEWORTHY Increasing evidence supports that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.
Collapse
Affiliation(s)
- Christina K Johnson
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ying Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
69
|
Liu Q, Zhu Z, Wang M, Wang Y, Zhang P, Wang H, Liang M, Li Y, Deng B, Tang D, Gilbert RG, Wang L. Characterization of glycogen molecular structure in the worm Caenorhabditis elegans. Carbohydr Polym 2020; 237:116181. [PMID: 32241425 DOI: 10.1016/j.carbpol.2020.116181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Glycogen, a glucose homopolymer with many glucose chains, is the primary blood-sugar reservoir in many organisms. It comprises β particles (∼20 nm) which can bind together to form large α particles with a rosette morphology. When dimethyl sulfoxide (DMSO) is added to glycogen from diabetic livers, α particles break apart to β particles ('fragility'), possibly due to H-bond disruption; this is not seen in healthy livers. Glycogen α and β particles, and α-particle fragility, are observed in mammals and bacteria, and are examined here in the worm Caenorhabditis elegans, with glycogen from two C. elegans strains, cultured in normal and high-glucose conditions. There were mainly β particles, with some large α particles. Most particles were fragile in DMSO. Growing in a high-glucose medium results in more long chains and more fragility, consistent with previous observations in diabetic animal models. Why high glucose levels facilitate fragility is worthy of further investigation.
Collapse
Affiliation(s)
- Qinghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Yuechen Wang
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Peng Zhang
- School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, 408003, China
| | - Hao Wang
- School of The First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Mengyu Liang
- School of The First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Ying Li
- Department of Clinical Microbiology, School of Medical Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Robert G Gilbert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| |
Collapse
|
70
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
71
|
DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells 2020; 9:cells9010109. [PMID: 31906434 PMCID: PMC7017163 DOI: 10.3390/cells9010109] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16 activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants, reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood. This program includes elevated antioxidant defense and a metabolic shift toward accumulation of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot synthesize, which points toward considerable differences in downstream mechanisms by which IIS regulates aging in distinct groups.
Collapse
|
72
|
Hydralazine targets cAMP-dependent protein kinase leading to sirtuin1/5 activation and lifespan extension in C. elegans. Nat Commun 2019; 10:4905. [PMID: 31659167 PMCID: PMC6817882 DOI: 10.1038/s41467-019-12425-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
Therapeutic activation of mitochondrial function has been suggested as an effective strategy to combat aging. Hydralazine is an FDA-approved drug used in the treatment of hypertension, heart failure and cancer. Hydralazine has been recently shown to promote lifespan in C. elegans, rotifer and yeast through a mechanism which has remained elusive. Here we report cAMP-dependent protein kinase (PKA) as the direct target of hydralazine. Using in vitro and in vivo models, we demonstrate a mechanism in which binding and stabilization of a catalytic subunit of PKA by hydralazine lead to improved mitochondrial function and metabolic homeostasis via the SIRT1/SIRT5 axis, which underlies hydralazine's prolongevity and stress resistance benefits. Hydralazine also protects mitochondrial metabolism and function resulting in restoration of health and lifespan in C. elegans under high glucose and other stress conditions. Our data also provide new insights into the mechanism(s) that explain various other known beneficial effects of hydralazine.
Collapse
|
73
|
Abstract
The field of aging research has progressed significantly over the past decades. Exogenously and endogenously inflicted molecular damage ranging from genotoxic to organellar damage drives the aging process. Repair mechanisms and compensatory responses counteract the detrimental consequences of the various damage types. Here, we discuss recent progress in understanding cellular mechanisms and interconnections between signaling pathways that control longevity. We summarize cell-autonomous and non-cell-autonomous mechanisms that impact the cellular and organismal aging process
Collapse
Affiliation(s)
- Robert Bayersdorf
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
74
|
Xiong LG, Pan LY, Gong YS, Huang JA, Liu ZH. Fuzhuan Tea protects Caenorhabditis elegans from glucose and advanced glycation end products via distinct pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
75
|
Cherkas A, Mondol AS, Rüger J, Urban N, Popp J, Klotz LO, Schie IW. Label-free molecular mapping and assessment of glycogen in C. elegans. Analyst 2019; 144:2367-2374. [PMID: 30793720 DOI: 10.1039/c8an02351d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caenorhabditis elegans is an animal model frequently used in research on the effects of metabolism on organismal aging. This comes with a requirement for methods to investigate metabolite content, turnover, and distribution. The aim of our study was to assess the use of a label-free approach to determine both content and distribution of glycogen, the storage form of glucose, in C. elegans. To this end, we grew C. elegans worms under three different dietary conditions for 24-48 h, representing starvation, regular diet and a high glucose diet, followed by analysis of glycogen content. Glycogen analysis was performed on fixed individual whole worms using Raman micro-spectroscopy (RMS). Results were confirmed by comparison with two conventional assays, i.e. iodine staining of worms and enzymatic determination of glycogen. RMS was further used to assess overall lipid and protein content and distribution in the same samples used for glycogen analysis. Expectedly, both glycogen and lipid content were highest in worms grown on a high glucose diet, lower in regularly fed, and lowest in starved nematodes. In summary, RMS is a method suitable for analysis of glycogen content in C. elegans that has the advantage over established methods that (i) individual worms (rather than hundreds per sample) can be analyzed, (ii) glycogen distribution can be assessed at subcellular resolution and (iii) the distribution patterns of other macromolecules can be assessed from the same worms. Thus, RMS has the potential to be used as a sensitive, accurate, cost-effective and high throughput method to evaluate glycogen stores in C. elegans.
Collapse
Affiliation(s)
- Andriy Cherkas
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
76
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
77
|
Wang L, Davis SS, Borch Jensen M, Rodriguez‐Fernandez IA, Apaydin C, Juhasz G, Gibson BW, Schilling B, Ramanathan A, Ghaemmaghami S, Jasper H. JNK modifies neuronal metabolism to promote proteostasis and longevity. Aging Cell 2019; 18:e12849. [PMID: 30810280 PMCID: PMC6516429 DOI: 10.1111/acel.12849] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants.
Collapse
Affiliation(s)
- Lifen Wang
- The Buck Institute for Research on AgingNovatoCalifornia
- Genentech Inc.South San FranciscoCalifornia
| | | | | | | | - Cagsar Apaydin
- The Buck Institute for Research on AgingNovatoCalifornia
| | - Gabor Juhasz
- Department of Anatomy, Cell and Developmental BiologyEotvos Lorand UniversityBudapestHungary
- Institute of GeneticsBiological Research Center of the Hungarian Academy of SciencesSzegedHungary
| | | | | | | | | | - Heinrich Jasper
- The Buck Institute for Research on AgingNovatoCalifornia
- Genentech Inc.South San FranciscoCalifornia
| |
Collapse
|
78
|
Doering KRS, Taubert S. Epigenetic regulator G9a provides glucose as a sweet key to stress resistance. PLoS Biol 2019; 17:e3000236. [PMID: 31002662 PMCID: PMC6493764 DOI: 10.1371/journal.pbio.3000236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
The ability to adapt to acute and chronic stress is important for organisms to thrive in evolutionary niches and for cells to survive in adverse conditions. The regulatory networks that control stress responses are evolutionarily conserved, and many factors that selectively activate stress responses have been identified. Less well understood are mechanisms that guard against unnecessary induction of cytoprotective factors and that connect stress responses with cellular metabolism to control energy expenditure during stress. The work of Riahi and colleagues represents important progress in this regard because it identifies the histone methyltransferase G9a as a modulator of oxidative stress responses. G9a dampens the expression of antioxidant genes, thus preventing inappropriate energy consumption. Moreover, G9a promotes the well-paced catabolism of storage glycogen and fat during stress. The importance of energy availability during stress is further evidenced by exogenous glucose rescuing the vulnerability of the G9a mutant to oxidative stress. Prior work in multiple model systems has implicated G9a in several other adaptive responses. Therefore, its role in pacing energy consumption and in restraining excessive stress response gene expression under stress may extend to other adaptive responses across species. Stress responses are important for survival and evolutionary adaptation. This Primer explores a study showing that the fruit fly histone methyltransferase G9a (EHMT1/2) couples energy availability to finely tuned regulation of the stress response.
Collapse
Affiliation(s)
- Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
79
|
Yamada T, Habara O, Yoshii Y, Matsushita R, Kubo H, Nojima Y, Nishimura T. The role of glycogen in development and adult fitness in Drosophila. Development 2019; 146:dev.176149. [PMID: 30918052 DOI: 10.1242/dev.176149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The polysaccharide glycogen is an evolutionarily conserved storage form of glucose. However, the physiological significance of glycogen metabolism on homeostatic control throughout the animal life cycle remains incomplete. Here, we describe Drosophila mutants that have defective glycogen metabolism. Null mutants of glycogen synthase (GlyS) and glycogen phosphorylase (GlyP) displayed growth defects and larval lethality, indicating that glycogen plays a crucial role in larval development. Unexpectedly, however, a certain population of larvae developed into adults with normal morphology. Semi-lethality in glycogen mutants during the larval period can be attributed to the presence of circulating sugar trehalose. Homozygous glycogen mutants produced offspring, indicating that glycogen stored in oocytes is dispensable for embryogenesis. GlyS and GlyP mutants showed distinct metabolic defects in the levels of circulating sugars and triglycerides in a life stage-specific manner. In adults, glycogen as an energy reserve is not crucial for physical fitness and lifespan under nourished conditions, but glycogen becomes important under energy stress conditions. This study provides a fundamental understanding of the stage-specific requirements for glycogen metabolism in the fruit fly.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Yoshii
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Ryota Matsushita
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hitomi Kubo
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yosui Nojima
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan .,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
80
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
81
|
The histone methyltransferase G9a regulates tolerance to oxidative stress-induced energy consumption. PLoS Biol 2019; 17:e2006146. [PMID: 30860988 PMCID: PMC6413895 DOI: 10.1371/journal.pbio.2006146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Stress responses are crucial processes that require activation of genetic programs that protect from the stressor. Stress responses are also energy consuming and can thus be deleterious to the organism. The mechanisms coordinating energy consumption during stress response in multicellular organisms are not well understood. Here, we show that loss of the epigenetic regulator G9a in Drosophila causes a shift in the transcriptional and metabolic responses to oxidative stress (OS) that leads to decreased survival time upon feeding the xenobiotic paraquat. During OS exposure, G9a mutants show overactivation of stress response genes, rapid depletion of glycogen, and inability to access lipid energy stores. The OS survival deficiency of G9a mutants can be rescued by a high-sugar diet. Control flies also show improved OS survival when fed a high-sugar diet, suggesting that energy availability is generally a limiting factor for OS tolerance. Directly limiting access to glycogen stores by knocking down glycogen phosphorylase recapitulates the OS-induced survival defects of G9a mutants. We propose that G9a mutants are sensitive to stress because they experience a net reduction in available energy due to (1) rapid glycogen use, (2) an inability to access lipid energy stores, and (3) an overinduced transcriptional response to stress that further exacerbates energy demands. This suggests that G9a acts as a critical regulatory hub between the transcriptional and metabolic responses to OS. Our findings, together with recent studies that established a role for G9a in hypoxia resistance in cancer cell lines, suggest that G9a is of wide importance in controlling the cellular and organismal response to multiple types of stress. Stress responses require proper activation of genetic programs to protect the organism from the stressor. However, the mechanisms controlling energy consumption during stress responses are not well understood. Here, we investigate the role of epigenetic modifier G9a in regulating metabolism and gene transcription during oxidative stress responses in Drosophila. Flies lacking G9a show a shift in the metabolic and transcriptional responses to oxidative stress, leading to decreased stress tolerance despite intact oxidative stress defense mechanisms. During oxidative stress exposure, G9a mutants show overactivation of stress response and many other genes, rapid depletion of glycogen energy stores, and an inability to access lipid energy stores. The increased susceptibility of G9a mutant flies to oxidative stress can be rescued simply by providing extra sugar. This suggests that G9a mutants are sensitive to stress because of reduced access to immediately available energy. Wild-type flies also become more tolerant to oxidative stress when they are fed extra sugar, whereas blocking energy access by genetically reducing a key metabolic enzyme leads to oxidative stress sensitivity. Though the genetic response to oxidative stress has long been appreciated, our study emphasizes the importance of energy metabolism for stress tolerance and identifies the histone methyltransferase G9a as an important player regulating both.
Collapse
|
82
|
Griffin EF, Scopel SE, Stephen CA, Holzhauer AC, Vaji MA, Tuckey RA, Berkowitz LA, Caldwell KA, Caldwell GA. ApoE-associated modulation of neuroprotection from Aβ-mediated neurodegeneration in transgenic Caenorhabditis elegans. Dis Model Mech 2019; 12:dmm.037218. [PMID: 30683808 PMCID: PMC6398492 DOI: 10.1242/dmm.037218] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Allele-specific distinctions in the human apolipoprotein E (APOE) locus represent the best-characterized genetic predictor of Alzheimer's disease (AD) risk. Expression of isoform APOEε2 is associated with reduced risk, while APOEε3 is neutral and APOEε4 carriers exhibit increased susceptibility. Using Caenorhabditis elegans, we generated a novel suite of humanized transgenic nematodes to facilitate neuronal modeling of amyloid-beta peptide (Aβ) co-expression in the context of distinct human APOE alleles. We found that co-expression of human APOEε2 with Aβ attenuated Aβ-induced neurodegeneration, whereas expression of the APOEε4 allele had no effect on neurodegeneration, indicating a loss of neuroprotective capacity. Notably, the APOEε3 allele displayed an intermediate phenotype; it was not neuroprotective in young adults but attenuated neurodegeneration in older animals. There was no functional impact from the three APOE isoforms in the absence of Aβ co-expression. Pharmacological treatment that examined neuroprotective effects of APOE alleles on calcium homeostasis showed allele-specific responses to changes in ER-associated calcium dynamics in the Aβ background. Additionally, Aβ suppressed survival, an effect that was rescued by APOEε2 and APOEε3, but not APOEε4. Expression of the APOE alleles in neurons, independent of Aβ, exerted no impact on survival. Taken together, these results illustrate that C. elegans provides a powerful in vivo platform with which to explore how AD-associated neuronal pathways are modulated by distinct APOE gene products in the context of Aβ-associated neurotoxicity. The significance of both ApoE and Aβ to AD highlights the utility of this new pre-clinical model as a means to dissect their functional inter-relationship.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Edward F Griffin
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Samuel E Scopel
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Cayman A Stephen
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Adam C Holzhauer
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Madeline A Vaji
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Ryan A Tuckey
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA .,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
83
|
Ren J, Sowers JR, Zhang Y. Metabolic Stress, Autophagy, and Cardiovascular Aging: from Pathophysiology to Therapeutics. Trends Endocrinol Metab 2018; 29:699-711. [PMID: 30145108 PMCID: PMC6151141 DOI: 10.1016/j.tem.2018.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Recent advances in health care have improved the management of cardiometabolic disorders, and prolonged lifespan. However, the ever-rising prevalence of metabolic stress related to obesity (insulin resistance, diabetes, hypertension, and dyslipidemia) has greatly challenged geriatric care. The ubiquitin-proteasome system and autophagy-lysosomal pathways represent two major, yet distinct cellular machineries, for degradation and removal of damaged or long-lived proteins and organelles; the function of which declines with aging. To seek new strategies for cardiovascular aging under various metabolic diseases, it is imperative to understand the precise role for metabolic stress and protein quality control, in particular autophagy, in premature cardiovascular aging. Targeting metabolic stress and autophagy may offer exciting new avenues for the management of cardiovascular aging.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - James R Sowers
- Diabetes and Dalton Cardiovascular Center and Harry S. Truman Memorial VA Research, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| | - Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
84
|
Gao C, Huang Q, Lan Q, Feng Y, Tang F, Hoi MPM, Zhang J, Lee SMY, Wang R. A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat Commun 2018; 9:2967. [PMID: 30054483 PMCID: PMC6063903 DOI: 10.1038/s41467-018-05437-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022] Open
Abstract
Paraquat, as one of the most widely used herbicides globally, is highly toxic to humans, and chronic exposure and acute ingestion leads to high morbidity and mortality rates. Here, we report user-friendly, photo-responsive paraquat-loaded supramolecular vesicles, prepared via one-pot self-assembly of amphiphilic, ternary host-guest complexes between cucurbit[8]uril, paraquat, and an azobenzene derivative. In this vesicle formulation, paraquat is only released upon UV or sunlight irradiation that converts the azobenzene derivative from its trans- to its cis- form, which in turn dissociates the ternary host-guest complexations and the vesicles. The cytotoxicity evaluation of this vesicle formulation of paraquat on in vitro cell models, in vivo zebrafish models, and mouse models demonstrates an enhanced safety profile. Additionally, the PQ-loaded vesicles' herbicidal activity against a model of invasive weed is nearly identical to that of free paraquat under natural sunlight. This study provides a safe yet effective herbicide formulation.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qingping Lan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Maggie P M Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
85
|
Alcántar-Fernández J, Navarro RE, Salazar-Martínez AM, Pérez-Andrade ME, Miranda-Ríos J. Caenorhabditis elegans respond to high-glucose diets through a network of stress-responsive transcription factors. PLoS One 2018; 13:e0199888. [PMID: 29990370 PMCID: PMC6039004 DOI: 10.1371/journal.pone.0199888] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
High-glycemic-index diets, as well as a sedentary lifestyle are considered as determinant factors for the development of obesity, type 2 diabetes, and cardiovascular diseases in humans. These diets have been shown to shorten the life span of C. elegans in a manner that is dependent on insulin signaling, but the participation of other signaling pathways have not been addressed. In this study, we have determined that worms fed with high-glucose diets show alterations in glucose content and uptake, triglyceride content, body size, number of eggs laid, egg-laying defects, and signs of oxidative stress and accelerated aging. Additionally, we analyzed the participation of different key regulators of carbohydrate and lipid metabolism, oxidative stress and longevity such as SKN-1/NRF2, HIF-1/HIF1α, SBP-1/SREBP, CRH-1/CREB, CEP-1/p53, and DAF-16/FOXO, in the reduction of lifespan in glucose-fed worms.
Collapse
Affiliation(s)
- Jonathan Alcántar-Fernández
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, Ciudad de México, México
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, Ciudad de México, México
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana María Salazar-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Martha Elva Pérez-Andrade
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, Ciudad de México, México
| | - Juan Miranda-Ríos
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
86
|
Gusarov I, Nudler E. Glycogen at the Crossroad of Stress Resistance, Energy Maintenance, and Pathophysiology of Aging. Bioessays 2018; 40:e1800033. [DOI: 10.1002/bies.201800033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York NY 10016 USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York NY 10016 USA
- Howard Hughes Medical Institute; New York University School of Medicine; New York NY 10016 USA
| |
Collapse
|
87
|
Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:E2791-E2800. [PMID: 29511104 DOI: 10.1073/pnas.1714178115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As Western diets continue to include an ever-increasing amount of sugar, there has been a rise in obesity and type 2 diabetes. To avoid metabolic diseases, the body must maintain proper metabolism, even on a high-sugar diet. In both humans and Caenorhabditis elegans, excess sugar (glucose) is stored as glycogen. Here, we find that animals increased stored glycogen as they aged, whereas even young adult animals had increased stored glycogen on a high-sugar diet. Decreasing the amount of glycogen storage by modulating the C. elegans glycogen synthase, gsy-1, a key enzyme in glycogen synthesis, can extend lifespan, prolong healthspan, and limit the detrimental effects of a high-sugar diet. Importantly, limiting glycogen storage leads to a metabolic shift whereby glucose is now stored as trehalose. Two additional means to increase trehalose show similar longevity extension. Increased trehalose is entirely dependent on a functional FOXO transcription factor DAF-16 and autophagy to promote lifespan and healthspan extension. Our results reveal that when glucose is stored as glycogen, it is detrimental, whereas, when stored as trehalose, animals live a longer, healthier life if DAF-16 is functional. Taken together, these results demonstrate that trehalose modulation may be an avenue for combatting high-sugar-diet pathology.
Collapse
|
88
|
Post S, Karashchuk G, Wade JD, Sajid W, De Meyts P, Tatar M. Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Front Endocrinol (Lausanne) 2018; 9:245. [PMID: 29892262 PMCID: PMC5985746 DOI: 10.3389/fendo.2018.00245] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Insulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. Drosophila melanogaster IIS is propagated by eight Drosophila insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single Drosophila insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes. We determined the distinct cell signaling effects of DILP2 and DILP5 stimulation upon Drosophila S2 cells. DILP2 and DILP5 induced similar transcriptional patterns but differed in signal transduction kinetics. DILP5 induced sustained phosphorylation of Akt, while DILP2 produced acute, transient Akt phosphorylation. Accordingly, we used phosphoproteomic analysis to identify distinct patterns of non-genomic signaling induced by DILP2 and DILP5. Across all treatments and replicates, 5,250 unique phosphopeptides were identified, representing 1,575 proteins. Among these peptides, DILP2, but not DILP5, dephosphorylated Ser15 on glycogen phosphorylase (GlyP), and DILP2, but not DILP5, was subsequently shown to repress enzymatic GlyP activity in S2 cells. The functional consequences of this difference were evaluated in adult Drosophila dilp mutants: dilp2 null adults have elevated GlyP enzymatic activity relative to wild type, while dilp5 mutants have reduced GlyP activity. In flies with intact insulin genes, GlyP overexpression extended lifespan in a Ser15 phosphorylation-dependent manner. In dilp2 mutants, that are otherwise long-lived, longevity was repressed by expression of phosphonull GlyP that is enzymatically inactive. Overall, DILP2, unlike DILP5, signals to affect longevity in part through its control of phosphorylation to deactivate glycogen phosphorylase, a central modulator of glycogen storage and gluconeogenesis.
Collapse
Affiliation(s)
- Stephanie Post
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| | - Galina Karashchuk
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | | | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, Brussels, Belgium
- Department of Stem Cell Research Novo Nordisk A/S, Måløv, Denmark
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| |
Collapse
|
89
|
Sauzéat L, Laurençon A, Balter V. Metallome evolution in ageing C. elegans and a copper stable isotope perspective. Metallomics 2018. [DOI: 10.1039/c7mt00318h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ageing is accompanied by important chemical deregulations that could serve as biomarkers of premature ageing conditions.
Collapse
Affiliation(s)
| | - Anne Laurençon
- UMR 5534
- Institut de Génomique Fonctionelle de Lyon (IGFL)
- CNRS
- Université Claude Bernard (Lyon 1)
- France
| | | |
Collapse
|