51
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
52
|
Chioccarelli T, Pierantoni R, Manfrevola F, Porreca V, Fasano S, Chianese R, Cobellis G. Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. J Clin Med 2020; 9:jcm9030640. [PMID: 32121034 PMCID: PMC7141194 DOI: 10.3390/jcm9030640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.
Collapse
|
53
|
Du Z, Zheng H, Kawamura YK, Zhang K, Gassler J, Powell S, Xu Q, Lin Z, Xu K, Zhou Q, Ozonov EA, Véron N, Huang B, Li L, Yu G, Liu L, Au Yeung WK, Wang P, Chang L, Wang Q, He A, Sun Y, Na J, Sun Q, Sasaki H, Tachibana K, Peters AHFM, Xie W. Polycomb Group Proteins Regulate Chromatin Architecture in Mouse Oocytes and Early Embryos. Mol Cell 2020; 77:825-839.e7. [PMID: 31837995 DOI: 10.1016/j.molcel.2019.11.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
Abstract
In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zheng
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Nathalie Véron
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Bo Huang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Peizhe Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria; Department of Totipotency, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; Faculty of Sciences, University of Basel, Basel 4056, Switzerland.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
54
|
Johansen S, Gjerstorff MF. Interaction between Polycomb and SSX Proteins in Pericentromeric Heterochromatin Function and Its Implication in Cancer. Cells 2020; 9:cells9010226. [PMID: 31963307 PMCID: PMC7016822 DOI: 10.3390/cells9010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The stability of pericentromeric heterochromatin is maintained by repressive epigenetic control mechanisms, and failure to maintain this stability may cause severe diseases such as immune deficiency and cancer. Thus, deeper insight into the epigenetic regulation and deregulation of pericentromeric heterochromatin is of high priority. We and others have recently demonstrated that pericentromeric heterochromatin domains are often epigenetically reprogrammed by Polycomb proteins in premalignant and malignant cells to form large subnuclear structures known as Polycomb bodies. This may affect the regulation and stability of pericentromeric heterochromatin domains and/or the distribution of Polycomb factors to support tumorigeneses. Importantly, Polycomb bodies in cancer cells may be targeted by the cancer/testis-related SSX proteins to cause derepression and genomic instability of pericentromeric heterochromatin. This review will discuss the interplay between SSX and Polycomb factors in the repression and stability of pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-21261563
| |
Collapse
|
55
|
Traynor S, Møllegaard NE, Jørgensen MG, Brückmann NH, Pedersen CB, Terp MG, Johansen S, Dejardin J, Ditzel HJ, Gjerstorff MF. Remodeling and destabilization of chromosome 1 pericentromeric heterochromatin by SSX proteins. Nucleic Acids Res 2020; 47:6668-6684. [PMID: 31114908 PMCID: PMC6648343 DOI: 10.1093/nar/gkz396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
Rearrangement of the 1q12 pericentromeric heterochromatin and subsequent amplification of the 1q arm is commonly associated with cancer development and progression and may result from epigenetic deregulation. In many premalignant and malignant cells, loss of 1q12 satellite DNA methylation causes the deposition of polycomb factors and formation of large polycomb aggregates referred to as polycomb bodies. Here, we show that SSX proteins can destabilize 1q12 pericentromeric heterochromatin in melanoma cells when it is present in the context of polycomb bodies. We found that SSX proteins deplete polycomb bodies and promote the unfolding and derepression of 1q12 heterochromatin during replication. This further leads to segregation abnormalities during anaphase and generation of micronuclei. The structural rearrangement of 1q12 pericentromeric heterochromatin triggered by SSX2 is associated with loss of polycomb factors, but is not mediated by diminished polycomb repression. Instead, our studies suggest a direct effect of SSX proteins facilitated though a DNA/chromatin binding, zinc finger-like domain and a KRAB-like domain that may recruit chromatin modifiers or activate satellite transcription. Our results demonstrate a novel mechanism for generation of 1q12-associated genomic instability in cancer cells.
Collapse
Affiliation(s)
- Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Niels Erik Møllegaard
- Department of Cellular and Molecular Medicine, University of Copenhagen DK-2200, Denmark
| | - Mikkel G Jørgensen
- Department of Biochemistry and Molecular Biology, Institute for Natural Sciences, University of Southern Denmark, Campusvej 55, DK-5000 Odense, Denmark
| | - Nadine H Brückmann
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Jerome Dejardin
- Institute of Human Genetics CNRS-Université de Montpellier UMR 9002.141 rue de la Cardonille, 34000 Montpellier, France
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark.,Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Sdr. Boulevard 29, DK-5000, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark.,Department of Oncology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Sdr. Boulevard 29, DK-5000, Denmark
| |
Collapse
|
56
|
Guthmann M, Burton A, Torres‐Padilla M. Expression and phase separation potential of heterochromatin proteins during early mouse development. EMBO Rep 2019; 20:e47952. [PMID: 31701657 PMCID: PMC6893284 DOI: 10.15252/embr.201947952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
In most eukaryotes, constitutive heterochromatin is associated with H3K9me3 and HP1α. The latter has been shown to play a role in heterochromatin formation through liquid-liquid phase separation. However, many other proteins are known to regulate and/or interact with constitutive heterochromatic regions in several species. We postulate that some of these heterochromatic proteins may play a role in the regulation of heterochromatin formation by liquid-liquid phase separation. Indeed, an analysis of the constitutive heterochromatin proteome shows that proteins associated with constitutive heterochromatin are significantly more disordered than a random set or a full nucleome set of proteins. Interestingly, their expression begins low and increases during preimplantation development. These observations suggest that the preimplantation embryo is a useful model to address the potential role for phase separation in heterochromatin formation, anticipating exciting research in the years to come.
Collapse
Affiliation(s)
- Manuel Guthmann
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
57
|
Fusco S, Spinelli M, Cocco S, Ripoli C, Mastrodonato A, Natale F, Rinaudo M, Livrizzi G, Grassi C. Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory via gametic mechanisms. Nat Commun 2019; 10:4799. [PMID: 31641124 PMCID: PMC6805915 DOI: 10.1038/s41467-019-12793-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Metabolic diseases harm brain health and cognitive functions, but whether maternal metabolic unbalance may affect brain plasticity of next generations is still unclear. Here, we demonstrate that maternal high fat diet (HFD)-dependent insulin resistance multigenerationally impairs synaptic plasticity, learning and memory. HFD downregulates BDNF and insulin signaling in maternal tissues and epigenetically inhibits BDNF expression in both germline and hippocampus of progeny. Notably, exposure of the HFD offspring to novel enriched environment restores Bdnf epigenetic activation in the male germline and counteracts the transmission of cognitive impairment to the next generations. BDNF administration to HFD-fed mothers or preserved insulin sensitivity in HFD-fed p66Shc KO mice also prevents the intergenerational transmission of brain damage to the progeny. Collectively, our data suggest that maternal diet multigenerationally impacts on descendants' brain health via gametic mechanisms susceptible to lifestyle.
Collapse
Affiliation(s)
- Salvatore Fusco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy. .,Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
| | - Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sara Cocco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.,Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alessia Mastrodonato
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Francesca Natale
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Rinaudo
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giulia Livrizzi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy. .,Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
| |
Collapse
|
58
|
Abstract
The idea that epigenetic determinants such as DNA methylation, histone modifications or RNA can be passed to the next generation through meiotic products (gametes) is long standing. Such meiotic epigenetic inheritance (MEI) is fairly common in yeast, plants and nematodes, but its extent in mammals has been much debated. Advances in genomics techniques are now driving the profiling of germline and zygotic epigenomes, thereby improving our understanding of MEI in diverse species. Whereas the role of DNA methylation in MEI remains unclear, insights from genome-wide studies suggest that a previously underappreciated fraction of mammalian genomes bypass epigenetic reprogramming during development. Notably, intergenerational inheritance of histone modifications, tRNA fragments and microRNAs can affect gene regulation in the offspring. It is important to note that MEI in mammals rarely constitutes transgenerational epigenetic inheritance (TEI), which spans multiple generations. In this Review, we discuss the examples of MEI in mammals, including mammalian epigenome reprogramming, and the molecular mechanisms of MEI in vertebrates in general. We also discuss the implications of the inheritance of histone modifications and small RNA for embryogenesis in metazoans, with a particular focus on insights gained from genome-wide studies.
Collapse
|
59
|
Tuscher JJ, Day JJ. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol Dis 2019; 132:104591. [PMID: 31470104 DOI: 10.1016/j.nbd.2019.104591] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Modifications to DNA and histone proteins serve a critical regulatory role in the developing and adult brain, and over a decade of research has established the importance of these "epigenetic" modifications in a wide variety of brain functions across the lifespan. Epigenetic patterns orchestrate gene expression programs that establish the phenotypic diversity of various cellular classes in the central nervous system, play a key role in experience-dependent gene regulation in the adult brain, and are commonly implicated in neurodevelopmental, psychiatric, and neurodegenerative disease states. In addition to these established roles, emerging evidence indicates that epigenetic information can potentially be transmitted to offspring, giving rise to inter- and trans-generational epigenetic inheritance phenotypes. However, our understanding of the cellular events that participate in this information transfer is incomplete, and the ability of this transfer to overcome complete epigenetic reprogramming during embryonic development is highly controversial. This review explores the existing literature on multigenerational epigenetic mechanisms in the central nervous system. First, we focus on the cellular mechanisms that may perpetuate or counteract this type of information transfer, and consider how epigenetic modification in germline and somatic cells regulate important aspects of cellular and organismal development. Next, we review the potential phenotypes resulting from ancestral experiences that impact gene regulatory modifications, including how these changes may give rise to unique metabolic phenotypes. Finally, we discuss several caveats and technical limitations that influence multigenerational epigenetic effects. We argue that studies reporting multigenerational epigenetic changes impacting the central nervous system must be interpreted with caution, and provide suggestions for how epigenetic information transfer can be mechanistically disentangled from genetic and environmental influences on brain function.
Collapse
Affiliation(s)
- Jennifer J Tuscher
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
60
|
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod 2019; 99:160-174. [PMID: 29462259 DOI: 10.1093/biolre/ioy013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Collapse
Affiliation(s)
- Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Anatomy, Physiology, Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
61
|
Frapporti A, Miró Pina C, Arnaiz O, Holoch D, Kawaguchi T, Humbert A, Eleftheriou E, Lombard B, Loew D, Sperling L, Guitot K, Margueron R, Duharcourt S. The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in Paramecium. Nat Commun 2019; 10:2710. [PMID: 31221974 PMCID: PMC6586856 DOI: 10.1038/s41467-019-10648-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/23/2019] [Indexed: 01/11/2023] Open
Abstract
In animals and plants, the H3K9me3 and H3K27me3 chromatin silencing marks are deposited by different protein machineries. H3K9me3 is catalyzed by the SET-domain SU(VAR)3-9 enzymes, while H3K27me3 is catalyzed by the SET-domain Enhancer-of-zeste enzymes, which are the catalytic subunits of Polycomb Repressive Complex 2 (PRC2). Here, we show that the Enhancer-of-zeste-like protein Ezl1 from the unicellular eukaryote Paramecium tetraurelia, which exhibits significant sequence and structural similarities with human EZH2, catalyzes methylation of histone H3 in vitro and in vivo with an apparent specificity toward K9 and K27. We find that H3K9me3 and H3K27me3 co-occur at multiple families of transposable elements in an Ezl1-dependent manner. We demonstrate that loss of these histone marks results in global transcriptional hyperactivation of transposable elements with modest effects on protein-coding gene expression. Our study suggests that although often considered functionally distinct, H3K9me3 and H3K27me3 may share a common evolutionary history as well as a common ancestral role in silencing transposable elements.
Collapse
Affiliation(s)
- Andrea Frapporti
- Institut Jacques Monod, Université de Paris, CNRS, 75013, Paris, France
- The Gurdon Institute, University of Cambridge, Cambridge, CB21QN, UK
| | - Caridad Miró Pina
- Institut Jacques Monod, Université de Paris, CNRS, 75013, Paris, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Daniel Holoch
- Institut Curie, Paris Sciences et Lettres Research University, INSERM, U934, CNRS, UMR3215, Paris, 75005, France
| | | | - Adeline Humbert
- Institut Jacques Monod, Université de Paris, CNRS, 75013, Paris, France
| | - Evangelia Eleftheriou
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Bérangère Lombard
- Institut Curie, Paris Sciences et Lettres Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Cedex 05 Paris, France
| | - Damarys Loew
- Institut Curie, Paris Sciences et Lettres Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Cedex 05 Paris, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Karine Guitot
- Sorbonne Université, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres Research University, INSERM, U934, CNRS, UMR3215, Paris, 75005, France
| | - Sandra Duharcourt
- Institut Jacques Monod, Université de Paris, CNRS, 75013, Paris, France.
| |
Collapse
|
62
|
Yandım C, Karakülah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics 2019; 20:439. [PMID: 31151386 PMCID: PMC6545021 DOI: 10.1186/s12864-019-5803-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The last decade witnessed a number of genome-wide studies on human pre-implantation, which mostly focused on genes and provided only limited information on repeats, excluding the satellites. Considering the fact that repeats constitute a large portion of our genome with reported links to human physiology and disease, a thorough understanding of their spatiotemporal regulation during human embryogenesis will give invaluable clues on chromatin dynamics across time and space. Therefore, we performed a detailed expression analysis of all repetitive DNA elements including the satellites across stages of human pre-implantation and embryonic stem cells. RESULTS We uncovered stage-specific expressions of more than a thousand repeat elements whose expressions fluctuated with a mild global decrease at the blastocyst stage. Most satellites were highly expressed at the 4-cell level and expressions of ACRO1 and D20S16 specifically peaked at this point. Whereas all members of the SVA elements were highly upregulated at 8-cell and morula stages, other transposons and small RNA repeats exhibited a high level of variation among their specific subtypes. Our repeat enrichment analysis in gene promoters coupled with expression correlations highlighted potential links between repeat expressions and nearby genes, emphasising mostly 8-cell and morula specific genes together with SVA_D, LTR5_Hs and LTR70 transposons. The DNA methylation analysis further complemented the understanding on the mechanistic aspects of the repeatome's regulation per se and revealed critical stages where DNA methylation levels are negatively correlating with repeat expression. CONCLUSIONS Taken together, our study shows that specific expression patterns are not exclusive to genes and long non-coding RNAs but the repeatome also exhibits an intriguingly dynamic pattern at the global scale. Repeats identified in this study; particularly satellites, which were historically associated with heterochromatin, and those with potential links to nearby gene expression provide valuable insights into the understanding of key events in genomic regulation and warrant further research in epigenetics, genomics and developmental biology.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey.,Department of Genetics and Bioengineering, İzmir University of Economics, Faculty of Engineering, 35330, Balçova, İzmir, Turkey.,Department of Medicine, Division of Brain Sciences, Hammersmith Hospital, Imperial College London, Faculty of Medicine, W12 0NN, London, UK
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), 35340, İnciraltı, İzmir, Turkey. .,İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
63
|
Nicetto D, Zaret KS. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev 2019; 55:1-10. [PMID: 31103921 DOI: 10.1016/j.gde.2019.04.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023]
Abstract
Compacted, transcriptionally repressed chromatin, referred to as heterochromatin, represents a major fraction of the higher eukaryotic genome and exerts pivotal functions of silencing repetitive elements, maintenance of genome stability, and control of gene expression. Among the different histone post-translational modifications (PTMs) associated with heterochromatin, tri-methylation of lysine 9 on histone H3 (H3K9me3) is gaining increased attention. Besides its known role in repressing repetitive elements and non-coding portions of the genome, recent observations indicate H3K9me3 as an important player in silencing lineage-inappropriate genes. The ability of H3K9me3 to influence cell identity challenges the original concept of H3K9me3-marked heterochromatin as mainly a constitutive type of chromatin and provides a further level of understanding of how to modulate cell fate control. Here, we summarize the role of H3K9me3 marked heterochromatin and its dynamics in establishing and maintaining cellular identity.
Collapse
Affiliation(s)
- Dario Nicetto
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Dept. Cell and Developmental, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
64
|
Abstract
Genome-wide DNA "demethylation" in the zygote involves global TET3-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in the paternal pronucleus. Asymmetrically enriched histone H3K9 methylation in the maternal pronucleus was suggested to protect the underlying DNA from 5mC conversion. We hypothesized that an H3K9 methyltransferase enzyme, either EHMT2 or SETDB1, must be expressed in the oocyte to specify the asymmetry of 5mC oxidation. To test these possibilities, we genetically deleted the catalytic domain of either EHMT2 or SETDB1 in growing oocytes and achieved significant reduction of global H3K9me2 or H3K9me3 levels, respectively, in the maternal pronucleus. We found that the asymmetry of global 5mC oxidation was significantly reduced in the zygotes that carried maternal mutation of either the Ehmt2 or Setdb1 genes. Whereas the levels of 5hmC, 5fC, and 5caC increased, 5mC levels decreased in the mutant maternal pronuclei. H3K9me3-rich rings around the nucleolar-like bodies retained 5mC in the maternal mutant zygotes, suggesting that the pericentromeric heterochromatin regions are protected from DNA demethylation independently of EHMT2 and SETDB1. We observed that the maternal pronuclei expanded in size in the mutant zygotes and contained a significantly increased number of nucleolar-like bodies compared with normal zygotes. These findings suggest that oocyte-derived EHMT2 and SETDB1 enzymes have roles in regulating 5mC oxidation and in the structural aspects of zygote development.
Collapse
|
65
|
Genome activation and architecture in the early mammalian embryo. Curr Opin Genet Dev 2019; 55:52-58. [DOI: 10.1016/j.gde.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 01/09/2023]
|
66
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
67
|
Wang H, Paulson EE, Ma L, Ross PJ, Schultz RM. Paternal genome rescues mouse preimplantation embryo development in the absence of maternally-recruited EZH2 activity. Epigenetics 2019; 14:94-108. [PMID: 30661456 PMCID: PMC6380398 DOI: 10.1080/15592294.2019.1570771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a component of the PRC2 complex, trimethylates H3K27, a transcriptionally repressive histone mark. EZH2 is encoded by a dormant maternal mRNA and inhibiting the maturation-associated increase in EZH2 activity using either a combined siRNA/morpholino approach or a small molecule inhibitor (GSK343) inhibits development of diploidized parthenotes to the blastocyst stage but not inseminated eggs, with longer GSK343 treatments leading to progressively greater inhibition of development. GSK343 treatment also results in a decrease in H3K27me3 and a decrease in global transcription in 2-cell parthenotes but not 2-cell embryos derived from inseminated eggs. RNA-sequencing revealed the relative abundance of ~100 zygotically-expressed transcripts is decreased by GSK treatment in parthenotes, but not in embryos, with many of the affected transcripts encoding proteins involved in transcription. A previous study found that parthenotes deficient in maternal Ezh2 readily develop to the blastocyst stage. To reconcile these differences we propose that the H3K27me3 state present in the zygote needs to be faithfully propagated following DNA replication in at least one pronucleus, otherwise development is compromised.
Collapse
Affiliation(s)
- Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, CA,USA
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Erika E Paulson
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, China
| | - Pablo J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Richard M Schultz
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis, Davis, CA,USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
68
|
Li B, Zheng Y, Yang L. The Oncogenic Potential of SUV39H2: A Comprehensive and Perspective View. J Cancer 2019; 10:721-729. [PMID: 30719171 PMCID: PMC6360419 DOI: 10.7150/jca.28254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications at the histone level have attracted significant attention because of their roles in tumorigenesis. Suppressor of variegation 3-9 homolog 2 (SUV39H2, also known as KMT1B) is a member of the SUV39 subfamily of lysine methyltransferases (KMTs) that plays a significant role in histone H3-K9 di-/tri-methylation, transcriptional regulation and cell cycle. Overexpressions of SUV39H2 at gene, mRNA and protein levels are known to be associated with a range of cancers: leukemia, lymphomas, lung cancer, breast cancer, colorectal cancer, gastric cancer, hepatocellular cancer and so on. Accumulating evidence indicates that SUV39H2 acts as an oncogene and contributes to the initiation and progression of cancers. It could, therefore, be a promising target for anti-cancer treatment. In this review, we focus on the dysregulation of SUV39H2 in cancers, including its clinical prognostic predictor role, molecular mechanism involved in cancer occurrence and development, relevant inhibitors against cancer, and its epigenetic modification interaction with immunotherapy. A better understanding of the SUV39H2 will be beneficial to the development of molecular-targeted therapies in cancer.
Collapse
Affiliation(s)
- Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
69
|
Zheng Y, Li B, Wang J, Xiong Y, Wang K, Qi Y, Sun H, Wu L, Yang L. Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin Epigenetics 2018; 10:129. [PMID: 30348215 PMCID: PMC6198372 DOI: 10.1186/s13148-018-0562-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SUV39H2 (suppressor of variegation 3-9 homolog 2), which introduces H3K9me3 to induce transcriptional repression, has been reported to play critical roles in heterochromatin maintenance, DNA repair, and recently, carcinogenesis. Dysregulation of SUV39H2 expression has been observed in several types of cancers. However, neither the genomic landscape nor the clinical significance of SUV39H2 in lung adenocarcinoma has been probed comprehensively. METHODS In this research, we conducted bioinformatics analysis to primarily sort out potential genes with dysregulated expressions. After we identified SUV39H2, RNA-seq was performed for a high-throughput evaluation of altered gene expression and dysregulated pathways, followed by a series of validations via RT-qPCR and bioinformatics analyses. Finally, to assess the potential oncogenic role of SUV39H2, we employed the invasion assay and clone formation assay in vitro and tumorigenesis assays in mouse models in vivo. RESULTS Through bioinformatics analyses, we found that SUV39H2 underwent a severe upregulation in the tumor tissue, which was also confirmed in the surgically removed tissues. Overexpression of SUV39H2 was mainly associated with its amplification and with shorter patient overall survival. Then, the RNA-seq demonstrated that TPM4, STOM, and OPTN might be affected by the loss of function of SUV39H2. Finally, in vitro and in vivo experiments with SUV39H2 knockdown all suggested a potential role of SUV39H2 in both carcinogenesis and metastasis. CONCLUSIONS SUV39H2 expression was elevated in lung adenocarcinoma. TPM4, OPTN, and STOM were potentially regulated by SUV39H2. SUV39H2 might be a potential oncogene in lung adenocarcinoma, mediating tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yanjuan Xiong
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Qi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Houfang Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
70
|
Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, Roberti MJ, Hufnagel L, Hiiragi T, Ellenberg J. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 2018; 361:189-193. [PMID: 30002254 DOI: 10.1126/science.aar7462] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/08/2018] [Indexed: 12/24/2022]
Abstract
At the beginning of mammalian life, the genetic material from each parent meets when the fertilized egg divides. It was previously thought that a single microtubule spindle is responsible for spatially combining the two genomes and then segregating them to create the two-cell embryo. We used light-sheet microscopy to show that two bipolar spindles form in the zygote and then independently congress the maternal and paternal genomes. These two spindles aligned their poles before anaphase but kept the parental genomes apart during the first cleavage. This spindle assembly mechanism provides a potential rationale for erroneous divisions into more than two blastomeric nuclei observed in mammalian zygotes and reveals the mechanism behind the observation that parental genomes occupy separate nuclear compartments in the two-cell embryo.
Collapse
Affiliation(s)
- Judith Reichmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Manuel Eguren
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Antonio Z Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - M Julia Roberti
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
71
|
Maezawa S, Hasegawa K, Alavattam KG, Funakoshi M, Sato T, Barski A, Namekawa SH. SCML2 promotes heterochromatin organization in late spermatogenesis. J Cell Sci 2018; 131:jcs217125. [PMID: 30097555 PMCID: PMC6140322 DOI: 10.1242/jcs.217125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.
Collapse
Affiliation(s)
- So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazuteru Hasegawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| | - Mayuka Funakoshi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Taiga Sato
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA
| |
Collapse
|
72
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
73
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
74
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
75
|
Ooga M, Funaya S, Aoki F, Wakayama T. Zygotic Fluorescence Recovery After Photo-bleaching Analysis for Chromatin Looseness That Allows Full-term Development. J Vis Exp 2018. [PMID: 29985353 DOI: 10.3791/57068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Live imaging is a powerful tool that allows for the analysis of molecular events during ontogenesis. Recently, chromatin looseness or openness has been shown to be involved in the cellular differentiation potential of pluripotent embryonic stem cells. It was previously reported that compared with embryonic stem cells, zygotes harbor an extremely loosened chromatin structure, suggesting its association with their totipotency. However, until now, it has not been addressed whether this extremely loosened/open chromatin structure is important for embryonic developmental potential. In the present study, to examine this hypothesis, an experimental system in which zygotes that were analyzed by fluorescence recovery after photo-bleaching can develop to term without any significant damage was developed. Importantly, this experimental system needs only a thermos-plate heater in addition to a confocal laser scanning microscope. The findings of this study suggest that fluorescence recovery after photo-bleaching analysis (FRAP) analysis can be used to investigate whether the molecular events in zygotic chromatin are important for full-term development.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Faculty of Life and Environmental Sciences, Department of Biotechnology, University of Yamanashi; Advanced Biotechnology Center, University of Yamanashi;
| | - Satoshi Funaya
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, University of Tokyo
| | - Fugaku Aoki
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, University of Tokyo
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, Department of Biotechnology, University of Yamanashi; Advanced Biotechnology Center, University of Yamanashi
| |
Collapse
|
76
|
Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, Shirahige K, Okada Y. Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep 2018; 23:3920-3932. [DOI: 10.1016/j.celrep.2018.05.094] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022] Open
|
77
|
Albert M, Huttner WB. Epigenetic and Transcriptional Pre-patterning-An Emerging Theme in Cortical Neurogenesis. Front Neurosci 2018; 12:359. [PMID: 29896084 PMCID: PMC5986960 DOI: 10.3389/fnins.2018.00359] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is the process through which neural stem and progenitor cells generate neurons. During the development of the mouse neocortex, stem and progenitor cells sequentially give rise to neurons destined to different cortical layers and then switch to gliogenesis resulting in the generation of astrocytes and oligodendrocytes. Precise spatial and temporal regulation of neural progenitor differentiation is key for the proper formation of the complex structure of the neocortex. Dynamic changes in gene expression underlie the coordinated differentiation program, which enables the cells to generate the RNAs and proteins required at different stages of neurogenesis and across different cell types. Here, we review the contribution of epigenetic mechanisms, with a focus on Polycomb proteins, to the regulation of gene expression programs during mouse neocortical development. Moreover, we discuss the recent emerging concept of epigenetic and transcriptional pre-patterning in neocortical progenitor cells as well as post-transcriptional mechanisms for the fine-tuning of mRNA abundance.
Collapse
Affiliation(s)
- Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
78
|
O'Neill MJ, O'Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol Ecol 2018; 27:3783-3798. [PMID: 29624756 DOI: 10.1111/mec.14577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.
Collapse
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
79
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
80
|
Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 2018; 20:620-631. [DOI: 10.1038/s41556-018-0093-4] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/21/2018] [Indexed: 12/24/2022]
|
81
|
Bonnet-Garnier A, Kiêu K, Aguirre-Lavin T, Tar K, Flores P, Liu Z, Peynot N, Chebrout M, Dinnyés A, Duranthon V, Beaujean N. Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma 2018; 127:387-403. [PMID: 29666907 PMCID: PMC6096579 DOI: 10.1007/s00412-018-0671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 01/29/2023]
Abstract
Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.
Collapse
Affiliation(s)
| | - Kiên Kiêu
- UR341 MaIAGE, INRA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | | | - Krisztina Tar
- Present Address: Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- BioTalentum Ltd., Aulich Lajos str. 26, Gödöllő, 2100 Hungary
| | - Pierre Flores
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Zichuan Liu
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
- Present Address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos str. 26, Gödöllő, 2100 Hungary
| | | | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
- Present Address: Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRA, Stem Cell and Brain Research Institute U1208, USC1361, 69500 Bron, France
| |
Collapse
|
82
|
Streubel G, Watson A, Jammula SG, Scelfo A, Fitzpatrick DJ, Oliviero G, McCole R, Conway E, Glancy E, Negri GL, Dillon E, Wynne K, Pasini D, Krogan NJ, Bracken AP, Cagney G. The H3K36me2 Methyltransferase Nsd1 Demarcates PRC2-Mediated H3K27me2 and H3K27me3 Domains in Embryonic Stem Cells. Mol Cell 2018; 70:371-379.e5. [PMID: 29606589 DOI: 10.1016/j.molcel.2018.02.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/22/2017] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ariane Watson
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sri Ganesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | - Giorgio Oliviero
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Rachel McCole
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gian Luca Negri
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Health Sciences, University of Milan, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
83
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
84
|
Brückmann NH, Pedersen CB, Ditzel HJ, Gjerstorff MF. Epigenetic Reprogramming of Pericentromeric Satellite DNA in Premalignant and Malignant Lesions. Mol Cancer Res 2018; 16:417-427. [PMID: 29330295 DOI: 10.1158/1541-7786.mcr-17-0477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
Abstract
Repression of repetitive DNA is important for maintaining genomic stability, but is often perturbed in cancer. For instance, the megabase satellite domain at chromosome 1q12 is a common site of genetic rearrangements, such as translocations and deletions. Polycomb-group proteins can be observed as large subnuclear domains called polycomb bodies, the composition and cellular function of which has remained elusive. This study demonstrates that polycomb bodies are canonical subunits of the multiprotein polycomb repressive complex 1 deposited on 1q12 pericentromeric satellite DNA, which are normally maintained as constitutive heterochromatin by other mechanisms. Furthermore, the data reveal that polycomb bodies are exclusive to premalignant and malignant cells, being absent in normal cells. For instance, polycomb bodies are present in melanocytic cells of nevi and conserved in primary and metastatic melanomas. Deposition of polycomb on the 1q12 satellite DNA in melanoma development correlated with reduced DNA methylation levels. In agreement with this, inhibition of DNA methyltransferases, with the hypomethylating agent guadecitabine (SGI-110), was sufficient for polycomb body formation on pericentromeric satellites in primary melanocytes. This suggests that polycomb bodies form in cancer cells with global DNA demethylation to control the stability of pericentromeric satellite DNA. These results reveal a novel epigenetic perturbation specific to premalignant and malignant cells that may be used as an early diagnostic marker for detection of precancerous changes and a new therapeutic entry point.Implications: Pericentromeric satellite DNA is epigenetically reprogrammed into polycomb bodies as a premalignant event with implications for transcriptional activity and genomic stability. Mol Cancer Res; 16(3); 417-27. ©2018 AACR.
Collapse
Affiliation(s)
- Nadine Heidi Brückmann
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
85
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
86
|
Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol 2017; 84:118-126. [PMID: 29233752 DOI: 10.1016/j.semcdb.2017.12.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Zygotic genome activation (ZGA) denotes the initiation of gene expression after fertilization. It is part of the complex oocyte-to-embryo transition (OET) in which a highly specialized cell - the oocyte - is fertilized and transformed into a zygote that gives rise to an embryo that will develop into a newborn. From the perspective of gene expression, the OET reflects reprogramming of germ cell gene expression into the new developmental program of the zygote. This reprogramming occurs at transcriptional and post-transcriptional levels. This review will discuss selected aspects of mammalian ZGA, highlighting shared features and evolved differences observed in commonly investigated mammals and non-mammalian model animals.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
87
|
Xu Q, Xie W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 2017; 28:237-253. [PMID: 29217127 DOI: 10.1016/j.tcb.2017.10.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023]
Abstract
Drastic epigenetic reprogramming takes place during preimplantation development, leading to the conversion of terminally differentiated gametes to a totipotent embryo. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, including embryonic lethality. However, how chromatin modifications and chromatin organization are reprogrammed upon fertilization in mammals has long remained elusive. Here, we review recent progress in understanding how the epigenome is dynamically regulated during early mammalian development. The latest studies, including many from genome-wide perspectives, have revealed unusual principles of reprogramming for histone modifications, chromatin accessibility, and 3D chromatin architecture. These advances have shed light on the regulatory network controlling the earliest development and maternal-zygotic transition.
Collapse
Affiliation(s)
- Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
88
|
Bissiere S, Gasnier M, Alvarez YD, Plachta N. Cell Fate Decisions During Preimplantation Mammalian Development. Curr Top Dev Biol 2017; 128:37-58. [PMID: 29477170 DOI: 10.1016/bs.ctdb.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes, transcription factors, and epigenetic mechanisms directing early cell fate decision in the early embryo. Here, we review recent progress in linking molecular dynamic events occurring at the level of the single cell in vivo, to some of the key morphogenetic changes regulating early mouse development.
Collapse
Affiliation(s)
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Yanina D Alvarez
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; National University of Singapore, Singapore, Singapore.
| |
Collapse
|
89
|
Kawaguchi T, Machida S, Kurumizaka H, Tagami H, Nakayama JI. Phosphorylation of CBX2 controls its nucleosome-binding specificity. J Biochem 2017; 162:343-355. [PMID: 28992316 DOI: 10.1093/jb/mvx040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023] Open
Abstract
Chromobox 2 (CBX2), a component of polycomb repressive complex 1 (PRC1), binds lysine 27-methylated histone H3 (H3K27me3) via its chromodomain (CD) and plays a critical role in repressing developmentally regulated genes. The phosphorylation of CBX2 has been described in several studies, but the biological implications of this modification remain largely elusive. Here, we show that CBX2's phosphorylation plays an important role in its nucleosome binding. CBX2 is stably phosphorylated in vivo, and domain analysis showed that residues in CBX2's serine-rich (SR) region are the predominant phosphorylation sites. The serine residues in an SR region followed by an acidic-residue (AR) cluster coincide with the consensus target of casein kinase II (CK2), and CK2 efficiently phosphorylated the SR region in vitro. A nucleosome pull-down assay revealed that CK2-phosphorylated CBX2 had a high specificity for H3K27me3-modified nucleosomes. An electrophoretic mobility-shift assay showed that CK2-mediated phosphorylation diminished CBX2's AT-hook-associated DNA-binding activity. Mutant CBX2 lacking the SR region or its neighboring AR cluster failed to repress the transcription of p21, a gene targeted by PRC1. These results suggest that CBX2's phosphorylation is critical for its transcriptional repression of target genes.
Collapse
Affiliation(s)
- Takayuki Kawaguchi
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hideaki Tagami
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
90
|
Wei J, Antony J, Meng F, MacLean P, Rhind R, Laible G, Oback B. KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Sci Rep 2017; 7:7514. [PMID: 28790329 PMCID: PMC5548918 DOI: 10.1038/s41598-017-06569-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 06/14/2017] [Indexed: 02/03/2023] Open
Abstract
Correct reprogramming of epigenetic marks is essential for somatic cells to regain pluripotency. Repressive histone (H) lysine (K) methylation marks are known to be stable and difficult to reprogram. In this study, we generated transgenic mice and mouse embryonic fibroblasts (MEFs) for the inducible expression of KDM4B, a demethylase that removes H3 K9 and H3K36 trimethylation (me3) marks (H3K9/36me3). Upon inducing Kdm4b, H3K9/36me3 levels significantly decreased compared to non-induced controls. Concurrently, H3K9me1 levels significantly increased, while H3K9me2 and H3K27me3 remained unchanged. The global transcriptional impact of Kdm4b-mediated reduction in H3K9/36me3 levels was examined by comparative microarray analysis and mRNA-sequencing of three independent transgenic MEF lines. We identified several commonly up-regulated targets, including the heterochromatin-associated zinc finger protein 37 and full-length endogenous retrovirus repeat elements. Following optimized zona-free somatic nuclear transfer, reduced H3K9/36me3 levels were restored within hours. Nevertheless, hypo-methylated Kdm4b MEF donors reprogrammed six-fold better into cloned blastocysts than non-induced donors. They also reprogrammed nine-fold better into induced pluripotent stem cells that gave rise to teratomas and chimeras. In summary, we firmly established H3K9/36me3 as a major roadblock to somatic cell reprogramming and identified transcriptional targets of derestricted chromatin that could contribute towards improving this process in mouse.
Collapse
Affiliation(s)
- Jingwei Wei
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,Animal Science Institute, Guangxi University, Nanning, P.R. China
| | - Jisha Antony
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.,University of Otago, Department of Pathology, Dunedin, 9016, New Zealand
| | - Fanli Meng
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Paul MacLean
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Rebekah Rhind
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Götz Laible
- AgResearch Ruakura Research Centre, Hamilton, New Zealand
| | - Björn Oback
- AgResearch Ruakura Research Centre, Hamilton, New Zealand.
| |
Collapse
|
91
|
|
92
|
Funaya S, Aoki F. Regulation of zygotic gene activation by chromatin structure and epigenetic factors. J Reprod Dev 2017; 63:359-363. [PMID: 28579579 PMCID: PMC5593087 DOI: 10.1262/jrd.2017-058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the
mid-one-cell stage, which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression pattern of one-cell embryos is unique and changes dramatically at the two-cell
stage. However, the mechanism regulating this alteration has not yet been elucidated. It has been shown that chromatin structure and epigenetic factors change dynamically between the one- and two-cell stages. In this article, we
review the characteristics of transcription, chromatin structure, and epigenetic factors in one- and two-cell mouse embryos and discuss the involvement of chromatin structure and epigenetic factors in the alteration of
transcription that occurs between these stages.
Collapse
Affiliation(s)
- Satoshi Funaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
93
|
Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters AHFM, Gribnau J, Baarends WM, Eijpe M. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017; 10:11. [PMID: 28293300 PMCID: PMC5346203 DOI: 10.1186/s13072-017-0119-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Background In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific binding proteins like heterochromatin-binding protein 1 isoforms (HP1 isoforms). Maintenance of this specialized chromatin structure is of great importance for genome integrity and for the controlled repression of the repetitive elements within the pericentric DNA sequence. Here we have studied histone modifications at pericentric heterochromatin during primordial germ cell (PGC) development using different fixation conditions and fluorescent immunohistochemical and immunocytochemical protocols. Results We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC development. However, the observed immunostaining patterns varied, depending on the fixation method, explaining previous findings of a general loss of pericentric heterochromatic features in PGCs. Also, in contrast to the general clustering of multiple pericentric regions and associated centromeres in DAPI-dense regions in somatic cells, the pericentric regions of PGCs were more frequently organized as individual entities. We also observed a transient enrichment of the chromatin remodeler ATRX in pericentric regions in embryonic day 11.5 (E11.5) PGCs. At this stage, a similar and low level of major satellite repeat RNA transcription was detected in both PGCs and somatic cells. Conclusions These results indicate that in pericentric heterochromatin of mouse PGCs, only minor reductions in levels of some chromatin-associated proteins occur, in association with a transient increase in ATRX, between E11.5 and E13.5. These pericentric heterochromatin regions more frequently contain only a single centromere in PGCs compared to the surrounding soma, indicating a difference in overall organization, but there is no de-repression of major satellite transcription. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Godfried van der Heijden
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leonidas Magarakis
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Central Hospital of Karlstad, Karlstad, Värmland Sweden
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maureen Eijpe
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
94
|
Casa V, Runfola V, Micheloni S, Aziz A, Dilworth FJ, Gabellini D. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy. Hum Mol Genet 2017; 26:753-767. [PMID: 28040729 PMCID: PMC5409123 DOI: 10.1093/hmg/ddw426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation.
Collapse
Affiliation(s)
- Valentina Casa
- Gene Expression and Muscular Dystrophy Unit, Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Valeria Runfola
- Gene Expression and Muscular Dystrophy Unit, Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Stefano Micheloni
- Gene Expression and Muscular Dystrophy Unit, Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Arif Aziz
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - F Jeffrey Dilworth
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Dulbecco Telethon Institute, Milan 20132, Italy
| |
Collapse
|
95
|
Wang G, Köhler C. Epigenetic processes in flowering plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:797-807. [PMID: 28062591 DOI: 10.1093/jxb/erw486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
96
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
97
|
Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, Anil-Kirmizitas B, Bassett A, Kooistra SM, Agger K, Helin K, Heard E, Brockdorff N. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun 2016; 7:13661. [PMID: 27892467 PMCID: PMC5133711 DOI: 10.1038/ncomms13661] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation (H3K27me3), respectively. Reciprocal crosstalk between these modifications is critical for the formation of stable Polycomb domains at target gene loci. While the molecular mechanism for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2 cofactor Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin interaction motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical function to Jarid2 and define a key mechanism that links PRC1 and PRC2 in the establishment of Polycomb domains. The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental regulation of the genome in multicellular organisms. Here the authors describe how the PRC2 cofactor Jarid2 mediates the recruitment of the PRC2 complex to chromatin via interaction with H2AK119u1.
Collapse
Affiliation(s)
- Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anne Grijzenhout
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elizabeth Underwood
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Katia Ancelin
- Institut Curie, CNRS UMR3215, INSERM U934, 26 rue d'Ulm, Paris 75248, France
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Burcu Anil-Kirmizitas
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew Bassett
- Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susanne M Kooistra
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Centre for Epigenetics, Ole Maaløes Vej 5, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Centre for Epigenetics, Ole Maaløes Vej 5, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.,Centre for Epigenetics, Ole Maaløes Vej 5, University of Copenhagen, 2200 Copenhagen, Denmark.,The Danish Stem Cell Center (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Edith Heard
- Institut Curie, CNRS UMR3215, INSERM U934, 26 rue d'Ulm, Paris 75248, France
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
98
|
Fukuda A, Mitani A, Miyashita T, Sado T, Umezawa A, Akutsu H. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice. PLoS Genet 2016; 12:e1006375. [PMID: 27788132 PMCID: PMC5082930 DOI: 10.1371/journal.pgen.1006375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/20/2016] [Indexed: 12/30/2022] Open
Abstract
In female mammals, activation of Xist (X-inactive specific transcript) is essential for establishment of X chromosome inactivation. During early embryonic development in mice, paternal Xist is preferentially expressed whereas maternal Xist (Xm-Xist) is silenced. Unlike autosomal imprinted genes, Xist imprinting for Xm-Xist silencing was erased in cloned or parthenogenetic but not fertilized embryos. However, the molecular mechanism underlying the variable nature of Xm-Xist imprinting is poorly understood. Here, we revealed that Xm-Xist silencing depends on chromatin condensation states at the Xist/Tsix genomic region and on Rnf12 expression levels. In early preimplantation, chromatin decondensation via H3K9me3 loss and histone acetylation gain caused Xm-Xist derepression irrespective of embryo type. Although the presence of the paternal genome during pronuclear formation impeded Xm-Xist derepression, Xm-Xist was robustly derepressed when the maternal genome was decondensed before fertilization. Once Xm-Xist was derepressed by chromatin alterations, the derepression was stably maintained and rescued XmXpΔ lethality, indicating that loss of Xm-Xist imprinting was irreversible. In late preimplantation, Oct4 served as a chromatin opener to create transcriptional permissive states at Xm-Xist/Tsix genomic loci. In parthenogenetic embryos, Rnf12 overdose caused Xm-Xist derepression via Xm-Tsix repression; physiological Rnf12 levels were essential for Xm-Xist silencing maintenance in fertilized embryos. Thus, chromatin condensation and fine-tuning of Rnf12 dosage were crucial for Xist imprint maintenance by silencing Xm-Xist. X-inactive specific transcript (Xist) is essential a large non-coding RNA for establishment of X chromosome inactivation in female mammals. The aberrant X chromosome inactivation critically affects cellular viability. Therefore, spatiotemporal regulation of Xist expression is required for proper development. In mice, Xist expression is imprinted in early embryonic development and maternal Xist is never expressed during preimplantation phases irrespective of the presence of Xist activator, maternal Rnf12. Generally, parental origin-specific expression pattern of autosomal imprinted genes is maintained in various types of embryos. However, Xist imprinting for transcriptional silencing of maternal Xist was erased in cloned or parthenogenetic but not fertilized embryos. Here, we dissect the molecular mechanism underlying the variable nature of Xist imprinting. We show that in fertilized embryos, chromatin condensation states are essential maternal Xist repression in early preimplantation phases, whereas at late preimplantation stages, pluripotency factor Oct4 serves as a chromatin opener and the maintenance of Xist silencing depends on Rnf12 expression dosage. Although the Oct4 mediated chromatin decondensation also occurs in parthenogetic embryos, Rnf12 overdose causes maternal Xist derepression at late preimplantation phases. Thus these findings reveal that the chromatin regulation by pluripotency factor and Xist activator dose define Xist imprinting state.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
| | - Atsushi Mitani
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
- Department of Molecular Genetics, Kitasato University Graduate School of Medical Sciences, Kitasato, Minami, Sagamihara, Kanagawa, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University Graduate School of Medical Sciences, Kitasato, Minami, Sagamihara, Kanagawa, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Okura, Setagaya, Tokyo, Japan
- Department of Stem Cell Research, Fukushima Medical University, Hikarigaoka, Fukushima City, Fukushima, Japan
- * E-mail:
| |
Collapse
|
99
|
Federici F, Magaraki A, Wassenaar E, van Veen-Buurman CJH, van de Werken C, Baart EB, Laven JSE, Grootegoed JA, Gribnau J, Baarends WM. Round Spermatid Injection Rescues Female Lethality of a Paternally Inherited Xist Deletion in Mouse. PLoS Genet 2016; 12:e1006358. [PMID: 27716834 PMCID: PMC5065126 DOI: 10.1371/journal.pgen.1006358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolishment. Here, we circumvented the histone-to-protamine and protamine-to-histone transitions of the paternal genome, by fertilization of oocytes via injection of round spermatids (ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI using ΔXist round spermatids allowed survival of female embryos. This was accompanied by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the morula stage, resulting in Xm silencing. Maternal Xist gene activation was not observed in ROSI-derived males. In addition, no Xist expression was detected in male and female morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the expression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo fertilized embryos. Thus, high RNF12 levels may contribute to the specific activation of maternal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors and/or the specific epigenetic constitution of the round spermatid-derived Xp are expected to be more critical. These results illustrate the profound impact of a dysregulated paternal epigenome on embryo development, and we propose that mouse ROSI can be used as a model to study the effects of intergenerational inheritance of epigenetic marks.
Collapse
Affiliation(s)
- Federica Federici
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Catherina J. H. van Veen-Buurman
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Christine van de Werken
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Esther B Baart
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joop S. E. Laven
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Anton Grootegoed
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
100
|
Abstract
Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization.
Collapse
Affiliation(s)
- Kathleen R Stewart
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Lenka Veselovska
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.,Laboratory of Developmental Biology & Genetics, Department of Molecular Biology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|