51
|
Chen Z, Luo X, Lu Y, Zhu T, Wang J, Tsun A, Li B. Ubiquitination signals critical to regulatory T cell development and function. Int Immunopharmacol 2013; 16:348-52. [PMID: 23415874 DOI: 10.1016/j.intimp.2013.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/30/2013] [Indexed: 12/11/2022]
Abstract
Protein ubiquitination has emerged as a crucial modulator of the immune system, participating in the control of T cell differentiation, intracellular signal transduction and the induction of immune tolerance. CD4(+)CD25(+)FOXP3(+) regulatory T cells are a unique subset of cells that mediate central and peripheral immune tolerance. In this review, we highlight our current understanding of the molecular mechanisms and signaling pathways that modulate protein ubiquitination in Treg cells, and how ubiquitination determines Treg cell development and function. Understanding how FOXP3 activity is regulated by ubiquitination and deubiquitination under molecular level will promote regulatory T cell therapy for treating inflammation in autoimmune disease, infection, transplantation and cancer.
Collapse
Affiliation(s)
- Zuojia Chen
- Key Laboratory of Molecular Virology & Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 411 Hefei Road, Shanghai, 200025, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Janga SC. From specific to global analysis of posttranscriptional regulation in eukaryotes: posttranscriptional regulatory networks. Brief Funct Genomics 2012; 11:505-21. [PMID: 23124862 DOI: 10.1093/bfgp/els046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of gene expression occurs at several levels in eukaryotic organisms and is a highly controlled process. Although RNAs have been traditionally viewed as passive molecules in the pathway from transcription to translation, there is mounting evidence that their metabolism is controlled by a class of proteins called RNA-binding proteins (RBPs), as well as a number of small RNAs. In this review, I provide an overview of the recent developments in our understanding of the repertoire of RBPs across diverse model systems, and discuss the computational and experimental approaches currently available for the construction of posttranscriptional networks governed by them. I also present an overview of the different roles played by RBPs in the cellular context, based on their cis-regulatory modules identified in the literature and discuss how their interplay can result in the dynamic, spatial and tissue-specific expression maps of RNAs. I finally present the concept of posttranscriptional network of RBPs and their cognate RNA targets and discuss their cross-talk with other important posttranscriptional regulatory molecules such as microRNAs s, resulting in diverse functional network motifs. I argue that with rapid developments in the genome-wide elucidation of posttranscriptional networks it would not only be possible to gain a deeper understanding of regulation at a level that has been under-appreciated in the past, but would also allow us to use the newly developed high-throughput approaches to interrogate the prevalence of these phenomena in different states, and thereby study their relevance to physiology and disease across organisms.
Collapse
Affiliation(s)
- Sarath Chandra Janga
- School of Informatics, Indiana University Purdue University, Indianapolis, Indiana, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 719 Indiana Ave Ste 319, Walker Plaza Building, IN 46202, USA.
| |
Collapse
|
53
|
Heiber JF, Geiger TL. Context and location dependence of adaptive Foxp3(+) regulatory T cell formation during immunopathological conditions. Cell Immunol 2012; 279:60-5. [PMID: 23089195 DOI: 10.1016/j.cellimm.2012.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/29/2012] [Accepted: 09/12/2012] [Indexed: 02/07/2023]
Abstract
Circulating Foxp3(+) regulatory T cells (Treg) may arise in the thymus (natural Treg, nTreg) or through the adaptive upregulation of Foxp3 after T cell activation (induced Treg, iTreg). In this brief review, we explore evidence for the formation and function of iTreg during pathologic conditions. Determining the ontogeny and function of Treg populations has relied on the use of manipulated systems in which either iTreg or nTreg are absent, or lineage tracing of T cell clones through repertoire analyses. iTreg appear particularly important at mucosal interfaces. iTreg can also ameliorate tissue-specific autoimmunity and are a prominent source of tumor-infiltrating Treg in some models. However, under many conditions, including in CNS autoimmunity, diabetes, and some tumor systems, iTreg formation appears limited. The immunological contribution of iTreg is thus highly context dependent. Deciphering immune parameters responsible for iTreg formation and their role in modulating pathologic immune responses will be important.
Collapse
Affiliation(s)
- Joshua F Heiber
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
54
|
Schaue D, McBride WH. T lymphocytes and normal tissue responses to radiation. Front Oncol 2012; 2:119. [PMID: 23050243 PMCID: PMC3445965 DOI: 10.3389/fonc.2012.00119] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/02/2012] [Indexed: 01/17/2023] Open
Abstract
There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | | |
Collapse
|
55
|
Schaue D, Xie MW, Ratikan JA, McBride WH. Regulatory T cells in radiotherapeutic responses. Front Oncol 2012; 2:90. [PMID: 22912933 PMCID: PMC3421147 DOI: 10.3389/fonc.2012.00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/20/2012] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling "danger." The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the "brakes" on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
56
|
Sugimoto Y, König J, Hussain S, Zupan B, Curk T, Frye M, Ule J. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 2012; 13:R67. [PMID: 22863408 PMCID: PMC4053741 DOI: 10.1186/gb-2012-13-8-r67] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/11/2012] [Accepted: 08/03/2012] [Indexed: 11/12/2022] Open
Abstract
UV cross-linking and immunoprecipitation (CLIP) and individual-nucleotide resolution CLIP (iCLIP) are methods to study protein-RNA interactions in untreated cells and tissues. Here, we analyzed six published and two novel data sets to confirm that both methods identify protein-RNA cross-link sites, and to identify a slight uridine preference of UV-C-induced cross-linking. Comparing Nova CLIP and iCLIP data revealed that cDNA deletions have a preference for TTT motifs, whereas iCLIP cDNA truncations are more likely to identify clusters of YCAY motifs as the primary Nova binding sites. In conclusion, we demonstrate how each method impacts the analysis of protein-RNA binding specificity.
Collapse
Affiliation(s)
- Yoichiro Sugimoto
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian König
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Shobbir Hussain
- The Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Blaž Zupan
- Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Michaela Frye
- The Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jernej Ule
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
57
|
Pullen NA, Falanga YT, Morales JK, Ryan JJ. The Fyn-STAT5 Pathway: A New Frontier in IgE- and IgG-Mediated Mast Cell Signaling. Front Immunol 2012; 3:117. [PMID: 22593761 PMCID: PMC3350083 DOI: 10.3389/fimmu.2012.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/23/2012] [Indexed: 01/21/2023] Open
Abstract
Mast cells are central players in immune surveillance and activation, positioned at the host–environment interface. Understanding the signaling events controlling mast cell function, especially those that maintain host homeostasis, is an important and still less understood area of mast cell-mediated disease. With respect to allergic disease, it is well established that IgE and its high affinity receptor FcεRI are major mediators of mast cell activation. However, IgG-mediated signals can also modulate mast cell activities. Signals elicited by IgG binding to its cognate receptors (FcγR) are the basis for autoimmune disorders such as lupus and rheumatoid arthritis. Using knowledge of IgE-mediated mast cell signaling, recent work has begun to illuminate potential overlap between FcεRI and FcγR signal transduction. Herein we review the importance of Src family kinases in FcεRI and FcγR signaling, the role of the transcription factor STAT5, and impingement of the regulatory cytokines IL-4, IL-10, and TGFβ1 upon this network.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Biology, The Asthma and Allergic Disease Cooperative Research Center, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
58
|
Liu J, Liu S, Cao X. Highlights of the advances in basic immunology in 2011. Cell Mol Immunol 2012; 9:197-207. [PMID: 22522654 DOI: 10.1038/cmi.2012.12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this review, we summarize the major fundamental advances in immunological research reported in 2011. The highlights focus on the improved understanding of key questions in basic immunology, including the initiation and activation of innate responses as well as mechanisms for the development and function of various T-cell subsets. The research includes the identification of novel cytosolic RNA and DNA sensors as well as the identification of the novel regulators of the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Moreover, remarkable advances have been made in the developmental and functional properties of innate lymphoid cells (ILCs). Helper T cells and regulatory T (Treg) cells play indispensable roles in orchestrating adaptive immunity. There have been exciting discoveries regarding the regulatory mechanisms of the development of distinct T-cell subsets, particularly Th17 cells and Treg cells. The emerging roles of microRNAs (miRNAs) in T cell immunity are discussed, as is the recent identification of a novel T-cell subset referred to as follicular regulatory T (TFR) cells.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China.
| | | | | |
Collapse
|
59
|
Kurzweil V, Tarangelo A, Oliver PM. Gastrointestinal microbiota do not significantly contribute to T cell activation or GI inflammation in Ndfip1-cKO mice. PLoS One 2012; 7:e34478. [PMID: 22506022 PMCID: PMC3323617 DOI: 10.1371/journal.pone.0034478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
The bacteria inhabiting the mammalian gastrointestinal (GI) tract play a vital role in normal digestion and immune function. In a healthy host, the immune system is tolerant to gut bacteria and does not mount an effector response to bacteria-derived antigens. Loss of tolerance to intestinal microflora has been associated with inflammatory bowel disease (IBD) in both mice and humans. Mice lacking Ndfip1, an adaptor protein for E3 ubiquitin ligases of the Nedd4-family, in T cells (Ndfip1-cKO) develop a disease resembling IBD. Inflammation in these mice is characterized by increased activation of peripheral T cells, infiltration of eosinophils into the GI tract, and epithelial hypertrophy in the esophagus. We hypothesized that this intestinal inflammation in Ndfip1-cKO mice is caused by a loss of T-cell tolerance to bacterial antigens. Here, we show that treatment of Ndfip1-cKO mice with broad-spectrum antibiotics drastically reduced bacterial load in stool but had little effect on T-cell activation and did not affect eosinophil infiltration into the GI tract or epithelial hypertrophy in the esophagus. Thus, inflammation in Ndfip1-cKO mice is not caused by a loss of tolerance to intestinal microbiota. Rather, T cell activation and eosinophilia may instead be triggered by other environmental antigens.
Collapse
Affiliation(s)
- Vanessa Kurzweil
- Cell and Molecular Biology Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Tarangelo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paula M. Oliver
- Children's Hospital of Philadelphia and Department of Pathology and Lab Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
60
|
Ramon HE, Beal AM, Liu Y, Worthen GS, Oliver PM. The E3 ubiquitin ligase adaptor Ndfip1 regulates Th17 differentiation by limiting the production of proinflammatory cytokines. THE JOURNAL OF IMMUNOLOGY 2012; 188:4023-31. [PMID: 22403444 DOI: 10.4049/jimmunol.1102779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ndfip1 is an adaptor for the E3 ubiquitin ligase Itch. Both Ndfip1- and Itch-deficient T cells are biased toward Th2 cytokine production. In this study, we demonstrate that lungs from Ndfip1(-/-) mice showed increased numbers of neutrophils and Th17 cells. This was not because Ndfip1(-/-) T cells are biased toward Th17 differentiation. In fact, fewer Ndfip1(-/-) T cells differentiated into Th17 cells in vitro due to high IL-4 production. Rather, Th17 differentiation was increased in Ndfip1(-/-) mice due to increased numbers of IL-6-producing eosinophils. IL-6 levels in mice that lacked both Ndfip1 and IL-4 were similar to wild-type controls, and these mice had fewer Th17 cells in their lungs. These results indicate that Th2 inflammation, such as that observed in Ndfip1(-/-) mice, can increase Th17 differentiation by recruiting IL-6-producing eosinophils into secondary lymphoid organs and tissues. This may explain why Th17 cells develop within an ongoing Th2 inflammatory response.
Collapse
Affiliation(s)
- Hilda E Ramon
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|