51
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
52
|
Carton RJ, Doyle MG, Kearney H, Steward CA, Lench NJ, Rogers A, Heinzen EL, McDonald S, Fay J, Lacey A, Beausang A, Cryan J, Brett F, El-Naggar H, Widdess-Walsh P, Costello D, Kilbride R, Doherty CP, Sweeney KJ, O'Brien DF, Henshall DC, Delanty N, Cavalleri GL, Benson KA. Somatic variants as a cause of drug-resistant epilepsy including mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2024; 65:1451-1461. [PMID: 38491957 DOI: 10.1111/epi.17943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.
Collapse
Affiliation(s)
- Robert J Carton
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael G Doyle
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
- Strategic Academic Recruitment Doctor of Medicine Programme, Royal College of Surgeons in Ireland in collaboration with Blackrock Clinic, Dublin, Ireland
| | - Hugh Kearney
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | | | - Anthony Rogers
- Congenica Limited, BioData Innovation Centre, Cambridge, UK
| | - Erin L Heinzen
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Seamus McDonald
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanna Fay
- Royal College of Surgeons in Ireland Biobanking Service, Dublin, Ireland
| | - Austin Lacey
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Hany El-Naggar
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Peter Widdess-Walsh
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Daniel Costello
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Cork University Hospital, Cork, Ireland
| | - Ronan Kilbride
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Colin P Doherty
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, St. James's Hospital, Dublin, Ireland
| | - Kieron J Sweeney
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Donncha F O'Brien
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - David C Henshall
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Epilepsy Programme, Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Gianpiero L Cavalleri
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine A Benson
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
53
|
Meng GQ, Chen S, Ye HB, Ma BJ, Tao S, Ye Z. Efficacy of Personalized Postoperative Epilepsy Management in Patients with Glioblastoma Utilizing IDH1 Gene Assessment. Neuropsychiatr Dis Treat 2024; 20:855-862. [PMID: 38628602 PMCID: PMC11020320 DOI: 10.2147/ndt.s451300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Objective We explored the correlation between the presence of isocitrate dehydrogenase-1 (IDH1) mutations and the incidence of postoperative epilepsy in patients with glioblastoma, as well as assessed the efficacy of preemptive administration of antiepileptic medications in mitigating the occurrence of postoperative epilepsy. Methods Fifty-three patients who received a postoperative pathological diagnosis of glioblastoma, were enrolled in this study. Tumor specimens were subjected to IDH1 gene analysis. The patient cohort was stratified based on their IDH1 mutation status and the administration of prophylactic antiepileptic drugs during the postoperative phase. We subsequently conducted a comparative analysis of postoperative epileptic complications within each patient subgroup. Results In the cohort of 53 patients under study, the occurrence of epilepsy was observed in 10 out of 21 patients carrying IDH1 mutations, while 5 out of 32 patients with wild-type IDH1 also experienced epilepsy, revealing a statistically significant difference (P < 0.05). Among the 27 patients who received prophylactic antiepileptic drugs, 6 of them developed epilepsy, whereas 9 out of 26 patients who did not receive prophylactic antiepileptic drugs exhibited concurrent epilepsy, with no statistically significant difference (P > 0.05). However, when performing a subgroup analysis, it was found that 3 out of 12 patients with IDH1 mutations who received prophylactic antiepileptic drugs experienced epilepsy, whereas 7 out of 9 patients who did not receive prophylactic antiepileptic drugs developed epilepsy, demonstrating a statistically significant difference (P < 0.05). Furthermore, within the group of 15 patients with wild-type IDH1, 3 patients who received prophylactic antiepileptic drugs developed epilepsy, while 2 cases of epilepsy occurred among the 17 patients who did not receive prophylactic antiepileptic drugs, with no statistically significant difference (P > 0.05). Conclusion In individuals with IDH1 mutant glioblastoma who have undergone surgical resection, the implementation of preventive antiepileptic therapy demonstrates a potential to diminish the occurrence of postoperative epilepsy.
Collapse
Affiliation(s)
- Gao-Qiang Meng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Shu Chen
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Bao-Jun Ma
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Shuo Tao
- Department of Out-Patient, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| | - Zi Ye
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong First People’s Hospital, Nantong, 226000, People’s Republic of China
| |
Collapse
|
54
|
Ferri L, Menghi V, Licchetta L, Dimartino P, Minardi R, Davì C, Di Vito L, Cifaldi E, Zenesini C, Gozzo F, Pelliccia V, Mariani V, de Spelorzi YCC, Gustincich S, Seri M, Tassi L, Pippucci T, Bisulli F. Detection of somatic and germline pathogenic variants in adult cohort of drug-resistant focal epilepsies. Epilepsy Behav 2024; 153:109716. [PMID: 38508103 DOI: 10.1016/j.yebeh.2024.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.
Collapse
Affiliation(s)
- L Ferri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy
| | - V Menghi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy; Neurology Unit, Rimini "Infermi" Hospital-AUSL Romagna, Rimini, Italy
| | - L Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - P Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy
| | - R Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - C Davì
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - L Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - E Cifaldi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - C Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - F Gozzo
- Claudio Munari Epilepsy Surgery Center, Niguarda Hospital, Milano, Italy
| | - V Pelliccia
- Claudio Munari Epilepsy Surgery Center, Niguarda Hospital, Milano, Italy
| | - V Mariani
- Neurology and Stroke Unit, ASST Santi Paolo e Carlo, Presidio San Carlo Borromeo, Milano, Italy
| | - Y C C de Spelorzi
- Genomics Facility, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - S Gustincich
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - M Seri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - L Tassi
- Claudio Munari Epilepsy Surgery Center, Niguarda Hospital, Milano, Italy
| | - T Pippucci
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - F Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy.
| |
Collapse
|
55
|
Zhang S, Zhuang Y, Luo Y, Zhu F, Zhao W, Zeng H. Deep learning-based automated lesion segmentation on pediatric focal cortical dysplasia II preoperative MRI: a reliable approach. Insights Imaging 2024; 15:71. [PMID: 38472513 DOI: 10.1186/s13244-024-01635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVES Focal cortical dysplasia (FCD) represents one of the most common causes of refractory epilepsy in children. Deep learning demonstrates great power in tissue discrimination by analyzing MRI data. A prediction model was built and verified using 3D full-resolution nnU-Net for automatic lesion detection and segmentation of children with FCD II. METHODS High-resolution brain MRI structure data from 65 patients, confirmed with FCD II by pathology, were retrospectively studied. Experienced neuroradiologists segmented and labeled the lesions as the ground truth. Also, we used 3D full-resolution nnU-Net to segment lesions automatically, generating detection maps. The algorithm was trained using fivefold cross-validation, with data partitioned into training (N = 200) and testing (N = 15). To evaluate performance, detection maps were compared to expert manual labels. The Dice-Sørensen coefficient (DSC) and sensitivity were used to assess the algorithm performance. RESULTS The 3D nnU-Net showed a good performance for FCD lesion detection at the voxel level, with a sensitivity of 0.73. The best segmentation model achieved a mean DSC score of 0.57 on the testing dataset. CONCLUSION This pilot study confirmed that 3D full-resolution nnU-Net can automatically segment FCD lesions with reliable outcomes. This provides a novel approach to FCD lesion detection. CRITICAL RELEVANCE STATEMENT Our fully automatic models could process the 3D T1-MPRAGE data and segment FCD II lesions with reliable outcomes. KEY POINTS • Simplified image processing promotes the DL model implemented in clinical practice. • The histopathological confirmed lesion masks enhance the clinical credibility of the AI model. • The voxel-level evaluation metrics benefit lesion detection and clinical decisions.
Collapse
Affiliation(s)
- Siqi Zhang
- Shantou University Medical College, Shantou University, 22 Xinling Road, Jinping District, Shantou, 515041, China
- Department of Radiology, Shenzhen Children's Hospital, District, 7019 Yitian Road, Futian, Shenzhen, 518038, China
| | - Yijiang Zhuang
- Department of Radiology, Shenzhen Children's Hospital, District, 7019 Yitian Road, Futian, Shenzhen, 518038, China
| | - Yi Luo
- Department of Radiology, Shenzhen Children's Hospital, District, 7019 Yitian Road, Futian, Shenzhen, 518038, China
| | - Fengjun Zhu
- Department of Epilepsy Surgical Department, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen, 518038, China
| | - Wen Zhao
- Shantou University Medical College, Shantou University, 22 Xinling Road, Jinping District, Shantou, 515041, China
- Department of Radiology, Shenzhen Children's Hospital, District, 7019 Yitian Road, Futian, Shenzhen, 518038, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, District, 7019 Yitian Road, Futian, Shenzhen, 518038, China.
| |
Collapse
|
56
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. eLife 2024; 12:RP91010. [PMID: 38411613 PMCID: PMC10942629 DOI: 10.7554/elife.91010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activator genes, Rheb or MTOR, or biallelic inactivation of the mTORC1 repressor genes, Depdc5, Tsc1, or Pten in the mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at DallasRichardsonUnited States
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
57
|
Balle CM, Kassentoft CG, van Heusden JI, Knudsen M, Raaby L, Gravholt CH. Rare Case of a Turner Syndrome Patient with Metastatic Dysgerminoma and No Y-Chromosomal Material with Pathogenic Variants Found in KIT and MTOR. Sex Dev 2024; 17:203-210. [PMID: 38281483 DOI: 10.1159/000536236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION The presence of Y-chromosomal material in females with Turner syndrome (TS) is a well-established risk factor for developing gonadoblastoma and malignant transformations thereof. However, these events are rarely seen in TS patients with no Y-chromosomal material. Thus, it is the current understanding that parts of the Y-chromosome are essential for the malignant transformation of gonadoblastoma in the dysgenetic gonad. METHODS We report a case of a TS female with an apparent 46,X,idic(Xq) karyotype, who was diagnosed with a metastatic dysgerminoma. Whole exome sequencing of the tumor and blood, along with RNA sequencing of the tumor, was performed to comprehensively search for cryptic Y-chromosomal material and pathogenic variants. RESULTS No Y-chromosomal material was detected in either tumor or blood. Whole exome-sequencing of DNA and RNA revealed a pathogenic somatic gain-of-function mutation in KIT and a pathogenic missense mutation in MTOR. The patient underwent total hysterectomy with bilateral salpingo-oophorectomy, followed by adjuvant chemotherapy. Unfortunately, she died due to chemotherapy-induced pneumonitis 7 months after the initial diagnosis. CONCLUSION Females with TS can develop metastatic dysgerminoma even in the absence of Y-chromosomal material. This questions the current understanding of Y-chromosomal material being essential for the malignant transformation of a gonadoblastoma in the dysgenetic gonad.
Collapse
Affiliation(s)
- Camilla Mains Balle
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Michael Knudsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Line Raaby
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
58
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes mTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553034. [PMID: 37609221 PMCID: PMC10441381 DOI: 10.1101/2023.08.11.553034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activators, Rheb or mTOR, or biallelic inactivation of the mTORC1 repressors, Depdc5, Tsc1, or Pten in mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
59
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
60
|
Chvojka J, Prochazkova N, Rehorova M, Kudlacek J, Kylarova S, Kralikova M, Buran P, Weissova R, Balastik M, Jefferys JGR, Novak O, Jiruska P. Mouse model of focal cortical dysplasia type II generates a wide spectrum of high-frequency activities. Neurobiol Dis 2024; 190:106383. [PMID: 38114051 DOI: 10.1016/j.nbd.2023.106383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
High-frequency oscillations (HFOs) represent an electrographic biomarker of endogenous epileptogenicity and seizure-generating tissue that proved clinically useful in presurgical planning and delineating the resection area. In the neocortex, the clinical observations on HFOs are not sufficiently supported by experimental studies stemming from a lack of realistic neocortical epilepsy models that could provide an explanation of the pathophysiological substrates of neocortical HFOs. In this study, we explored pathological epileptiform network phenomena, particularly HFOs, in a highly realistic murine model of neocortical epilepsy due to focal cortical dysplasia (FCD) type II. FCD was induced in mice by the expression of the human pathogenic mTOR gene mutation during embryonic stages of brain development. Electrographic recordings from multiple cortical regions in freely moving animals with FCD and epilepsy demonstrated that the FCD lesion generates HFOs from all frequency ranges, i.e., gamma, ripples, and fast ripples up to 800 Hz. Gamma-ripples were recorded almost exclusively in FCD animals, while fast ripples occurred in controls as well, although at a lower rate. Gamma-ripple activity is particularly valuable for localizing the FCD lesion, surpassing the utility of fast ripples that were also observed in control animals, although at significantly lower rates. Propagating HFOs occurred outside the FCD, and the contralateral cortex also generated HFOs independently of the FCD, pointing to a wider FCD network dysfunction. Optogenetic activation of neurons carrying mTOR mutation and expressing Channelrhodopsin-2 evoked fast ripple oscillations that displayed spectral and morphological profiles analogous to spontaneous oscillations. This study brings experimental evidence that FCD type II generates pathological HFOs across all frequency bands and provides information about the spatiotemporal properties of each HFO subtype in FCD. The study shows that mutated neurons represent a functionally interconnected and active component of the FCD network, as they can induce interictal epileptiform phenomena and HFOs.
Collapse
Affiliation(s)
- Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Natalie Prochazkova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Rehorova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Salome Kylarova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Kralikova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Buran
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Weissova
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Balastik
- Laboratory of Molecular Neurobiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
61
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
62
|
Rodrigo Marinowic D, Bottega Pazzin D, Prates da Cunha de Azevedo S, Pinzetta G, Victor Machado de Souza J, Tonon Schneider F, Thor Ramos Previato T, Jean Varella de Oliveira F, Costa Da Costa J. Epileptogenesis and drug-resistant in focal cortical dysplasias: Update on clinical, cellular, and molecular markers. Epilepsy Behav 2024; 150:109565. [PMID: 38070410 DOI: 10.1016/j.yebeh.2023.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Focal cortical dysplasia (FCD) is a cortical malformation in brain development and is considered as one of the major causes of drug-resistant epilepsiesin children and adults. The pathogenesis of FCD is yet to be fully understood. Imaging markers such as MRI are currently the surgeons major obstacle due to the difficulty in delimiting the precise dysplasic area and a mosaic brain where there is epileptogenic tissue invisible to MRI. Also increased gene expression and activity may be responsible for the alterations in cell proliferation, migration, growth, and survival. Altered expressions were found, particularly in the PI3K/AKT/mTOR pathway. Surgery is still considered the most effective treatment option, due to drug-resistance, and up to 60 % of patients experience complete seizure control, varying according to the type and location of FCD. Both genetic and epigenetic factors may be involved in the pathogenesis of FCD, and there is no conclusive evidence whether these alterations are inherited or have an environmental origin.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Victor Machado de Souza
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Tonon Schneider
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fábio Jean Varella de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
63
|
Pandey M, Shah SK, Gromiha MM. Computational approaches for identifying disease-causing mutations in proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 139:141-171. [PMID: 38448134 DOI: 10.1016/bs.apcsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Advancements in genome sequencing have expanded the scope of investigating mutations in proteins across different diseases. Amino acid mutations in a protein alter its structure, stability and function and some of them lead to diseases. Identification of disease-causing mutations is a challenging task and it will be helpful for designing therapeutic strategies. Hence, mutation data available in the literature have been curated and stored in several databases, which have been effectively utilized for developing computational methods to identify deleterious mutations (drivers), using sequence and structure-based properties of proteins. In this chapter, we describe the contents of specific databases that have information on disease-causing and neutral mutations followed by sequence and structure-based properties. Further, characteristic features of disease-causing mutations will be discussed along with computational methods for identifying cancer hotspot residues and disease-causing mutations in proteins.
Collapse
Affiliation(s)
- Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Suraj Kumar Shah
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
64
|
Coryell J, Singh R, Ostendorf AP, Eisner M, Alexander A, Eschbach K, Shrey DW, Olaya J, Ciliberto MA, Karakas C, Karia S, McNamara N, Romanowski EF, Kheder A, Pradeep J, Reddy SB, McCormack MJ, Bolton J, Wolf S, McGoldrick P, Hauptman JS, Samanta D, Tatachar P, Sullivan J, Auguste K, Gonzalez-Giraldo E, Marashly A, Depositario-Cabacar DF, Wong-Kisiel LC, Perry S. Epilepsy surgery in children with genetic etiologies: A prospective evaluation of current practices and outcomes. Seizure 2023; 113:6-12. [PMID: 38189708 DOI: 10.1016/j.seizure.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE This study assesses current practices and outcomes of epilepsy surgery in children with a genetic etiology. It explores the pre-surgical workup, types of surgeries, and post-surgical outcomes in a broad array of disorders. METHODS Patients ≤18 years who completed epilepsy surgery and had a known genetic etiology prior to surgical intervention were extrapolated from the Pediatric Epilepsy Research Consortium (PERC) surgery database, across 18 US centers. Data were assessed univariably by neuroimaging and EEG results, genetic group (structural gene, other gene, chromosomal), and curative intent. Outcomes were based on a modified International League Against Epilepsy (ILAE) outcome score. RESULTS Of 81 children with genetic epilepsy, 72 % had daily seizures when referred for surgery evaluation, which occurred a median of 2.2 years (IQR 0.3, 5.2) after developing drug resistance. Following surgery, 68 % of subjects had >50 % seizure reduction, with 33 % achieving seizure freedom [median follow-up 11 months (IQR 6, 17). Seizure freedom was most common in the monogenic structural group, but significant palliation was present across all groups. Presence of a single EEG focus was associated with a greater likelihood of seizure freedom (p=0.02). SIGNIFICANCE There are meaningful seizure reductions following epilepsy surgery in the majority of children with a genetic etiology, even in the absence of a single structural lesion and across a broad spectrum of genetic causes. These findings highlight the need for expedited referral for epilepsy surgery and support of a broadened view of which children may benefit from epilepsy surgery, even when the intent is palliative.
Collapse
Affiliation(s)
- Jason Coryell
- Department of Pediatrics, Oregon Health & Sciences University, CDRC-P, 707 SW Gaines Rd, Portland, OR 97239, USA.
| | - Rani Singh
- Division of Neurology, Department of Pediatrics, Atrium Health/Levine Children's Hospital, Charlotte, NC, USA
| | - Adam P Ostendorf
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Mariah Eisner
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Allyson Alexander
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, CO, USA
| | - Krista Eschbach
- Department of Neurology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joffre Olaya
- Children's Hospital of Orange County, Orange, CA, USA
| | - Michael A Ciliberto
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Cemal Karakas
- Department of Neurology, Division of Child Neurology, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Samir Karia
- Department of Neurology, Division of Child Neurology, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nancy McNamara
- Department of Pediatrics, Section of Pediatric Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Erin Fedak Romanowski
- Department of Pediatrics, Section of Pediatric Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ammar Kheder
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Javarayee Pradeep
- Department of Pediatric Neurology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA
| | - Michael J McCormack
- Department of Pediatrics, Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA
| | - Jeffrey Bolton
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Steven Wolf
- Boston Children's Health Physicians of New York and Connecticut, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY, USA
| | - Patricia McGoldrick
- Boston Children's Health Physicians of New York and Connecticut, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY, USA
| | - Jason S Hauptman
- Division of Pediatric Neurosurgery, University of Washington/Seattle Children's Hospital, Seattle, WA, USA
| | - Debopam Samanta
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Priya Tatachar
- Department of Pediatrics, Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA
| | - Joseph Sullivan
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | - Kurtis Auguste
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | - Ernesto Gonzalez-Giraldo
- University of California San Francisco Weill Institute for Neurosciences, Benioff Children's Hospital, San Francisco, CA, USA
| | - Ahmad Marashly
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
| | - Dewi F Depositario-Cabacar
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Lily C Wong-Kisiel
- Department of Neurology, Divisions of Child Neurology and Epilepsy, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Fort Worth, TX, USA
| |
Collapse
|
65
|
Krochmalnek E, Accogli A, St-Onge J, Addour-Boudrahem N, Prakash G, Kim SH, Brunette-Clement T, Alhajaj G, Mougharbel L, Bruneau E, Myers KA, Dubeau F, Karamchandani J, Farmer JP, Atkinson J, Hall J, Chantal Poulin C, Rosenblatt B, Lafond-Lapalme J, Weil A, Fallet-Bianco C, Albrecht S, Sonenberg N, Riviere JB, Dudley RW, Srour M. mTOR Pathway Somatic Pathogenic Variants in Focal Malformations of Cortical Development: Novel Variants, Topographic Mapping, and Clinical Outcomes. Neurol Genet 2023; 9:e200103. [PMID: 37900581 PMCID: PMC10602370 DOI: 10.1212/nxg.0000000000200103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Background and Objectives Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.
Collapse
Affiliation(s)
- Eric Krochmalnek
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Andrea Accogli
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Judith St-Onge
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Nassima Addour-Boudrahem
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Gyan Prakash
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Sung-Hoon Kim
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Tristan Brunette-Clement
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Ghadd Alhajaj
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Lina Mougharbel
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Elena Bruneau
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Kenneth A Myers
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Francois Dubeau
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jason Karamchandani
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jean-Pierre Farmer
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jeffrey Atkinson
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jeffrey Hall
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Chantal Chantal Poulin
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Bernard Rosenblatt
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Joel Lafond-Lapalme
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Alexander Weil
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Catherine Fallet-Bianco
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Steffen Albrecht
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Nahum Sonenberg
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Jean-Baptiste Riviere
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Roy W Dudley
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Myriam Srour
- From the Research Institute of the McGill University Health Centre (E.K., J.S.-O., N.A.-B., L.M., E.B., K.A.M., J.L.-L., J.-B.R., R.W.D., M.S.); Integrated Program in Neuroscience (E.K.), McGill University; Department of Specialized Medicine (A.A.), McGill University Health Centre; Department of Human Genetics (A.A., J.-B.R.), Faculty of Medicine; Goodman Cancer Centre (G.P., S.-H.K., N.S.), Department of Biochemistry, McGill University; Department of Pediatric Neurosurgery (T.B.-C., A.W.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Division of Pediatric Neurology (G.A., K.A.M., C.C.P., M.S.), Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics (G.A.), Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia; Department of Neurology and Neurosurgery (K.A.M., F.D., J.H., C.C.P., M.S.), McGill University Health Centre; Department of Pathology (J.K., S.A.), McGill University; Division of Neurosurgery (J.-P.F., J.A., R.W.D.), Department of Pediatric Surgery, McGill University Health Center; McGill University (B.R.); Department of Pathology (C.F.-B.), Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| |
Collapse
|
66
|
Honke J, Hoffmann L, Coras R, Kobow K, Leu C, Pieper T, Hartlieb T, Bien CG, Woermann F, Cloppenborg T, Kalbhenn T, Gaballa A, Hamer H, Brandner S, Rössler K, Dörfler A, Rampp S, Lemke JR, Baldassari S, Baulac S, Lal D, Nürnberg P, Blümcke I. Deep histopathology genotype-phenotype analysis of focal cortical dysplasia type II differentiates between the GATOR1-altered autophagocytic subtype IIa and MTOR-altered migration deficient subtype IIb. Acta Neuropathol Commun 2023; 11:179. [PMID: 37946310 PMCID: PMC10633947 DOI: 10.1186/s40478-023-01675-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.
Collapse
Affiliation(s)
- Jonas Honke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
- Research Institute for Rehabilitation, Transition, and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Friedrich Woermann
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, Germany
| | - Ahmed Gaballa
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Hajo Hamer
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
- Epilepsy Center, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Arnd Dörfler
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sara Baldassari
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Stéphanie Baulac
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA.
| |
Collapse
|
67
|
Levitin MO, Rawlins LE, Sanchez-Andrade G, Arshad OA, Collins SC, Sawiak SJ, Iffland PH, Andersson MHL, Bupp C, Cambridge EL, Coomber EL, Ellis I, Herkert JC, Ironfield H, Jory L, Kretz PF, Kant SG, Neaverson A, Nibbeling E, Rowley C, Relton E, Sanderson M, Scott EM, Stewart H, Shuen AY, Schreiber J, Tuck L, Tonks J, Terkelsen T, van Ravenswaaij-Arts C, Vasudevan P, Wenger O, Wright M, Day A, Hunter A, Patel M, Lelliott CJ, Crino PB, Yalcin B, Crosby AH, Baple EL, Logan DW, Hurles ME, Gerety SS. Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes. Brain 2023; 146:4766-4783. [PMID: 37437211 PMCID: PMC10629792 DOI: 10.1093/brain/awad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023] Open
Abstract
KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.
Collapse
Affiliation(s)
- Maria O Levitin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Evox Therapeutics Limited, Oxford OX4 4HG, UK
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK
| | | | - Osama A Arshad
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephan C Collins
- INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France
| | - Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Phillip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malin H L Andersson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Caleb Bupp
- Spectrum Health, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
| | - Emma L Cambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ian Ellis
- Department of Clinical Genetics, Alder Hey Children’s Hospital, Liverpool L14 5AB, UK
| | - Johanna C Herkert
- Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Logan Jory
- Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK
| | | | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Alexandra Neaverson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Esther Nibbeling
- Laboratory for Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center, Leiden 3015 GD, The Netherlands
| | - Christine Rowley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK
| | - Emily Relton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7YH, UK
| | - Mark Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ethan M Scott
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford OX3 7HE, UK
| | - Andrew Y Shuen
- London Health Sciences Centre, London, ON N6A 5W9, Canada
- Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5W9, Canada
| | - John Schreiber
- Department of Neurology, Children’s National Medical Center, Washington DC 20007, USA
| | - Liz Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - James Tonks
- Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK
| | - Thorkild Terkelsen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Conny van Ravenswaaij-Arts
- Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, UK
| | - Olivia Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA
| | - Michael Wright
- Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne NE1 7RU, UK
| | - Andrew Day
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Qkine Ltd., Cambridge CB5 8HW, UK
| | - Adam Hunter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Christopher J Lelliott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Binnaz Yalcin
- INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France
| | - Andrew H Crosby
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Waltham Petcare Science Institute, Waltham on the Wolds LE14 4RT, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
68
|
Cao H, Wei P, Huang Y, Wang N, Guo LA, Fan X, Wang Z, Ren L, Piao Y, Lu J, Shan Y, He X, Zhao G. The alteration of cortical microstructure similarity in drug-resistant epilepsy correlated with mTOR pathway genes. EBioMedicine 2023; 97:104847. [PMID: 39492369 PMCID: PMC10628344 DOI: 10.1016/j.ebiom.2023.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is associated with distributed laminar disruptions due to cytoarchitectonic pathologies, which may be characterized by multimodal MRI approaches such as morphometric similarity networks (MSNs). However, the genetic and histological underpinning of MSN alterations in DRE remains poorly understood, hampering its clinical application. METHODS We enrolled 60 patients with DRE and 23 controls, acquiring T1 and diffusion spectrum imaging data with a 3.0T GE SIGNA Premier scanner. Morphometric similarity networks (MSNs) were constructed and analyzed to identify microstructure similarity differences between patients and controls. Subsequently, patient-specific MSN alteration patterns were associated with gene expression using the GAMBA tool, and layer-specific neuronal signature mapping were also applied. During these analyses, sex and age were adjusted as covariates and multiple comparisons corrections were applied when appropriate. FINDINGS We observed widespread MSN changes in patients with DRE and identified five distinct MSN alteration patterns. Major patterns presented pattern-specific associations with expressions of epilepsy-related genes, particularly involving the mTOR pathway. Histological analysis confirmed the presence of cortical microstructure changes in areas with MSN alterations and revealed cellular abnormalities matching the aforementioned genetic risks. INTERPRETATION Our findings highlight the potential of quantifying laminar-related microstructure integrity using MSN to uncover the cytoarchitectonic changes in the pathophysiology of DRE. This approach may facilitate the identification of genetic and histological underpinnings of MSN alterations in DRE, ultimately aiding in the development of targeted therapeutic strategies. FUNDINGS The National Natural Science Foundation of China, the Ministry of Science and Technology of the People's Republic of China, and the Beijing Municipal Health Commission.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Municipal Geriatric Medical Research Center, 45 Changchun St, Beijing, 100053, China
| | - Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Ningrui Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Lin-Ai Guo
- Department of Pathology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; National Medical Center for Neurological Diseases, 45 Changchun St, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 45 Changchun St, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, No 96 Jinzhai Rd, Hefei, 230026, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Municipal Geriatric Medical Research Center, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
69
|
Zhang L, Bordey A. Advances in glioma models using in vivo electroporation to highjack neurodevelopmental processes. Biochim Biophys Acta Rev Cancer 2023; 1878:188951. [PMID: 37433417 DOI: 10.1016/j.bbcan.2023.188951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Glioma is the most prevalent type of neurological malignancies. Despite decades of efforts in neurosurgery, chemotherapy and radiation therapy, glioma remains one of the most treatment-resistant brain tumors with unfavorable outcomes. Recent progresses in genomic and epigenetic profiling have revealed new concepts of genetic events involved in the etiology of gliomas in humans, meanwhile, revolutionary technologies in gene editing and delivery allows to code these genetic "events" in animals to genetically engineer glioma models. This approach models the initiation and progression of gliomas in a natural microenvironment with an intact immune system and facilitates probing therapeutic strategies. In this review, we focus on recent advances in in vivo electroporation-based glioma modeling and outline the established genetically engineered glioma models (GEGMs).
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery, Changde hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China; Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA.
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| |
Collapse
|
70
|
Green TE, Fujita A, Ghaderi N, Heinzen EL, Matsumoto N, Klein KM, Berkovic SF, Hildebrand MS. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol Dis 2023; 185:106261. [PMID: 37579995 DOI: 10.1016/j.nbd.2023.106261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Navid Ghaderi
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University and University Hospital Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
71
|
Galvão IC, Kandratavicius L, Messias LA, Athié MCP, Assis-Mendonça GR, Alvim MKM, Ghizoni E, Tedeschi H, Yasuda CL, Cendes F, Vieira AS, Rogerio F, Lopes-Cendes I, Veiga DFT. Identifying cellular markers of focal cortical dysplasia type II with cell-type deconvolution and single-cell signatures. Sci Rep 2023; 13:13321. [PMID: 37587190 PMCID: PMC10432381 DOI: 10.1038/s41598-023-40240-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Focal cortical dysplasia (FCD) is a brain malformation that causes medically refractory epilepsy. FCD is classified into three categories based on structural and cellular abnormalities, with FCD type II being the most common and characterized by disrupted organization of the cortex and abnormal neuronal development. In this study, we employed cell-type deconvolution and single-cell signatures to analyze bulk RNA-seq from multiple transcriptomic studies, aiming to characterize the cellular composition of brain lesions in patients with FCD IIa and IIb subtypes. Our deconvolution analyses revealed specific cellular changes in FCD IIb, including neuronal loss and an increase in reactive astrocytes (astrogliosis) when compared to FCD IIa. Astrogliosis in FCD IIb was further supported by a gene signature analysis and histologically confirmed by glial fibrillary acidic protein (GFAP) immunostaining. Overall, our findings demonstrate that FCD II subtypes exhibit differential neuronal and glial compositions, with astrogliosis emerging as a hallmark of FCD IIb. These observations, validated in independent patient cohorts and confirmed using immunohistochemistry, offer novel insights into the involvement of glial cells in FCD type II pathophysiology and may contribute to the development of targeted therapies for this condition.
Collapse
Affiliation(s)
- Isabella C Galvão
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Ludmyla Kandratavicius
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Lauana A Messias
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Maria C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Guilherme R Assis-Mendonça
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Marina K M Alvim
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Enrico Ghizoni
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - André S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Fabio Rogerio
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Diogo F T Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.
| |
Collapse
|
72
|
Wang DD, Katoch M, Jabari S, Blumcke I, Blumenthal DB, Lu DH, Coras R, Wang YJ, Shi J, Zhou WJ, Kobow K, Piao YS. The specific DNA methylation landscape in focal cortical dysplasia ILAE type 3D. Acta Neuropathol Commun 2023; 11:129. [PMID: 37559109 PMCID: PMC10410964 DOI: 10.1186/s40478-023-01618-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Focal Cortical Dysplasia (FCD) is a frequent cause of drug-resistant focal epilepsy in children and young adults. The international FCD classifications of 2011 and 2022 have identified several clinico-pathological subtypes, either occurring isolated, i.e., FCD ILAE Type 1 or 2, or in association with a principal cortical lesion, i.e., FCD Type 3. Here, we addressed the DNA methylation signature of a previously described new subtype of FCD 3D occurring in the occipital lobe of very young children and microscopically defined by neuronal cell loss in cortical layer 4. We studied the DNA methylation profile using 850 K BeadChip arrays in a retrospective cohort of 104 patients with FCD 1 A, 2 A, 2B, 3D, TLE without FCD, and 16 postmortem specimens without neurological disorders as controls, operated in China or Germany. DNA was extracted from formalin-fixed paraffin-embedded tissue blocks with microscopically confirmed lesions, and DNA methylation profiles were bioinformatically analyzed with a recently developed deep learning algorithm. Our results revealed a distinct position of FCD 3D in the DNA methylation map of common FCD subtypes, also different from non-FCD epilepsy surgery controls or non-epileptic postmortem controls. Within the FCD 3D cohort, the DNA methylation signature separated three histopathology subtypes, i.e., glial scarring around porencephalic cysts, loss of layer 4, and Rasmussen encephalitis. Differential methylation in FCD 3D with loss of layer 4 mapped explicitly to biological pathways related to neurodegeneration, biogenesis of the extracellular matrix (ECM) components, axon guidance, and regulation of the actin cytoskeleton. Our data suggest that DNA methylation signatures in cortical malformations are not only of diagnostic value but also phenotypically relevant, providing the molecular underpinnings of structural and histopathological features associated with epilepsy. Further studies will be necessary to confirm these results and clarify their functional relevance and epileptogenic potential in these difficult-to-treat children.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Mitali Katoch
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Samir Jabari
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingmar Blumcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - De-Hong Lu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yu-Jiao Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
- National Center for Neurological Disorders, Beijing, 100053, China
| | - Jie Shi
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, 100049, China
| | - Wen-Jing Zhou
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, 100049, China
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Yue-Shan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
- National Center for Neurological Disorders, Beijing, 100053, China.
| |
Collapse
|
73
|
Guo M, Zhang J, Wang J, Wang X, Gao Q, Tang C, Deng J, Xiong Z, Kong X, Guan Y, Zhou J, Boison D, Luan G, Li T. Aberrant adenosine signaling in patients with focal cortical dysplasia. Mol Neurobiol 2023; 60:4396-4417. [PMID: 37103687 PMCID: PMC10330374 DOI: 10.1007/s12035-023-03351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Focal cortical dysplasia (FCD), a common malformation of cortical development, is frequently associated with pharmacoresistant epilepsy in both children and adults. Adenosine is an inhibitory modulator of brain activity and a prospective anti-seizure agent with potential for clinical translation. Our previous results demonstrated that the major adenosine-metabolizing enzyme adenosine kinase (ADK) was upregulated in balloon cells (BCs) within FCD type IIB lesions, suggesting that dysfunction of the adenosine system is implicated in the pathophysiology of FCD. In our current study, we therefore performed a comprehensive analysis of adenosine signaling in surgically resected cortical specimens from patients with FCD type I and type II via immunohistochemistry and immunoblot analysis. Adenosine enzyme signaling was assessed by quantifying the levels of the key enzymes of adenosine metabolism, i.e., ADK, adenosine deaminase (ADA), and ecto-5'-nucleotidase (CD73). Adenosine receptor signaling was assessed by quantifying the levels of adenosine A2A receptor (A2AR) and putative downstream mediators of adenosine, namely, glutamate transporter-1 (GLT-1) and mammalian target of rapamycin (mTOR). Within lesions in FCD specimens, we found that the adenosine-metabolizing enzymes ADK and ADA, as well as the adenosine-producing enzyme CD73, were upregulated. We also observed an increase in A2AR density, as well as a decrease in GLT-1 levels and an increase in mTOR levels, in FCD specimens compared with control tissue. These results suggest that dysregulation of the adenosine system is a common pathologic feature of both FCD type I and type II. The adenosine system might therefore be a therapeutic target for the treatment of epilepsy associated with FCD.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Zhang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qing Gao
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zhonghua Xiong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiangru Kong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
74
|
Lee HM, Hong SJ, Gill R, Caldairou B, Wang I, Zhang JG, Deleo F, Schrader D, Bartolomei F, Guye M, Cho KH, Barba C, Sisodiya S, Jackson G, Hogan RE, Wong-Kisiel L, Cascino GD, Schulze-Bonhage A, Lopes-Cendes I, Cendes F, Guerrini R, Bernhardt B, Bernasconi N, Bernasconi A. Multimodal mapping of regional brain vulnerability to focal cortical dysplasia. Brain 2023; 146:3404-3415. [PMID: 36852571 PMCID: PMC10393418 DOI: 10.1093/brain/awad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.
Collapse
Affiliation(s)
- Hyo M Lee
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
- Center for Neuroscience Imaging, Research Institute for Basic Science, Department of Global Biomedical Engineering, SungKyunKwan University, Suwon, KoreaSuwon, Korea
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jian-guo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Dewi Schrader
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, 13005, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | - Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Carmen Barba
- Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, 50121 Florence, Italy
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Victoria, Australia
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP) and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas SP, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas SP, Brazil
| | - Renzo Guerrini
- Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, 50121 Florence, Italy
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
75
|
Aquiles A, Fiordelisio T, Luna-Munguia H, Concha L. Altered functional connectivity and network excitability in a model of cortical dysplasia. Sci Rep 2023; 13:12335. [PMID: 37518675 PMCID: PMC10387479 DOI: 10.1038/s41598-023-38717-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development that often result in medically refractory epilepsy, with a greater incidence in the pediatric population. The relationship between the disturbed cortical morphology and epileptogenic activity of FCDs remains unclear. We used the BCNU (carmustine 1-3-bis-chloroethyl-nitrosourea) animal model of cortical dysplasia to evaluate neuronal and laminar alterations and how these result in altered activity of intracortical networks in early life. We corroborated the previously reported morphological anomalies characteristic of the BCNU model, comprising slightly larger and rounder neurons and abnormal cortical lamination. Next, the neuronal activity of live cortical slices was evaluated through large field-of-view calcium imaging as well as the neuronal response to a stimulus that leads to cortical hyperexcitability (pilocarpine). Examination of the joint activity of neuronal calcium time series allowed us to identify intracortical communication patterns and their response to pilocarpine. The baseline power density distribution of neurons in the cortex of BCNU-treated animals was different from that of control animals, with the former showing no modulation after stimulus. Moreover, the intracortical communication pattern differed between the two groups, with cortexes from BCNU-treated animals displaying decreased inter-layer connectivity as compared to control animals. Our results indicate that the altered anatomical organization of the cortex of BCNU-treated rats translates into altered functional networks that respond abnormally to a hyperexcitable stimulus and highlight the role of network dysfunction in the pathophysiology of cortical dysplasia.
Collapse
Affiliation(s)
- A Aquiles
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - T Fiordelisio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - H Luna-Munguia
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - L Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico.
| |
Collapse
|
76
|
Bonazzi S, Gray A, Thomsen NM, Biag J, Labbe-Giguere N, Keaney EP, Malik HA, Sun Y, Nunez J, Karki RG, Knapp M, Elling R, Fuller J, Pardee G, Craig L, Capre K, Salas S, Gorde A, Liang G, Lubicka D, McTighe SM, Goold C, Liu S, Deng L, Hong J, Fekete A, Stadelmann P, Frieauff W, Elhajouji A, Bauer D, Lerchner A, Radetich B, Furet P, Piizzi G, Burdette D, Wilson CJ, Peukert S, Hamann LG, Murphy LO, Curtis D. Identification of Brain-Penetrant ATP-Competitive mTOR Inhibitors for CNS Syndromes. J Med Chem 2023. [PMID: 37399505 DOI: 10.1021/acs.jmedchem.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.
Collapse
Affiliation(s)
- Simone Bonazzi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Audrey Gray
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Noel M Thomsen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jonathan Biag
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Erin P Keaney
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Hasnain A Malik
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Yingchuan Sun
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jill Nunez
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Rajeshri G Karki
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Mark Knapp
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Robert Elling
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - John Fuller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Gwynn Pardee
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 5959 Horton St, Emeryville, California 94608, United States
| | - Lucas Craig
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Ketthsy Capre
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Sarah Salas
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Aakruti Gorde
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Guiqing Liang
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Danuta Lubicka
- Global Drug Development/Technical Research and Development, Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, Massachusetts 02139, United States
| | - Stephanie M McTighe
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Carleton Goold
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Shanming Liu
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Lin Deng
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jin Hong
- Preclinical Safety, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander Fekete
- Preclinical Safety, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pascal Stadelmann
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Wilfried Frieauff
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Azeddine Elhajouji
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for BioMedical Research, Fabrikstrasse 28, 4056 Basel, Switzerland
| | - Andreas Lerchner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Branko Radetich
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Grazia Piizzi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Doug Burdette
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher J Wilson
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Stefan Peukert
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Lawrence G Hamann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Leon O Murphy
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Daniel Curtis
- Neuroscience, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
77
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
78
|
D'Gama AM, Poduri A. Brain somatic mosaicism in epilepsy: Bringing results back to the clinic. Neurobiol Dis 2023; 181:106104. [PMID: 36972791 DOI: 10.1016/j.nbd.2023.106104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and stereoelectroencephalography (SEEG) electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States of America; Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, United States of America
| | - Annapurna Poduri
- Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Neurology, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
79
|
Bizzotto S. The human brain through the lens of somatic mosaicism. Front Neurosci 2023; 17:1172469. [PMID: 37250426 PMCID: PMC10213359 DOI: 10.3389/fnins.2023.1172469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Every cell in the human brain possesses a unique genome that is the product of the accumulation of somatic mutations starting from the first postzygotic cell division and continuing throughout life. Somatic mosaicism in the human brain has been the focus of several recent efforts that took advantage of key technological innovations to start elucidating brain development, aging and disease directly in human tissue. On one side, somatic mutation occurring in progenitor cells has been used as a natural barcoding system to address cell phylogenies of clone formation and cell segregation in the brain lineage. On the other side, analyses of mutation rates and patterns in the genome of brain cells have revealed mechanisms of brain aging and disorder predisposition. In addition to the study of somatic mosaicism in the normal human brain, the contribution of somatic mutation has been investigated in both developmental neuropsychiatric and neurodegenerative disorders. This review starts with a methodological perspective on the study of somatic mosaicism to then cover the most recent findings in brain development and aging, and ends with the role of somatic mutations in brain disease. Thus, this review underlies what we have learned and what is still possible to discover by looking at somatic mosaicism in the brain genome.
Collapse
|
80
|
Gerasimenko A, Baldassari S, Baulac S. mTOR pathway: Insights into an established pathway for brain mosaicism in epilepsy. Neurobiol Dis 2023; 182:106144. [PMID: 37149062 DOI: 10.1016/j.nbd.2023.106144] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an essential regulator of numerous cellular activities such as metabolism, growth, proliferation, and survival. The mTOR cascade recently emerged as a critical player in the pathogenesis of focal epilepsies and cortical malformations. The 'mTORopathies' comprise a spectrum of cortical malformations that range from whole brain (megalencephaly) and hemispheric (hemimegalencephaly) abnormalities to focal abnormalities, such as focal cortical dysplasia type II (FCDII), which manifest with drug-resistant epilepsies. The spectrum of cortical dysplasia results from somatic brain mutations in the mTOR pathway activators AKT3, MTOR, PIK3CA, and RHEB and from germline and somatic mutations in mTOR pathway repressors, DEPDC5, NPRL2, NPRL3, TSC1 and TSC2. The mTORopathies are characterized by excessive mTOR pathway activation, leading to a broad range of structural and functional impairments. Here, we provide a comprehensive literature review of somatic mTOR-activating mutations linked to epilepsy and cortical malformations in 292 patients and discuss the perspectives of targeted therapeutics for personalized medicine.
Collapse
Affiliation(s)
- Anna Gerasimenko
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; APHP Sorbonne Université, GH Pitié Salpêtrière et Trousseau, Département de Génétique, Centre de référence "déficiences intellectuelles de causes rares", Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
81
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
82
|
Auvin S, Baulac S. mTOR-therapy and targeted treatment opportunities in mTOR-related epilepsies associated with cortical malformations. Rev Neurol (Paris) 2023; 179:337-344. [PMID: 36906459 DOI: 10.1016/j.neurol.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 03/11/2023]
Abstract
Dysregulation of the mTOR pathway is now well documented in several neurodevelopmental disorders associated with epilepsy. Mutations of mTOR pathway genes are involved in tuberous sclerosis complex (TSC) as well as in a range of cortical malformations from hemimegalencephaly (HME) to type II focal cortical dysplasia (FCD II), leading to the concept of "mTORopathies" (mTOR pathway-related malformations). This suggests that mTOR inhibitors (notably rapamycin (sirolimus), and everolimus) could be used as antiseizure medication. In this review, we provide an overview of pharmacological treatments targeting the mTOR pathway for epilepsy based on lectures from the ILAE French Chapter meeting in October 2022 in Grenoble. There is strong preclinical evidence for the antiseizure effects of mTOR inhibitors in TSC and cortical malformation mouse models. There are also open studies on the antiseizure effects of mTOR inhibitors, as well as one phase III study showing the antiseizure effect of everolimus in TSC patients. Finally, we discuss to which extent mTOR inhibitors might have properties beyond the antiseizure effect on associated neuropsychiatric comorbidities. We also discuss a new way of treatment on the mTOR pathways.
Collapse
Affiliation(s)
- S Auvin
- Service de neurologie pédiatrique, EpiCARE ERN membre, Hôpital Robert Debré, AP-HP, Paris, France; Université Paris-Cité, Inserm NeuroDiderot, Paris, France; Institut Universitaire de France (IUF), Paris, France.
| | - S Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
83
|
Sun C, Kathuria K, Emery SB, Kim B, Burbulis IE, Shin JH, Weinberger DR, Moran JV, Kidd JM, Mills RE, McConnell MJ. Mapping the Complex Genetic Landscape of Human Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531594. [PMID: 36945473 PMCID: PMC10028870 DOI: 10.1101/2023.03.07.531594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
When somatic cells acquire complex karyotypes, they are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons have been limited by relatively small sample sizes. Here, we developed an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We applied this approach to 2,125 frontal cortical neurons from a neurotypical human brain. This approach identified 226 CNV neurons, as well as a class of CNV neurons with complex karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we found that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contained fewer, but longer, genes.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Kunal Kathuria
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - ByungJun Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ian E. Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA 22902, USA
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede de la Patagonia, Puerto Montt, Chile
| | - Joo Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | | | - Daniel R. Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences and Neuroscience, Johns Hopkins School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD 21230, USA
| | - John V. Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jeffrey M. Kidd
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Michael J. McConnell
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
84
|
Fujita A, Kato M, Sugano H, Iimura Y, Suzuki H, Tohyama J, Fukuda M, Ito Y, Baba S, Okanishi T, Enoki H, Fujimoto A, Yamamoto A, Kawamura K, Kato S, Honda R, Ono T, Shiraishi H, Egawa K, Shirai K, Yamamoto S, Hayakawa I, Kawawaki H, Saida K, Tsuchida N, Uchiyama Y, Hamanaka K, Miyatake S, Mizuguchi T, Nakashima M, Saitsu H, Miyake N, Kakita A, Matsumoto N. An integrated genetic analysis of epileptogenic brain malformed lesions. Acta Neuropathol Commun 2023; 11:33. [PMID: 36864519 PMCID: PMC9983246 DOI: 10.1186/s40478-023-01532-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Focal cortical dysplasia is the most common malformation during cortical development, sometimes excised by epilepsy surgery and often caused by somatic variants of the mTOR pathway genes. In this study, we performed a genetic analysis of epileptogenic brain malformed lesions from 64 patients with focal cortical dysplasia, hemimegalencephy, brain tumors, or hippocampal sclerosis. Targeted sequencing, whole-exome sequencing, and single nucleotide polymorphism microarray detected four germline and 35 somatic variants, comprising three copy number variants and 36 single nucleotide variants and indels in 37 patients. One of the somatic variants in focal cortical dysplasia type IIB was an in-frame deletion in MTOR, in which only gain-of-function missense variants have been reported. In focal cortical dysplasia type I, somatic variants of MAP2K1 and PTPN11 involved in the RAS/MAPK pathway were detected. The in-frame deletions of MTOR and MAP2K1 in this study resulted in the activation of the mTOR pathway in transiently transfected cells. In addition, the PTPN11 missense variant tended to elongate activation of the mTOR or RAS/MAPK pathway, depending on culture conditions. We demonstrate that epileptogenic brain malformed lesions except for focal cortical dysplasia type II arose from somatic variants of diverse genes but were eventually linked to the mTOR pathway.
Collapse
Affiliation(s)
- Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, 113-8421, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, 113-8421, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, 113-8421, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, 950-2085, Japan
| | - Masafumi Fukuda
- Department of Functional Neurosurgery, Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, 950-2085, Japan
| | - Yosuke Ito
- Department of Functional Neurosurgery, Epilepsy Center, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, 950-2085, Japan
| | - Shimpei Baba
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, 430-8558, Japan
| | - Tohru Okanishi
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Hideo Enoki
- Department of Pediatrics, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Ayataka Fujimoto
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, 430-8558, Japan
| | - Akiyo Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| | - Kentaro Kawamura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| | - Shinsuke Kato
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| | - Ryoko Honda
- Department of Pediatrics, National Hospital Organization Nagasaki Medical Center, Omura, 856-8562, Japan
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical Center, Omura, 856-8562, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Tsuchiura, 300-0028, Japan
| | - Shinji Yamamoto
- Department of Neurosurgery, Tsuchiura Kyodo General Hospital, Tsuchiura, 300-0028, Japan
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hisashi Kawawaki
- Department of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, 534-0021, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.,Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.,Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
85
|
Shiraishi H, Teramoto T, Yokoshiki S, Tohyama J, Ueda Y, Egawa K, Sato N, Manabe A, Kato M. Efficacy of sirolimus for epileptic seizures in childhood associated with focal cortical dysplasia type II. Brain Dev 2023; 45:343-347. [PMID: 36870920 DOI: 10.1016/j.braindev.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVE The efficacy of the mechanistic target of rapamycin inhibitor, sirolimus, was recently reported for patients more than 6 years of age by Kato et al. We evaluated the efficacy and safety of sirolimus in a 2-year-old patient with recurrent focal seizures with impaired consciousness after focal cortical dysplasia (FCD) type IIa resection. METHODS The patient was a 2-year-old girl who had recurrent seizures after undergoing FCD resection at 4 months of age. The initial dose of sirolimus was 0.5 mg/day and was gradually increased using the trough blood concentration before oral administration as an index, and evaluation was performed at 92 weeks. RESULTS The trough blood level of sirolimus was increased to 6.1 ng/mL and maintenance therapy was started at 40 weeks. Focal seizures with impairment of consciousness with tonic extension of the limbs decreased. No critically serious adverse events occurred. CONCLUSION Sirolimus was effective against epileptic seizures from FCD type II even for a child under 5 years of age. There were no critically serious adverse events and administration could be continued.
Collapse
Affiliation(s)
- Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Hokkaido 060-8648, Japan.
| | - Tsuyoshi Teramoto
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Hokkaido 060-8648, Japan; University of Toyama Hospital, Center for Clinical Research, Toyama 930-0194, Japan
| | - Saki Yokoshiki
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Hokkaido 060-8648, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishi-Niigata Chuo National Hospital, Niigata 950-2085, Japan
| | - Yuki Ueda
- Department of Pediatrics, Hokkaido University Hospital, Hokkaido 060-8648, Japan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Hokkaido 060-8648, Japan
| | - Norihiro Sato
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Hokkaido 060-8648, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Hospital, Hokkaido 060-8648, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8555, Japan.
| |
Collapse
|
86
|
Balestrini S, Barba C, Thom M, Guerrini R. Focal cortical dysplasia: a practical guide for neurologists. Pract Neurol 2023:pn-2022-003404. [PMID: 36823117 DOI: 10.1136/pn-2022-003404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part.
Collapse
Affiliation(s)
- Simona Balestrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy .,University of Florence, Florence, Italy.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Carmen Barba
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy.,University of Florence, Florence, Italy
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy.,University of Florence, Florence, Italy
| |
Collapse
|
87
|
Wang Y, Yu T, Blümcke I, Cai Y, Sun K, Gao R, Wang Y, Fu Y, Wang W, Wang Y, Zhang G, Piao Y. The clinico-pathological characterisation of focal cortical dysplasia type IIb genetically defined by MTOR mosaicism. Neuropathol Appl Neurobiol 2023; 49:e12874. [PMID: 36544434 DOI: 10.1111/nan.12874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/18/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022]
Abstract
AIMS Focal cortical dysplasia (FCD) is a major cause of drug-resistant paediatric epilepsy and is amenable to successful neurosurgical resection. FCD ILAE Type IIb is the most common FCD subtype, and brain somatic mutations affecting the mTOR pathway play a major pathogenic role. The aim of this study was to comprehensively describe the genotype-phenotype association of 20 patients with histopathologically confirmed FCDIIb using next generation sequencing (NGS) of paired blood-brain samples. METHODS Clinical and neuropathological data were retrospectively reviewed from the hospital archive. The NGS panel included 11 mTOR-pathway-related genes with maximum coverage of 2000×. The detected variants were validated by digital droplet PCR. RESULTS Pathogenic MTOR variants were identified in 10 patients (50%). Further comparison with MTOR-wildtype FCDIIb suggested a profound genotype-phenotype association characterised by (1) a non-temporal lobe lesion on MRI, (2) a larger lesion volume occupying grey and white matter (3.032 ± 1.859 cm3 vs 1.110 ± 0.856 cm3 , p = 0.014), (3) more balloon cells (50.20 ± 14.40 BC/mm2 vs 31.64 ± 30.56 BC/mm2 , p = 0.099) and dysmorphic neurons (48.72 ± 19.47DN/mm2 vs 15.28 ± 13.95DN/mm2 , p = 0.000) and (4) a positive correlation between VAF and the lesion volume (r = 0.802, p = 0.017). CONCLUSIONS Our study identified frequent MTOR mutations in the cell-rich FCDIIb phenotype, clinically characterised by a non-temporal location and large lesion volume. Comprehensive genotype-phenotype associations will help us further explore and define the broad spectrum of FCD lesions to make more targeted therapies available in the realm of epileptology.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Tao Yu
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Yanning Cai
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Department of Neurobiology and Clinical Biobank, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ke Sun
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yujiao Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Wei Wang
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuping Wang
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Center of Epilepsy, Institute of Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
88
|
Kim YE, Kim YS, Lee HE, So KH, Choe Y, Suh BC, Kim JH, Park SK, Mathern GW, Gleeson JG, Rah JC, Baek ST. Reversibility and developmental neuropathology of linear nevus sebaceous syndrome caused by dysregulation of the RAS pathway. Cell Rep 2023; 42:112003. [PMID: 36641749 DOI: 10.1016/j.celrep.2023.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yong-Seok Kim
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Gary W Mathern
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Jong-Cheol Rah
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 7 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| |
Collapse
|
89
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
90
|
Zhang S, Luo Y, Zhao Y, Zhu F, Jiang X, Wang X, Mo T, Zeng H. Prognostic analysis in children with focal cortical dysplasia II undergoing epilepsy surgery: Clinical and radiological factors. Front Neurol 2023; 14:1123429. [PMID: 36949857 PMCID: PMC10025379 DOI: 10.3389/fneur.2023.1123429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the value of clinical profiles and radiological findings in assessing postsurgical outcomes in children with focal cortical dysplasia (FCD) II while exploring prognostic predictors of this disease. METHODS We retrospectively reviewed 50 patients with postoperative pathologically confirmed FCD II from January 2016 to June 2021. The clinical profiles and preoperative radiological findings were measured and analyzed. The patients were classified into four classes based on the Engel Class Outcome System at the last follow-up. For the analysis, the patients were divided into two categories based on Engel I and Engel II-IV, namely, seizure-free and non-seizure-free groups. Qualitative and quantitative factors were subsequently compared by groups using comparative statistics. Receiver operating characteristic (ROC) curves were used to identify the predictors of prognosis in children with FCD II. RESULTS Thirty-seven patients (74%) had Engel class I outcomes. The minimum postsurgical follow-up was 1 year. At the epilepsy onset, patients who attained seizure freedom were older and less likely to have no apparent lesions on the preoperative MRI ("MRI-negative"). The non-seizure-free group exhibited a higher gray matter signal intensity ratio (GR) on 3D T1-MPRAGE images (p = 0.006), with a lower GR on T2WI images (p = 0.003) and FLAIR images (p = 0.032). The ROC curve indicated that the model that combined the GR value of all MRI sequences (AUC, 0.87; 95% CI, 0.77-0.97; p < 0.001; 86% sensitivity, 85% specificity) was able to predict prognosis accurately. CONCLUSION A lower age at the onset or the MRI-negative finding of FCD lesions suggests a poor prognosis for children with FCD II. The model consisting of GR values from three MRI sequences facilitates the prognostic assessment of FCD II patients with subtle MRI abnormalities to prevent worse outcomes.
Collapse
Affiliation(s)
- Siqi Zhang
- Shantou University Medical College, Shantou University, Shantou, China
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Luo
- Shantou University Medical College, Shantou University, Shantou, China
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yilin Zhao
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Fengjun Zhu
- Department of Epilepsy Surgical Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Xianping Jiang
- Department of Pathology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaoyu Wang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
- *Correspondence: Hongwu Zeng
| |
Collapse
|
91
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
92
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|
93
|
Andrews MG, Subramanian L, Salma J, Kriegstein AR. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat Rev Neurosci 2022; 23:711-724. [PMID: 36180551 PMCID: PMC10571506 DOI: 10.1038/s41583-022-00631-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Apical-basal progenitor cell polarity establishes key features of the radial and laminar architecture of the developing human cortex. The unique diversity of cortical stem cell populations and an expansion of progenitor population size in the human cortex have been mirrored by an increase in the complexity of cellular processes that regulate stem cell morphology and behaviour, including their polarity. The study of human cells in primary tissue samples and human stem cell-derived model systems (such as cortical organoids) has provided insight into these processes, revealing that protein complexes regulate progenitor polarity by controlling cell membrane adherence within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity is established and maintained are key for understanding the features of human brain development and have implications for neurological dysfunction.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Lakshmi Subramanian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmacology, Ideaya Biosciences, South San Francisco, CA, USA
| | - Jahan Salma
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
94
|
Lai A, Soucy A, El Achkar CM, Barkovich AJ, Cao Y, DiStefano M, Evenson M, Guerrini R, Knight D, Lee YS, Mefford HC, Miller DT, Mirzaa G, Mochida G, Rodan LH, Patel M, Smith L, Spencer S, Walsh CA, Yang E, Yuskaitis CJ, Yu T, Poduri A. The ClinGen Brain Malformation Variant Curation Expert Panel: Rules for somatic variants in AKT3, MTOR, PIK3CA, and PIK3R2. Genet Med 2022; 24:2240-2248. [PMID: 35997716 PMCID: PMC9883838 DOI: 10.1016/j.gim.2022.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Postzygotic (somatic) variants in the mTOR pathway genes cause a spectrum of distinct developmental abnormalities. Accurate classification of somatic variants in this group of disorders is crucial for affected individuals and their families. METHODS The ClinGen Brain Malformation Variant Curation Expert Panel was formed to curate somatic variants associated with developmental brain malformations. We selected the genes AKT3, MTOR, PIK3CA, and PIK3R2 as the first set of genes to provide additional specifications to the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) sequence variant interpretation guidelines, which currently focus solely on germline variants. RESULTS A total of 24 of the original 28 ACMG/AMP criteria required modification. Several modifications used could be applied to other genes and disorders in which somatic variants play a role: 1) using variant allele fraction differences as evidence that somatic mutagenesis occurred as a proxy for de novo variation, 2) incorporating both somatic and germline evidence, and 3) delineating phenotype on the basis of variable tissue expression. CONCLUSION We have established a framework for rigorous interpretation of somatic mosaic variants, addressing issues unique to somatic variants that will be applicable to many genes and conditions.
Collapse
Affiliation(s)
- Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Aubrie Soucy
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Christelle Moufawad El Achkar
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA
| | | | - Yang Cao
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Marina DiStefano
- Broad Institute of MIT and Harvard, Cambridge, MA; Precision Health Program, Geisinger, Danville, PA
| | - Michael Evenson
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, Meyer Children's University Hospital, University of Florence, Florence, Italy
| | - Devon Knight
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Yi-Shan Lee
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Hospital, Memphis, TN
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA
| | - Ganesh Mochida
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA
| | - Mayher Patel
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lacey Smith
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Sara Spencer
- Division of Reproductive Genetics, Northwestern Medicine, Chicago, IL
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Christopher J Yuskaitis
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA
| | - Timothy Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
95
|
Lee M, Kim EJ, Kim MJ, Yum MS. Rapamycin Cannot Reduce Seizure Susceptibility in Infantile Rats with Malformations of Cortical Development Lacking mTORC1 Activation. Mol Neurobiol 2022; 59:7439-7449. [PMID: 36194361 DOI: 10.1007/s12035-022-03033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
Abstract
The mechanistic target of the rapamycin (mTOR) pathway is involved in cortical development. However, the efficacy of mTOR inhibitors in malformations of cortical dysplasia (MCD) outside of the tuberous sclerosis complex is unknown. We selected the MCD rat model with prenatal MAM exposure to test the efficacy of mTOR inhibitors in MCDs. We explored the early cortical changes of mTOR pathway protein expression in rats aged P15. We also monitored the early treatment effect of the mTOR inhibitor, rapamycin, on N-methyl-D-aspartate (NMDA)-induced spasms at P15 and their behavior in the juvenile stage. In vivo MR spectroscopy was performed after rapamycin treatment and compared with vehicle controls. There was no difference in mTORC1 pathway protein expression between MAM-exposed MCD rats and controls at P15, and prolonged treatment of rapamycin had no impact on NMDA-induced spasms despite poor weight gain. Prenatal MAM-exposed juvenile rats treated with rapamycin showed increased social approaching and freezing behavior during habituation. MR spectroscopy showed altered neurometabolites, including Gln, Glu+Gln, Tau, and Cr. Despite behavioral changes and in vivo neurometabolic alteration with early prolonged rapamycin treatment, rapamycin had no effect on spasms susceptibility in prenatal MAM-exposed infantile rats with MCD without mTORC1 activation. For MAM-exposed MCD rats without mTORC1 activation, treatment options outside of mTOR pathway inhibitors should be explored.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea
| | - Eun-Jin Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Asan Medical Center, Asan Institute for Life Sciences, Seoul, 05505, Korea
| | - Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, 88 Olympic-ro, Songpa-ku, Seoul, 05505, Korea
| | - Mi-Sun Yum
- Department of Pediatrics, University of Ulsan College of Medicine, Seoul, 05505, Korea. .,Department of Pediatrics, Asan Medical Center Children's Hospital, 88 Olympic-ro, Songpa-ku, Seoul, 05505, Korea.
| |
Collapse
|
96
|
Kapar O, Gurkan ZM, Dolgun M, Sencer A, Gürses C, Bilgic B. Focal cortical dysplasia pathology: diagnostic difficulty, classification, and utility for pathogenesis. Neurosurg Focus 2022; 53:E6. [DOI: 10.3171/2022.7.focus21731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/21/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE
In the histopathological examination of treatment-resistant epilepsy, focal cortical dysplasia (FCD) is the most common diagnosis in the pediatric group. FCD is classified histopathologically according to the International League Against Epilepsy (ILAE) classification. In the last decade since the ILAE classification has been released, molecular genetic studies have revealed mTOR pathway–related mutations as a major etiology. The objective of this study was to determine the incidence of FCD in treatment-resistant epilepsy patients, explore histomorphological and immunohistochemical features, examine clinicopathological correlation, demonstrate mTOR pathway activation using a pS6 antibody immunohistochemically, and try to introduce a candidate for possible targeted therapies.
METHODS
Paraffin blocks and slides of tissue from patients with treatment-resistant epilepsy were reexamined retrospectively. Histopathological subtypes of FCD were determined according to the ILAE classification. NeuN and neurofilament H (NF-H) staining were performed, and additionally a pS6 antibody was used to demonstrate mTOR pathway activation.
RESULTS
In 32 cases diagnosed with FCD, or 17.5% of 183 surgical epilepsy materials, there were no significant differences in the statistical analysis of clinical variables between the ILAE FCD subtypes. Recommended antibody NeuN revealed microcolumnar alignment in the FCD type Ia and IIIa groups and the loss of lamination in the type Ib group. Another recommended antibody, NF-H, was not found to be useful in discriminating between normal and dysmorphic neurons. pS6 expression, showing mTOR pathway activation, was observed in dysmorphic neurons and balloon cells in all FCD type II cases.
CONCLUSIONS
Significant pS6 expression in FCD type II represents the genomic nature of the disease noted in the literature. Nevertheless, the known MTOR gene and mTOR pathway–related mutations remain behind proportionally to explain the mTOR pathway activation in all FCD type II cases. Clinicopathologically and genetically integrated classification and usage of mTOR pathway inhibitors in treatment are expected as a recent evolution.
Collapse
Affiliation(s)
- Ozge Kapar
- Department of Pathology, Istanbul University
| | - Zahide Mail Gurkan
- Department of Neurology and Clinical Neurophysiology, Istanbul University
| | - Muge Dolgun
- Department of Neurosurgery, Sultangazi Haseki Training and Research Hospital
| | - Altay Sencer
- Department of Neurosurgery, Istanbul Faculty of Medicine, Istanbul University; and
| | - Candan Gürses
- Department of Neurology, Koc University, Istanbul, Turkey
| | | |
Collapse
|
97
|
Lai D, Gade M, Yang E, Koh HY, Lu J, Walley NM, Buckley AF, Sands TT, Akman CI, Mikati MA, McKhann GM, Goldman JE, Canoll P, Alexander AL, Park KL, Von Allmen GK, Rodziyevska O, Bhattacharjee MB, Lidov HGW, Vogel H, Grant GA, Porter BE, Poduri AH, Crino PB, Heinzen EL. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain 2022; 145:2704-2720. [PMID: 35441233 PMCID: PMC9612793 DOI: 10.1093/brain/awac117] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.
Collapse
Affiliation(s)
- Dulcie Lai
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meethila Gade
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Yong Koh
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinfeng Lu
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole M Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Cigdem I Akman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mohamad A Mikati
- Department of Neurobiology, Duke University, Durham, NC 27708, USA.,Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University, New York Presbyterian Hospital, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allyson L Alexander
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L Park
- Department of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gretchen K Von Allmen
- Department of Neurology, McGovern Medical School, Houston, TX 77030, USA.,Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX 77030, USA
| | - Olga Rodziyevska
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, TX 77030, USA
| | | | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Gerald A Grant
- Department of Neurosurgery, Lucile Packard Children's Hospital at Stanford, School of Medicine, Stanford, CA 94305, USA
| | - Brenda E Porter
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Annapurna H Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Heinzen
- Division of Pharmacology and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
98
|
Gataullina S, Galvani G, Touchet S, Nous C, Lemaire E, Laschet J, Chiron C, Dulac O, Dossi E, Brion JD, Messaoudi S, Alami M, Huberfeld G. GluN2C
selective inhibition is a target to develop new antiepileptic compounds. Epilepsia 2022; 63:2911-2924. [PMID: 36054371 DOI: 10.1111/epi.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Many early-onset epilepsies present as developmental and epileptic encephalopathy associated with refractory seizures, altered psychomotor development, and disorganized interictal cortical activity. Abnormal upregulation of specific N-methyl-d-aspartate receptor (NMDA-R) subunits is being disentangled as one of the mechanisms of severe early-onset epilepsies. In tuberous sclerosis complex (TSC), upregulation of the GluN2C subunit of the NMDA-R with slow deactivation kinetic results in increased neuronal excitation and synchronization. METHODS Starting from an available GluN2C/D antagonist, NMDA-R-modulating compounds were developed and screened using a patch clamp on neuronal culture to select those with the strongest inhibitory effect on glutamatergic NMDA currents. For these selected compounds, blood pharmacokinetics and passage through the blood-brain barrier were studied. We tested the effect of the most promising compounds on epileptic activity in Tsc1+/- mice brain slices with multielectrode array, and then in vivo at postnatal ages P14-P17, comparable with the usual age at epilepsy onset in human TSC. RESULTS Using a double-electrode voltage clamp on isolated NMDA currents, we identified the most prominent antagonists of the GluN2C subunit with no effect on GluN2A as a means of preventing side effects. The best compound passing through the blood-brain barrier was selected. Applied in vivo in six Tsc1+/- mice at P14-P17, this compound reduced or completely stopped spontaneous seizures in four of them, and decreased the background activity disorganization. Furthermore, ictal-like discharges stopped on a human brain sample from an infant with epilepsy due to TSC. INTERPRETATION Subunit-selective inhibition is a valuable target for developing drugs for severe epilepsies resulting from an upregulation of NMDA-R subunit-mediated transmission.
Collapse
Affiliation(s)
- S. Gataullina
- Service d’explorations fonctionnelles multidisciplinaires Centre de médecine du sommeil, Antoine Béclère Hospital, APHP, Université Paris Saclay Clamart France
| | - G. Galvani
- AdPueriVitam (APV), Antony France
- Université de Lorraine CNRS, L2CM Nancy France
| | - S. Touchet
- AdPueriVitam (APV), Antony France
- Université de Lorraine CNRS, L2CM Nancy France
| | - C. Nous
- Institut de la Vision, UFR Sciences et Technologies Paris France
| | | | | | - C. Chiron
- Inserm U1141, Paris & APHP, Neuropediatrics, Necker Hospital Paris France
| | - O. Dulac
- AdPueriVitam (APV), Antony France
| | - E. Dossi
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050 Université PSL Paris France
| | - J. D. Brion
- Université Paris‐Saclay CNRS UMR 8076, BioCIS Châtenay‐Malabry France
| | - S. Messaoudi
- Université Paris‐Saclay CNRS UMR 8076, BioCIS Châtenay‐Malabry France
| | - M. Alami
- Université Paris‐Saclay CNRS UMR 8076, BioCIS Châtenay‐Malabry France
| | - G. Huberfeld
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050 Université PSL Paris France
- Neurology Department, Hôpital Fondation Adolphe de Rothschild Paris France
| |
Collapse
|
99
|
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, Palmini A, Paglioli E, Sarnat HB, Walsh CA, Wiebe S, Aronica E, Baulac S, Coras R, Kobow K, Cross JH, Garbelli R, Holthausen H, Rössler K, Thom M, El-Osta A, Lee JH, Miyata H, Guerrini R, Piao YS, Zhou D, Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022; 63:1899-1919. [PMID: 35706131 PMCID: PMC9545778 DOI: 10.1111/epi.17301] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Collapse
Affiliation(s)
- Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA
| | - Dennis Lal
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Neurology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Translational Medicine, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Andre Palmini
- Department of Clinical Neurosciences, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Porto Alegre Epilepsy Surgery Program, Hospital São Lucas PUCRS, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Harvey B Sarnat
- Department of Paediatrics, Department of Pathology (Neuropathology) and Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Kobow
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Helen Cross
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Karl Rössler
- Department of Neurosurgery, Allgemeines Krankenhaus Wien, Vienna Medical University, Wien, Austria
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, UK
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST and SoVarGen, Daejeon, South Korea
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer- University of Florence, Florence, Italy
| | - Yue-Shan Piao
- National Center for Neurological Disorders, Department of Pathology, Xuanwu Hospital, Capital Medical University, and Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
100
|
Nguyen LH, Bordey A. Current Review in Basic Science: Animal Models of Focal Cortical Dysplasia and Epilepsy. Epilepsy Curr 2022; 22:234-240. [PMID: 36187145 PMCID: PMC9483763 DOI: 10.1177/15357597221098230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development that is a prevalent cause of intractable epilepsy in children. Of the three FCD subtypes, understanding the etiology and pathogenesis of FCD type II has seen the most progress owing to the recent advances in identifying gene mutations along the mTOR signaling pathway as a frequent cause of this disorder. Accordingly, numerous animal models of FCD type II based on genetic manipulation of the mTOR signaling pathway have emerged to investigate the mechanisms of epileptogenesis and novel therapeutics for epilepsy. These include transgenic and in utero electroporation-based animal models. Here, we review the histopathological and electroclinical features of existing FCD type II animal models and discuss the scientific and technical considerations, clinical applications, and limitations of current models. We also highlight other models of FCD based on early life acquired factors.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Departments of Neurosurgery and Cellular & Molecular
Physiology, Yale University School of
Medicine, New Haven, CT, USA
| | - Angélique Bordey
- Departments of Neurosurgery and Cellular & Molecular
Physiology, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|