51
|
Horváth C, Tóth LF, Ulbert I, Fiáth R. Dataset of cortical activity recorded with high spatial resolution from anesthetized rats. Sci Data 2021; 8:180. [PMID: 34267214 PMCID: PMC8282648 DOI: 10.1038/s41597-021-00970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Publicly available neural recordings obtained with high spatial resolution are scarce. Here, we present an electrophysiological dataset recorded from the neocortex of twenty rats anesthetized with ketamine/xylazine. The wideband, spontaneous recordings were acquired with a single-shank silicon-based probe having 128 densely-packed recording sites arranged in a 32 × 4 array. The dataset contains the activity of a total of 7126 sorted single units extracted from all layers of the cortex. Here, we share raw neural recordings, as well as spike times, extracellular spike waveforms and several properties of units packaged in a standardized electrophysiological data format. For technical validation of our dataset, we provide the distributions of derived single unit properties along with various spike sorting quality metrics. This large collection of in vivo data enables the investigation of the high-resolution electrical footprint of cortical neurons which in turn may aid their electrophysiology-based classification. Furthermore, the dataset might be used to study the laminar-specific neuronal activity during slow oscillation, a brain rhythm strongly involved in neural mechanisms underlying memory consolidation and sleep.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Lili Fanni Tóth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
52
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
53
|
Kortelainen J, Ala-Kokko T, Tiainen M, Strbian D, Rantanen K, Laurila J, Koskenkari J, Kallio M, Toppila J, Väyrynen E, Skrifvars MB, Hästbacka J. Early recovery of frontal EEG slow wave activity during propofol sedation predicts outcome after cardiac arrest. Resuscitation 2021; 165:170-176. [PMID: 34111496 DOI: 10.1016/j.resuscitation.2021.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022]
Abstract
AIM OF THE STUDY EEG slow wave activity (SWA) has shown prognostic potential in post-resuscitation care. In this prospective study, we investigated the accuracy of continuously measured early SWA for prediction of the outcome in comatose cardiac arrest (CA) survivors. METHODS We recorded EEG with a disposable self-adhesive frontal electrode and wireless device continuously starting from ICU admission until 48 h from return of spontaneous circulation (ROSC) in comatose CA survivors sedated with propofol. We determined SWA by offline calculation of C-Trend® Index describing SWA as a score ranging from 0 to 100. The functional outcome was defined based on Cerebral Performance Category (CPC) at 6 months after the CA to either good (CPC 1-2) or poor (CPC 3-5). RESULTS Outcome at six months was good in 67 of the 93 patients. During the first 12 h after ROSC, the median C-Trend Index value was 38.8 (interquartile range 28.0-56.1) in patients with good outcome and 6.49 (3.01-18.2) in those with poor outcome showing significant difference (p < 0.001) at every hour between the groups. The index values of the first 12 h predicted poor outcome with an area under curve of 0.86 (95% CI 0.61-0.99). With a cutoff value of 20, the sensitivity was 83.3% (69.6%-92.3%) and specificity 94.7% (83.4%-99.7%) for categorization of outcome. CONCLUSION EEG SWA measured with C-Trend Index during propofol sedation offers a promising practical approach for early bedside evaluation of recovery of brain function and prediction of outcome after CA.
Collapse
Affiliation(s)
- Jukka Kortelainen
- Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, MRC Oulu, University of Oulu, Oulu, Finland; Cerenion Oy, Oulu, Finland.
| | - Tero Ala-Kokko
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, Oulu, Finland; Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marjaana Tiainen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel Strbian
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Rantanen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Laurila
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, Oulu, Finland; Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha Koskenkari
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, Oulu, Finland; Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Department of Clinical Neurophysiology, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland
| | - Jussi Toppila
- Department of Clinical Neurophysiology, HUS Diagnostics Center, Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurosciences (Neurophysiology), University of Helsinki, Helsinki, Finland
| | | | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
54
|
Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Neuroimage 2021; 236:118117. [PMID: 33940148 DOI: 10.1016/j.neuroimage.2021.118117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Collapse
Affiliation(s)
- Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Andrea Leo
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Alessandra Federici
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy.
| |
Collapse
|
55
|
Cui Y, Li M, Biswal B, Jing W, Zhou C, Liu H, Guo D, Xia Y, Yao D. Dynamic Configuration of Coactive Micropatterns in the Default Mode Network During Wakefulness and Sleep. Brain Connect 2021; 11:471-482. [PMID: 33403904 DOI: 10.1089/brain.2020.0827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: The default mode network (DMN) is a prominent intrinsic network that is observable in many mammalian brains. However, a few studies have investigated the temporal dynamics of this network based on direct physiological recordings. Methods: Herein, we addressed this issue by characterizing the dynamics of local field potentials from the rat DMN during wakefulness and sleep with an exploratory analysis. We constructed a novel coactive micropattern (CAMP) algorithm to evaluate the configurations of rat DMN dynamics, and further revealed the relationship between DMN dynamics with different wakefulness and alertness levels. Results: From the gamma activity (40-80 Hz) in the DMN across wakefulness and sleep, three spatially stable CAMPs were detected: a common low-activity level micropattern (cDMN), an anterior high-activity level micropattern (aDMN), and a posterior high-activity level micropattern (pDMN). A dynamic balance across CAMPs emerged during wakefulness and was disrupted in sleep stages. In the slow-wave sleep (SWS) stage, cDMN became the primary activity pattern, whereas aDMN and pDMN were the major activity patterns in the rapid eye movement sleep stage. In addition, further investigation revealed phasic relationships between CAMPs and the up-down states of the slow DMN activity in the SWS stage. Conclusion: Our study revealed that the dynamic configurations of CAMPs were highly associated with different stages of wakefulness, and provided a potential three-state model to describe the DMN dynamics for wakefulness and alertness. Impact statement In the current study, a novel coactive micropattern (CAMP) method was developed to elucidate fast default mode network (DMN) dynamics during wakefulness and sleep. Our findings demonstrated that the dynamic configurations of DMN activity are specific to different wakefulness stages and provided a three-state DMN CAMP model to depict wakefulness levels, thus revealing a potentially new neurophysiological representation of alertness levels. This work could elucidate the DMN dynamics underlying different stages of wakefulness and have important implications for the theoretical understanding of the neural mechanism of wakefulness and alertness.
Collapse
Affiliation(s)
- Yan Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Wei Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Huixiao Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China.,School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
56
|
Russo S, Pigorini A, Mikulan E, Sarasso S, Rubino A, Zauli FM, Parmigiani S, d'Orio P, Cattani A, Francione S, Tassi L, Bassetti CLA, Lo Russo G, Nobili L, Sartori I, Massimini M. Focal lesions induce large-scale percolation of sleep-like intracerebral activity in awake humans. Neuroimage 2021; 234:117964. [PMID: 33771696 DOI: 10.1016/j.neuroimage.2021.117964] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
Focal cortical lesions are known to result in large-scale functional alterations involving distant areas; however, little is known about the electrophysiological mechanisms underlying these network effects. Here, we addressed this issue by analysing the short and long distance intracranial effects of controlled structural lesions in humans. The changes in Stereo-Electroencephalographic (SEEG) activity after Radiofrequency-Thermocoagulation (RFTC) recorded in 21 epileptic subjects were assessed with respect to baseline resting wakefulness and sleep activity. In addition, Cortico-Cortical Evoked Potentials (CCEPs) recorded before the lesion were employed to interpret these changes with respect to individual long-range connectivity patterns. We found that small structural ablations lead to the generation and large-scale propagation of sleep-like slow waves within the awake brain. These slow waves match those recorded in the same subjects during sleep, are prevalent in perilesional areas, but can percolate up to distances of 60 mm through specific long-range connections, as predicted by CCEPs. Given the known impact of slow waves on information processing and cortical plasticity, demonstrating their intrusion and percolation within the awake brain add key elements to our understanding of network dysfunction after cortical injuries.
Collapse
Affiliation(s)
- S Russo
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - E Mikulan
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - A Rubino
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - F M Zauli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - S Parmigiani
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - P d'Orio
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy; Institute of Neuroscience, CNR, via Volturno 39E, 43125 Parma, Italy
| | - A Cattani
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - S Francione
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - L Tassi
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - C L A Bassetti
- Department of Neurology, Inselspital, University of Bern, Switzerland
| | - G Lo Russo
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - L Nobili
- Child Neuropsychiatry, IRCCS Istituto G. Gaslini, Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - I Sartori
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; IRCCS, Fondazione Don Carlo Gnocchi, Milan 20148, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
57
|
Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Rep 2021; 34:108642. [PMID: 33472059 DOI: 10.1016/j.celrep.2020.108642] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse.
Collapse
|
58
|
Dondé C, Brunelin J, Micoulaud-Franchi JA, Maruani J, Lejoyeux M, Polosan M, Geoffroy PA. The Effects of Transcranial Electrical Stimulation of the Brain on Sleep: A Systematic Review. Front Psychiatry 2021; 12:646569. [PMID: 34163380 PMCID: PMC8215269 DOI: 10.3389/fpsyt.2021.646569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Transcranial Electrical Stimulation (tES) is a promising non-invasive brain modulation tool. Over the past years, there have been several attempts to modulate sleep with tES-based approaches in both the healthy and pathological brains. However, data about the impact on measurable aspects of sleep remain scattered between studies, which prevent us from drawing firm conclusions. We conducted a systematic review of studies that explored the impact of tES on neurophysiological sleep oscillations, sleep patterns measured objectively with polysomnography, and subjective psychometric assessments of sleep in both healthy and clinical samples. We searched four main electronic databases to identify studies until February 2020. Forty studies were selected including 511 healthy participants and 452 patients. tES can modify endogenous brain oscillations during sleep. Results concerning changes in sleep patterns are conflicting, whereas subjective assessments show clear improvements after tES. Possible stimulation-induced mechanisms within specific cortico-subcortical sleep structures and networks are discussed. Although these findings cannot be directly transferred to the clinical practice and sleep-enhancing devices development for healthy populations, they might help to pave the way for future researches in these areas. PROSPERO registration number 178910.
Collapse
Affiliation(s)
- Clément Dondé
- University Grenoble Alpes, Grenoble, France.,U1216 INSERM, Grenoble Institut of Neuroscience, La Tronche, France.,Psychiatry Department, CHU Grenoble Alpes, Grenoble, France
| | - Jerome Brunelin
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, PSY-R2 Team, Lyon, France.,Lyon University, Lyon, France.,Centre Hospitalier le Vinatier, Batiment 416, Bron, France
| | - Jean-Arthur Micoulaud-Franchi
- University Sleep Clinic, Services of Functional Exploration of the Nervous System, University Hospital of Bordeaux, Bordeaux, France.,USR CNRS 3413 SANPSY, University Hospital Pellegrin, University of Bordeaux, Bordeaux, France
| | - Julia Maruani
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.,Université de Paris, Paris, France.,INSERM U1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Michel Lejoyeux
- Paris Diderot University-Paris VII, 5 Rue Thomas Mann, Paris, France.,University Hospital Bichat-Claude Bernard, 46 rue Henri Huchard, Paris, France
| | - Mircea Polosan
- University Grenoble Alpes, Grenoble, France.,U1216 INSERM, Grenoble Institut of Neuroscience, La Tronche, France.,Psychiatry Department, CHU Grenoble Alpes, Grenoble, France
| | - Pierre A Geoffroy
- Paris Diderot University-Paris VII, 5 Rue Thomas Mann, Paris, France.,University Hospital Bichat-Claude Bernard, 46 rue Henri Huchard, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
59
|
Oyanedel CN, Durán E, Niethard N, Inostroza M, Born J. Temporal associations between sleep slow oscillations, spindles and ripples. Eur J Neurosci 2020; 52:4762-4778. [PMID: 32654249 DOI: 10.1111/ejn.14906] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023]
Abstract
The systems consolidation of memory during slow-wave sleep (SWS) is thought to rely on a dialogue between hippocampus and neocortex that is regulated by an interaction between neocortical slow oscillations (SOs), thalamic spindles and hippocampal ripples. Here, we examined the occurrence rates of and the temporal relationships between these oscillatory events in rats, to identify the possible direction of interaction between these events under natural conditions. To facilitate comparisons with findings in humans, we combined frontal and parietal surface EEG with local field potential (LFP) recordings in medial prefrontal cortex (mPFC) and dorsal hippocampus (dHC). Consistent with a top-down driving influence, EEG SO upstates were associated with an increase in spindles and hippocampal ripples. This increase was missing in SO upstates identified in mPFC recordings. Ripples in dHC recordings always followed the onset of spindles consistent with spindles timing ripple occurrence. Comparing ripple activity during co-occurring SO-spindle events with that during isolated SOs or spindles, suggested that ripple dynamics during SO-spindle events are mainly determined by the spindle, with only the SO downstate providing a global inhibitory signal to both thalamus and hippocampus. As to bottom-up influences, we found an increase in hippocampal ripples ~200 ms before the SO downstate, but no similar increase of spindles preceding SO downstates. Overall, the temporal pattern is consistent with a loop-like scenario where, top-down, SOs can trigger thalamic spindles which, in turn, regulate the occurrence of hippocampal ripples. Ripples, bottom-up, and independent from thalamic spindles, can contribute to the emergence of neocortical SOs.
Collapse
Affiliation(s)
- Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Ernesto Durán
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
- Laboratorio de Circuitos Neuronales, Departamento de Psiquiatría, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
60
|
Burkhanova G, Chernova K, Khazipov R, Sheroziya M. Effects of Cortical Cooling on Activity Across Layers of the Rat Barrel Cortex. Front Syst Neurosci 2020; 14:52. [PMID: 32848644 PMCID: PMC7417609 DOI: 10.3389/fnsys.2020.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Moderate cortical cooling is known to suppress slow oscillations and to evoke persistent cortical activity. However, the cooling-induced changes in electrical activity across cortical layers remain largely unknown. Here, we performed multi-channel local field potential (LFP) and multi-unit activity (MUA) recordings with linear silicone probes through the layers of single cortical barrel columns in urethane-anesthetized rats under normothermia (38°C) and during local cortical surface cooling (30°C). During cortically generated slow oscillations, moderate cortical cooling decreased delta wave amplitude, delta-wave occurrence, the duration of silent states, and delta wave-locked MUA synchronization. Moderate cortical cooling increased total time spent in the active state and decreased total time spent in the silent state. Cooling-evoked changes in the MUA firing rate in cortical layer 5 (L5) varied from increase to decrease across animals, and the polarity of changes in L5 MUA correlated with changes in total time spent in the active state. The decrease in temperature reduced MUA firing rates in all other cortical layers. Sensory-evoked MUA responses also decreased during cooling through all cortical layers. The cooling-dependent slowdown was detected at the fast time-scale with a decreased frequency of sensory-evoked high-frequency oscillations (HFO). Thus, moderate cortical cooling suppresses slow oscillations and desynchronizes neuronal activity through all cortical layers, and is associated with reduced firing across all cortical layers except L5, where cooling induces variable and non-consistent changes in neuronal firing, which are common features of the transition from slow-wave synchronization to desynchronized activity in the barrel cortex.
Collapse
Affiliation(s)
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Aix Marseille University, INSERM, INMED, Marseille, France
| | - Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
61
|
McLeod GA, Ghassemi A, Ng MC. Can REM Sleep Localize the Epileptogenic Zone? A Systematic Review and Analysis. Front Neurol 2020; 11:584. [PMID: 32793089 PMCID: PMC7393443 DOI: 10.3389/fneur.2020.00584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common and debilitating neurological disease. When medication cannot control seizures in up to 40% of cases, surgical resection of epileptogenic tissue is a clinically and cost- effective therapy to achieve seizure freedom. To simultaneously resect minimal yet sufficient cortex, exquisite localization of the epileptogenic zone (EZ) is crucial. However, localization is not straightforward, given relative difficulty of capturing seizures, constraints of the inverse problem in source localization, and possible disparate locations of symptomatogenic vs. epileptogenic regions. Thus, attention has been paid to which state of vigilance best localizes the EZ, in the hopes that one or another sleep-wake state may hold the key to improved accuracy of localization. Studies investigating this topic have employed diverse methodologies and produced diverse results. Nonetheless, rapid eye movement sleep (REM) has emerged as a promising sleep-wake state, as epileptic phenomena captured in REM may spatially correspond more closely to the EZ. Cortical neuronal asynchrony in REM may spatially constrain epileptic phenomena to reduce propagation away from the source generator, rendering them of high localizing value. However, some recent work demonstrates best localization in sleep-wake states other than REM, and there are reports of REM providing clearly false localization. Moreover, synchronistic properties and basic mechanisms of human REM remain to be fully characterized. Amidst these uncertainties, there is an urgent need for recording and analytical techniques to improve accuracy of localization. Here we present a systematic review and quantitative analysis of pertinent literature on whether and how REM may help localize epileptogenic foci. To help streamline and accelerate future work on the intriguing anti-epileptic properties of REM, we also introduce a simple, conceptually clear set-theoretic framework to conveniently and rigorously describe the spatial properties of epileptic phenomena in the brain.
Collapse
Affiliation(s)
- Graham A McLeod
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | | - Marcus C Ng
- Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
62
|
Rupasinghe A, Babadi B. Multitaper Analysis of Semi-Stationary Spectra from Multivariate Neuronal Spiking Observations. IEEE TRANSACTIONS ON SIGNAL PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 68:4382-4396. [PMID: 39131707 PMCID: PMC11314774 DOI: 10.1109/tsp.2020.3010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Extracting the spectral representations of neural processes that underlie spiking activity is key to understanding how brain rhythms mediate cognitive functions. While spectral estimation of continuous time-series is well studied, inferring the spectral representation of latent non-stationary processes based on spiking observations is challenging due to the underlying nonlinearities that limit the spectrotemporal resolution of existing methods. In this paper, we address this issue by developing a multitaper spectral estimation methodology that can be directly applied to multivariate spiking observations in order to extract the semi-stationary spectral density of the latent non-stationary processes that govern spiking activity. We establish theoretical bounds on the bias-variance trade-off of our proposed estimator. Finally, application of our proposed technique to simulated and real data reveals significant performance gains over existing methods.
Collapse
Affiliation(s)
- Anuththara Rupasinghe
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742
| | - Behtash Babadi
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
63
|
Menicucci D, Piarulli A, Laurino M, Zaccaro A, Agrimi J, Gemignani A. Sleep slow oscillations favour local cortical plasticity underlying the consolidation of reinforced procedural learning in human sleep. J Sleep Res 2020; 29:e13117. [PMID: 32592318 DOI: 10.1111/jsr.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
We investigated changes of slow-wave activity and sleep slow oscillations in the night following procedural learning boosted by reinforcement learning, and how these changes correlate with behavioural output. In the Task session, participants had to reach a visual target adapting cursor's movements to compensate an angular deviation introduced experimentally, while in the Control session no deviation was applied. The task was repeated at 13:00 hours, 17:00 hours and 23:00 hours before sleep, and at 08:00 hours after sleep. The deviation angle was set at 15° (13:00 hours and 17:00 hours) and increased to 45° (reinforcement) at 23:00 hours and 08:00 hours. Both for Task and Control nights, high-density electroencephalogram sleep recordings were carried out (23:30-19:30 hours). The Task night as compared with the Control night showed increases of: (a) slow-wave activity (absolute power) over the whole scalp; (b) slow-wave activity (relative power) in left centro-parietal areas; (c) sleep slow oscillations rate in sensorimotor and premotor areas; (d) amplitude of pre-down and up states in premotor regions, left sensorimotor and right parietal regions; (e) sigma crowning the up state in right parietal regions. After Task night, we found an improvement of task performance showing correlations with sleep slow oscillations rate in right premotor, sensorimotor and parietal regions. These findings suggest a key role of sleep slow oscillations in procedural memories consolidation. The diverse components of sleep slow oscillations selectively reflect the network activations related to the reinforced learning of a procedural visuomotor task. Indeed, areas specifically involved in the task stand out as those with a significant association between sleep slow oscillations rate and overnight improvement in task performance.
Collapse
Affiliation(s)
- Danilo Menicucci
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy.,Coma Science Group, GIGA-Consciousness, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Andrea Zaccaro
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular Pathology and Critical Medicine, University of Pisa, Pisa, Italy.,Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
64
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
65
|
|
66
|
Miyazaki T, Kanda T, Tsujino N, Ishii R, Nakatsuka D, Kizuka M, Kasagi Y, Hino H, Yanagisawa M. Dynamics of Cortical Local Connectivity during Sleep-Wake States and the Homeostatic Process. Cereb Cortex 2020; 30:3977-3990. [PMID: 32037455 DOI: 10.1093/cercor/bhaa012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep exerts modulatory effects on the cerebral cortex. Whether sleep modulates local connectivity in the cortex or only individual neural activity, however, is poorly understood. Here we investigated functional connectivity, that is, covarying activity between neurons, during spontaneous sleep-wake states and during and after sleep deprivation using calcium imaging of identified excitatory/inhibitory neurons in the motor cortex. Functional connectivity was estimated with a statistical learning approach glasso and quantified by "the probability of establishing connectivity (sparse/dense)" and "the strength of the established connectivity (weak/strong)." Local cortical connectivity was sparse in non-rapid eye movement (NREM) sleep and dense in REM sleep, which was similar in both excitatory and inhibitory neurons. The overall mean strength of the connectivity did not differ largely across spontaneous sleep-wake states. Sleep deprivation induced strong excitatory/inhibitory and dense inhibitory, but not excitatory, connectivity. Subsequent NREM sleep after sleep deprivation exhibited weak excitatory/inhibitory, sparse excitatory, and dense inhibitory connectivity. These findings indicate that sleep-wake states modulate local cortical connectivity, and the modulation is large and compensatory for stability of local circuits during the homeostatic control of sleep, which contributes to plastic changes in neural information flow.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Kanda
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Natsuko Tsujino
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Ishii
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Daiki Nakatsuka
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Mariko Kizuka
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Kasagi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hideitsu Hino
- Department of Statistical Modeling, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA.,Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
67
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
68
|
Baroni F, Morillon B, Trébuchon A, Liégeois-Chauvel C, Olasagasti I, Giraud AL. Converging intracortical signatures of two separated processing timescales in human early auditory cortex. Neuroimage 2020; 218:116882. [PMID: 32439539 DOI: 10.1016/j.neuroimage.2020.116882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the neuronal microcircuitry underlie spontaneous and stimulus-evoked spectral fingerprints, and what these fingerprints entail for stimulus encoding, remain largely open questions. We used a combination of human invasive electrophysiology, computational modeling and decoding techniques to assess the information encoding properties of brain activity and to relate them to a plausible underlying neuronal microarchitecture. We analyzed intracortical auditory EEG activity from 10 patients while they were listening to short sentences. Pre-stimulus neural activity in early auditory cortical regions often exhibited power spectra with a shoulder in the delta range and a small bump in the beta range. Speech decreased power in the beta range, and increased power in the delta-theta and gamma ranges. Using multivariate machine learning techniques, we assessed the spectral profile of information content for two aspects of speech processing: detection and discrimination. We obtained better phase than power information decoding, and a bimodal spectral profile of information content with better decoding at low (delta-theta) and high (gamma) frequencies than at intermediate (beta) frequencies. These experimental data were reproduced by a simple rate model made of two subnetworks with different timescales, each composed of coupled excitatory and inhibitory units, and connected via a negative feedback loop. Modeling and experimental results were similar in terms of pre-stimulus spectral profile (except for the iEEG beta bump), spectral modulations with speech, and spectral profile of information content. Altogether, we provide converging evidence from both univariate spectral analysis and decoding approaches for a dual timescale processing infrastructure in human auditory cortex, and show that it is consistent with the dynamics of a simple rate model.
Collapse
Affiliation(s)
- Fabiano Baroni
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland; School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Benjamin Morillon
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systémes (INS), Marseille, France
| | - Agnès Trébuchon
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systémes (INS), Marseille, France; Clinical Neurophysiology and Epileptology Department, Timone Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systémes (INS), Marseille, France; Department of Neurological Surgery, University of Pittsburgh, PA, 15213, USA
| | - Itsaso Olasagasti
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
69
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
70
|
TRPM4 Conductances in Thalamic Reticular Nucleus Neurons Generate Persistent Firing during Slow Oscillations. J Neurosci 2020; 40:4813-4823. [PMID: 32414784 DOI: 10.1523/jneurosci.0324-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
During sleep, neurons in the thalamic reticular nucleus (TRN) participate in distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory relay nuclei are known to underlie the generation of sleep spindles, the mechanisms regulating slow (<1 Hz) forms of thalamic oscillations are not well understood. Under in vitro conditions, TRN neurons can generate slow oscillations in a cell-intrinsic manner, with postsynaptic Group 1 metabotropic glutamate receptor activation triggering long-lasting plateau potentials thought to be mediated by both T-type Ca2+ currents and Ca2+-activated nonselective cation currents (ICAN). However, the identity of ICAN and the possible contribution of thalamic circuits to slow rhythmic activity remain unclear. Using thalamic slices derived from adult mice of either sex, we recorded slow forms of rhythmic activity in TRN neurons, which were driven by fast glutamatergic thalamoreticular inputs but did not require postsynaptic Group 1 metabotropic glutamate receptor activation. For a significant fraction of TRN neurons, synaptic inputs or brief depolarizing current steps led to long-lasting plateau potentials and persistent firing (PF), and in turn, resulted in sustained synaptic inhibition in postsynaptic relay neurons of the ventrobasal thalamus (VB). Pharmacological approachesindicated that plateau potentials were triggered by Ca2+ influx through T-type Ca2+ channels and mediated by Ca2+- and voltage-dependent transient receptor potential melastatin 4 (TRPM4) channels. Together, our results suggest that thalamic circuits can generate slow oscillatory activity, mediated by an interplay of TRN-VB synaptic circuits that generate rhythmicity and TRN cell-intrinsic mechanisms that control PF and oscillation frequency.SIGNIFICANCE STATEMENT Slow forms of thalamocortical rhythmic activity are thought to be essential for memory consolidation during sleep and the efficient removal of potentially toxic metabolites. In vivo, thalamic slow oscillations are regulated by strong bidirectional synaptic pathways linking neocortex and thalamus. Therefore, in vitro studies in the isolated thalamus offer important insights about the ability of individual neurons and local circuits to generate different forms of rhythmic activity. We found that circuits formed by GABAergic neurons in the thalamic reticular nucleus and glutamatergic relay neurons in the ventrobasal thalamus generated slow oscillatory activity, which was accompanied by persistent firing in thalamic reticular nucleus neurons. Our results identify both cell-intrinsic and synaptic mechanisms that mediate slow forms of rhythmic activity in thalamic circuits.
Collapse
|
71
|
Vecchia D, Beltramo R, Vallone F, Chéreau R, Forli A, Molano-Mazón M, Bawa T, Binini N, Moretti C, Holtmaat A, Panzeri S, Fellin T. Temporal Sharpening of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex. Curr Biol 2020; 30:1589-1599.e10. [PMID: 32169206 PMCID: PMC7198976 DOI: 10.1016/j.cub.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
The timing of stimulus-evoked spikes encodes information about sensory stimuli. Here we studied the neural circuits controlling this process in the mouse primary somatosensory cortex. We found that brief optogenetic activation of layer V pyramidal cells just after whisker deflection modulated the membrane potential of neurons and interrupted their long-latency whisker responses, increasing their accuracy in encoding whisker deflection time. In contrast, optogenetic inhibition of layer V during either passive whisker deflection or active whisking decreased accuracy in encoding stimulus or touch time, respectively. Suppression of layer V pyramidal cells increased reaction times in a texture discrimination task. Moreover, two-color optogenetic experiments revealed that cortical inhibition was efficiently recruited by layer V stimulation and that it mainly involved activation of parvalbumin-positive rather than somatostatin-positive interneurons. Layer V thus performs behaviorally relevant temporal sharpening of sensory responses through circuit-specific recruitment of cortical inhibition.
Collapse
Affiliation(s)
- Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Riccardo Beltramo
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Vallone
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Ronan Chéreau
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Manuel Molano-Mazón
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tanika Bawa
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Noemi Binini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva University Neurocenter, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, 16163 Genova and 38068 Rovereto, Italy.
| |
Collapse
|
72
|
Brancaccio A, Tabarelli D, Bigica M, Baldauf D. Cortical source localization of sleep-stage specific oscillatory activity. Sci Rep 2020; 10:6976. [PMID: 32332806 PMCID: PMC7181624 DOI: 10.1038/s41598-020-63933-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
The oscillatory features of non-REM sleep states have been a subject of intense research over many decades. However, a systematic spatial characterization of the spectral features of cortical activity in each sleep state is not available yet. Here, we used magnetoencephalography (MEG) and electroencephalography (EEG) recordings during night sleep. We performed source reconstruction based on the individual subject’s anatomical magnetic resonance imaging (MRI) scans and spectral analysis on each non-REM sleep epoch in eight standard frequency bands, spanning the complete spectrum, and computed cortical source reconstructions of the spectral contrasts between each sleep state in comparison to the resting wakefulness. Despite not distinguishing periods of high and low activity within each sleep stage, our results provide new information about relative overall spectral changes in the non-REM sleep stages.
Collapse
Affiliation(s)
- Arianna Brancaccio
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy.
| | - Davide Tabarelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy
| | - Marco Bigica
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Trento, Italy
| |
Collapse
|
73
|
Synchronous Infra-Slow Oscillations Organize Ensembles of Accessory Olfactory Bulb Projection Neurons into Distinct Microcircuits. J Neurosci 2020; 40:4203-4218. [PMID: 32312886 PMCID: PMC7244196 DOI: 10.1523/jneurosci.2925-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo. We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity. SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo. Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.
Collapse
|
74
|
van Luijtelaar G, van Oijen G. Establishing Drug Effects on Electrocorticographic Activity in a Genetic Absence Epilepsy Model: Advances and Pitfalls. Front Pharmacol 2020; 11:395. [PMID: 32351383 PMCID: PMC7175742 DOI: 10.3389/fphar.2020.00395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
The genetic rat models such as rats of the WAG/Rij strain and GAERS were developed as models for generalized genetic epilepsy and in particular for childhood absence epilepsy. These animal models were described in the eighties of the previous century and both models have, among others, face, construct and predictive validity. Both models were and are currently used as models to predict the action of antiepileptic medication and other experimental treatments, to elucidate neurobiological mechanisms of spike-wave discharges and epileptogenesis. Although the electroencephalagram (EEG)/electrocorticogram (ECoG) is imperative for establishing absence seizures and to quantify the for absence epilepsy typical spike-wave discharges, monitoring the animals behavior is equally necessary. Here an overview is given regarding the design of drug evaluation studies, which animals to use, classical and new EEG variables, the monitoring and quantification of the behavior of the rats, some pitfalls regarding the interpretation of the data, and some developments in EEG technology.
Collapse
Affiliation(s)
| | - Gerard van Oijen
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
75
|
Bastuji H, Lamouroux P, Villalba M, Magnin M, Garcia‐Larrea L. Local sleep spindles in the human thalamus. J Physiol 2020; 598:2109-2124. [DOI: 10.1113/jp279045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
- Centre du Sommeil & Service de Neurologie Fonctionnelle et d’Épileptologie Hospices Civils de Lyon Lyon France
| | - Pierre Lamouroux
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
| | - Manon Villalba
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
| | - Luis Garcia‐Larrea
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
- Centre d’évaluation et de traitement de la douleur Hôpital Neurologique Lyon France
| |
Collapse
|
76
|
Urbain N, Fourcaud-Trocmé N, Laheux S, Salin PA, Gentet LJ. Brain-State-Dependent Modulation of Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus during Natural Sleep. Cell Rep 2020; 26:1443-1457.e5. [PMID: 30726730 DOI: 10.1016/j.celrep.2019.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 12/17/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022] Open
Abstract
The thalamus plays a central role in sleep rhythms in the mammalian brain and, yet, surprisingly little is known about its function and interaction with local cortical oscillations during NREM sleep (NREM). We investigated the neuronal correlates of cortical barrel activity in the two corresponding thalamic nuclei, the ventral posterior medial (VPM), and the posterior medial (Pom) nuclei during natural NREM in mice. Our data reveal (1) distinct modulations of VPM and Pom activity throughout NREM episodes, (2) a thalamic nucleus-specific phase-locking to cortical slow and spindle waves, (3) cell-specific subthreshold spindle oscillations in VPM neurons that only partially overlap with cortical spindles, and (4) that spindle features evolve throughout NREM episodes and vary according to the post-NREM state. Taken together, our results suggest that, during natural sleep, the barrel cortex exerts a leading role in the generation and transfer of slow rhythms to the somatosensory thalamus and reciprocally for spindle oscillations.
Collapse
Affiliation(s)
- Nadia Urbain
- Physiopathology of Sleep Networks, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France.
| | - Nicolas Fourcaud-Trocmé
- Coding in Memory and Olfaction, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Samuel Laheux
- Physiopathology of Sleep Networks, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Paul A Salin
- Forgetting Processes and Cortical Dynamics, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Luc J Gentet
- Integrated Physiology of Brain Arousal Systems, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| |
Collapse
|
77
|
Abstract
Rapid-eye movement (REM) sleep is a paradoxical sleep state characterized by brain activity similar to wakefulness, rapid-eye-movement, and lack of muscle tone. REM sleep is a fundamental brain function, evolutionary conserved across species, including human, mouse, bird, and even reptiles. The physiological importance of REM sleep is highlighted by severe sleep disorders incurred by a failure in REM sleep regulation. Despite the intense interest in the mechanism of REM sleep regulation, the molecular machinery is largely left to be investigated. In models of REM sleep regulation, acetylcholine has been a pivotal component. However, even newly emerged techniques such as pharmacogenetics and optogenetics have not fully clarified the function of acetylcholine either at the cellular level or neural-circuit level. Recently, we discovered that the Gq type muscarinic acetylcholine receptor genes, Chrm1 and Chrm3, are essential for REM sleep. In this review, we develop the perspective of current knowledge on REM sleep from a molecular viewpoint. This should be a starting point to clarify the molecular and cellular machinery underlying REM sleep regulation and will provide insights to explore physiological functions of REM sleep and its pathological roles in REM-sleep-related disorders such as depression, PTSD, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
78
|
van der Meij J, Martinez-Gonzalez D, Beckers GJL, Rattenborg NC. Intra-"cortical" activity during avian non-REM and REM sleep: variant and invariant traits between birds and mammals. Sleep 2019; 42:5195213. [PMID: 30462347 DOI: 10.1093/sleep/zsy230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Several mammalian-based theories propose that the varying patterns of neuronal activity occurring in wakefulness and sleep reflect different modes of information processing. Neocortical slow-waves, hippocampal sharp-wave ripples, and thalamocortical spindles occurring during mammalian non-rapid eye-movement (NREM) sleep are proposed to play a role in systems-level memory consolidation. Birds show similar NREM and REM (rapid eye-movement) sleep stages to mammals; however, it is unclear whether all neurophysiological rhythms implicated in mammalian memory consolidation are also present. Moreover, it is unknown whether the propagation of slow-waves described in the mammalian neocortex occurs in the avian "cortex" during natural NREM sleep. We used a 32-channel silicon probe connected to a transmitter to make intracerebral recordings of the visual hyperpallium and thalamus in naturally sleeping pigeons (Columba livia). As in the mammalian neocortex, slow-waves during NREM sleep propagated through the hyperpallium. Propagation primarily occurred in the thalamic input layers of the hyperpallium, regions that also showed the greatest slow-wave activity (SWA). Spindles were not detected in both the visual hyperpallium, including regions receiving thalamic input, and thalamus, using a recording method that readily detects spindles in mammals. Interestingly, during REM sleep fast gamma bursts in the hyperpallium (when present) were restricted to the thalamic input layers. In addition, unlike mice, the decrease in SWA from NREM to REM sleep was the greatest in these layers. Taken together, these variant and invariant neurophysiological aspects of avian and mammalian sleep suggest that there may be associated mechanistic and functional similarities and differences between avian and mammalian sleep.
Collapse
Affiliation(s)
- Jacqueline van der Meij
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Dolores Martinez-Gonzalez
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Gabriël J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Yalelaan, CM Utrecht, The Netherlands
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| |
Collapse
|
79
|
Ellenrieder N, Gotman J, Zelmann R, Rogers C, Nguyen DK, Kahane P, Dubeau F, Frauscher B. How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity. Ann Neurol 2019; 87:289-301. [DOI: 10.1002/ana.25651] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Nicolás Ellenrieder
- Montreal Neurological Institute and HospitalMcGill University Montreal Quebec Canada
| | - Jean Gotman
- Montreal Neurological Institute and HospitalMcGill University Montreal Quebec Canada
| | - Rina Zelmann
- Montreal Neurological Institute and HospitalMcGill University Montreal Quebec Canada
- Department of NeurologyMassachusetts General Hospital and Harvard Medical School Boston MA
| | - Christine Rogers
- Montreal Neurological Institute and HospitalMcGill University Montreal Quebec Canada
| | | | - Philippe Kahane
- Department of NeurologyGrenoble‐Alpes University Hospital and Grenoble‐Alpes University Grenoble France
| | - François Dubeau
- Montreal Neurological Institute and HospitalMcGill University Montreal Quebec Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and HospitalMcGill University Montreal Quebec Canada
- Department of MedicineQueen's University Kingston Ontario Canada
| |
Collapse
|
80
|
Jerath R, Beveridge C, Jensen M. On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Front Hum Neurosci 2019; 13:426. [PMID: 31866845 PMCID: PMC6904282 DOI: 10.3389/fnhum.2019.00426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/18/2019] [Indexed: 01/23/2023] Open
Abstract
Bioelectric oscillations occur throughout the nervous system of nearly all animals, revealed to play an important role in various aspects of cognitive activity such as information processing and feature binding. Modern research into this dynamic and intrinsic bioelectric activity of neural cells continues to raise questions regarding their role in consciousness and cognition. In this theoretical article, we assert a novel interpretation of the hierarchical nature of "brain waves" by identifying that the superposition of multiple oscillations varying in frequency corresponds to the superimposing of the contents of consciousness and cognition. In order to describe this isomorphism, we present a layered model of the global functional oscillations of various frequencies which act as a part of a unified metastable continuum described by the Operational Architectonics theory and suggested to be responsible for the emergence of the phenomenal mind. We detail the purposes, functions, and origins of each layer while proposing our main theory that the superimposition of these oscillatory layers mirrors the superimposition of the components of the integrated phenomenal experience as well as of cognition. In contrast to the traditional view that localizations of high and low-frequency activity are spatially distinct, many authors have suggested a hierarchical nature to oscillations. Our theoretical interpretation is founded in four layers which correlate not only in frequency but in evolutionary development. As other authors have done, we explore how these layers correlate to the phenomenology of human experience. Special importance is placed on the most basal layer of slow oscillations in coordinating and grouping all of the other layers. By detailing the isomorphism between the phenomenal and physiologic aspects of how lower frequency layers provide a foundation for higher frequency layers to be organized upon, we provide a further means to elucidate physiological and cognitive mechanisms of mind and for the well-researched outcomes of certain voluntary breathing patterns and meditative practices which modulate the mind and have therapeutic effects for psychiatric and other disorders.
Collapse
Affiliation(s)
- Ravinder Jerath
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Connor Beveridge
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Michael Jensen
- Department of Medical Illustration, Augusta University, Augusta, GA, United States
| |
Collapse
|
81
|
Hao X, Yang S, Wang J, Deng B, Wei X, Yi G. Efficient Implementation of Cerebellar Purkinje Cell With the CORDIC Algorithm on LaCSNN. Front Neurosci 2019; 13:1078. [PMID: 31680818 PMCID: PMC6803503 DOI: 10.3389/fnins.2019.01078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023] Open
Abstract
Purkinje cell is an important neuron for the cerebellar information processing. In this work, we present an efficient implementation of a cerebellar Purkinje model using the Coordinate Rotation Digital Computer (CORDIC) algorithm and implement it on a Large-Scale Conductance-Based Spiking Neural Networks (LaCSNN) system with cost-efficient multiplier-less methods, which are more suitable for large-scale neural networks. The CORDIC-based Purkinje model has been compared with the original model in terms of the voltage activities, dynamic mechanisms, precision, and hardware resource utilization. The results show that the CORDIC-based Purkinje model can reproduce the same biological activities and dynamical mechanisms as the original model with slight deviation. In the aspect of the hardware implementation, it can use only logic resources, so it provides an efficient way for maximizing the FPGA resource utilization, thereby expanding the scale of neural networks that can be implemented on FPGAs.
Collapse
Affiliation(s)
- Xinyu Hao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Shuangming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
82
|
Bartsch U, Simpkin AJ, Demanuele C, Wamsley E, Marston HM, Jones MW. Distributed slow-wave dynamics during sleep predict memory consolidation and its impairment in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:18. [PMID: 31685816 PMCID: PMC6828759 DOI: 10.1038/s41537-019-0086-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
Abstract
The slow waves (SW) of non-rapid eye movement (NREM) sleep reflect neocortical components of network activity during sleep-dependent information processing; their disruption may therefore impair memory consolidation. Here, we quantify sleep-dependent consolidation of motor sequence memory, alongside sleep EEG-derived SW properties and synchronisation, and SW–spindle coupling in 21 patients suffering from schizophrenia and 19 healthy volunteers. Impaired memory consolidation in patients culminated in an overnight improvement in motor sequence task performance of only 1.6%, compared with 15% in controls. During sleep after learning, SW amplitudes and densities were comparable in healthy controls and patients. However, healthy controls showed a significant 45% increase in frontal-to-occipital SW coherence during sleep after motor learning in comparison with a baseline night (baseline: 0.22 ± 0.05, learning: 0.32 ± 0.05); patient EEG failed to show this increase (baseline: 0.22 ± 0.04, learning: 0.19 ± 0.04). The experience-dependent nesting of spindles in SW was similarly disrupted in patients: frontal-to-occipital SW–spindle phase-amplitude coupling (PAC) significantly increased after learning in healthy controls (modulation index baseline: 0.17 ± 0.02, learning: 0.22 ± 0.02) but not in patients (baseline: 0.13 ± 0.02, learning: 0.14 ± 0.02). Partial least-squares regression modelling of coherence and PAC data from all electrode pairs confirmed distributed SW coherence and SW–spindle coordination as superior predictors of overnight memory consolidation in healthy controls but not in patients. Quantifying the full repertoire of NREM EEG oscillations and their long-range covariance therefore presents learning-dependent changes in distributed SW and spindle coordination as fingerprints of impaired cognition in schizophrenia.
Collapse
Affiliation(s)
- Ullrich Bartsch
- Translational & Integrative Neuroscience, Lilly Research Centre, Windlesham, Surrey, GU20 6PH, UK. .,School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Andrew J Simpkin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Charmaine Demanuele
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, 02215, USA.,Athinoula A. Martinos Centicaer for Biomedl Imaging, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Erin Wamsley
- Department of Psychology, Furman University, Greenville, SC, 29613, USA
| | - Hugh M Marston
- Translational & Integrative Neuroscience, Lilly Research Centre, Windlesham, Surrey, GU20 6PH, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
83
|
Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus 2019; 30:73-98. [PMID: 31617622 PMCID: PMC6972576 DOI: 10.1002/hipo.23167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/05/2023]
Abstract
This article aims to provide a synthesis on the question how brain structures cooperate to accomplish hierarchically organized behaviors, characterized by low‐level, habitual routines nested in larger sequences of planned, goal‐directed behavior. The functioning of a connected set of brain structures—prefrontal cortex, hippocampus, striatum, and dopaminergic mesencephalon—is reviewed in relation to two important distinctions: (a) goal‐directed as opposed to habitual behavior and (b) model‐based and model‐free learning. Recent evidence indicates that the orbitomedial prefrontal cortices not only subserve goal‐directed behavior and model‐based learning, but also code the “landscape” (task space) of behaviorally relevant variables. While the hippocampus stands out for its role in coding and memorizing world state representations, it is argued to function in model‐based learning but is not required for coding of action–outcome contingencies, illustrating that goal‐directed behavior is not congruent with model‐based learning. While the dorsolateral and dorsomedial striatum largely conform to the dichotomy between habitual versus goal‐directed behavior, ventral striatal functions go beyond this distinction. Next, we contextualize findings on coding of reward‐prediction errors by ventral tegmental dopamine neurons to suggest a broader role of mesencephalic dopamine cells, viz. in behavioral reactivity and signaling unexpected sensory changes. We hypothesize that goal‐directed behavior is hierarchically organized in interconnected cortico‐basal ganglia loops, where a limbic‐affective prefrontal‐ventral striatal loop controls action selection in a dorsomedial prefrontal–striatal loop, which in turn regulates activity in sensorimotor‐dorsolateral striatal circuits. This structure for behavioral organization requires alignment with mechanisms for memory formation and consolidation. We propose that frontal corticothalamic circuits form a high‐level loop for memory processing that initiates and temporally organizes nested activities in lower‐level loops, including the hippocampus and the ripple‐associated replay it generates. The evidence on hierarchically organized behavior converges with that on consolidation mechanisms in suggesting a frontal‐to‐caudal directionality in processing control.
Collapse
Affiliation(s)
- Silviu I Rusu
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
84
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
85
|
Laurino M, Piarulli A, Menicucci D, Gemignani A. Local Gamma Activity During Non-REM Sleep in the Context of Sensory Evoked K-Complexes. Front Neurosci 2019; 13:1094. [PMID: 31680829 PMCID: PMC6803494 DOI: 10.3389/fnins.2019.01094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
K-complexes (KCs) and Sleep Slow Oscillations (SSOs) are the EEG expression of neuronal bistability during deeper stages Non-REM sleep. They are characterized by a deep negative deflection lasting about half-a-second, sustained, at the cortical level, by a widespread and synchronized neuronal hyperpolarization (i.e., electrical silence). The phase of hyperpolarization is followed by a period of intense and synchronized neuronal firing (i.e., depolarization phase) resulting at the EEG level, in a large positive deflection (lasting about 0.5 s) and a concurrent high frequency activity (i.e., spindles). Both KCs and SSOs rather than being “local” phenomena, propagate over large sections of the cortex. These features suggest that bistability is a large-scale network phenomenon, possibly driven by a propagating excitatory activity and involving wide populations of synchronized neurons. We have recently shown that KCs and SSOs include a positive bump preceding the negative peak and that for sensory-evoked KCs this bump coincides with the P200 wave. We demonstrated that the P200 has a sensory-modality specific localization, as it is firstly elicited in the primary sensory areas related to the stimulus, which in turn receive projections from the thalamic core. We observed that the P200 acts as a propagating excitatory activity and hypothesized that it could play a key role in inducing the opening of K+ channels, and hence the cortical hyperpolarization. Here we demonstrate that the P200 is sustained by a high-frequency excitation bringing further support to its role in triggering bistability. We show that the P200 has a higher power density in gamma band as compared to the P900 coherently for all sensory modalities, and we confirm that the latter wave is crowned by higher activity in sigma-beta bands. Finally, we characterize the P200 gamma activity at the cortical level in terms of spatial localization and temporal dynamics, demonstrating that it emerges in sensory stimulus-specific primary areas and travels over the cortical mantle spreading toward fronto-central associative areas and fading concurrently with the N550 onset.
Collapse
Affiliation(s)
- Marco Laurino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
86
|
Sitnikova E, Grubov V, Hramov AE. Slow-wave activity preceding the onset of 10-15-Hz sleep spindles and 5-9-Hz oscillations in electroencephalograms in rats with and without absence seizures. J Sleep Res 2019; 29:e12927. [PMID: 31578791 DOI: 10.1111/jsr.12927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/22/2023]
Abstract
Cortico-thalamocortical networks generate sleep spindles and slow waves during non-rapid eye movement sleep, as well as paroxysmal spike-wave discharges (i.e. electroencephalogram manifestation of absence epilepsy) and 5-9-Hz oscillations in genetic rat models (i.e. pro-epileptic activity). Absence epilepsy is a disorder of the thalamocortical network. We tested a hypothesis that absence epilepsy associates with changes in the slow-wave activity before the onset of sleep spindles and pro-epileptic 5-9-Hz oscillations. The study was performed in the WAG/Rij genetic rat model of absence epilepsy and Wistar rats at the age of 9-12 months. Electroencephalograms were recorded with epidural electrodes from the anterior cortex. Sleep spindles (10-15 Hz), 5-9-Hz oscillations and their slow-wave (2-7 Hz) precursors were automatically detected and analysed using continuous wavelet transform. Subjects with electroencephalogram seizures (the "epileptic" phenotype) and without seizure activity (the "non-epileptic" phenotype) were identified in both strains. It was found that time-amplitude features of sleep spindles and 5-9-Hz oscillations were similar in both rat strains and in both phenotypes. Sleep spindles in "epileptic" rats were more often preceded by the slow-wave (~4 Hz) activity than in "non-epileptic" rats. The intrinsic frequency of slow-wave precursors of sleep spindles and 5-9-Hz oscillations in "epileptic" rats was 1-1.5 Hz higher than in "non-epileptic" rats. In general, our results indicated that absence epilepsy associated with: (a) the reinforcement of slow waves immediately prior to normal sleep spindles; and (b) weakening of amplitude growth in transition "slow wave → spindle/5-9-Hz oscillation".
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander E Hramov
- Innopolis University, Innopolis, Russia.,Saratov State Medical University, Saratov, Russia
| |
Collapse
|
87
|
Mitelut CC, Spacek MA, Chan AW, Murphy TH, Swindale NV. LFP clustering in cortex reveals a taxonomy of Up states and near-millisecond, ordered phase-locking in cortical neurons. J Neurophysiol 2019; 122:1794-1809. [PMID: 31433725 DOI: 10.1152/jn.00456.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During slow-wave sleep and anesthesia, mammalian cortex exhibits a synchronized state during which neurons shift from a largely nonfiring to a firing state, known as an Up-state transition. Up-state transitions may constitute the default activity pattern of the entire cortex (Neske GT. Front Neural Circuits 9: 88, 2016) and could be critical to understanding cortical function, yet the genesis of such transitions and their interaction with single neurons is not well understood. It was recently shown that neurons firing at rates >2 Hz fire spikes in a stereotyped order during Up-state transitions (Luczak A, McNaughton BL, Harris KD. Nat Rev Neurosci 16: 745-755, 2015), yet it is still unknown if Up states are homogeneous and whether spiking order is present in neurons with rates <2 Hz (the majority). Using extracellular recordings from anesthetized cats and mice and from naturally sleeping rats, we show for the first time that Up-state transitions can be classified into several types based on the shape of the local field potential (LFP) during each transition. Individual LFP events could be localized in time to within 1-4 ms, more than an order of magnitude less than in previous studies. The majority of recorded neurons synchronized their firing to within ±5-15 ms relative to each Up-state transition. Simultaneous electrophysiology and wide-field imaging in mouse confirmed that LFP event clusters are cortex-wide phenomena. Our findings show that Up states are of different types and point to the potential importance of temporal order and millisecond-scale signaling by cortical neurons.NEW & NOTEWORTHY During cortical Up-state transitions in sleep and anesthesia, neurons undergo brief periods of increased firing in an order similar to that occurring in awake states. We show that these transitions can be classified into distinct types based on the shape of the local field potential. Transition times can be defined to <5 ms. Most neurons synchronize their firing to within ±5-15 ms of the transitions and fire in a consistent order.
Collapse
Affiliation(s)
- Catalin C Mitelut
- Department of Statistics, Columbia University, New York, New York.,Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin A Spacek
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Allen W Chan
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Tim H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas V Swindale
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
88
|
Williams RH, Vazquez-DeRose J, Thomas AM, Piquet J, Cauli B, Kilduff TS. Cortical nNOS/NK1 Receptor Neurons are Regulated by Cholinergic Projections From the Basal Forebrain. Cereb Cortex 2019; 28:1959-1979. [PMID: 28472227 DOI: 10.1093/cercor/bhx102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 12/30/2022] Open
Abstract
Cholinergic (ACh) basal forebrain (BF) neurons are active during wakefulness and rapid eye movement (REM) sleep and are involved in sleep homeostasis. We have previously shown in adult animals that cortical neurons that express neuronal nitric oxide synthase (nNOS) and the receptor for Substance P (NK1R) are activated during non-REM (NREM) sleep in proportion to homeostatic sleep drive. Here, we show that BF neurons modulate cortical nNOS/NK1R cells. In vitro optogenetic stimulation of BF terminals both activated and inhibited nNOS/NK1R neurons. Pharmacological studies revealed cholinergic responses mediated by postsynaptic activation of muscarinic receptors (mAChRs; M3R > M2/4R > M1R) and that presynaptic M3R and M2R activation reduced glutamatergic input onto nNOS/NK1R neurons whereas nicotinic receptor (nAChR)-mediated responses of nNOS/NK1R neurons were mixed. Cholinergic responses of nNOS/NK1R neurons were largely unaffected by prolonged wakefulness. ACh release, including from BF cells, appears to largely excite cortical nNOS/NK1R cells while reducing glutamatergic inputs onto these neurons. We propose that cholinergic signaling onto cortical nNOS/NK1R neurons may contribute to the regulation of cortical activity across arousal states, but that this response is likely independent of the role of these neurons in sleep homeostasis.
Collapse
Affiliation(s)
- Rhîannan H Williams
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | | | - Alexia M Thomas
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Juliette Piquet
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Paris, FR 75005, France.,Sorbonne Universités, UPMC University Paris 06, UM 119, Neuroscience Paris Seine, Paris, FR 75005, France.,Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine, Paris, FR 75005, France
| | - Bruno Cauli
- Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Paris, FR 75005, France.,Sorbonne Universités, UPMC University Paris 06, UM 119, Neuroscience Paris Seine, Paris, FR 75005, France.,Institut National de la Santé et de la Recherche Médicale, UMR-S 1130, Neuroscience Paris Seine, Paris, FR 75005, France
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
89
|
Muheim CM, Spinnler A, Sartorius T, Dürr R, Huber R, Kabagema C, Ruth P, Brown SA. Dynamic- and Frequency-Specific Regulation of Sleep Oscillations by Cortical Potassium Channels. Curr Biol 2019; 29:2983-2992.e3. [PMID: 31474531 DOI: 10.1016/j.cub.2019.07.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/15/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Primary electroencephalographic (EEG) features of sleep arise in part from thalamocortical neural assemblies, and cortical potassium channels have long been thought to play a critical role. We have exploited the regionally dynamic nature of sleep EEG to develop a novel screening strategy and used it to conduct an adeno-associated virus (AAV)-mediated RNAi screen for cellular roles of 31 different voltage-gated potassium channels in modulating cortical EEG features across the circadian sleep-wake cycle. Surprisingly, a majority of channels modified only electroencephalographic frequency bands characteristic of sleep, sometimes diurnally or even in specific vigilance states. Confirming our screen for one channel, we show that depletion of the KCa1.1 (or "BK") channel reduces EEG power in slow-wave sleep by slowing neuronal repolarization. Strikingly, this reduction completely abolishes transcriptomic changes between sleep and wake. Thus, our data establish an unexpected connection between transcription and EEG power controlled by specific potassium channels. We postulate that additive dynamic roles of individual potassium channels could integrate different influences upon sleep and wake within single neurons.
Collapse
Affiliation(s)
- Christine M Muheim
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Andrea Spinnler
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Tina Sartorius
- Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Roland Dürr
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Reto Huber
- University Children's Hospital Zurich, University of Zürich, Steinwiesstrasse 75, Zürich 8032, Switzerland
| | - Clement Kabagema
- Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Peter Ruth
- Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland.
| |
Collapse
|
90
|
Individual slow-wave morphology is a marker of aging. Neurobiol Aging 2019; 80:71-82. [DOI: 10.1016/j.neurobiolaging.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
|
91
|
Frauscher B, Gotman J. Sleep, oscillations, interictal discharges, and seizures in human focal epilepsy. Neurobiol Dis 2019; 127:545-553. [DOI: 10.1016/j.nbd.2019.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
92
|
Balogh V, Szádeczky-Kardoss K, Varró P, Világi I, Borbély S. Analysis of Propagation of Slow Rhythmic Activity Induced in Ex Vivo Rat Brain Slices. Brain Connect 2019; 9:649-660. [PMID: 31179725 DOI: 10.1089/brain.2018.0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Slow wave oscillation is a synchronous oscillatory mechanism that is a characteristic wave type of the cerebral cortex during physiological deep sleep or anesthesia. It may play an important role in cortical analysis of sensory input. Our goal was (1) to develop optimal conditions for the induction of this slow rhythmic activity in adult rat cortical slices, (2) to identify connections through which the activity propagates between coupled cortical regions, and (3) to study the pattern of horizontal and vertical flow of activity developed spontaneously in cortical slices. Experiments were performed on intact or differently incised rat cortical slices. According to our results, spontaneous cortical activity develops reliably in slightly modified artificial cerebrospinal fluid, first in the entorhinal cortical region of horizontally cut slices and then it spreads directly to the perirhinal (PRh) cortex. The activity readily generated in layer 2/3 of the entorhinal cortex then quickly spreads vertically to upper layer 2-3 in the same area and to the neighboring regions, that is, to the PRh cortex. Synchronization of activity in neighboring cortical areas occurs through both callosal connections and layer 2-3 intrinsic network, which are important in the propagation of spontaneous, inherent cortical slow wave activity.
Collapse
Affiliation(s)
- Veronika Balogh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Petra Varró
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
93
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
94
|
Rattenborg NC, van der Meij J, Beckers GJL, Lesku JA. Local Aspects of Avian Non-REM and REM Sleep. Front Neurosci 2019; 13:567. [PMID: 31231182 PMCID: PMC6560081 DOI: 10.3389/fnins.2019.00567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Birds exhibit two types of sleep that are in many respects similar to mammalian rapid eye movement (REM) and non-REM (NREM) sleep. As in mammals, several aspects of avian sleep can occur in a local manner within the brain. Electrophysiological evidence of NREM sleep occurring more deeply in one hemisphere, or only in one hemisphere - the latter being a phenomenon most pronounced in dolphins - was actually first described in birds. Such asymmetric or unihemispheric NREM sleep occurs with one eye open, enabling birds to visually monitor their environment for predators. Frigatebirds primarily engage in this form of sleep in flight, perhaps to avoid collisions with other birds. In addition to interhemispheric differences in NREM sleep intensity, the intensity of NREM sleep is homeostatically regulated in a local, use-depended manner within each hemisphere. Furthermore, the intensity and temporo-spatial distribution of NREM sleep-related slow waves varies across layers of the avian hyperpallium - a primary visual area - with the slow waves occurring first in, and propagating through and outward from, thalamic input layers. Slow waves also have the greatest amplitude in these layers. Although most research has focused on NREM sleep, there are also local aspects to avian REM sleep. REM sleep-related reductions in skeletal muscle tone appear largely restricted to muscles involved in maintaining head posture. Other local aspects of sleep manifest as a mixture of features of NREM and REM sleep occurring simultaneously in different parts of the neuroaxis. Like monotreme mammals, ostriches often exhibit brainstem-mediated features of REM sleep (muscle atonia and REMs) while the hyperpallium shows EEG slow waves typical of NREM sleep. Finally, although mice show slow waves in thalamic input layers of primary sensory cortices during REM sleep, this is not the case in the hyperpallium of pigeons, suggesting that this phenomenon is not a universal feature of REM sleep. Collectively, the local aspects of sleep described in birds and mammals reveal that wakefulness, NREM sleep, and REM sleep are not always discrete states.
Collapse
Affiliation(s)
| | | | - Gabriël J. L. Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
95
|
The neurophysiological basis of excessive daytime sleepiness: suggestions of an altered state of consciousness. Sleep Breath 2019; 24:15-23. [PMID: 31140116 DOI: 10.1007/s11325-019-01865-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Excessive daytime sleepiness (EDS) is characterized by difficulty staying awake during daytime, though additional features may be present. EDS is a significant problem for clinical and non-clinical populations, being associated with a range of negative outcomes that also represent a burden for society. Extreme EDS is associated with sleep disorders, most notably the central hypersomnias such as narcolepsy, Kleine-Levin syndrome, and idiopathic hypersomnia (IH). Although investigation of these conditions indicates that EDS results from diminished sleep quality, the underlying cause for this impairment remains uncertain. One possibility could be that previous research has been too narrow in scope with insufficient attention paid to non-sleep-related aspects. Here, we offer a broader perspective in which findings concerning the impact of EDS on cortical functioning are interpreted in relation to current understanding about the neural basis of consciousness. Alterations in the spatial distribution of cortical activity, in particular reduced connectivity of frontal cortex, suggest that EDS is associated with an altered state of consciousness.
Collapse
|
96
|
Inhibition and oscillations in the human brain tissue in vitro. Neurobiol Dis 2019; 125:198-210. [DOI: 10.1016/j.nbd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
|
97
|
Zucca S, Pasquale V, Lagomarsino de Leon Roig P, Panzeri S, Fellin T. Thalamic Drive of Cortical Parvalbumin-Positive Interneurons during Down States in Anesthetized Mice. Curr Biol 2019; 29:1481-1490.e6. [PMID: 31031117 PMCID: PMC6509281 DOI: 10.1016/j.cub.2019.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Up and down states are among the most prominent features of the thalamo-cortical system during non-rapid eye movement (NREM) sleep and many forms of anesthesia. Cortical interneurons, including parvalbumin (PV) cells, display firing activity during cortical down states, and this GABAergic signaling is associated with prolonged down-state durations. However, what drives PV interneurons to fire during down states remains unclear. We here tested the hypothesis that background thalamic activity may lead to suprathreshold activation of PV cells during down states. To this aim, we performed two-photon guided juxtasomal recordings from PV interneurons in the barrel field of the somatosensory cortex (S1bf) of anesthetized mice, while simultaneously collecting the local field potential (LFP) in S1bf and the multi-unit activity (MUA) in the ventral posteromedial (VPM) thalamic nucleus. We found that activity in the VPM was associated with longer down-state duration in S1bf and that down states displaying PV cell firing were associated with increased VPM activity. Moreover, thalamic inhibition through application of muscimol reduced the fraction of spikes discharged by PV cells during cortical down states. Finally, we inhibited PV interneurons using optogenetics during down states while monitoring cortical LFP under control conditions and after thalamic muscimol injection. We found increased latency of the optogenetically triggered down-to-up transitions upon thalamic pharmacological blockade compared to controls. These findings demonstrate that spontaneous thalamic activity inhibits cortex during down states through the activation of PV interneurons.
Collapse
Affiliation(s)
- Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Valentina Pasquale
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pedro Lagomarsino de Leon Roig
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems at UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Neural Coding Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
98
|
Kortelainen J, Väyrynen E, Juuso I, Laurila J, Koskenkari J, Ala-Kokko T. Forehead electrodes sufficiently detect propofol-induced slow waves for the assessment of brain function after cardiac arrest. J Clin Monit Comput 2019; 34:105-110. [PMID: 30788811 PMCID: PMC6946726 DOI: 10.1007/s10877-019-00282-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
In a recent study, we proposed a novel method to evaluate hypoxic ischemic encephalopathy (HIE) by assessing propofol-induced changes in the 19-channel electroencephalogram (EEG). The study suggested that patients with HIE are unable to generate EEG slow waves during propofol anesthesia 48 h after cardiac arrest (CA). Since a low number of electrodes would make the method clinically more practical, we now investigated whether our results received with a full EEG cap could be reproduced using only forehead electrodes. Experimental data from comatose post-CA patients (N = 10) were used. EEG was recorded approximately 48 h after CA using 19-channel EEG cap during a controlled propofol exposure. The slow wave activity was calculated separately for all electrodes and four forehead electrodes (Fp1, Fp2, F7, and F8) by determining the low-frequency (< 1 Hz) power of the EEG. HIE was defined by following the patients’ recovery for six months. In patients without HIE (N = 6), propofol substantially increased (244 ± 91%, mean ± SD) the slow wave activity in forehead electrodes, whereas the patients with HIE (N = 4) were unable to produce such activity. The results received with forehead electrodes were similar to those of the full EEG cap. With the experimental pilot study data, the forehead electrodes were as capable as the full EEG cap in capturing the effect of HIE on propofol-induced slow wave activity. The finding offers potential in developing a clinically practical method for the early detection of HIE.
Collapse
Affiliation(s)
- Jukka Kortelainen
- Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, MRC Oulu, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland.
- Cerenion Oy, Elektroniikkatie 3, 90590, Oulu, Finland.
| | - Eero Väyrynen
- Cerenion Oy, Elektroniikkatie 3, 90590, Oulu, Finland
| | - Ilkka Juuso
- Cerenion Oy, Elektroniikkatie 3, 90590, Oulu, Finland
| | - Jouko Laurila
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Juha Koskenkari
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Tero Ala-Kokko
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| |
Collapse
|
99
|
Senzai Y, Fernandez-Ruiz A, Buzsáki G. Layer-Specific Physiological Features and Interlaminar Interactions in the Primary Visual Cortex of the Mouse. Neuron 2019; 101:500-513.e5. [PMID: 30635232 PMCID: PMC6367010 DOI: 10.1016/j.neuron.2018.12.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022]
Abstract
The relationship between mesoscopic local field potentials (LFPs) and single-neuron firing in the multi-layered neocortex is poorly understood. Simultaneous recordings from all layers in the primary visual cortex (V1) of the behaving mouse revealed functionally defined layers in V1. The depth of maximum spike power and sink-source distributions of LFPs provided consistent laminar landmarks across animals. Coherence of gamma oscillations (30-100 Hz) and spike-LFP coupling identified six physiological layers and further sublayers. Firing rates, burstiness, and other electrophysiological features of neurons displayed unique layer and brain state dependence. Spike transmission strength from layer 2/3 cells to layer 5 pyramidal cells and interneurons was stronger during waking compared with non-REM sleep but stronger during non-REM sleep among deep-layer excitatory neurons. A subset of deep-layer neurons was active exclusively in the DOWN state of non-REM sleep. These results bridge mesoscopic LFPs and single-neuron interactions with laminar structure in V1.
Collapse
Affiliation(s)
- Yuta Senzai
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA
| | - Antonio Fernandez-Ruiz
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
100
|
Electrophysiological assessment methodology of sensory processing dysfunction in schizophrenia and dementia of the Alzheimer type. Neurosci Biobehav Rev 2019; 97:70-84. [DOI: 10.1016/j.neubiorev.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|